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SEIBERG-WITTEN INVARIANTS

HAOCHEN QIU

ABSTRACT. We prove a surgery formula for the ordinary Seiberg-Witten invariants, and surgery for-
mulas for the families Seiberg-Witten invariants of families of 4-manifolds obtained through fibrewise
surgery. Our formula expresses the Seiberg-Witten invariants of the manifold after the surgery, in
terms of the original Seiberg-Witten moduli space cut down by a cohomology class in the configu-
ration space. We use these surgery formulas to study how a surgery can preserve or produce exotic

phenomena.
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1. INTRODUCTION

Let v be a loop in a closed smooth 4-manifold X. A surgery along 7 is removing a neighborhood
of v with a trivialization of the normal bundle, and gluing back a copy of D? x S2. For example, a
surgery along S* x {pt} = S! x S2 would produce S*, while a surgery along a trivial loop on S* may
produce S? x §% or CP?#CP2. So such surgery establishes relations between lots of 4-manifolds. The
four projects in this paper describe how a surgery can preserve or produce exotic phenomena.

The tool we use comes from the Seiberg-Witten equations, which depends on a metric and a self-
dual 2-form. The input of the equation for X includes a Spin®-structure (they are related to elements
in H?(X;Z)), a U(1)-connection, and a “spinor”. The set of equivalence classes of U(1)-connections
and spinors under the “gauge group” Map(X, S*) is called the configuration space (denoted by B),
which is a fiber bundle with fiber CP® and base a torus 7% (X). A tuple consisting of a metric and
a perturbing 2-form is called a parameter. The solution of this equation with a suitable parameter
is a smooth compact manifold in the configuration space. This manifold is called the SW moduli
space (denoted by 9). Its dimension is computed by the Atiyah-Singer index theorem, and if it is
even, we can integrate a poduct of ¢;(CP®) on the moduli space and get the so-called SW invariant
(when the dimension is 0, the integral just counts the points with signs). This is an invariant under
diffeomorphism. Many examples of exotic 4-manifolds were found by computing this invariant for two
homeomorphic manifolds.

The family SW invariant (F.STV), on the other hand, can detect higher dimensional exotic phenom-
ena. Given a smooth family of X over a base B and a corresponding family of parameters, the union
of the solutions is called the parameterized moduli space, and if its dimension is 0 then F.SW is the
signed counts of points with orientation. For each k& > 0, Ruberman-Auckly construct a (k + 1)-family
of X such that the F'SW for this family is an invariant of 7 (Diff(X)).

In the following projects, we generalize SW and FSW to 1-dimensional moduli space, such that
new invariants (we call them SW® and FSW®) can detect exotic phenomena. Then we prove several
surgery formulas that show how a surgery changes SW, FSW, SW® and FSW®.

1.1. Surgery formula for homologically nontrivial loop. For a 4-manifold X with
HY (X:Z) =17,

suppose s is a Spin®structure such that dim9(X,s) = 1. The configuration space is homotopy
equivalent to a bundle over S! with fiber CP®. Let © be the pullback of a generator of H!(S*;Z).
Define the cut-down Seiberg-Witten invariant SW®(X,s) be the integral of © on M(X,s). We prove
that this invariant detects exotic smooth structures.

Let v € X be a loop that represents a generator of Hi(X;Z)/torsion = Z. Suppose a surgery
along v produces X’. We show that any Spin®-structure s on X can be extended to a unique Spin®-

structure s’ on X’. Since the surgery kills the first cohomology group, H'(X’;Z) = 0 and therefore
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dimM(X’,s") = 0. Hence SW(X',s") is defined by counting points in (X', s). The main theorem of
this project is

Theorem 1.1. SW®(X,s) = SW(X',¢).

This is proved by applying the classical gluing result in Nicolaescu’s book [Nic00] twice. Let S* x D3
be a neighborhood of v, and let Xq = X — S! x D3. Then gluing X, with S! x D3 produces X, while
gluing X, with D? x S? produces X’. The classical gluing result says, if a certain “obstruction space”
is trivial on Xo, then 9(X) is the fiber product M(Xo) X on(s1xs2) M(ST x D?) while M(X') is the
fiber product M(Xo) Xon(s1xs2) M(D? x 5?). We prove that since ~ is homologically nontrivial, for
generic parameters such obstruction space is trivial. Furthermore, we can choose suitable metrics such
that M(S* x D3) — M(ST x S?) is the identity map of a circle, and M(D? x S2) — M(S! x S?) is the
inclusion of one point into a circle. Hence if we cut DM(X’), we get M(X), and the theorem follows.

As lots of exotic smooth structures are detected by SW, we can now generalize those results to
nonsimply connected manifolds, for example:

Corollary 1.2. E(n)#S! x S3 admits infinitely many exotic smooth structures.

The method developed in this project also works for the homologically trivial case. Let v < X be
a loop that represents 0 € Hy(X;Z). Suppose a surgery along v produces X’. We show that for any
extension s’ of any Spin®-structure s on X with dim (X, s) = 0, we have dim 9M(X’,s’) = 0. Since 7
is homologically trivial, we will have

Theorem 1.3. SW(X',s") =0.

This generalizes the vanishing result of the connected sum with S? x S2. Theorem 1.3 can also be
obtained by the generalized adjunction formula ([KM94]), but the method in this project fits in the
proof of family surgery formula below, where a homologically trivial loop has nontrivial higher exotic

phenomena.

1.2. Family surgery formula for homologically nontrivial loop. The motivation for this work
is the following question:

Q: If X is a smooth manifold with an exotic diffeomorphism, can we find an exotic diffeomorphism
on X#(S! x §%)?

Here, an exotic diffeomorphism f is a self diffeomorphism of X such that f is continously iso-
topic to the identity, but f is not smoothly isotopic to the identity. Ruberman [Rub98] proves that
CP2#2@2#E(2) admits an exotic diffeomorphism by the family Seiberg-Witten invariant (which
would be explained later). Baraglia and Konno show that

n(S? x S*)#(nk3)

for n < 2 and
2nCP2#(mCP")
for n < 2 and m < 10n + 1 admit exotic diffeomorphisms, by a gluing formula of the family Seiberg-
Witten invariant. All these examples are simply connected.
In this project we consider a nonsimply connected manifold X with H;(X;Z) = Z and a smooth
family EFx of X indexed by the parameter space B. Let Eg1 be a subbundle such that each fiber

of Es1 is a loop that represents a generator of Hy(X;Z) = Z. Suppose a family of surgeries along
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Egs: produces Ex:. Suppose s is a Spin®-structure such that dim9(X,s) = dim B + 1. As before
any Spin°-structure s on X can be extended to a unique Spin°-structure s’ on X', and we are able to
define © similarly. Since the surgery kills the first cohomology group, H'(X’;Z) = 0 and therefore the
parameterized moduli space on X’ has dimension dim FM(X’,s’) = 0. Hence FSW(X’,s’) is defined
by counting points in FIM(X’,s). The main theorem of this project is

Theorem 1.4. FSW®(Ex,s) = FSW(Ex/,s').

The main issue here is that the parameterized moduli space on X is 1-dimensional. Then locally

there would be two cases:

1) For an isolated parameter the solution is 1-dimensional, and there is no other nearby parameter
such that the equation has solutions;

2) There exists a 1-dimensional family of parameters such that the solutions are 0-dimensional for
each of them.

By analysing Hodge star operator and an exact sequence, it turns out that these cases depend purely on
topological properties of Xy. When =y is homologically nontrivial, we prove that for a generic parameter,
the parameterized moduli space on Xy is of case 1, and the dimension of the obstruction space on X
is equal to dim B, and therefore we can apply a method developed by Baraglia-Konno[BK20].

This cut-down family invariant generalizes exotic diffeomorphisms found by Ruberman[Rub98] and
Baraglia-Konno[BK20]. For example:

Corollary 1.5. Let X be one of the following manifolds:

o CP2#(#2CP )#Y and b (Y) > 2.
o #7(S? x SO)HH#K3) forn > 2.
o #Q"CPQ#(#’”@Z) forn =2 and m = 10n + 1.

Then X#(S' x S) admits an exotic diffeomorphism.

Ruberman[Rub02] gives examples of simply connected manifolds for which the space of positive
scalar curvature (psc) metrics is disconnected. This is demonstrated using family Seiberg-Witten

invariant. We can generalize these results by the family surgery formula:

Corollary 1.6. Let X be one of the following manifolds:

o CP2#(#2CP)#Y for bi (V) =3 .
o #2"(CIP’2#(#’”@2) forn =2 and m = 10n + 1.

Then the space of psc metrics on X# (S x S?) has infinite many path components.

Konno proves that mo(Diff( X)) is not finitely generated for some simply connected 4-manifold. We
can generalize his result to nonsimply connected 4-manifolds:

Corollary 1.7. There ezists a simply connected 4-manifold X that is not a sphere, such that
mo(Diff( X#(S' x §%)))

1s not finitely generated.



1.3. Family surgery formula for homologically trivial loops. In this project, we suppose each

fiber of Fg1 is a homologically trivial loop. Then we have

Theorem 1.8. Use the notation as before and assume the following:
e dim B > 0;
e Egi is an orientable S'-subbundle of Ex.
Then
FSW (Ex:,s') = 0.

As we remark above, a surgery along a homologically trivial loop can preoduce nontrivial exotic

phenomena:

Theorem 1.9. Use the notation as before and assume the following:

e B is a circle;
e FEgi is an S'-subbundle of Ex, and it is a Klein bottle;

Then
FSW2%2(Ex:,s') = SW(X,s) mod 2.

(Here the family invariant is defined by counting the points mod 2.)

When ~ is homologically trivial, we prove that for a generic parameter, the parameterized moduli
space on X is of case 2: there exists a 1-dimesional family of parameters such that the solutions are
0-dimensional for each of them. The dimension of the obstruction space on Xy is one higher than
dim B, and therefore we have to generalize the method developed by Baraglia-Konno and estimate the
errors by some inequalities.

A special example of these theorems is that each fiber of Eg: is a homotopically trivial loop. In this
case X' is X#(S? x §2) or X#CP?#CP2, and the results for X#(S? x S?) were previously obtained
by Baraglia-Konno[BK20]. But Theorem 5.22 works also for a homotopically nontrivial loop, so it has
the potential to produce exotic diffeomorphisms on a irreducible manifold.

2. SETUP FOR THE 1-SURGERY FORMULA

2.1. Spin® structure. The definition of the Seiberg-Witten moduli space depends on a choice of the
Spin(C structure, so we first review the theory of the Spin(C structure. Definitions in this subsection can
be found in section 1.4.2 and 2.4.1 of [GS99]. We also provide some auxilary examples (Example 2.4
and Remark 2.8). The main theorem in this subsection is Theorem 2.9. It deals with the change of
Spin® structures by a 1-surgery.

To understand the Spin(C structure, we first review the theory of the spin structure.
Definition 2.1.
Spin(4) = SU(2) x SU(2)

is called the spin group of dimension 4.
Note that, Spin(4) is the connective double cover of SO(4) = SU(2) x SU(2)/{x(I,I)}.

Remark 2.2. Double covers of X correspond to H!(X;Zs) = [X, RP®]. The correspondence is given
by the sphere bundle of pull back of the universal line bundle (tautological line bundle over RP%).

For SO(4), HY(SO(4); Zs) = [SO(4), RP*] = Zs. So the double covers of SO(4) are charecterized by
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the homotopy class of the image of the nontrivial loop of SO(4) in RP%*. If that loop is homotopic
to a constant loop in RP®, then the corresponding double cover is SO(4) L SO(4). If that loop is
homotopic to the 1-cell of RP®, then the double cover is Spin(4).

Definition 2.3. A spin structure s on a 4-manifold M is a principal Spin(4)-bundle Pgpiny — M,
with a bundle map from Pgpin(4) to the frame bundle Pso(4) of M, which restricts to the double cover
p : Spin(4) — SO(4) on each fiber.

Note that Pgpin(s) is a double cover of Pgo(4), which restricts to the double cover p : Spin(4) — SO(4)
on each fiber. By Remark 2.2, this corresponds to an element in H'(Pso1);Z2) = [Pso(), RP*]
which restricts to the nontrivial element in H!(SO(4);Zs) = [SO(4), RP*] on each fiber. From the
Leray-Serre spectral sequence, we have the following exact sequence:

7;*
0 — H'(M,Zs) — H"(Pso), Z2) > H'(SO(4), Zs) > H?(M,Zs).

Here §(1) = wa(Pso(s)), and i* is the restriction map. By the discussion above, the set of spin
structures on M is in one-to-one correspondence with (i*)7!(1). When 6(1) = wa(Pso)) = 0,

(i*)~1(1) is nonempty, and

#(i*)71 (1) = #6*)7H(0)
= #im(H" (M, Zy) — H' (Pso(4), Z2))
= #H" (M, Z).

So the set of spin structures on M is in noncanonical one-to-one correspondence with H'(M,Zy).
When (1) = wa(Psoa) # 0, (i*)71(1) is empty.

Example 2.4. Let M = S! x R?. Then wo(TM) = 0 and H'(M,Zy) = Z. Hence there are two spin
structures on M. They are principal Spin(4)-bundles that cover the trivial bundle Pgo ) = M x SO(4),
and the covering maps are nontrivial on each fiber. Namely, the preimage of the nontrivial loop of
SO(4) is S, and the covering maps restrict to this preimage are both

st st

Z’—>22.

These two spin structures are distinguished by the covering maps on the S' factor of M. They are
nontrivial double cover S' > S = SO(4) and trivial double cover S' L S'—>S! = SO(4), respectively.
We can construct these principal Spin(4)-bundles explicitly. Let {U,,Ug} be a good cover of M

such that U, and Ug are diffeomorphic to R x R?. Let Uy u Uy = U, n Ug. Let Pso(4) be the frame
bundle of M with local trivialization on {U,, Ug} and transition functions g; : U; — SO(4) for i = 0, 1.
Fix m; € U; and a lift

gi(m;) € Spin(4)
for g;(m;) respectively. Since Pgpins) — Pso(a) is a fibration and U; is contractible, we can lift g; to
a map ¢; : U; — Spin(4) such that

gi(ms) = gi(my).
This gives the transition functions for a principal Spin(4)-bundle Pgpin(4) over M which is locally trivial
on {Uq,Ug}. To construct another principal Spin(4)-bundle, we choose the same lift of go(mg) but a
different lift of g1 (mq).



For example, if
gi(m) = [I,1] € SO(4) = SU(2) x SUQ2){£(I, 1)}
and
gi(m) = (I, 1) € Spin(4) = SU(2) x SU(2)

for any i and m € U;, then the principal Spin(4)-bundle is trivial. For the loop I = St x {0} x {I} <
M x SO(4) = Pso(a), the preimage of I under the double cover Pspin(ay — Pso(a) is S' US! € Pepin(a).
On the other hand, if

gfo(m) = (I,I),me U()

gi(m) = (=1, —1I),me Uy,
then geometrically, when a particle runs along [, it’s preimage under the double cover Pgpin4) —
Pso(a) changes to another orbit when this particle passes U;. Thus the preimage of [ is a single
St < Pgpin(4)- This example shows that the set of spin structures on M is in one-to-one correspondence

with H'(M,Z,). Moreover, such correspondence is noncanonical: There is not a priori choice of the

Now we introduce the spin® structure.

Definition 2.5.
Spinc(ll) ={(A,B) e U(2) x U(2);det(A) = det(B)}

is called the spin® group of dimension 4.
Note that, Spin©(4) is isomorphic to S* x SU(2) x SU(2)/{+(1,1,I)}, while SO(4) is isomorphic
to SU(2) x SU(2)/{x(I,I)}. Hence we have an S'-fiberation
(2.1) p° - Spin©(4) — SO(4)
(2.2) [(z, 4, B)] = [(4, B)].

Definition 2.6. A spin® structure s on a manifold M is a principal Spin(C (4)-bundle Pspincay = M,
with a bundle map from Pgpi,c(4y to the frame bundle Pso(q) of M, which restricts to p® on each fiber.

Looking at the definition of p¢, we find that a spin® structure contains one more infomation than

the frame bundle:

Definition 2.7. Let
(2.3) det : Spin©(4) — S*
(2.4) (2, A, B)] > 22.

The line bundle £ = Pgp,;,c(4) Xdet C is called the determinant line bundle associated to the spin®

structure s.

A Spin(c structure is actually a double cover of the frame bundle tensor the determinent line bundle.

