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Abstract. Collimator detection remains a challenging task in X-ray sys-
tems with unreliable or non-available information about the detectors po-
sition relative to the source. This paper presents a physically motivated
image processing pipeline for simulating the characteristics of collimator
shadows in X-ray images. By generating randomized labels for collimator
shapes and locations, incorporating scattered radiation simulation, and
including Poisson noise, the pipeline enables the expansion of limited
datasets for training deep neural networks. We validate the proposed
pipeline by a qualitative and quantitative comparison against real colli-
mator shadows. Furthermore, it is demonstrated that utilizing simulated
data within our deep learning framework not only serves as a suitable
substitute for actual collimators but also enhances the generalization
performance when applied to real-world data.

Keywords: Data Augmentation · Collimation · Medical Physics · Dig-
ital Radiography

1 Introduction

In digital radiography, the detection of collimator-covered areas is essential to
present diagnostically relevant regions to radiologists. Geometric alignment al-
gorithms, as described in [9], can be employed in X-ray systems with known
extrinsic projection parameters. However, despite their availability, these often
suffer from inaccuracies sabotaging effectiveness in practice. Due to the inherent
geometrical variability in conventional X-ray systems, particularly with mobile
flat panel detectors, precise information of the relative position to the detector is
unavailable. Moreover, imprecise collimator movement further complicates the
detection process, necessitating analysis within image domain. Contrary to a
simplistic threshold-based approach, the identification of relevant areas is chal-
lenging due to the presence of physical effects like edge-blurring, noise, and
scattered radiation. Even human visual perception faces difficulties due to these
complexities, as depicted in Fig. 1.

Deep neural networks (DNNs) show promise for collimator detection, but
the limited availability of pre-processed raw data poses a challenge for training
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(a) Full contrast (b) Contrast ad-
justed

(c) Collimator mask (d) Lineplot

Fig. 1: Illustrative case for collimator detection depicted in two contrast settings.
(a) Contrast adjusted to full image. (b) Contrast adjusted to the orange box. The
collimated area (c) is shown as a binary mask. In (d), the intensity profile along
the dashed line is compared to the collimated area to visualize the complexity
of image-based collimator detection.

robust networks in medical applications. So far, machine learning approaches
for collimator detection have not significantly outperformed classic analytical
methods in the literature. For instance, comparing the plane detection Hough
transform proposed by Kawashita et al. [6] with Mao et al.’s [11] approach that
combines random forest learning with a landmark detector in a multi-view learn-
ing approach, both methods demonstrate similar performance on unseen data.
According to Mao et al. [11], each classifier was trained using only 200 training
images.

To enhance the performance of machine learning algorithms, it is reasonable
to assume that the implementation of robust data augmentation techniques is
beneficial. These techniques aim to increase the quantity and variety of datasets.
In this context, suitable augmentation techniques can be categorized into deep
learning-based methods, such as generative adversarial networks (GANs) [5],
and physically motivated approaches. Although GANs have shown promising
potential for post-processed X-ray image augmentation (without collimators) in
studies like Bowles et al. [1], Madani et al. [10], Kora et al. [7], and Ng et al. [12],
they require sophisticated techniques and lack comprehensibility when aiming
to serve as reliable training data.

Unlike this concept, physically motivated approaches offer a robust alterna-
tive for augmentation. These methods leverage an understanding of the underly-
ing physics involved in imaging processes. By incorporating physical principles,
these approaches ensure reproducibility and reliability, as demonstrated by Eck-
ert et al. [4] and Xu et al. [15].

In this paper a physically motivated image processing pipeline is presented
that simulates the characteristics of real collimators enabling the expansion of
limited datasets of X-ray images without collimators. The data augmentation
method enables the generation of unlimited pre-processed image data e.g. for
training DNNs.
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2 Methods

2.1 Randomized Collimator Simulation Pipeline

The process of simulating collimator shadows involves three distinct stages. In
the first stage random labels are generated to define the shape and position of
the collimated area. The second stage introduces scattered radiation, whereas
the final stage adds a simulation of noise.

Binary Mask Sampling Strategy: The first part of the pipeline generates a
binary mask of the same shape as the X-ray image to be investigated. Thus, all
image pixels are classified according to their property of lying inside or outside
the assumed collimator shadow. To determine random position, shape and size
of the collimator, a centroid location along with width and height are sampled
from a truncated normal distribution, yielding a rectangle as shown in Fig.2a.
Due to practical constraints in clinical settings, e.g. with bedridden patients,
the resulting images may exhibit rotations or distortions that deviate from the
desired orientation. To accommodate these cases, a randomized rotation and
distortion transformation are applied to the binary image’s rectangle, as shown
in Fig.2b and Fig.2c.

(a) Binary mask (b) Rotation (c) Distortion

Fig. 2: Example of a rectangular binary mask being transformed afterwards by
rotation and shape distortion to cover the range of essential deviations in clinical
practice.