We have an exact sequence
(2.5) 1 - Zy — Spin€(4) & S' x SO(4) = SO(2) x SO(4) — 1
(2.6) [(z, 4, B)] = (z°,[(4, B))).
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The double cover p’ can be extended to a double cover of SO(6) (see page 56 of [GS99]). Hence the
spin® structure exists if and only if the second Stiefel-Whitney class w, (Pstxso(sy) vanishes, by the

theory of the existence of spin structures metioned above. Namely,

(2.7) wa(Pstxs0(1)) = w2 (Ps1) + w2(Psoay)
(2.8) = wa (L) + wo (T'M)
(2.9) —0e7/2.

Namely, wo(TM) = ¢1(£) mod 2. An integral cohomology class congruent to wo(T M) is called char-
acteristic element. The set of characteristic elements is nonempty for any 4-manifold (see Proposition
5.7.4 of [GS99]). Thus the spin® structure always exists.

Remark 2.8. Different choices of the double covers of Psiy go(4) (with the covering map p’ fiberwise)
do not always give different spin® structures. Indeed, the set of spin® structures over M is in (non-
canonical) one-to-one correspondence with the isomorphism classes of complex line bundles over M.
Recall that,

(2.10) SO(4) = SU(2) x SU(2)/{+(I, 1)}
(2.11) Spin(4) = SU(2) x SU(2)
(2.12) Spin©(4) = S x SU(2) x SU(2)/{+(1,1,1)} = S* x Spin(4)/{£(1,1)}.

Thus the transition functions of a principal Spin®(4)-bundle over M are given by [2as,Jas] Where
Zap : Usg — S' and gap : Uap — Spin(4) for a good cover {U,}. Suppose we have two spin®

structures

p

Spin€(4)

P2

Spin€(4)

with transition functions [z R g((xlg] and [z (26) g((xﬁ] respectively. Note that by the definition of the

— M

—- M

Spin(C structure,
(1250, 955) = L9} € SO(4)
would be the transition functions of the frame bundle Psp(4). Hence we have either

g5 = 9 € Spin(4)
or

2 .
g&,s) —g’) € Spin(4).
If it’s the latter case, we can always choose a different representative of [z é ﬁ) gfﬁ)] Thus we can assume
that gsﬁ) = gfﬁ) Then

2 1
s = 222

would give the transition functions of a complex line bundle £ over M, such that

(1) (2)
PSpln“(4) ®L = PSpln C(4)"

(This shows that the action of H2(M;Z) = [M,CP®] on the set of spin“-structures is transitive.

Actually this action is also free.)



By the definition of the determinant line bundle,
(1) _ (1) 2
det(PSpinc(4) ®L) = det(PspinC(4)) ® L~

Hence

e1(det(PS) ey ® L)) = ea(det(PS) 1)) + 261(L),

When H?(M;Z) has no 2-torsion, 2¢1(£) = 0 iff ¢1(£) = 0, iff £ is trivial. Hence ¢; o det is injective.
(1) (2

If PSpin“C(4) and PSpinC(4)

map p’ fiberwise), then the difference line bundle £ has transition functions 6,5 = 1 such that £2 is

are two different choices of the double covers of Ps1, 504y (With the covering

trivial. Hence

det(P?

2 _ o _ 0 2 _ o
o ewy) = Aet(PY) ¢ @ L) = det(PS)) 1)) ® £2 = det(P,

Spin® (4))

and therefore ¢; o det sends them to the same element. Hence they are isomorphic spin® structures.
In conclusion, although it seems that by (2.5) and (2.12) a spin® structure encodes some infomation

of the spin structure, and by Example 2.4, each element of H' would produce a different spin structure,

but that difference comes from the different choice of the lift of Spin(4) — SO(4), which can be passed

to the difference of the complex line bundle in Pgp;,c(4)-

For a 1-surgery along a nontrivial loop, all spin(C structures can be extended to the new manifold.

The extension is not unique. However, it would not change the index of Dirac operator.

Theorem 2.9. Let X be any 4-manifold with H'(X;Z) = Z. Let a be a generator of H*(X;Z). Let
v be the loop we choose to do the surgery, with {a,y) = 1. Let N = S' x D3 be a small enough
tubular neighborhood of . Let Xy be the complement of N. Let X' = X Usiysz (D? x S?) be the
manifold obtained by doing the surgery on X along . Let s be any SpinC structure over X and £ be

the corresponding determinant line bundle. Let 8(X') be the set of spin® structures on X', and
8(X',s) :={I'e §(X'); Llx, = slx,}-

Then 8(X',s) contains a unique (up to an isomorphism) Spin® structure ' over X', and the determi-

nant line bundles L' associated to s’ satisfies
(er(£1)?, X7 = {1 (L), X).
In particular, above results do not depend on the framing of the 1-surgery.

Proof. We first show that 8(X’,s) is nonempty. Let 8" be any Spin® structure over X’. By Remark 2.8,
the difference between s'| x, and s|x, is a complex line bundle Ly over Xy, namely, s'|x, ® Lo = s|x,.
We claim that Ly can be extended to a complex line bundle L’ over X'. Indeed, for the inclusions

ig:0Xo=S'"%xS%—> D? x §?
i:Xo— X,
the induced homomorphisms
i% . H*(D? x $?) — H*(S* x §%)
i* HA(X') — H*(Xo)

are all isomorphisms. This follows from the following Mayer-Vietoris sequence (the last three terms

form a split short exact sequence):



H'(Xo) @ HY(D? x 82) — H'(S! x §?) % H2(X') 55 H2(X,) @ H2(D? x §?) — H2(S' x S?)

I L F, b
Z Z Z

Z

Topologically, the dual of ¢;(Lg)|sx, is some copies of S! x {pt} = S! x §? = 0X,, and they can be
extended to D? x {pt} = D? x S?. Anyway, there exists a cohomology class in H?(X’,Z) = [X', CP%]
such that it restricts to ¢;(Lo) € H?(Xo,Z), and by the property of the universal complex line bundle

over CP®, the pullback L’ is a complex line bundle over X’ that restricts to Ly. Therefore, we have
(s'® L)y, = 5|y, ®Lo=slx,-

Sos'®L' e §(X',s).
Next, we prove that all elements in §(X’,s) are isomorphic. Let 5’(1),522) € §(X',s). Let L' be a
complex line bundle on X’ such that

/

5(1) @ L = 5(z).
Then

= (5/(1) ®L')

Xo

!/ /
5(1>‘X0 ® Ly,

= 5\X0 ® L/’XO

/ /
52) X0® & |X0'

Remark 2.8 shows that the action of H?(Xy) = [Xo, CP®] on §(Xj) is transitive. Actually this
action is also free. Hence ¢1(L'|x,) = 0 € H?(Xy,Z). Note that i*(ci (L)

) =
isomorphism. Therefore ¢;(L') = 0 € H*(X',Z). So L' is trivial and S(1) = 5(z)-

c1(L'|x,) and i* is an

Lastly, we show that
{er(£1)?,X") = (er(£)?, X).

The intersection between a generic section of £ and the zero section is a 2-manifold ¥ < X. For
dimension reason we can assume v N X = . By choosing a small enough neighborhood of « we can
further assume ¥ < Xj. {c¢1(£)?, X) is the self-intersection [X]? of X.

Since §'|x, = $|x,, £'|x, = det(s')|x, = det(s)|x, = £|x,- As a complex line bundle, L|g1x ps must
be trivial. Hence it’s a trivial line bundle over 0Xj. Since i* : H*>(X’) — H?(Xy) is an isomorphism,
L’ is the unique extension of L£'|x, = L|x,, and therefore it must extend L|sx, trivially. Hence

the generic section of £|x, mentioned above can be extended to X’ without additional zeros. Hence
(e (L)%, X7) = [Z]? = {1 (£)%, X). 0

In the gluing theory of Seiberg-Witten monopoles, the Seiberg-Witten equations and thus the spin®
structure of the boundary 06Xy = 0N = S! x S? would be considered. Hence one has to consider how
to restrict the spin® structure of the 4-manifold X, to the 3-manifold S! x S2.

Let X be any 4-manifold with boundary ¢X. Identify TX|sx with T0X @ v where v is the normal
bundle of 0X < X. Let Psow), Psos) be the frame bundles of T0X @ v and T0X, Let g® €
SO(4), g©® € SO(3) be corresponding transition functions on a point z € 0X. The following diagram

commutes:
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Fr(3) — Fr(4)

ng) g, g%

Fr(3) — Fr(4)
where the top and bottom horizontal arrows are given by adding an inner vector. Then the map 4
between transition functions is given by the natural embedding of SO(3) — SO(4).
Let H be quaternions and SU(2) = S? be the group of unit quaternions. q € SU(2) acts on JmH by

x> qrq ",

which gives the double cover ps : SU(2) = Spin(3) — SO(3). (p,q) € SU(2) x SU(2) = Spin(4) acts on
H by

x — prq ",

which gives the double cover p : Spin(4) — SO(4). Regard the real axis of H as the normal space of
x € 0X, then

i : Spin(3) — Spin(4)
g+ (4:9)
covers the embedding ¢ : SO(3) — SO(4). Similarly we have a map
i : Spin©(3) := S* x Spin(3)/{+(1,I)} — Spin“(4)
[2:4] = [2,4:4]

that covers i : SO(3) — SO(4). Hence a spin(spin®) structure of X induces a spin(spin®) structure
of 0X. Moreover, from the definition of ¢, the restriction of a spin® structure is compatible with the

restriction of its determinant line bundle.

Proposition 2.10. Use the notations in Theorem 2.9. Then s|ox, is the only spin® structure of S' x S?
such that the first Chern class of the determinant line bundle is zero, and §'|p2xs2 is the only spin®
structure of D? x S? such that the first Chern class of the determinant line bundle is zero.

Proof. det(s|ox,) = det(s)|ax, is the restriction of the trivial line bundle det(s)|sixp3. So det(s]ax,)
is trivial. H?(0Xo;Z) = 0 so by Remark 2.8 s|5x, is the only spin® structure of S' x S2.

det(s’| p2xs2)|o(p2xs2) = det(s)|s1xs2 is trivial. Since the restriction H?(D? x §?) =~ H?(S' x §?) is
an isomorphism, c;(det(s'|p2xs2)) = 0. H?(D? x S?;Z) has no torsion so by Remark 2.8 ¢; o det is

injective. Hence 5’| p2 g2 is the only spin® structure of D? x S? such that the first Chern class of the
determinant line bundle is zero. O

2.2. Seiberg-Witten equation, transversality results, and ASD operator.

2.3. Positive scalar curvature. A positive scalar curvature will give two desired properties: First, by
the Weitzenbock formula, a non-negative scalar curvature on 3- or 4-manifolds leads solely to reducible
solutions of the Seiberg-Witten equation (see [KMO7] (4.22)). Second, by the Weitzenbdck formula
and integration by parts, we have (see page 105 of [Nic00])

j 1D a0, = f (VAR + Sl + S(e(E e v))du,
M M 4 2
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where A is a connection, @ 4 is the twisted Dirac operator, s is the scalar curvature, and c is Clifford
multiplication. So if s is everywhere positive and A is flat, the twisted Dirac operator would have
trivial kernel.

It turns out that we can construct bullet metrics on S x D3 and D? x S? such that the corresponding
Levi-Civita connections have positive scalar curvature everywhere.

To construct the bullet metric on D? x S2, embed it in R? x R? such that the component S? is
standard sphere, and D? is the union of a standard semi-sphere Si and a cylinder 0D? x I, which is
the collar neighborhood of dD?. One can perturb this embedding to make it smooth, and the metric
g of D? x S? induced by the standard metric of R? x R3 is so-called bullet metric.

One can compute the scalar curvature of this metric using the following formula:

s = Z sec(e;, €;)

i#]

where sec is the sectional curvature and {e;} is a set of orthonormal basis. The sectional curvature of
S? and S? is positive. If two vectors lie in different copies of R? in R? x R?, the sectional curvature of

the plane identified by these vectors is zero. This means that
s(D? x §%) = s(D?) + 5(S?).

Therefore, the scalar curvature is everywhere positive.

For S' x D3, embed it in R? x R* such that S! is standard circle and D? is the union of a standard
semi-sphere S? and a cylinder dD? x I. By the same reasoning and the fact that 0D® = S? also has
positive scalar curvature, the scalar curvature of S' x D? is everywhere positive.

3. APPLY ORDINARY GLUING THEORY TO 1-SURGERY

In ordinary gluing theory, one obtain the union N, of two manifolds N; and N, by gluing along
their boundaries IV, and consider the relation between monopoles over N1 and Ny and monopoles over
the union N,..

Given a pair of monopoles on N7 and N,, respectively, if they are compatible over boundaries, one
can glue them to obtain a point of configuration space over the union NV,.. It turns out that there exists
a genuine monopole of N, near this point. Moreover, the space of genuine monopoles over the union
N, is actually isotopic to the manifold of configurations obtained by gluing in this way.

The proof of the global gluing theorem is divided to four steps: The linear gluing theorem
will give an approximation of the kernel of boundary difference map. The local gluing theorem
will describe the set of genuine monopoles in a neighborhood of each glued configuration point. The
local surjectivity theorem will prove that, the set of such neighborhoods is a cover of the manifold
of genuine monopoles. The global gluing theorem will prove that, the moduli space of genuine
monopoles is homeomorphic to the moduli space of glued configuration points, if the obstruction space
is trivial.

In this section, we will follow the strategy in Nicolaescu’s book [Nic00]. In our case, i.e, N = St x §%,
Ny = St x D3 or D? xS?, one can just apply the linear gluing theorem and the local surjectivity theorem
in charpter 4 of [Nic00], and prove the condition of the local gluing theorem is satisfied. However, the

global gluing theorem in this situation is slightly different from what Nicolaescu presented.
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3.1. Abstract linear gluing results. In this subsection, we review the abstract linear gluing results
in section 4.1 of [Nic00].

It’s natural to expect that, a longer neck of IV, will narrow the difference between genuine monopoles
and configurations obtained by gluing, since there should be no difference when the length of the neck
r = 00. So we first consider manifolds with necks of infinite length, say, Nl = Ny uny N x [0,0) and
Ny = Ny Un N x [0,00). Such manifolds are called cylindrical manifolds.

Suppose 3(t) is a smooth cutoff function such that 5(t) = 0 on (—o0,1/2] and B8(t) = 1 on [1,00).
Set a(t) =1 — B(t). These functions will be used to glue a pair of sections.

Denote by E a cylindrical bundle over a cylindrical manifold N, that is, a vector bundle £ — N

together with a vector bundle E — N and a bundle isomorphism
E|Nx[0,oo) — *E,

where m : N x [0,00) — N is the projection map. Let LP(E) be the space of LP-sections of E.
Let L?

loc

(E) be the space of measurable sections u such that up € LP(E) for any smooth, compactly

2

2 _section of E. If there exists an L?

loc

supported function ¢ on N. Denote by @ an L -cylindrical section

g such that

o — o € L*(E),
then @ is called asymptotically cylindrical (or a-cylindrical). Define the asymptotic value of @ to
be

60011 = 600110

Let Li(E) = {ue L*(E); 1l g v e 0,00 122 + [t 3 x[0,00) -el|| L2 < oo}, The supremum of all x> 0 such
that

@ —dg e L2(E)
is called the decay rate of the a-cylindrical section .

The norm on the space of a-cylindrical sections is defined by
lillex = & — ol 22 + 00t L2

The resulting Hilbert space is called L2,.

Given a pair of compatible cylindrical sections #; of E;, ie they share the same constant value
over the neck, they can be glued to form a section wi#,u2 of El#rEg. If 4; are just compatible
L? -sections, i.e they are a-cylindrical sections with identical asymptotic values O@; = Oz, they
should be modified by cutoff functions first. Let 4;(r) be the same section as 4; outside the neck, and

on the neck
(3.1) W (r)(t) = alt — r)i; + Bt — r)0un ;.

When t < r, 4;(r) = 4;, and when ¢ > r + 1, 4;(r) is just the asymptotic value of @;. Thus 4;(r) is an
approximation of u; as  — 00. Now these genuine cylindrical sections can be glued along the neck, so
we define

(3.2) U1 # 0o 1= 1 (r)#,G2(r)

In the following description, all verifications of smoothness, Fredholmness and exactness are obmit-

ted. See Section 4.3 of Nicolaescu’s book for details.
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Let L™ be the space of sections with finite Sobolev norm | - |,,,. Let & be a spin® structure of N
such that it induces a spin® structure o of N. Denote by €, the space of configurations in L?2 over
the 3-manifold N, by

Zs < Gy

the set of monopoles (solutions of Seiberg-Witten equations) on N, and by

My = 26/96
the moduli space of monopoles on N.
Define
(3.3) Cprsw = 05" (Zo)
and

Y, = LL2(S; @IAZT*N).
The Seiberg-Witten equations give the Seiberg-Witten map

§VI\/ :Chisw — 9#,

¢ H(a(¥)),

DO =

where @ 4 is the Dirac operator twisted by the connection A, and ¢ is the Clifford multiplication on
N.

We will use the following notation:

Spuca i= {ii e L32 (N, C); i(p)| = 1 Vp e N}

ex
My i= S (0)/Gper

Co = (1/307 flo): A fixed smooth finite energy monopole on N. Co modulo a gauge transformation
is in éu)sw (see section 4.2.4 of Nicolaescu’s book [Nic00]). So in this paper we always assume that
Co ey

Co: A fixed smooth finite energy monopole on N.

@ &' The linearization of SW at CO.

As a Lie group, the component of 1 of g u,ex consists of elements that can be written as elf where

felL3? (1\7 ,iR). Recall that we have fixed Co, so the gauge action gives a map

ez

Denote the stabilizer of Cy under the gauge action by Go. The differential of the above map is
’860 : Tlgp,,ez - Téo éu,sw
if > (ifto, —2idf)

We have three differential complexes:

5 L 1 SWe
(Fe,) 0 T3, 00 T 21 (C) s Tyl — 0

1o
2%¢, -

A s,
(Kéo) 0— Tlgu,ew — T e,u,sw E— Toléu —0



le
(Be,) 0— TG 2=2Tc, 2 —0—0
In the category of differential complexes, it’s easy to verify that
i 4 Oop
(E) 0— Fe, = Xe, > Be, =0

is an exact sequence. Namely, each column of the diagram

(D) 0 0 0
L 3% SWe
0 —1 0
0 7.5, Tt 05 (Coo) ToY, 0
. 3%¢, . S5We,
0—— Tlg,u.,em —— Téo ep,sw TO%;L 0
%
%’Qcoo
0 715, Te, %o 0 0
0 0 0

is exact. Set
HY = H'(Xe,):
For ¢ = 0, observe that
HCOO ~ TGy
is the tangent space of the stabilizer of Co under gauge action. It is one dimensional if Co is reducible
and trivial otherwise. For i = 1, observe that dimg(H éo) is the dimension of the formal tangent space

of §J\TM at [Co]. For i =2, Hg is called the obstruction space at C,.
0

From the diagram D we obtain a long exact sequece

HO(F,) HY(Fe,) H2(F,)
| | |
(L) HY H} HZ
| | |
0 H°(Be,) H'(Be,) 0

Co is called regular if Hg = 0, and strongly regular if H? (FCO) = 0. Note that by the long exact
0
sequance, strong regularity implies regularity.
The integer
d(Co) := —x(K¢,) = — dimg Hgo + dimp Héo — dimpg Hgo

is called the virtual dimension at [CO] of the moduli space §J\Tu. If CO is regular irreducible, 53\@ is

smooth at Co, and

d(Co) = —0 + dimg Héo -0
15



is indeed the dimension of the tangent space of 53\% at [CO]. On the other hand, if Cy is regular
reducible, we have
d(Co) = —1 + dimg HL -0

So dimg H éo = d(C()) + 1. The difference between irreducibles and reducibles, comes from the fact that

the orbit of irreducible Cq is 1-dimensional in éu,sw, given by the action of constant gauge, while the
constant gauge acs on reducibles trivially.
The L7-adjoint of £¢ is

(3.4) ’320“ : (4, ia) — —2id*#a — i Imd, ),
Now define

T,

o 1 %, St o sk R 5 .
o =SWe @ 5260 D L22(SE@IT*N) - Y, @ L, *(N,iR).

We can deduce that (see the proof of Lemma 4.3.19 of Nicolaescu’s book)
SWe, —58c,

(3.5) 0T,

Con = o =

288, 2m
It turns out that we can remove the dependence on the choice of p, such that everything is independant
of u (Page 387 of [Nic00]). Set u = 0 formally:

. 1.,
(3.6) Te, =SWe @ 5‘960
From the description 3.5 above of Tc_, ,, (u = 0), we have a decomposition
keI“J’C30 = Tcwmg (—D TlGoo,

where G, is the stabilizer of Co, under gauge action. Denote the two components of the boundary

map
Oup : kel (fréo — kerTe, = Tc, My ®T1Gop
by
620 : kere,, ‘j'éo - T1Gyp

05« kerey ‘j'f:o — T, M,.
Explictly, for (1, @) € L22(S @iT*N), if & = ia + ifdt on the neck R x N, where a(t) is a 1-form on
N for each ¢, then
(3.7) % (1h,a) =0 f € T1Gyp
(3.8) 0% (1h, &) = (Opth, Opr) € T, M.

3.2. Local gluing theorem. Now we discuss how to apply the results in section 4.5 of Nicolaescu’s

book [Nic00] to our cases.

Let’s define
Xk = LFASE@IT*N(r), X* = LF2(S; @iA2T*N(r)),
xF=xt pxt.
Define R
" *
L, := lp Tr] - x0 - x0
T- 0

16



We want to use the eigenspace corresponds to very small eigenvalues to approximate the kernel of this
operator. Let 3, be the subspace of X° spanned by

{v; Lyv = Ao, |\ < 772}

Let Y, be the orthogonal complement of H, in X°. Let 3:* be the orthogonal projection of 3, to %QL.
Let %}Ti be the orthogonal projection of Y, to %%.

Each row and column of the following diagrams is asymptotically exact (see page 434 of Nicolaescu’s
book [Nic00]).

Virtual tangent space diagram:

(T) 0 0 0
S, +
0 —— ker AS Hél@Héz L1++L§r—>0
0 3 kerey Te, @kere, Te, — > L + Lf —=0
%
s ¢
0 —— ker A% ' croe; ¢F+¢f ——=0
0 0 0
Obstruction space diagram:
(0) 0 0 0

0 —=kerA® ——= H*(F )® H*(F¢)) — Ly + Ly —=0
0 Hr kerey T @kerey T8 —> Ly + Ly ——0
1 2
S, A°
0 — ker A® - ¢ eey ¢ +¢ ——=0
0 0 0

where

LZ* 1= 05, kerey ‘j’éi cTc, M,
Qﬁj = 880 ker,,, ‘j’c cT1Gy
L; := 05, kereg ‘j’; cTo, M,

¢ = 680 kere, ‘j‘z, cT1Gy
17



Here is a short explanation of the middle column of the diagram T: We can first look at the beginning
of the long exact sequence L:

O ) 2
= HY =TiG; B HO(Be)) = T1Gop > H' (Fg,) = ker, Te, & HE — H'(Bg) — -

Consider ker,, ‘j'c > ker, ‘AIC Intuitively, ker,, ‘jc is the tangent space of “monopoles in L, modulo
the action of the gauge group in L,”, kere, ‘jc is the tangent space of “monopoles in L., modulo the

action of the gauge group in L,”, and H (1: is the tangent space of “monopoles in L., modulo the action

of the gauge group in L.,”. Thus the map from ker,, ‘J'Ci to H é is surjective with the same kernel as

ker ¢ = T1(Gop/00Gy) (see Lemma 4.3.25 of Nicolaescu’s book [Nic00] for details), and this kernel is
¢ (see the proof of Propsition 3.11).

Remark 3.1. § is nontrivial if and only if CZ is irreducible and C, is reducible. We assume this is the
case. Then ker ¢ = T} (Goo/aooéo) = R is generated by constant function if € T1G.

Now consider the definition of the connecting homomorphism 6. We can choose the preimage of if
in Tlgmex to be the constant function if, or we can choose the preimage to be i8(t — r)f In first case,
it’s sent to (iﬁ/},O) € Téoﬁogl(cw), while in the second case, it’s sent to (iB(t — r)f1[),2igdt), where
gdt = d(B(t — r)f) is a bump function aroud ¢ = r. These two certainly represent the same class in
H'(F), but only the first one is harmonic and hence in ker, ‘j'éi (By (4.2.2) and Example 4.1.24 of
Nicolaescu’s book [Nic00], elements in ker,, ‘j'éi must be harmonic without any dt-terms). However,
the second one, (i8(t — r)fvf), 2igdt), shows explicitly that the map 0% in 3.7 is the inverse of 6.

Here is a short explanation of the middle column of the diagram O: H Z(F@) = ker, ﬁ':‘,_‘ since every

self dual 2-form on ]\Afz is in L,. On the other hand, the kernel of 25271 is exactly T1G; which is not in
L, (they are constant functions). Hence

kerg, T*

— % 1
16} = kerem (Siw(fl @ 5’8&1)

decomposes to the direct sum of HQ(FC,) and ¢ = T1G;.
The virtual tangent space and obstruction space will give all monopoles of N (r) in a small neigh-

borhood of CT in its slice:
Theorem 3.2 ([Nic00] Theorem 4.5.7). For large enough r, the set

lo2 <77%)

{C; C are monopoles on N(r), EE‘:T(C -C)=0,C-C,
18 in one-to-one correspondence with the set
~ ~ Al A ~ ~ ~
{Cr+Co@C 5 [Collae <772,k (Cy) = 0,87 = @(Cp)}

where



We can also prove that, in the slice of C,, any pair of configurations in small enough neighborhood

of C,, are gauge inequivalent (see Lemma 4.5.9 of Nicolaescu’s book [Nic00]). Thus we have
Theorem 3.3 ([Nic00] Corollary 4.5.10). For large enough r,

A A Al s . AL A s Al
{C+Co@C 3 [Collze <72 kn(Cy) = 0,C = ®(Cy), L8 (Co@C ) =0}

is an open set of moduli space Dﬁ(NT, G1762).
Moreover, this collection of open sets is an open cover of moduli space im(Nr, G17£69):

Theorem 3.4 ([Nic00] Theorem 4.5.15). Let
ZA = {(Cl, Cg) € Zl X 22; 60061 = (%OCQ}

be the space of compatible monopoles. Then

~ ~ Al 4 ~ ~ L ~ ~ ~ 1
U {C+C@C 3 |Collae <772, kn(Cy) =0, = ®(Cp), £5 (C,®C ) = 0}

C,
Cr=C1#,C2,(C1,C2)e2a
is M(N,., 61#62).

3.3. Computation of virtual tangent space and obstruction space. Now we have stated all

results we need. Next we compute the dimension of the moduli space dim Hé and the dimension of
0

the obstruction space dim H?(F¢ ) for any monopole Co on Xo, D3 x S, and S% x D2,

Proposition 3.5. Let matrics gyue: be the ones chosen in subsection 2.3. Let s(S' x D3) be the
unique spin’ structure of St x D3, and 5(D? x S?) be the unique spin® structure of D* x S? such that
the first Chern class of the determinant line bundle is zero. Then the moduli space of SW equations
without perturbation (S x D3, gpuitet, 5(S' x D3)) is a circle and M(D? x S2, gyuirer, 5(D? x S?)) is

a point.

Proof. By the Weitzenbock formula, a non-negative scalar curvature on 3- or 4-manifolds leads solely
to reducible solutions of the Seiberg-Witten equations (see [KMO07] (4.22)). Hence all monopoles are
of the form (A,0), and the Seiberg-Witten equations degenerate to one equation

Fi=o0.

Since Fi = $(dA + xdA) and imd nimd* = imd N im*d = 0, F; = 0 is equivalent to d4 = 0.
Fix any U(1)-connection Ay of the determinant line bundle of the chosen spin® structure. In Propo-
sition 2.10 we showed that the first Chern class of the determinant line bundle is zero. Hence Fjy, is

exact. Let dag = —F4,. Then (A,0) is a monopole iff
A=Ag+ap+a

for some closed imaginary 1-form a. Hence the space of monopoles is the coset of the space of closed
forms.

Now consider the action by the gauge group ¢ = Map(M,S'). Elements in the identity component
I of 4 can be written as e!/ where f can be any smooth function (0-form), and it changes A by the
addition of idf. Also ¥/I = H'(M;Z). Hence for M = D3 x S! or §? x D2, the moduli space of
monopoles can be identified with the torus H'(M;R)/H'(M;Z). O

By Proposition 2.10 and Proposition 3.5, we have
19



Corollary 3.6. Let s be any spin® structure of X and s’ be its unique extension to X' as in Theorem
2.9. Let matrics gpuiet be the ones chosen in subsection 2.3. Then the moduli space of SW equations
without perturbation MM(D? x S*, gyuitet, 5| p3xst) s a circle and M(S? x D2, gyuiiet, 5'ls2 x p2) 8 a point.

All monopoles are reducible.

Proposition 3.7. Let g(X) be a metric of X such that glax, is the product of canonical metrics on
S! and S%. Let s be any spin® structure of X satisfying the dimension assumption (??). Let 5 be the

restriciton of s on Xg. Then the virtual dimension
d(Co) =1
for any monopole Co on Xo.

Proof. Let N be a cylindrical manifold with boundary N = d,,N. Let § be a metric on N and Ay be
a connection on N. Let Ay = 0, Ao and g = O0ng. Define

F(gvAO) = 477Dir(A0) + nsign(g)v

where 1p;r(Ao) is the eta invariant of the Dirac operator D 4., and 7s;gn(g) is the eta invariant of the
metric g = 05 g.

Let Cy = (?OOCO. Recall that we always assume that Co € émsw. Hence Co, is a monopole on N. By
Corollary 3.6, C is reducible. Then the formula of virtual dimension for the cylindrical manifold N
is (see page 393 of Nicolaescu’s book [Nic00])

N

d(Cy) i (J e1(Ag)? — 20y + 3%)) +B(Cy),

where
1

BC) i= 5(1(N) = 1) = {F(Cs).

The integral term is the same as the compact case, and the second term S(Cy) is called boundary
correction term. In our case N = d, N = S! x S2, and the metric § = g(X)|x, ensures that g = 0§
is the product of canonical metrics on S' and S?. In this situation 7s4,(9) = 0 ([Kom84]) and
Npir(06Co) = 0 ([Nic98] Appendix C). Hence F(0,,Co) = 0. Moreover by (S' x §?) = 1, so 8(C) = 0.

Let £ be the determinant line bundle of s and £ be the determinant line bundle of . In the proof

of Theorem 2.9, we see that
c1(4p)? = (1 (L)%, Xo) = (e1(£)*, X) = e1(£)*.
From the triangulation of the boundary sum one can compute that
X(X) = x(Xo) + x(S" x D?) — x(8! x §?)
(Xo)+1-1)—-(1-141-1)
(Xo).

X
X
To compute o(Xg) consider the following Mayer-Vietoris sequence

H'(Xo) @ H'(S' x D?) — H'(S! x §?) -% H2(X) 5 H2(X,) @ H2(S' x D?) — H2(S' x S?)

¥ - | -
Z /

Z = ?

I1e
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From the assumption of the loop v we choose to do the surgery (the pairing of v and the generator
of HY(X) = Z is 1), the dual of v is a 3-manifold M < X and M\(S! x D?) = X, has the boundary
{+} x S = S! x §? = 0X,,. Hence i¥ = 0 and therefore i* : H*(X) — H?(X,) is an isomorphism. For
2-manifolds Y1, 39 < X, we can assume v N X; = ¢ for dimension reason. By choosing a small enough
neighborhood of v we can further assume ¥; < X,. Hence the pairing of ¥; and s is the same in X
and Xg. Therefore

U(XQ) = O‘(X)

Hence d(Co) = 1. O
It turns out that our cases are simple: the obstruction space is trivial.

Proposition 3.8. Let N = Xy and N = 0Xy = S' x S%. Let s be any spin® structure of X. Let §
be the restriciton of s on Xo. We can choose a generic perturbation n on Xg such that if Co is an

n-monopole, it is irreducible and H2(F(Cy)) = 0.
Proof. To mimic the definition of the wall in the compact case, define

Wh=1 = {ne LE712(iAY(Xo)); 3A € o/ (s), F{* + in = 0}.