Collimator Physics: To account for collimator attenuation, the binary mask
is adjusted by assigning its zeros to a damping factor, resulting in the mask Md.
The non-infinitesimal size of the focal spot causes blurring of the collimator edges
at the detector as shown in Fig. 3a. As the intensity profile of the radiated X-rays
is Gaussian distributed in space, this effect can be approximated by convolving
the mask Md with a Gaussian kernel Gb. Hence, the damping operation can be
applied to the input image Iinput as follows:

L(Iinput) = (Md ∗Gb) · Iinput (1)
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Scattered Radation Simulation: Incoherent scattering describes the process
of an high energetic photon colliding with matter, resulting in a deflection from
the initial pathway as shown in Fig.3b [8]. Due to this fact it predominantly
affects X-ray imaging depending on the matter the photon interacts with. A col-
limator influences the number of photons that pass through the patient, altering
the scatter characteristics. This change must be accounted for in the simulation.
According to comprehensive Monte Carlo simulation studies [14], it was shown
that intensities created by scattered photons are in a range from 1.2%-2% of the
primary intensity, e.g. for thorax images of c-arm systems without anti scatter
grids. In relation to the dampened intensities by the collimator, contributing 2%-
4% of the primary intensity based on empirical analysis, scatter has a significant
influence.

(a) Focal spot characteristic (b) Influence of scattered radiation

Fig. 3: Physical properties to be considered when modeling collimators in a basic
X-ray system. Edge-blurring introduced by the focal spot characteristic not being
an ideal point, as well as increasing intensities within the collimated region due
to photons that get scattered by the Compton effect.

Scatter Estimation: The intended pipeline requires a methodology capable
of modeling the distribution of scattered photons in a collimated X-ray image.
Ohnesorge et al. [13] present a convolution kernel based scatter estimation that
can be utilized for our application. At first, they define a scatter potential Sp

which is defined as follows:

Sp(I|I0) = c ·
(

I

I0

)α

· ln
(
I0
I

)β

(2)

The input image I and the primary intensity I0 are modified by three hyper
parameters α, β and c.
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Finally, the estimated scatter Se is obtained by convolving the scatter po-
tential with a Gaussian kernel Gs as demonstrated in this equation:

Se(I) = (Sp(I|I0) ∗Gs) · I0 (3)

Scatter Correction: Given the presented framework, this part of the pipeline
follows a two-step process. First, the scatter present in Iinput is removed, as it
does not match the scatter of a real collimator specified by L(Iinput). To achieve
this, we employ the scatter estimation method proposed by Ohnesorge et al., as
depicted by the following equation, in order to obtain a scatter-free image, Isc.

Isc = Iinput − Se(Iinput) (4)

In the second step, the collimated image Is with the corresponding scatter is
simulated. Eq. 1 is applied to collimate the scatter free image. The corresponding
scatter map is generated and added to the image as following:

Is = L(Isc) + Se(L(Isc)) (5)

Poisson Noise Simulation: Due to the quantum properties of light, photons
exhibit random arrival times. Hence, there exists a level of uncertainty regarding
the received signal. The probability for z photons arriving at one pixel at the
detector can be modeled by the Poisson distribution, which is defined as

P (z|λ) = λze−z

z!
. (6)

It is dependent on the parameter λ that represents the average rate at which an
event occurs, thus the mean arrival rate of the photons.

The damping of real collimators by a factor α = [0, 1] causes a reduction
of the mean photon arrival rate λ to αλ and hence, an increase in noise in the
image. Since for a Poisson distribution λ = σ = µ holds true, the altered SNR
is defined with a new mean µn and variance σn respectively as

SNR =
µn

σn
=

αλ√
αλ

=
√
α . (7)

Therefore, besides scaling the intensities in the region of the simulated collimator,
the noise level has to be increased to account for the increased uncertainty in
the number of arrived photons. So far, applying our collimator mask did change
µ to αµ and σ to ασ, remaining the SNR unchanged. To compensate for this,
we add a normal distribution N(0, σx) to the signal, to get the right SNR [3][4]:

√
α =

αµ√
σ2
x + α2λ

(8)

Rearranging the equation yields σx =
√

λ · (1− α).
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2.2 Experiments

Real vs. Simulated: For the purpose of evaluation, the pipeline’s output is
examined by acquiring X-ray images of an anthropomorphic thorax phantom.
The acquisitions include both open field and a collimated image, approximately
to the lungs. We use our pipeline to simulate a matching collimator on the
open field X-ray image and compare that image to the physically collimated
image. To perform a detailed analysis, various image patches are extracted and
quantitatively analyzed.