By the computation of the ASD operator d* @ d*, one can show that Wﬁfl is an affine space of
codimension bt (see [NicO0] Page 404) just as in the compact case. For each 7 outside Wffl, all

n-monopoles are irreducible. Consider the configuration space

e:sw/gﬂvex'
Here éu,sw is the space of configurations on X that restrict to monopoles on 6Xy = S! x S?, as defined
in (3.3). Let s = §|sx, and

E):ns = m(gl X 827 saground)~
Exactly as in the proof of Proposition 3.5, one can show that 9t, = S'. Let
Z =27 = LR AT (X)) \ W
be the space of nice perturbations. Consider
J: ézﬁsw/gp‘,ez X Mg x L — 9# X Mg x M
(Ca Ca 77) g (SWT](C)7 60067 C)

Let A be the diagonal of M, x M. One can show that F is transversal to 0 x A < gu x M, x My by
the diffenrential

D T Tp B o ® T, M @ T2 — ToY gy, © Tc, M, @ T, My

(€ Cops ©) > (SW, (€0) + €, 0o, Cop).

(CO ,Co0,1)

Then apply Sard-Smale to the projection
7:FH0xA) - Z

to show that Z9

reg> the set of regular values of 7, is of the second category in the sense of Baire (a

countable intersection of open dense sets).
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0
reg?

For each n € Z.,,, the map
?77 : é:sw/gp,em x My — g,u x M, x M
(€,C) — (SW,(C), 2,.C, C).
is transversal to 0 x A 9# x M x M. Let pry be the projection to the first summand:
prlzguxims XS)TS—NQ#.
Then Dpry o DF, must be surjective since Dprq(0 x A) is zero. Hence
D¢y ey (PrioFy) : Te, B o © Te, My = ToY g0,
(Qngoc) = (Mngo)

is surjective. This means that §I/\Vn is surjective, i.e. Hg = (0. By the last several terms of the long
0

exact sequence L
1 9o 771 2 2 2
(L) o HE 5 H (By,) — HA(Fe,) > HE =0 — H(Be,) =0 -0,

HQ(FCO) = 0 if and only if 0y is surjective. This is equivalent to say that 0 : 9/1\1()(0,77) — M, is a

A\ [a*A
o) \D,0)’

7 )
(3.10) T <A> = F{ +in—p ' (0(®,9)).

submersion at Cg.
Recall that

(3.9)

0]
Fix a C, € 9, then
Fe 002" (Co)/Gu x 2 — Y
(C,m) = F14(C)

1

reg Of the second category in the sense of Baire,

is transversal to 0 € gu. As above, we can find a set Z

such that for each € Zyeq, Fc, n = F1, is transversal to 0 € gu. This means that
(3.11) H*(Fe,) =0

for any Co € (0,1(Co0)/Gp) N F14(0).
Let (0, A) be a representative of Co,. Choose any (&, A) € €*

Bysw?

then 0y, (®, A) is an (1] y)-monopole
on N. We want to show that even if (900(@,121) does not represent C, d(‘i,A)fTrlbogl(aw(A))/gu is still
surjective.

Since 7 is zero on the neck, 0, A is closed and d5,® = 0 (see the proof of Proposition 3.5). Hence
0 (A) — A is closed. Since H'(N;R) — H'(N;R) is surjective, one can find a closed form a on N such
that 0 (A) — A = 0,(a) + df for some function f on N. Hence d,(A + @) = A + df, which belongs
to the gauge equivalence class of A. This means 0o (A + @) = Cy. Because a is closed, if (¥, A) is a
solution of Iy ,, (®, A + @) is also a solution of F; ,,. By (3.11),

(3.12) d($ Ava) (?1|a;ol(coo)/9u) : T(@,A+@)0;1(Coo)/§u - gu
(3.13) (,6) = d*a = p~ ' (0(®,6) + 7(, D))
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is surjective. Note that d 4 ;)F1 does not depend on A. Also an element of either T(,i,A)&;Ol(&oo (A))/éu

or T(é’AJr&)é‘;ol(Coo)/g# can be written as (a, ¢) such that d,« represents 0 € H(N;R). Hence

4 avayT1logt (s,

Ao, 4)T1loz 0,48, =
is surjective.
Let

Zpeg = 200, N 2L

reg reg:*
For any 7 € Zyeg, if Co is an -monopole, it is irreducible and H2(F(Cy)) = 0. Moreover, Zyeg 1s still a

countable intersection of open and dense sets, so it is of the second category in the sense of Baire. O

Remark 3.9. The statement of Proposition 3.8 is not true in general. If the boundary N = S! x S?
and L}

top = 0, we must have

dim H?(F(Co)) = dim H*(X¢, ) + 1.
To prove this, it suffices to find an element in T¢ éu,sw, such that its image is not in the image of
Te, %' (Co). Indeed, there exists a 1-form a € QY(N) (constructed explicitly in (5.4)), such that dpa
generates H'(N) (namely («,0) ¢ Te, 0:1(Cy)), and d*a is a nonzero element in H2(N). Conversely,
if d*o' is nonzero in H? (]\7 ), then it’s not compactly supported, otherwise it would be orthogonal to

any self dual harmornic 2-forms. Hence dy’ is nonzero in H*(N) (c.f. Figure 9). Therefore

(3.14) dS"l(a,O) #* dgl'T(ﬁ;l(Cw)) (5,0>

for any (3,0) € T(0;'(Cs)). When the virtual dimension of the moduli space is less then 1, for a
generic perturbation such that for any solution (121, <i>),

3.15 d i 53T 0)¢imd, ; 5\ F
(3.15) (Ad)T1(a,0) ¢imd 4 4 Urosic,)’

even though b, > 0. This is because in this case the connection part is not able to kill dieyh (,0)
by (3.14), and the spinor part is responsible to kill the other complement, instead of d( A@)&"l(a, 0),
otherwise it will produce one more dimension of the cokernel and one more dimension of the moduli
space, which would not happen by the classical transversality argument. Hence dim H 2(F(CO)) =
dim H? (ﬂACCO) + 1 for any solution Co.

In fact, the condition on the virtual dimension can be omitted. d*« is not compactly supported ,

and the harmonic projection H(dt«) satisfies
AH(dTa) #0
where 0%, is defined in (5.3). On the other hand, the second term

—p "N (o(®,9) + o (0, ®))

of (3.13) is in L,, since 0 ® = 0. Hence (3.15) is true as long as all solutions on the boundary are
reducible.

This example is a counter example of [Nic00] Proposition 4.4.1. The equation
dim H?(K¢,) = by
for ® = 0 computed in [Nic00] Page 404, combined with the equation

2
top

dim ker., (ASD*)|,, & = by + dim L
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computed in [Nic00] Page 312, also shows the the existence of « satisfying (3.14) without any explicit
construction.

Proposition 3.10. For N = X, ST x S3 or D? x S with positive scalar curvature metric § chosen

in subsection 2.3, We can choose suitable perturbations n = 17(]\7) such that if Co is an n-monopole,

H*(F(Co)) = 0.

Proof. As in the usual argument of transversality, we just need to take care of the boundary term
to prove that, if b+(N) > 0, we can choose a pertubation n € H? (N) such that all n-monopoles are
strongly regular (and irreducible) (Proposition 3.8). Since HZ(X) is assumed to be nontrivial, the
statement is true for Xj.

For N ~ S' x §3, D3 x S! or §? x D2, all monopoles are reducible. Let Cy = (Ag,0) be a reducible
monopole for the SW equations without perturbation. The connection Ay on the cylindrical manifold

N gives an asymptotically cylindrical Dirac operator @ZU with
0,75, = 0%,
The middle column of the Obstruction space diagram O comes from the exact sequence ([Nic00]
Proposition 4.3.30)
0 — H2(F(Co)) — kerex T, % im(T1Clo 2% TyGop) — 0.
Recall that in (3.6) we define

— 1 "
TCO = Sﬂco ® 5260'

Ifif e T1Go, then it’s in the kernel of Le, and therefore in ker,, ‘j'éo = kerew(g-ﬁ/zo &) %SCO). On the
other hand, if
(W,if) e LL2(S; @IALT*N) @ LL2(GAT*N)

is in kerq, ‘J'g, then if € T1Go. Thus
0% kerey Tf, = 0 T1 G,
Namely, H2(F(Cy)) doesn’t contain constant functions. Hence
~ *
H?(F(Cp)) = kerex D3, ® kerex (dF @ d*)*| A2 (T N)@AY (1% )
Then by the computation of the ASD operator d™ @ d* ([Nic00] Example 4.1.24),

(3.16) H*(F(Cy)) = kerex D3, ® H2(N) @ L?

top>

where L7,, = im(i* : H? (N) — H?(0N)) for inclusion map i : N — N. Thus the second and the third
components are trivial for N =S! x S3 or D3 x S. Now compute the dimension of kerexiﬁjzgo. Since
each of them has a positive scalar curvature metric, by the Weitzenbock formula, the twisted Dirac

operater is invertible since Aq is flat. This means that ker C‘Djo = 0 and therefore
(3.17) kere, D%, = kerp2 D%, .

Hence

IAPS(@AO) = dim(c kerLz @AO — dim(c kel"Lz @20,
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where 4 ps(f;) is the Atiyah-Patodi-Singer index of the APS operator L. One can also prove that
kery> D A, is trivial by the Weitzenbock formula (see [Nic00] Page 323). Hence

—dim kerexﬁzo = Iaps(D )

By the Atiyah-Patodi-Singer index theorem ([APS75a]) we have
1

e f (1 (99) + er(Ao)?)

(dimker ® 4, + 7pir(Ao)),
8 Jx

1
Iaps(D4,) = -3
where V7 is the Levi-Civita connection of §, py (@g) and ¢; (/10) are the first Pontryagin class and
the first Chern class determined by the Chern-Weil construction, and 7p;.(Ag) is the eta invariant of
the Dirac operator ® 4,. For any 4-manifold with boundary, one has “signature defect” (see [NicO0]
(4.1.34), see also [APS75a], [APS75b] and [APST76] for the motivation)

1 ~n N
nsign(g) = g fA p1 (vg) - U(N)
N

where 75i,(g) is the eta invariant of the metric g = 0,§. Also recall that

F(g, Ao) := 4npir(Ao) + Nsign(9)-

Combine all of these, one has
8dimkerexi520 = F(@OOC'O) + U(N) — J 01(1210)2.
N

For N ~S' xS, D3 x S! or 2 x D2, 6(N) = 0. For N ~ D3 x S' or S x D2, N = 0,,N = S' x §?,
and the metric § chosen in subsection 2.3 ensures that g = 0y g is the product of canonical metric on
S' and S2. In this situation 7sgn(g) = 0 ([Kom84]) and 7p,(8Co) = 0 ([Nic98] Appendix C). Hence
F(0,Cy) = 0. For N ~ D3 x S' or S2 x D2, as shown in Proposition 3.5, Ay is a flat connection.
Hence for N ~ D? x S! or §? x D?, dim kercxiﬁjgo — 0. So the first component of H2(F(Cy)) is also
trivial. Thus Cj is strongly regular for N = ST x 3 or D3 x S! without perturbations. O

For N = S? x D2, unfortunately, L?,, is 1-dimensional (i* : H*(S* x D*) — H?*(S* x S') is an
isomorphism between two copies of Z), so H2(F(Cy)) is 1-dimensional in the obstruction diagram for

C; on X and C; on S? x D?. However, we have

Proposition 3.11. When r is large enough, the obstruction space H,  for X' = X Ugi gz D? x S? is
still 0.

Proof. Let N; = Xo, Ny = S? x D2, Then N = 0,N; = S? x S'. The method is to trace the
Obstruction diagram.

First, by Propsition 3.10, H2(F(Cy)) = 0, and H2(F(Cy)) = R.

Next, we identify €, . Recall that

A — 1
Ifif € T1Gy, then it’s in the kernel of £¢ , and therefore in kerc, ‘j'z, = kerex(gﬁ/a ® %SC) On the
other hand, if

(W,if) e L22(S; @iA2T*N;) @ LL2GAT* N;)
is in kere, ‘j’;, then if € T1G;. Thus

¢ = Y kere, ‘j'z, = 0TG-
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For manifolds with cylindrical end, we can choose a generic perturbation in a b -dimensional space
just as in the compact case (see page 404 of Nicolaescu’s book [Nic00] for a proof). Since b™(Xy) > 0,
we can choose a compactly supported 2-form 7 such that all monopoles on N; = X are irreducible.
Since No = S2 x D? and N = S? x S! admit PSC metric, all monopoles on Ny = S% x D? and N are
reducible. So € =0 and €; =~ R. So A’ is an isomorphism in the obstruction diagram. Since each
row of the diagram is asymptotically exact, any unit vector of S,(ker A° ) approaches 0 as 7 — 0. So
Sr(ker A%) = 0 and thus ker A’ must be trivial when r is large enough. Since each column of the
diagram O is exact, H =~ ker A®.

Next we identify L; . We have assumed 9(Xy) is 1-dimensional, and since D? x S? has a PSC
metric and H1(D? x S?) = 0, M(D? x S?) is only one reducible point. S' x S§? also has a PSC metric
and H1(S! x §?) = 0, so M(S! x S?) is a circle of reducible solutions. So

dimpg Hél =1,
dimg Hé2 =0,
dimR Tcoof)ﬁg =1.

In the first row of diagram T, L} = A% (H é ). Hence L3 is certainly 0. By complementarity equations
2

from the Lagrangian condition (see (4.1.22) of Section 4.1.5 of Nicolaescu’s book), we have
LY@ L7 =To, M,

So Ly is R. Thus in the first row of obstruction diagram O, L7 + L; = R. Since H2(F(C,)) ®
H2(F(Cy)) = R, A® is an isomorphism and K = ker A¢ = 0. O

3.4. Global gluing theorem. We already have local gluing results. Now we can combine them to
prove that, the moduli space of solutions of the new manifold is the fiber product of two old moduli
spaces.
We assume the following:
Aq (N,g) is S? or St x S? with a positive scalar metric.
Az by (N1) >0, by (No) = 0. A
Ag All the finite energy monopoles on N are irreducible and strongly regular.
A4 Any finite energy 62-monople Cg is reducible and dimp H éQ is 0 or 1.
A The obstruction space H is 0 when r is large enough.
Recall that
Za = {(C1,Co) € 21 % Z2;05,C1 = 0,5Co}
is the space of compatible monopoles, and §Z is the gauge group on N;. Define
Sa = {(51,92) € G1 x Go; dnH1 = dunAa}-
Let
N:= ZA / § A.
The cutoff trick described before (see 3.1 and 3.2) gives gluing maps
#r gA - § N,
and

#o:2a > Cx
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The second one is (§A, g M)—equivariant, since these gluing maps share the same parameter r. So we
can mod out by the (§A, §NT)—action, and get

We also denote the image of this map by <N.

Theorem 3.12. Under assumptions (A1) - (As), for large enough r, .M is isotopic to the moduli

space of genuine monopoles EUI(NT) as submanifolds of @N
Proof. For any point (Cl,éz) in Za, let
Cr = #:(C1,Ca) = Ci#4,.Co.

By assumption Ay, all monopoles on N are reducible. Thus 771Gy, = R. By assumption Ay, €, =R,

so that €5 = 0. Hence A% must be an isomorphism in the last row of diagram T. So
(3.18) H = ker A,

where >~% means that the isomorphism is given by an asymptotic map in the sense of [Nic00] page 301.

Now we want to show

(3.19) ker AS = Tjc, M.
By the definition of Hé, and boundary difference map A¢, a point in ker A is a pair (€,,C,)) e Se, %S¢,
in the local slice of monopoles, such that 6OO§1 = GOOQQ. On the other hand, any point of T[C,‘]‘ﬁ can
be represented by (51C;,92C,) € TZa for (C;,Cy) € ker AS and (31,92) € G1 x Ga, by the definition
of slice. Since Ql and QQ have the same boundary value, and (’3/1§1,‘y2§2) € TZA, 41 and A5 must
coincide on the boudary. Thus (91,42) € TGa. Therefore, ker AN~ T[CT]‘)A’I.

By (3.18) and (3.18), the family of " indexed by C, forms the tangent bundle of 0 when r is
sufficiently large. We again denote it by H;. By the definition of Y;", it’s the normal bundle of 91 in
@NT' By condition Ajg, the map &, in theorem 3.3 must be zero. We conclude that SJT(NT) is a section
of the normal bundle of N locally. Thus for each C,., there exists an open neighborhood U,., such that
Dﬁ(NT) AU, =~ N A U,. By theorem 3.4, this fact is globally true. O

Now we can show that 91 above is desired fiber product of moduli space.

Lemma 3.13. Let Z be monopoles on N. Define
9(3OC = aoc/g\l : 5009\27

Mo 1= 2/G%,

2 :={(C1,Cy) € Z1 x Z9;055C1 = 0,Co mod G},
Then we have
2/G1 % Go = {([C1],[Ca]) € My x M3 00[C1] = 0[Co] € MP=}
and
i/@l X §2 =~ M.
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Proof. The first equility is just by definition. We prove the second one:

N is certainly a subset of Z/@l x Gy. For any ([€1],[C2)) in :Z/§1 x G, suppose it’s represented
by (Cl,ég) € 2. Then there exists g € G% such that g - 60061 = aooéz. Suppose g = 091 * 092,
where g; € §i; Now ([C1],[C2]) = ([g1 - C1].[g5" - C2]) € 2/G1 x G and (g1 - C1,95 " - C2) € Za. So
Z2/G1 x Go = M. O

Corollary 3.14.

e

(3.20) M(X)
(3.21) M(X')

m(Xo) Xm(glxg2) S)ﬁ(Sl X D3)
m(Xo) Xm(glxg2) S)ﬁ(l)2 X Sz)

lle

Proof. By Proposition 3.10 and 3.11, all assumptions of Theorem 3.12 are satisfied. Thus (X)) = 9.
By Lemma 3.13,

m(X) = W(Xo) X onow (S xS2) W(Sl X Dg).
But in our case, H!(Xy) — H(S' x §?) is surjective. Thus 0051 = G. Therefore M= (St x §?) =
M(S! x S?).

The proof of the second equation is similar. O

3.5. The proof of 1-surgery formula. Now we can investigate Seiberg-Witten invariants of X and

X'. According to section 2.2 of [LLO1], for higher dimensional moduli space M(N,.), given an integral

cohomology class © of moduli space B x,» the Seiberg-Witten invariant associate to this class is
SWO(N,,s) := (O, [IM(N,,s)])

Since H'(X) = H'(X,) = R, Bx =~ By,
HY(CP¥ x SY, 7).

We first show that the invariant SW® is well defined:

lle

CPY x S'. We choose © to be a generator of

Lemma 3.15. Suppose that b*(X) > 1 and that f : X — X is a diffeomorphism. Let h and k be
generic paramters. Then SWO(Ex,s,h) = SW®(Ex,s,k).

Proof. Since b*t(X) > 1, by a generic argement (similar to the one in the proof of ??), there exists a
generic path K from h to k. Hence there exists a cobordism from 9 (Ex,s,h) to M(Ex,s, k). This
cobordism is a 2-dimensional manifold with 1-dimensional boundary, so after cutting it by the class O,
we obtain a 1-dimensional cobordism which gives SW®(Ex,s,h) = SW®(Ex,s,k) (see Figure 14).

U

Theorem 3.16. SW®°(X,s) = SW(X',s).

Proof. Since each of MM(S! x S%) and M(S! x D3) is a circle of reducibles, and these circles are given

by the monodromy of connections around their S' factor, it’s clear that
O = M(S* x D3) - M(S! x §?)
is identity. By Corollary 3.14, (X)) = M(Xy).
For M(Xy), 0o @ M(Xg) — M(St x S?) is not necessarily a homeomorphism, but we can prove
that this map is a submersion. Recall that we have choosen a generic perturbation n such that

M(Xo) = M(Xo,n) contains only strongly regular points. By the long exact sequence L:

A HL =Te M(Xo) » H'(B) =T, ¢ M8 x §?) - H*(F) =0 — -
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FIGURE 1. The cobordism in CP® x S! x I.

where
M= Xo (ST x §?) = 2(S! x §2)/051 = Z(S' x §?)/G = M(S! x §?)
(since H' (X)) s HY(S' x §?) is surjective),
O+ M(Xo) — M(S' x §?)

is a submersion.
By compactness result, 9(Xj) is a disjoint union of finite many circles, say 1LerS}. Let d; be the
mapping degree of do |51 St — M(S x S?) = St. We claim that
SW(X,0) = > d;.
el
Let

N, = Sll XM (St xS2) m(Sl X Dg) e ‘jt

be the space of configurations obtained by gluing S} and M(S* x D?). Consider the pullback diagram
of moduli spaces:

(3.22) M(X)c By = CPP x S' —= Bgi, ps = CPP x S! > M(S! x D?) = {0} x S

\Lpl la‘;’c lN
al

St < Bx, = CP¥ x S —% Bgi g2 = CPL x St > M(S! x §?) = {0} x St

(3

When restricted to S'-factors, 01 and 0% are identity maps of S', so p; and po are identity maps of
S!. Therefore, 9; winds around the S'-factor of By by d; times. So

(],0) = d;.
By Theorem 3.12, M(X) is isotopic to 9 in By, so

(M(X)],0) = ) di.
el
On the other hand,
O : M(D? x §?) — M(S* x §?)
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is the inclusion of one point. Thus we have

(3.23)  IM(X') By = CPP x S —2 > Bpoy g0 = CPP > M(D? x §2) = {0}
I £ |
al
St Bx, = CP¥ x St —= Bgi, g2 = CP¥ x St > M(ST x S?) = {0} x S!

Since 6§O|S11 is a submersion, MN; := St Xon(stxsz) M(D? x S?) contains d; points. Again by Theorem
3.12, M(X') is isotopic to N in Bx. So
SW(X') = > di = SW(X,0).
el
O
Remark 3.17. Theorem 3.16 works for dim 9 (X) > 1 as long as it is odd. In that case we define
SW®(X,s) by
SWO(X,s) = ((M(X)],0 U c1(CP*)"™)
for dim9(X) = 2n + 1. Note that in this case dim 9(X’) = 2n and the ordinary invariant is
SW(X',s") := (M(X")], c1 (CP®)™).
Hence for dim 9 (X) > 1, the argument of Theorem 3.16 follows from a similar proof.
3.6. Exotic smooth structures on nonsimply connected manifolds. First observe that by defi-
nition and Lemma 3.15, the cut-down invariant also detects exotic smooth structures. As lots of exotic

smooth structures are detected by SW, we can now generalize those results to nonsimply connected

manifolds by the surgery formula:

Theorem 3.18. Suppose X1, X are two simply connected smooth 4-manifolds with by (X;) > 1.

Suppose 1 is a spin®-structure on X1, such that for any spin®-structure so of Xo,
SW(X1,81) # SW(Xa,s2).
Then X1# (St x S3) is not diffeomorphic to Xo#(S' x S3).
Proof. Let s be the spin®structure of X;#(S! x S?) such that s/ coincides with s; on the common
part. Then by Remark 3.17,
SWO (X 1#(S" x $3),87) # SWO(Xo#(S! x $%), 55).
If there exists a diffeomorphism f : X; — X5, by Lemma 3.15, we have
SWO(Xi#(S" x §%),51) = SWO(Xa#(S! x §7), f(s1)).
Since H?(X2;7Z) = H*(X2#(S! x S);Z), there exists a spin®-structure s on X, such that f(s}) = sb5.
This contradicts the inequality. O

Therefore, we have a lot of exotic nonsimply connected manifolds, for example:

Corollary 3.19. Suppose that b*(X) > 1 and 71 (X) = 1 = 71(X — T) where T is a homologically
nontrivial torus of self-intersection 0. Suppose that there exists a spin®-structure s on X such that
SW(X,s) # 0. Then X#S! x 83 admits infinitely many exotic smooth structures. In particular, for
the elliptic surface E(n) with n > 1, the nonsimply connected manifold E(n)#S* x S* admits infinitely

many exotic smooth structures.
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Proof. For such X, Fintushel-Stern knot surgery theorem (see [FS97], as well as their lecture notes
[FS07] Lecture 3) says for any knot K < S3, there exists a manifold Xz homeomorphic to X and

max{SW(Xk, s + n[T])}

depends on the largest coefficient of the Alexander polynomial of K. Any symmetric Laurent polyno-

mial whose coeflicient sum is +1 is the Alexander polynomial of some knot. Hence the set
{maZX{S’W(XK,S +n[T])}, K is a knot in S%}
ne

is infinite, and therefore we have an infinite family of manifolds that are homeomorphic to X and
satisfy the conditions of Theorem 3.18. O

4. SETUP FOR THE FAMILY 1-SURGERY FORMULA

Let X be a compact, smooth, oriented 4-manifold. Let’s consider a family of SW equations for X and
the resulting moduli space. We want to vary all stuff that SW equations depends on. Recall that the
parameters of SW equations include the metric of X, the spin® structure of X, and the perturbations
of the equation.

Assume we have a compact topological space B of parameters for SW equations. Since isomorphism
classes of spin® structures are discrete, the definition of a continuous parameter family should be a
continuous map
(4.1) B-T(X):= || L{ (Af(X)).

geEMet(X)

Imagine a classical example: B = S'. Now we have a l-parameter family of X, but in order to
obtain an invariant of diffeomorphisms, we should be able to glue two ends of X x [0, 1] nontrivially.
So instead of X x B, the object we are considering would be a fiber bundle Ex over B with each fiber
F = X. The next step is to find out a suitable structure group. To define SW equations on each fiber,
one should fix an orientation and an isomorphism class of the spin® structure for each fiber. Typically
one choose such data on each local trivialization of E'x, and glue them compatibly. So the structure
group should preserve the orientation and the isomorphism class of the spin® structure. Optionally,
one can also require the structure group preserve the homology orientation. Let s be an isomorphism

class of spin® structure of X. Let O be a homology orientation of X, which is an orientation of the
vector space H'(X;R) ® H*T(X;R). In [Konlg],

Diff(X,s) := {f € Diff " (X)|f*s = s}
is the group of orientation-preserving and spinC—structure—preserving diffeomorphisms, and
Diff(X,s,0) := {f € Diff(X, 5)| f*O = O}

is the group of diffeomorphisms that preserve the homology orientation of X in addition to Diff( X, s).

Now the object in our consideration is the following bundle:
X —F
B

with structure group either G = Diff(X,s) or G = Diff(X,s, 0).
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Now since the family of X is a nontrivial fiber bundle F, the definition of the parameter family (4.1)
should be updated to
B - II(E) := | | 1I(E,).
beB
Under this setting, one has to take care of spin® structures and the gauge group to define a parametrized
moduli space (see subsection 4.1 and subsection 4.2).

In the subsection 3.5, we saw that the moduli space of monopoles of X is a circle that winds around
the moduli space of irreducible configurations B% = CP® x S!, and to measure how many turns it has
wrapped, we used CP® x {0} to cut it. In family case, the parametrized moduli space of irreducible
configrations of is a fiber bundle FB*:

CP* x St —— FB*

|

B

It turns that the “winding number” of the 1-dimensional moduli space is still a useful invariant to
characterize it. To cut down this moduli space, we may still use a codimension 1 submanifold, or
equivalently, a 1-dimensional cohomology class © of FB*. But the existence of such class is not
guranteed. We will discuss this issue in the second part of the subsection 4.2.

We want to do surgery on Ex fiberwise and get a new fiber bundle X’ — Ex. — B with each fiber
F = X'. So we have to assume a subbundle Es1 of Ex, and some infomation of the family of framings
to perform the surgery. We investigate this infomation in subsection 4.3.

By the same reason as section 1, we can extend the spin® structure s to X’ fiberwise. Suppose Ex-
is a fiber bundle over the base space B < II(X’). Let Ex,, E

We assume B is connected to avoid different framings since the framing of surgery on each fiber is
an element in m.50(3) = Zs.

4.1. Sping;, structure. For generality, it’s better to assume that the metric of X is unfixed over B.
But recall that in subsection 2.1, the definition of a Spin® structure depends on the choice of a metric

on X, since
Spin©(4) := S x Spin(4)/{+(1,1)},
where Spin(4) is a double cover of SO(4). Konno[Kon19] developed an approach to avoid the depen-

dence on metrics, which is sping;, structure. Choose a nontrivial (in the sense of Remark 2.2) double

cover

of GL} (R), and define

Spingy (4) = 8 x GLI (R)/{£(1, )},
then there is a covering map p : Spiny; (4) — GLJ (R), just as (2.1).

As the definition of spin® structure (Definition 2.6), we can define a sping;, structure s on X to be a
principal Spingy,(4)-bundle Psping,, (1) — X, with a bundle map ¢ from Pgpine, (4) to the frame bundle
PGLI ®) of X, which restricts to the obvious covering map p on each fiber.

As before, p is an S!-fibration. Thus PSpin%L(4) admits some freedom over PGLI ®)" Let s be the

isomorphism class of s. Denote the automorphism group of the principal Sping;,(4)-bundle PSpin&L(4) —
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X by

(42) AUt(X’ 8) = {(f: f), f € DIH(X,5), f : PSpinaL(él) - PSpinaL(él)aqp © f = df © '(/)}v
where

df + Pory ) = FPorp )

is the isomorphism of the frame bundle induced by f. Then we have an exact sequence:
(4.3) 0> 9 — Aut(X,s) — Diff(X,s),

where ¥, is the gauge group of s, which is isomorphic to Map(X,S?!).
We also define

Aut(X,s,0) == {(f, f) € Aut(X, s); f € Diff(X, s, 0)}.

When the structure group of E is G = Diff(X,s) or Diff(X,s,0), we define G to be Aut(X,s) or
Aut(X, s, 0), respectively.

Note that, given a sping;, structure s, each metric g induces a spin® structure s,, and for two metrics
g1 and g2, s4, and sy, belong to the same isomorphism class of spin® structures. Moreover, it’s easy
to see from the definition that, the determinant line bundle of s is the same as the determinant line
bundle of s, for any metric g.

4.2. Parametrized moduli space. In this subsection, we consider the parametrized moduli space of
monopoles and the parametrized moduli space of configurations. To define the parametrized moduli
space of monopoles, we just review [Konl8] section 4, which is based on Ruberman’s observations
[Rub98] and Nakamura’s ideas [Nak10]. The second task of this subsection is about configurations.
Other than [Konl8] and [BK20], where they consider 0-dimensional moduli space of monopoles, we
have to consider 1-dimensional moduli space of monopoles, so we need to investigate the topological
infomation of the parametrized moduli space of configurations to find out a cut-down cohomology class.
For a 4-manifold X, we fix a sping; structure s through out this sunsection. Define

OX) = || Lisi(A] (X))
geMet(X)

to be the space of perturbations. For each (g,n) € II(X), define
C(s,g,m) := L*2(e/(s5)) x L**(S])
D(s, g,1) v= L*P2(IAT (X)) x LE712(S7),
where o7 (s) is the space of U(1)-connections of the determinant line bundle of the sping; structure s,

and S; is the positive or negative spinor bundle of the spin® structure s, induced from s. Recall that
the definition of the spinor bundle ([Sal00] page 154): given a spin® structure s,

2n
S = F)SpinC XTI C )

where Pspine is the principle Spin®-bundle of s, Ty : Spin®(R?") — End(C?") is a representation, and
n = 2.

Define
(4.4) 5W(s,g.m) : C(5,9,m) = D(s,9,7m)
(4.5) (A,0) — (Fy* +in—p ' (o(®,®)),D4D)
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where p : Af(X) — su(S]) is the map defined by the Clifford multiplication, o is the quadratic form
given by o(®,®) = ® @ ®* — 1|®|%d.
For a fiber bundle X — F — B, define
= | | (&)
beB

be the family of parameters. Given a section o of the bundle II(E) — B, we can define the parametrized
moduli space of monoples as follows:

We can choose an open cover {U,}o of B such that U, := U, n Ug is contractible and Ex|y, is
trivial for each a and 5. Note that o is a system of maps {04}s Where o, : Uy — II(X) (it looks
like (4.1) since they are the cases where the bundle is trivial). For each pair of parameter, the moduli

space of monopoles is
m(sa g, 77) = Sw(_;gm) (0)/%

Then for each U, of B, the parametrized moduli space of monopoles is

FMy, (8,04) i= |_|93780a
beUq

Next we show one can glue them compatibly. Suppose {gng : Uap — G} is a family of transition
functions for Ex corresponding to the open cover {U,},. Note that for each b € Uup, gap(b) is a
diffeomorphism of X and induces a map gog(b)* from II(X) to II(X). Then there is a relation

a(b) = gap(b)* © o5(b).