Application Case DNN: Using the augmentation method described, we eval-
uate its effectiveness in simulating collimators within a simple deep learning
framework. We generate samples and random labels on-the-fly for 1500 real in-
house X-ray images with collimators being manually cropped out. This is called
SimNet. In addition, we trained a second DDN, referred to as RealNet, with the
uncropped images containing the real collimators and hand-labeled masks. This
allows to inspect if it is possible to replace real collimated images with simulated
images of our pipeline.

Both DNNs are based on the DeepLabV3 architecture [2], classifying pixels
as collimated or non-collimated, utilizing the Dice metric as a loss function and
the ADAM optimizer during 500 epochs of training. Evaluation is performed
on three datasets calculating the Dice score: a subset of 80 randomly extracted
training images, 30 challenging cases with dark attenuating line-shaped implants,
and 20 images showing detector line artifacts. RealNet is evaluated with the
real collimator version. Furthermore, we check SimNets performance on real
and simulated versions of the test sets data in order to reveal the pipelines
authenticity and generalization on authentic data.

3 Results

3.1 Framework Validation

Fundamentally, the goal of the simulation pipeline is to generate real collimator
intensity distributions. On the one hand, the Figures below show that the desired
image impression can be achieved.

On the other hand, uncertainties arising from the inherent approximations
made within the pipeline can be identified. The scatter’s Gaussian distribution,
attributable to the simulation methodology, is distinctly discernible and exhibits
a discrepancy from the actual scatter behavior. To obtain a more detailed repre-
sentation of this observation, we proceed with showing the intensity distribution
along the dashed line indicated in Fig.6. Leveraging the understanding of the
impact of a real collimator on images is achieved by showing the real collimator
image together with the open field image in Fig.5a. Subsequently, Fig.5b presents
the same for the real collimator and the simulated collimator, confirming high
resemblance from qualitative point of view.
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(a) Real: anatomy
contrast

(b) Real: collima-
tor contrast

(c) Simulated:
anatomy contrast

(d) Simulated: col-
limator contrast

Fig. 4: Comparison of a real collimated image with the ouput of the pipeline
based on an open field image acquired by the same setup. Both of the images
are shown in two different contrast ranges. Besides being in the complete value
range, intensities are limited to the indicated box regions.

(a) Open Field vs. Real Collimator (b) Real vs. Simulated Collimator

Fig. 5: Line plots comparing real collimator damping on a real X-ray image as
well as presenting the differences between the real and simulated collimator.

Furthermore, real and simulated collimator are quantitatively examined by
the normalized mean-squared-error (nMSE), the structural similarity index (SSIM)
and the Peak SNR (PSNR) of the image patches depicted in Fig.5. Table 1 shows
that the non-collimated region specifically exhibits an almost identical charac-
teristic. The patches within collimator region however demonstrate that slight
diverging behaviour exists, but does not exceed the requirement of being very
similar. In particular this is proven by still showing a very high score for the
SSIM.

3.2 Network Evaluation

The performance of the DNN based on pipeline augmentation (SimNet), as pre-
sented in Table 2, demonstrates that it achieves slightly better results on simu-
lated data, which can be attributed to its training on such data. However, the
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Fig. 6: Orientational scheme
showcasing the location of the
defined image patches as well as
the line for the intensity value
distributions.

Patch nMSE SSIM PSNR

1 0.0001 0.9998 33.2286 [dB]
2 0.0676 0.9962 31.7112 [dB]
3 0.0192 0.9997 32.8377 [dB]

Table 1: Statistical Measures of Image
Patches comparing real and simulated
collimator images.

network’s ability to perform very well on real-world data validates the concept
and affirms that the images processed by simulation maintain a high level of
realism. We can further prove this by showing that SimNet even exceeds the
performance of RealNet. Future research will focus on exploring network archi-
tectures possessing explicit constraints for collimator detection, thereby enabling
them to distinguish edges more efficiently.

SimNet RealNet

Test sets Real Simulated Real

General Test 0.9718± 0.027 0.9749± 0.041 0.9641± 0.048
Line Artifacts Test 0.9778± 0.025 0.9873± 0.014 0.9652± 0.038
Implants Test 0.9494± 0.071 0.9820± 0.027 0.9780± 0.015

Table 2: RealNet vs. SimNet Dice score performance comparison.

4 Discussion

The presented X-ray image processing pipeline effectively simulates the proper-
ties of real collimators by incorporating key physical effects such as scattered
radiation and quantum noise, adapting them to the randomly generated labels
that define the synthetic collimators shape and location. This approach enables
the generation of an unlimited amount of collimator training data. The realism of
the generated characteristics is both qualitatively and quantitatively validated.
When applied to a dataset of real X-ray images within a DNN environment, the
pipeline demonstrates a significantly close performance on real test collimators
compared to the simulated ones. Furthermore, it outperforms the correspond-
ing DNN based on training with real collimators and hence no augmentation,
affirming the effectiveness of the proposed approach.
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Disclaimer: The concepts and information presented in this paper are based
on research and are not commercially available.
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