On the other hand, since each U,g is contractible, one can choose a lift gog : Usg — G of Jap, and
Ruberman [Rub98][Rub99][Rub02] observes that g.s(b) induces an invertible map

Gap(b)* : M(o3(b)) = M(gap(b)* 0 05(b)) = M(va (b))
Thus we have an invertible map
(4.6) Gag  IMy,(05)Uap — FMy, (0a)|Uags-
(4.6) satisfies “cocycle condition modulo gauge”:
g:;ﬁ o QE’Y o g’ﬂ;ot
is a lift of g 50 ggv 0 g%, = id, and thus it is in & by the exact sequence (4.3). Therefore we can define

the parametrized moduli space of monopoles by

(4.7) FM(o) = FM(s,0) := | |FMy, (s,00)/ ~,

where ~ is the relation given by the system of maps {7 ;}as-
Now we consider the parametrized moduli space of configurations. Let’s reconsider above cocycle

conditions. §,3(b)* mentioned above is actually induced from the invertible map

(4.8) Gap(0)* : Clop(b) = C(gap(b)* 0 5(b)) = Clow(b)).

Here §o5(b) is a lift of gos(h) € G in G = Aut(X,s). The lift is unique up to the action of an element
in ¢4 by the exact sequence (4.3). Thus the map (4.8) induces a well defined map

(4.9) Jap(0)* : B (05(b)) = B*(gas(b)* © 05(b)) = B*(0a(b))
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between the moduli spaces of irreducible configurations. Recall that when b;(X) = 1, the moduli space
of irreducible configurations is B% ~ CP* x S'. The S!'-factor is H*(X;R)/H'(X;Z), the space of
U (1)-connections modulo the action of the gauge group. Note that gns(b) is an orientation preserving
diffeomorphism, so g,5(b)* acts on H*(X;R) = R identically. The gauge group acts on H!(X;R) = R
by translation of integers. So gag(b)* acts on H'(X;R)/H(X;Z) = R/Z identically. (Geometrically,
H'(X;R) corresponds to U(1)-connections on the nontrivial loop, which is the rotation on the fiber
U(1) around the loop. A diffeomorphism of X should preserve the rotation, and an automorphism of
the principal Spingy (4)-bundle would accelerate the rotation by some integer.)

Now we know the transition map gag(b)* of the S'-factor is always identity, and the transition map
of the CP®-factor is independent of the S'-factor, in other word

9ap(b)* = ids1 X Jap(b)*|cpe-
Hence the parametrized moduli space of irreducible configurations defined by similar formula as (4.7)
is
(4.10) FB% ~S! x Fepe
for some CP*-bundle Ecpo — X. Let
© = PD([Ecp=]) € H' (FBY),

then on each unparametrized moduli space of irreducible configurations, © restricts to the cohomol-
ogy class in H'(B%) we choose in the subsection 3.5. We will use © to cutdown the 1-dimensional
parametrized moduli space of monopoles later.

For b1(X) > 1, in general one cannot expext a trivial S'-bundle as (4.10), and a suitable cutdown

class might not exist. Here is an example:
Example 4.1. Let X = T? x S?. Let ¢ be a diffeomorphism on 72 such that
6%+ H'(T%) — H'(T?)
(a,b) — (a,a +b).
Let Ex be the mapping torus of ¢ x ids2. It’s easy to check that the diffeomorphism of
HY(X;R)/HY(X;Z) =T?

induced by ¢ is again ¢. Hence the parametrized moduli space of irreducible configurations FB% for

Ex is the inner product of two bundles over S':
FBY — Br2 @ Ecpo,
where 7 : Ep2 — S! is the mapping torus of ¢. Let m be a loop in T? = 7~1(1) such that
((1,0), [m]) = 1
(0,1), [m]) = 0.

If mx {1} ¢ Er2 is the 1-dimensional parametrized moduli space of monopoles, then it is homologically

trivial (let [I] be another generator of Hy(T?), then [I x {1}] = [I x {1}] + [m x {1}] € Hy(E72) since

E72 — S' is the mapping torus of ¢), so we cannot find any cohomology class of FB% to cut it down.
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4.3. Construction of family 1-surgery. To define the family of surgery, one have to define the
family of 4-manifolds with a specified circle in each of them. Namely, one have to define the bundle
with fiber a 4-manifold and some nice conditions, such that it’s possible to do family surgery.

To define the family of 1-surgery, we first examine the case of 0-surgery, which is the connected sum.
The definition of the family of connected sum in [BK20] Section 4 is based on the following setting:
Let M and N be two compact, smooth, oriented 4-manifolds. Let the parameter space B be a compact
smooth manifold of dimension d. Consider the bundles 7y : Eay — B and 7y : Eny — B with fiber
M and N respectively. Let Dmyy : TEy — TB and Dny : TEN — T'B be the differentials of 7, and
7N respectively. Let T'(Ey;/B) = ker Dmyy and T(En/B) = ker Dmy be the vertical tangent bundles
of Ey and En respectively. To define a connected sum family, [BK20] assumes the following data:

(a) Two sections sy : B — Ej and sy : B — En. (Hence s%,(T(En/B)) and s% (T (En/B)) are

rank 4 vector bundles over B.)

(b) An orientation reversing diffeomorphism of bundles ¢ : s%,(T(Ey/B)) — sk (T(En/B)).
Then the connected sum family can be obtained by the connected sum around sp;(b) and sy (b) for
each point b € B. The requirement for the structure group G to be the group of orientation preserving
diffeomorphisms, is to ensure that the s%,(T'(Ey/B)) and sk (T'(En/B)) are orientable, and this works
with data b to ensure that the family of framing is well-defined. So the requirement for a family of
framing for O-surgery is actually

(b)) s%,(T(En/B)) and s& (T (En/B)) are orientable, and thay are diffeomorphic as oriented vector

bundles over B.

Let’s consider the following non example:

Example 4.2. Let B = S' and M be any compact smooth oriented 4-manifold that admits an
orientation-reversing diffeomorphism f. Let E); be the mapping torus of f. Assume in addition that
f(m) = m for a point m € M. Let sy be the section of Fj; with fixed value m. Let N be any compact
smooth oriented 4-manifold and Ey be a trivial bundle over B. Let sy be the zero section of Ey.
One can certainly form the connected sum M#N around sp(b) and sy (b) fiberwise. However, it’s
impossible to choose a continuous family of framing for the image of sy in their virtical tangent space
(A disk around m is removed and the boundary of the rest is stretched to be glued with the punctured
N. When M goes around B = S!, this boundary has to be stretched to both directions of M at some

point of B). The requirement (b’) prevents this situation from happening.

Recall that, the framing of a surgery is an identification between the trivial bundle and the normal
bundle over the attaching sphere. For 0-surgery, the framing is determined by a choice of orientations
of M and N, so the family of framing is given by a family of orientations of M L N, which is equivalent
to orientations of s%,(T(Ea/B)) and sk (T(En/B)).

But to construct a family of 1-surgery, a requirement similar to (b’) is not enough. Consider the

following example:
Example 4.3. Let B =S! and X = S! x S2. Let f be the Dehn twits around the S' factor of X:
f:X—->X
(s, (z,w)) = (s, (2, sw)),

where s € C, [s|> = 1, (z,w) € C?, and |2|> + |w|?> = 1. Let Ex be the mapping torus of f. Let Eg:

be the subbundle of Ex with fiber St x {(0,0)}. The normal bundle of S* x {(0,0)} in each fiber of
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Ex is orientable, and the vertical normal bundle of Eg: is orientable, but the framing of St x {(0,0)}
is changed when it goes around B. So it’s impossible to choose a continuous family of framing for
1-surgery around FEg:.

Thus we need more infomation to specify the family of framing. We are trying to find a family of
identifications between trivial bundles and the normal bundles over the attaching sphere S'. Actullay
we can do this piecewisely and then glue them together:

Suppose {Ua}q is an open cover of B such that Ex|y, and Egi|y, are trivial for each a. Suppose
{gap : Uap — G} is a family of transition functions for Ex corresponding to the open cover {Uy}q.

(i) An S'-bundle Eg: as a subbundle of Ex, with an embedding i : Eg: — Ex. (Hence the virtical
tangent bundle T'(Fg:/B) is a rank 1 vector bundle over Eg:, and i*T(Ex/B) is a rank 4 vector
bundle over Eg:.)

(i) an identification f, : Uy x S' x R® — (i*T(Ex/B))/T(Es1/B)| (g, |y, for each a, such that for
any b € Uyg, the following diagram commutes up to an isotopy of bundle isometries:

(i*T(Ex/B))/T(Est/B)| gy xs!

fa(b7_)T (b)*
Jap
{0} X 8 xRS ———— = (i*T(Ex/B))/T(Es: [ B)| g xor

(This means that the difference between f, and ga.s(b)* - fs, regarded as a map from S' to
GL(3,R),is 1 € m(GL(3,R)).)

Remark 4.4. When 1-surgery is repalced by O-surgery, S! and R? in data ii are replaced by S° and
R*, and data ii degenerates to data (b’), since orientation is obtained by gluing such data piecewisely.

With these data, we can construct the family of 1-surgery around FEg: as follows:

Let v = (i*T(Ex/B))/T(Es:/B) be the normal bundle of Eg: in Fx. Then v is a real rank 3
vector bundle over Egi. Fix a family of metric on each fiber X of Ex, then it induces a metric on
the bundle v. Let D(v) — Eg and S(v) — Eg be the unit open disc bundle and the unit sphere
bundle of v respectively. Let N = Egi, ps be the tubular neighborhood of Eg: in Ex, equipped with
a diffeomorphism

e:D(v) — N.

Then Ex, = Ex\N is a bundle over B with fiber Xy = X\(S* x D?) and boundary S(v). By attaching
the family of cylinders S(v) x [0,0) to Ex, along S(v) x {0}, we obtain a bundle E¢ over B with
fiber the cylindrical end 4-manifold X = X, Ugiyg2 St x S2 x [0, c0).

Now we prepare the other side, which is a bundle Epz4s2 with base space B and fiber D? x S2. The
transition map of this bundle is the extension of

ot gap(®)* - f5:S' x S* > S x §?

to D? x S%. This extension is possible because the condition ii ensures that f;!-gas(b)*- fz is smoothly
isotopic to the identity map of S>-bundle. Similarly, we regard the fiber of Ep2,g2 as a manifold with
cylindrical end S* x §? x (—o0,0].
Recall that in unfamily case, we glue X = Xg Usi g2 S? x S x [0,0) and D? x S? Ugi xg2 ST x S2 x
(—00, 0] along their neck to produce a closed 4-manifold X'(r) with a length r neck. We can carry out
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the same procedure to the family case, and obtain a bundle Ex/(,) over B with fiber X'(r). Similarly,
Ex(ry is topologically the bundle Ex but now each fiber X = Xy Ugi sz S! x D? has a length 7 neck.

Now we consider the metric. On each fiber X of E'g , the metric is the product metric of the metric
on Xy and the standard metric on [0, ©)...

4.4. Parameter family. Let

(4.11) C(g,n) = LM (o (s)) @ L**(S)
(4.12) D(g,n) = L* V(A% (X)) @ LM V2 (AT (X)) @ L 12(S))
(4.13) Fgm) : Clg,m) — D(g,n)
4 d*(A — A)
(4.14) F(g.m) <q,> = [Py +in—p (o(®, )

Da®

This operator integrates a part of the action by the gauge group (see (3.4)) and the Seiberg-Witten
map. The reason to do this is to make the kernel have finite dimension and compute the index. The

differential of F(, ) at (A, ®) is a linear operator with some zeroth order perturbations:

N d*a 0
(4.15) d(A@)fT(gm) <¢> =\|dta |+ —p_l(O'((I),(b) + U((b,q)))
Dad [(a)®

and it is a Fredholm operator with index
ind@A +b—1 —bT.

Here by comes from the kernel of the operator D := d* @ d™, which is H'(X,iR) (see [Sal00] section
8.4 for a proof). —1 — bT comes from coker d* = HY(X,iR), i.e. the space of constant functions in
LF=12(X,4R), and coker d* = H*(X,iR) (see [Sal00] Propotion 7.10).

To apply the implicit function theorem, our goal is to minimize the cokernel of d(4,)F (4., Notice
that in (4.15) the zeroth order perturbation of d(4 &) F (., in L¥12(iA°(X)) is zero, so the cokernel
of d(4,0)F (4, must contain H°(X,iR) and is at least 1-dimensional. To fix this issue, one can narrow

down the first summand of D(g,n) to
Ly~ (iA (X 9)),

the space of functions in L*~12(XiR) which has mean value zero with respect to the metric g. We

still denote the operator defined in (4.14) with new target by
(4.16) Figm  Clg,m) — Ly~ P (EAG(X; ) @ L2 (AT (X)) @ LF12(S)).

Now, if the cokernel of d(4 6)F (4, is O-dimensional, we call the perturbation n regular. If it is
the case, by (4.15), ® must be nontrivial to cut down the cokernel of d* and D 4, and by the implicit
function theorem, the zero set of F, ) is a smooth manifold of irreducibles

M*(g,7)

with dimension ind® 4 + b; — bT. Since each point on it is irreducible, it admits a free S'-action by

the gauge group:

(4.17) (A, ®) — (A, D).
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The quotient is the moduli space of irreducible monopoles 9*(g,7n) and it has dimension ind® 4 +
by —1—0bt.

The general argument for unfamily case is that the set of regular perturbations Z,.4 is of the second
category in the sense of Baire (a countable intersection of open and dense sets) when b™ > 0. It goes
as follows:

D4,)F(4,n) can be decomposed as (Fo, F1) where

(19 5 (3) - (o)

(4.19) F1 <$> = F " +in—p o(®,D)).

M := 3’61(0) is called a universal moduli space and F; sends it to the space of perturbations.

—1
EF(g,n)

(0) =97 () "M = (Fi|u) ™' ()

is a slice of solutions to the Seiberg-Witten equation with the perturbation 7. Now we restrict the
domain of these operators to the submanifold €(g,n) N {® # 0}. Since d(4,¢)(Fol(a0}) is surjective by
some analytical computations (see [Sal00] Lemma 8.17), M* := (Fg|(o.0y) " (0) is a smooth manifold.
Regular values of |y are of the second category in the sense of Baire by the Sard-Smale theorem.

4

For each regular value 7, (F1|y*)~!(n) is a smooth manifold. Moreover, the “wall”

(4.20) WESL = {ne LF12(iIAT (X));3A € o/ (s), Fy? + in = 0}

is an affine space of codimension b* (see [Sal00] Proposition 7.10). For each 7 outside WET!  all

n-monopoles are irreducible, i.e.

Flgim (©) = (Falaw) 1),

k—1

.5 » which is of the second category in the

Hence Z,.,4 contains all regular values of |y outside W
sense of Baire when 0™ > 0.

Now we want to choose a section n : B — II(E) such that it is generic in the family sense. This means
that, the image of this section intersects with the image of the universal moduli space transversally.

The set of such sections is dense:
Theorem 4.5. Let by = dim H'(X), b* = dim H*>*(X). Assume
b > dimB + 1
and
(4.21) ind®4 +b —1—-b" +dimB = 1.
Fiz an arbitrary matrics family g : B — Met(X) first. Let Z = Z¥~1 be the space of smooth sections

of the bundle

E—1,20 A+
|| 5712 (A, (X)) — B.
beB
Then there exists a set Zr.q < Z of the second category in the sense of Baire such that for every

N € Zreg, all n-monopoles are irreducible, and the space FIM(X, g,n) defined in (4.7) is a smooth

manifold of dimension 1.
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Proof. In the ordinary theory, in order to prove that the Seiberg-Witten moduli space is well defined
up to a cobordism, one has to show the existence of a regular path in the perturbation space (see for
example, [Sal00] Theorem 7.21, whose “skeleton” is [Sal00] Proposition B.17). We just replace the
segment [0,1] by B. However, some modification is needed, since here the X-bundle Ex over B is
nontrivial and we allow the metric to vary.

Let

€, = LM (o (5) @ L(S;) @ LV 2(iA (X))
Dy = IFH2(AY(X: 0) @ L2 6AT (X)) @ LF1(S;)

Fg:C4— Dy
A d*(A — Ag)
Fol@|=|Fi*+in—p (o )
n D4®

As in the ordinary theory we consider [0, 1] x €, here we wish to define a bundle using g¢:
X = |_| Cov)
beB

by the transition functions (4.8). However (4.8) doesn’t satisfy the cocycle condition. Hence we have
to consider the moduli space instead. But now above J, incorporates d*, not just swy in (4.4). To
make JF, well-defined on the parametrized moduli space, we have to reformulate its construction.

Use the notations in subsection 4.2, where {gop : Usg — G} is a family of transition functions for
Ex corresponding to the open cover {Uy,},. In subsection 4.2 we choose a lift o : Usg — G of Jas-

Now we want to refine our choice such that g}z o g3, o g5, preserves (d*)=1(0).

Lemma 4.6. For each Usp, we can find a lift gap of gap such that if the cocycle g% 4 oggv 0G5, is the
guage transformation by u € 4, then d*(u~tdu) = 0.

We prove Lemma 4.6 later. With these lifts we define
o £
X:=| | Bl
beB

by the transition functions (4.9). (An element of X can be written as (b, A, ®).) Construct a bundle
Y—->XxZ
whose fiber over (b, A, ®,7) is Dy as follows. Consider the trivial bundle
U = Coipy X Dy = €

The gauge group ¢ acts on Uy by the diagonal action and this action makes Uy a ¢-equivariant bundle.
7

o(b) 18 @ F-equivariant section of Uy. The quotient of Uj is a bundle [U,] over B;‘(b), and F ;) descends
to a section [T,

o(v)) of [Up] (note that since & acts on €y freely, the fiber of [Up] is still Dy, and
dim coker[F ;)] is still dim coker® 4 + b* since the infinitesimal action of the gauge group is in the
kernel of dJ,;)). For each U, < B, form the family | |,.;; Up. Then glue all such families by the
transition functions (4.8) and form the quotient family | |, 5[Up], which is a bundle over X. Let Y be
the bundle

(L) x 2 - x x 2.

beB
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Define a section of Y
F:XxZ—-Y

by F(b, A, ®,m) = [Fy)](A, @,n(b)). F is well-defined because of Lemma (4.6) and the fact that the
Seiberg-Witten equations are ¥-equivariant. We want to show that this map is transverse to the zero
section. If F(b, A, ®,n) = 0, then

D((LA’@,.,?)F Ty B x TcBg(b) X TnZk_l — Dg(b)
(7,0, 0,C) = dia,0nm)Fgw) (0, ¢, C(b) + don(7))

Here DF is the projection of the differential dF' to the vertical tangent space of the bundle Y. From
Equation (4.15) we deduce,

«a d*¥a 0
(422)  dene)Tow) ¢ = | dta |+ | i(C(b) + don(r)) — pH(o(D,0) + (0, D))
¢(b) + dyn(r) Dad [(o)®

The operator

o d*o
(42 <¢> ” (w + F(a)@)

is surjective (see [Sal00]) Lemma 8.17. Note also that one can choose ¢ arbitrarily. Therefore (4.22) is

surjective. Hence F' is transverse to the zero section and
M := {(b,A,P,n) e X x Z; F(b, A, ®,n) = 0}
is therefore a Banach manifold. The projection
T M—>Z

is a Fredholm map of separable Banach manifolds. By Sard-Smale theorem, the regular value of 7 is
of the second category in the sense of Baire.

By an argument of transversality theory (see [Sal00] Theorem B.16), n € Z is a regular value of 7
iff the restriction of F' over n:

(4.24) Fy:X =Yy = | | Dypy
beB
(425) (bv A7 (I)) = F(ba A7 q)a 77) = [g:(g(b),n(b))](Aa (I))

is transverse to the zero section. Here Fy( v)) is the operator defined in (4.16). Now choose 1 to be
a regular value of 7, then Fj, is transverse to the zero section, and therefore by the implicit function

theorem, the set
(4.26) M(Fy) = {(b,A,®) € X; F} (b, A, ®) = 0}

is a submanifold of X of dimension

dimker[F (g(vo),n(voy) ] + dim B — dim coker[F(4w0) n(b0))] = Md[F(g(b0),n(v0] + dim B
ind@A +b1 -1 7b+ +dim B

=1

for any by € B in the projection of M(F,). (Figure 2 and Figure 3 justify this computation of

the dimension. Here the index of [F(4(4).n(b))] depends on some topological invariants of X and
1



l

F (g (B0)n(b0)) (=) Flg(=)m(=) (=)

FIGURE 2. Type 0: If the kernel of F(4(,),5 (b)) 18 O-dimensional, B would extend the
kernel.

D D

FIGURE 3. Type 1: If the kernel of F4(14),n (b)) 18 1-dimensional, B would push it off
the zero set.

determinant line bundles of the sping;, structures, and since the structure group of Ex preserves the
isomorphism class of the sping;, structures, ind[ff(g(bo)m(bo))] is independent from the choice of bg.
However, dimker[JF(g(p0).n(50))] and dim coker[JF(4().n(b0))] do depend on the choice of by. Since F;; is
transverse to the zero section, dim B > dim coker[JF(4b,),n(bo))]- Hence dim ker[F (g(p),n(b))] can only
be 0 or 1.)

Notice that M(F,) = FM*(g,n). The family version of the wall (unfamily version is defined in
(4.20)) is

(4.27) FWEL = {ne 281 3be U, < B, A€ o/(s,), such that F,* + in(b) = 0}.

If 5 is a regular value of 7 and 1 ¢ FW !, then

g,s

FM(g,n) = TM*(g,n)

is a smooth manifold, and such 7 belongs to Z,.4. On each fiber, the othorgonal complement of the
wall has dimension b*. Because we have assumed b* > dim B + 1, one can perturb any n € ZF~!

slightly such that it doesn’t meet the wall on every point. Hence Zk_l\?\/\?’;j is an open dense set
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universal moduli space

Fm
ffll rfll

cell of B

FIGURE 4. These situations correspond to Type 1 (Figure 3) and Type 0 (Figure 2).

in ZF~1. Because regular values of 7 is of the second category in the sense of Baire, their intersection

with Zk_l\?W’g“;l, contained in Z,.4, is of the second category in the sense of Baire. O

Remark 4.7. Konno[Kon18] describes a way to find a generic perturbations family for 0-dimensional
moduli space, which is to put B cell by cell into the space of parameters family II(F), and then highest
dimensional cells of B would intersect with the projection of the universal moduli space (i.e, image of
F51(0) under F; defined in (4.19)) in discrete points for dimension reason. For 1-dimensional moduli
space, the situation is subtler. F; can has either 1-dimension kernel and (dim B)-dimensional cokernel,
or 0-dimension kernel and (dim B — 1)-dimensional cokernel (see Figure 4). Moreover, in the proof of
the following propostion (Proposition 5.3), we need the fact that the generic perturbations family is

dense.
Proof of Lemma 4.6. Recall the definition of the automorphism group G in (4.2). Fix an f e G. Let

Aut(f) == {f; (f, f) e G}

Each f € Aut(f) is an isomorphism of Psping, (1) that adds one more infomation to the isomorphism
df of the frame bundle PGLI (®)’ the map on the S'-factor of

Spingy, (4) = S x GL] (B)/{+(L,1)}.

Hence Aut(f) is in noncanonical one-to-one correspondence with the gauge group ¢: the difference of
two elements in Aut(f) is an element of ¢. By Hodge theory each component of ¢ contains a harmonic
0 (

element u = €%’ (see Proposition 5.30), which means that the iR-value 1-form u~'du satisfies

d*(u"tdu) = 0.

Geometrically this means that the rotation of the S'-factor is at a constant speed when going around
every nontrivial loop of X. This motivates us to fix a “reference rotation” as follows:

In subsection 4.2, for each U,, we have assigned a sping,-structure s, on X. Now we further fix
a connection 1-form a, on the determinant line bundle L, of s,. Recall that g,g(b) preserves the
isomorphism class of sping -structures, so Jos(b)* induces an isomorphism between determinant line

bundles L, and Lg. The pullback g,5(b)*ag is also an iR-value 1-form. Since each component of
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% contains a harmonic element and U,g is contractible, we can choose a lift §* 5 such that for every
beUup

d*(gaﬂ(b)*aﬁ - a'a) = 0.
Since d and d* commutes with f* for any diffeomorphism f, we have
d* (G2 © Gy © Fyala — Ga) = Jag © G5yd" (§5a0a) — d*aq
= Gap © G5, d" (ay) — d*aq
= Gl (38 a0,) — da
= g(";ﬁd*(ag) —d*ay,
= d*(gzﬁaﬁ) —d*a,
= d*(as) — d*aq,
= 0.
Now for any connection A € L¥2(.e7(s,)) on Uy, we have
G © Gy © BaA = A+ u du
where 2u~tdu = g 50 ggv o §,”;aaa — aq (the coefficient 2 comes from the definition of the determinant

bundle in (2.4)). Hence d*g}; 0 g5, 0 g5, A = d*A. O

Theorem 4.8. Let Xq be a cylindrical manifold such that 0, Xo = S* xS?. Let 8 be a spin° structure of
Xo such that it induces a spin® structure s of S' x S? such that the first Chern class of the determinant
line bundle is zero. Let by = dim H'(Xy), b™ = dim H>*(X,). Assume

bt > dimB + 1
and
(4.28) ind®4 +b —1—-b" +dimB = 1.

Fiz any matrics family g : B — Met(Xy) that restricts to the standard round metric on the boundary.
Let Z = 2%~ be the space of smooth sections of the bundle
|_| Ly ( p(Xo)) = B.
beB
Then there exists a set Z,.q < Z of the second category in the sense of Baire such that for every
N € Zpeg, any n-monopole Co
A4 is irreducible;
A dim H2(F(Cy)) = dim B;
Ag the space FM(Xo, 8, 9,n) defined in (4.7) is a smooth manifold of dimension 1.

Proof. For Xy, form the bundle X over B as in the proof of Theorem 4.5:

o= L € s/

beB
Here émsw is the space of configurations on X that restricts to monopoles on S' x S?, as defined in
(3.3). Let

ms = m(Sl X S2> S7ground)~
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‘ 715, Te, 0" (Coo)

ker ‘QCO

— @

FIGURE 5. Decomposition of T; éu,ez and T¢, (A‘fg(b)%sw

o (1
lx(lLC/

Exactly as in the proof of Proposition 3.5, one can show that 9 = S'. The bundle Ex, indeuces
a bundle Egi4g2, and this gives the parametrized moduli space FM,. TN, is an S'-bundle over B.
Define

Yoo = Li2(S, s @IA>ToT*N),

and Uy, = G;"(b)%sw X 99(,,),” and

F:X®FM x 2 — | |[Up] ®FM, @ FM,,
beB

F(b,C,C,n) = (SW (), 00 C, C).
Let A be the diagonal of M, x M. Let FA < TN, D TM, be an S'-bundle over B with fiber A. One
can show that F' is transversal to 0 FA < YR FM, P IFN,. Then apply Sard-Smale to the projection

7: FH0®TFA) — 2.

Let Z,eq be the set of regular values of 7 which don’t meet the wall. As before this set is of the second
category. Given any 7 € Zyeg,

F,: X@IM, - YO IM, ®IM,
is transversal to 0FA < YOTFM,DFM,. Fix any (b, Co, Co) € Fn_l(O(—B?A) and write Co = (ti)o, Ao).
Recall that there are two short exact sequences in the diagram D :
L R Oop
Tlgp, - Tlgy,ex — 119
and
_ i A 90
Te, 05" (Coo) <> T, Cotypsw = T, Zs-
Note that these sequences split. Hence by chasing the left top and left bottom square of the diagram
D, Tg, (ég(b),u,sw/éu,em) = TCOB;(b),p,sw admits a decomposition (see Figure 5):

(4~29) T(: (ég(b),u,sw/gu,em) = TCO (ao_ol(COO)/gu)/iR(ci)m 0) @ Tcoo (Z’S/QS)
Co > (Co— 05" 02Co) @ 0.
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Here R(i)o, 0) is the image of ker 260 under the map 260’ as we have discussed in the remark 3.1. Notice

that here T¢ (@g(b),u,sw/éu,ex) = Téoﬁ;"(b)%sw and Tc, (Zs/9s) = Tc,Ms. With above notations we

deduce
Do Fn i TEB®Te BE 0 @ T, My — Ty, ® Te, Ms @ Te, M,
(.o, Co) > (SW,y3)(Co) + (1), 0:2Co. o).
Since 7 is a regular value of m, D(b,émcm)Fn is surjective. We deduce that
T,B@Te, (05" (Co)/Sp) = ToYgiv)
(t, Co) = SW. (o) + o (1)

must be surjective, otherwise T, B ®TCOBZ(b) psw = DWB@Te (ao—ol(cm)/gu) ®Tc, (Zs/Gs) cannot fill
in Togg(b),u @ Tc, M, (see Figure 6). Hence the image dyn(T,B) contains H2(F(Cy)), and this means

that
(4.30) dim H*(F(Co)) < dim B.

This result is for any specified Co,, but we can use the strategy in the second part of Proposition 3.8 to
show that this is true for any point on 9t,. If the S! in S' x §? = 0X|, is a trivial loop in X, however,
that strategy cannot apply. But the result is enough.

Next we show that dim H2(F(Cy)) = dim B. Recall that We have three differential complexes:

5 & -1 @60
(FCD) OHTlgu—’Téoaao (Co) —> T4, — 0
X 0 116,00 200, T 0 @COT‘(J 0
(Co) > L1Ipexr T > Ly bpsw T L0 T

le

(Be,) 0TSy =5 Tc,Zg =00
From the exact sequence
(E) OHFCUQXEO*»BCUHO

we deduce
xX(Ke,) = x(Fe,) + x(Be,)-

In our case H°(Bg, ) = 1 since all monopoles on the boundary are reducible, and H'(Bg ) = dim 9 =

1. Hence x(B¢,) = 1-1 = 0. On the other hand HO (Xe,) = 0since all monopoles on X are irreducible,
and thus H° (FCO) = 0 by the long exact sequence (L). Therefore by the Proposition 3.7

(4.31) —H'(F¢,) + H*(F¢,) = x(K¢,) = —d(Co) = =1 + dim B.
Since dimHO(JACCU) = 0 and dim H(Bg ) = 1, H'(Fg ) is at least 1-dimensional (iR(®y,0) is the
image of H%(Bg, )). Hence by (4.30) and (4.31), dim H?(F¢ ) = dim B and dim H'(F¢ ) = 1.

O

Theorem 4.9. Under the assumptions in Theorem 4.8, there exists a set Zyeq C ZF=1 of the second
category in the sense of Baire such that in addition to the properties in Theorem 4.8, all monopoles
are of type 1 (see Figure 2).
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Tc, M,

o0

T, B ®T,B

*
g(b),p,sw

~ H A~
Tz (0" (C0)/S,) @ TH B ToYg(),u

FIGURE 6

In our case, we have II(Ex,) on one side, and II(Eg1« ps) or II(Ep24s2) on the other side. We hope
each of g1y ps : B = [I(Egixps) and npzygz : B — [I[(Epz4g2) sents each point of B to a fixed PSC
metric and vanished perturbation, and this property is preserved after gluing. Thus, we have to find
an 1, : B — I(Ex,) such that it vanishes on [Ryanish, ) of the neck.

Proposition 4.10. It’s possible to choose families perturbations nx, satisfying the following assump-

tions:

Al nx, doesn’t meet the wall.

A3 (A5) of Proposition 7.2 in [BK20] is satisfied.

A4 nx, : B —1II(Ex,) is generic in the family sense (in the sense of Theorem 4.5).
A5 For any b e B, nx,(b) vanishes on [Ryanish, ©) of the neck.

Proof. We just replace the dimension condition in the proof of Proposition 7.2 in [BK20]. O

5. THE PROOF OF 1-SURGERY FORMULA FOR FAMILIES INVARIANT

5.1. Computation of obstruction bundles. Suppose 0 = (g,7) is a regular section in the sense of
Theorem 4.5, and b € B is a point such that Sw;(lb) is nonempty. As the discussion in the proof of

Theorem 4.5, either

dimker[sw, ;)] = 0

dim coker[sw, )] = 1 — dim B = — ind sw,
or
dimker[ﬂa(b)] =1
dim coker[sw, )| = —dim B = 1 — ind sw, ).

Alternatively, one can compute H2(F(Cy)) from the exact sequence L
1 1 2 2
(5.1) e He — H(Be) = H(Fg ) > HE — 0
Not like the formula (3.16), now we have irrducible monopole. Hence

H2(F(Co)) = kere D%, ® H2 (N) @ L?

top»
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As in (3.17), we have
kere, @EO = kery2 @ZO.

Let Ny ~ X;. Let 1 be the perturbation family chosen in Theorem 4.8. Let b € B be a point and

C; be an n(b)-monopole of Ni. The sequence (L) becomes

dlmHO Fe)= dlmH1 Fe) = dim H%(F: ) = dim B
(L?) dlmHO = J/ d11rnH1 =7 dlmH2 =7
dunH0 dlmH1

As we discussed in the proof of Theorem 4.8, the homomorphism H°(B e,) > H 1(F(A:I) is an isomor-
phism. Since X(fK )= —d(Cy) = —1 + dim B, there are only two cases: either dim Hg ! =0 and
dim H2 =dim B — 1 or dim H1 =1 and dim H2 = dim B. In fact both cases are possﬂale

Case 0: dim H1 =0 and dun H2 =dim B — 1 In this case we have

dim H0 dim H1 dim H?( (F¢,) =dim B
LO dlmH0 = J dlmH1 = durnH2 =dimB -1
dlmHO durnH1 0

Since the virtual dimension of the moduli space for a fixed parameter is dim H é =0, C, is of type 0
1
(see Figure 3).
In the first row of diagram T, L] = 6§O(Hé ). Hence L] is certainly 0. By complementarity
1

equations from the Lagrangian condition, we have
Lf® L] =Tc, M,.

So L7 is R. Let Ny = S' x D3. Then the dimension of H?(F¢,), Ly, € and €; are computed as in
3.11. We deduce dim J; = dim B — 1 by the obstruction diagram 7. Since the obstruction space has
one less dimension than the parameter space, we have type 0 configuration G #TCQ (see Figure 4).
We have to identify H explicitly. By the definition of HCQ1 and H Z(FCI) we have
dlm(SWT (Cprsw/G )T = dim HZ =dimB -1
dim(SWTcl( 21 (C)/5u))t = dim H?(F¢ ) = dim B
Namely, the image of

Te, (Cpuusuw/Gpuen) = Te, (05" (Coo)/G) /iR (1, 0) @ T, (2/S5)

under SW ¢, has one more dimension than the image of

Tp (0" (C)/S0)
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00— ker A® —5" s HX(Fe )@ HX(Fz,) —— Ly + Ly — 0

FIGURE 7. Obstruction diagram for case 0 and Ny = S* x D3, with dimension for
each term.

under ﬁ/cl. Since ﬁ/éo (iR(®1,0)) = 0 and §I7Vél (Tc, (Z5/9s)) is 1-dimensional, this means that

SWe (Te,(25/9s)) ¢ SWe (Te, (0 (Coo)/G0))-

Assume that the restriction H*(Xo,R) — H(S' x S?,R) is surjective, one can find a closed form
a € QY(Xp) such that dypa € Tc,, (Z5/9s). Then dta = 0 so

SWe (Tc, (%s/9s)) € SWe (T, (05 (Co)/S))-
Hence in this case (Case 0) H!(Xo,R) — H(S! x S2,R) is not surjective, i.e. L}, =0 and (L}

top top

)t
R = H'(S' x S2,R). From the long exact sequence

H3*(N;R) +—— H3(N;R) +—— H3(N,N;R)

b}
.
(BL) H?(N;R) +—— H*(N;R) «'— H2(N,N;R)
5 ¥
.

HY(N;R) +— HY(N;R) «—— H'(N,N;R)

(where H *(N ,N;R) is the de Rham cohomology with compact support on the cylindrical manifold

N) and the Poincaré dual theorem:
H?*(N;R) ~ H'(N;R)

o = *xY
(5.2) %: H*(N,N;R) ~ H?*(N;R)

H3(N,N;R) ~ H (N, N;R)

H3(N;R) ~ H'(N,N;R)
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Lz%op (L%Op)l
H?(N,N;R) H2%(N;R)
0
(Li,)* g im & = ker f coker f s 12,
HY(N;R) H*(N;R)
f :
coker § = im f = ker 0y

FIGURE 8. Some terms in the long exact sequence (BL)

we deduce that (see Figure 8)
H?*(N;R) = =L}, ® L},

and
H'(N;R) = Lo, @ *Ligy,
where
L}, :=im H*(N;R) - H*(N;R).
Moreover L}, =~ «L%, = (L{,,)* is isomorphic to §((Lj,,)"), the kernel of the natural forgetful

morphism [ : HQ(N,N;R) — HQ(N;R) in the long exact sequence (BL). The isomorphism # in
(5.2) is the Hodge star operator on N and by definition it comes from the cup product, which is a

nondegenrate pairing

JA . H*(N,N;R) @ Hy(N;R) —
N

R
W] @[] = JNW At

If f([a]) = 0, then there exists a 1-form a € C'(N) such that da = a. Then for any cocycle § €
C%(N,N),

:JAd(aAﬂ)iJAa/\dﬂ

N N

=J anpBt0
oN
=0.

Hence [«] is in the radical of the intersection form @ of H 2(]\Af ,N;R). Conversely, if f[a] # 0, then
there exists an element [w] € H2(N, N;R) such that
‘[h wAa#0.

N
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L%op (L%op)l

H?(N,N;R) /f» 0€ kerey(d + d*)
) & %
(Liop)™ = Rad @ — coker f = L7,
HY(N;R) i o f H%(N;R)
— kerza(d + d*
Q+ erp2(d +d )Q2+
Q- =) kery(d + d*) o
FIGURE 9
So Rad Q of H*(N, N;R) is precisely ker f = 5((L%OP)J-) >~ «L7,,.

From above discussion and based on Figure 8, we have Figure 9, where 0, = 0o, — 05, and 05, is

the contraction by 0; and then taking do. In particular, one has an exact sequence

N ~ ~ ~ ~0
(5.3) 1 — kerza(d + d*) e > kerea(d+ d*)| 3L, — 1.
+

o

By the computation of the ASD operator d* @ d* (see Example 4.1.24), one has

kere, ASD* = kere,(d + d*)

® H°(N;R).
o3

and
O kere,(ASD*) = L2 @ LY

= Htop top*
Let R, x S* x S? be the neck of Ny ~ X,. Let ¢ be the coordinate of R... Let 8 be the coordinate
of St. Then H!(S' x S%;R) = R is generated by df. Let

(5.4) o = B(t)do e Q*(N)

where ((t) is the cutoff function defined in the begining of the subsection . Then Jd,« generates
Tc., (Zs/Ss). Notice that [da] is precisely 6[df] by the definition of the connecting homomorphism &
in the sequence (BL).

As before we regard Tc (25/9s) as a subspace of Téo(ég(b)’#’sw/émw). So « generates Tc, (25/9s)-
Hence

dta = Hd T da
2
generates @CI(TCOO (25/9s)). As [da] = 6[db] for [d6] e (L},

)+, the projection of #da to ker,, (d +
d*), denoted by H(#da), is nonzero (see Figure 9). On the other hand, H(da) is zero since f([de])
fo68[df] = 0. In conclusion, d*a projects to a nonzero element of kere,(d + d*), and in addition, ¢
=R.

In the right top of the obstruction diagram (Figure 7) we have the map 75, : H2(FCI) — L7 . Here
H?(F,) is a subspace of

Sl

o0

sends this element to L7,

kerey(d + d*)| < ker., ASD*
Q3
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TC (éu,sw/gu,ew) M Sﬂél (TCI (5061(Coc)/9u)) Rdbn(v)

Rov @Co (Tc.. (Zs/9s))

T,B
V < T,B dyn(V')

Ficure 10. Case 0 corresponds to Type 0 in Figure 3. Remember the othogonal
complement of S/ﬁ/flo (Tc., (Zs/Gs)) is H2(F(Co)).
(it’s a proper subspace if the kernel of the twisted Dirac operator is nontrivial), and L] = (L}, )" =

top
2 ~ 72
s, = L3, .

(5.5) 05 H(SWe (Te,(24/95))) # 0

For a self dual two form, 05, = *0%,. Hence

is nonzero. Note that previously in (4.29) we choose Tc_, (Zs/9s) to be the L?-complement of
Te, (021 (C0)/5,0) /IR (20, 0)
in T¢, (ég(b)7u7sw/9u,m). Now we can choose another Tc_ (Zs/9s) such that it still satisfies (4.29) and
in addition,
H(SWe (Tc, (2s/9s))) € H*(Fe,).
This is possible because H? (Fe,) is by defintion the L2-complement of 5/'1/\[/60 (Téo(aogl(cw)/éu)).
Recall that Figure 7 shows that

(5.6) H =ker AC.
Therefore by (5.5) H.~

T

is isomorphic to the L? complement of J—[(gﬁ/él(Tcw (Zs/9s))) in HQ(FCI).
Note that this isomorphism is given by gluing the obstruction spaces of N; and N» (which is trivial).
Recall that we have chosen the perturbation family 7 such that

dyn(TyB) ® SWe (Te, (01(Co0)/510)) = Ygoyne
Choose v € Ty B such that
SWe (Te, (24/5)) € Rdyn(v) @ SWe (Te, (0 (Coo)/510)).

Fix any Riemann metric on B. Let V < T B be the othogonal complement of Ry, then dimV =
dim B — 1 (see Figure 10). Observe that

(5.7) dyn(V) = X,

and this isomorphism is given by first gluing perturbations on Ni and N (which is 0), then projecting
it to (..

Now let No = D? x S2. From Proposition 3.11, we have Figure 11. Surprisingly, the dimesion of the
obstruction space is different from the one in Figure 7. Since the dimension of the obstruction space

matches the dimension of the parameter space, we have type 1 configuration Cl#rég (see Figure 4).
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AC
0 —— ker A —22 H*(Fp )® H*(Fe)) —— Ly + Ly » 0

AT
0——kerAD — 2" ¢ @C; ————— € + & ——0

FIGURE 11. Obstruction diagram for case 0 and No = D? x S2, with dimension for

each term.

c

0 — ker AS — "> H2(F, )@ H2(F¢,) — Ly + L; —> 0

) ~ ~ AT, .
0 5 — " ety T @kere, 78 —> Ly + Ly — 0
1 2
A°
0 — ker A ey ¢ +¢ ——=0
0 0 0

Case 1: dim H é =1 and dim Hg = dim B. Since the virtual dimension of the moduli space for a
1 1

fixed parameter is dim Hé =1, G is of type 1 (see Figure 3). Now the diagram (L?) becomes

dim H0 dim H1 dlmH2 Ffll = dim B
(L1) J dlmH0 = J dlmH1 = J/ dnnH2 =dim B
dlrnHO dlrnH1 0



We deduce that the map H. — H'(Bg,) is surjective. On the other hand, the projection of the
1
paramertized moduli space to the parameter space has trivial derivative. Conbined this with the

compactness result, we have

Proposition 5.1. Under the dimension assumption (?77), for a generic perturbation family n, there
exists a finite set of points by,--- ,b, on B, such that the paramertrized moduli space for Ny ~ X, are
in the fiber of by,--- ,by.

Now we compute the obstruction space for the closed manifolds obtained by gluing. In the first row
of diagram T,
(5.8) L =im (Hél) =R
since the map H é — L is by definition Hé — H'(Bg,). By complementarity equations from the

1 1
Lagrangian condition, we have
L@ L] =Tc, M,.

So LT = 0. Let Ny = S x D®. Then we deduce dim H, = dim B by the following obstruction diagram:

0 0 0

dim B dimB | 0 ae 0 0
0 —— kerA® — o H2(Fe )@ H?(Fe,) —— Ly + Ly — 0

dim B

. L. AS .
kere, 7% @kere, T8 —— [T+ L7 — 0
Cq Co 1 2

AO
0——ker A — " ¢ @C, ————— €] + €
0 0| 1 0| 1

4>0

0 0 0
Since the dimension of the obstruction space matches the dimension of the parameter space, we have
type 1 configuration C;#,C, (see Figure 4).
Now we have
dim(SWTe (€1 sw/Gprex))™ = dim Hgl = dim B,
dim(SWTe (95} (Coo)/G0))t = dim H?(Fg,) = dim B.

Hence

SWe (T, (2s/95)) € SWe (Te, (91(C)/G))-
and
(5.9) H; = ker A = H2(Fp ) = (SWT¢, (051 (Ce0)/Gu))

Agian we have chosen the perturbation family n such that

dyn(TyB) (—D@@l (T(":l (ac;;l(coo)/gu)) = 1gg(b),u-
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Therefore, similar to (5.7), we have
(5.10) dvn(TpB) = 3.,

and this isomorphism is given by first gluing perturbations on Ni and N (which is 0), then projecting
it to (..
Now let No = D2 x S2. As in 3.11, we have

0 0 0

0 —— kerA® —=r H?*(Fe )@ H*(F¢,) —— LT + Ly — 0

dim B

. L. Ac
kere, T¥ @ker,, T¥ —— -+ L — 0
Cq Co 1 2

Al
0 —— kerA” — 2 ¢, Q¢ ————— &) +¢& —0

Since the dimension of hte obstruction space matches the dimension of the parameter space, we have

type 1 configuration G #Tég (see Figure 4).

5.2. Local gluing theory for type 1 configuration. We start from case 1 as it is simpler (the
dimension of the obstruction diagram matches the dimension of the parameter space, i.e, the configu-
ration obtained by gluing is of type 1) by the previou subsection.

Suppose that X is the 4-manifold satisfying the dimension assumption, and X is obtained by
cutting off a neighborhood of a cohomologically nontrivial loop. In this case, the gluing configurations

are of type 1. The main theorem of this subsection is:

Theorem 5.2.
FM(X) = FM(Xo) X ganst xs2) FM(S' x D?),
FM(X') = FM(X0) X gon(s: xs2) FM(D? x S?).

Here “~” means the isotopy in the parameterized configuration space of X or X'.

We will use some classical ideas found in [Nic00] and [BK20], but generalize them as we don’t have
any assupmtion on the kernel of the twisted Dirac operator. Throughout this subsection, Ny is the
cylindrical manifold obtaind from Xy, and X(r) ~ X is the closed manifold obtained by regluing
Ny ~ S! x D3 to Ny with a length r neck. As there is no restriction on the twisted Dirac operator,
the perturbations provided by the parameter space does not coincide with the obstruction space in
general. The neck of the glued manifold should be stretched to control the error occurring from such

difference.

Proposition 5.3. It’s possible to choose families perturbations nx, satisfying the following assump-

tions:
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I nx, doesn’t meet the wall.
II Let § be any fized positive number. For any b € B and any solution Ch for the perturbation n(b),
let Dyn be the differential of n that projects to the fiber, which is a linear operator

Dyn : TyB — L 2(IAT*Ny)
and let ¢ and 7Té be the Li-orthogonal projections
1
e, + Ly (IA T*Ny) — H?(F))
e LA TNy — HP(Fe,)h,

where H2(F(:1)J- is the Li—om‘hogonal complement of H2(Fél), The following conditions on the
local gradient are satisfied.
a There exists some € € (0,8), such that the projection my. of Dyn to H}, (N1) satisfies

HTFJJ;(Dbn)HLi(NI) < €| Dyn|.
b There exists some 0" € (0,8) such that

1Dz (0 < O]

¢ There exists 0" > %5 such that

|7e, Dun(t) ez (x,) > 0" [t]
III nx, : B —> II(Ex,) is generic in the family sense (in the sense of Theorem 4.8).
IV For any b€ B, nx,(b) vanishes on [Ryanish, ©) of the neck.

Proof. The classical strategy is to first show that the space O of all families perturbations satisfying I
and IT is open. Next
To show the existence of at least one element satisying these assumptions, we will construct one and
then modify it by a homotopy such that it satisfies local gradient conditions. We can find a homotopy
on St x SdimB=1 5 1
O

Recall that the cut-off function «,.(t) = 1 on [0,7) and «,.(t) = 0 on [r + 1,00). Define the gluing

map with 0-section on N, by
U, L2 (GALT*Ny) — LM2(IA T* X (1))
n(t) — an(t)n(t)

on the neck, and ¥, is identity on ]\71 and ¥, = 0 on ]\72. We glue Ny, on Nl—side and the zero

perturbation on NQ—side, and denote it by the same notation as [BK20]:

K, (b) == \117'771\71 (b) = 77]\71(6)#7"0

where #, is defined in (3.2).
Let’s define

Xk = xk(r) = RS @IT* X (), XF = LP2(S; @iA2T*X (1)),

Xk =xk @xt.
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Let F,. be the operator on X (r) that combines the sw map and the gauge fixing condition, as defined
in (4.14). Let F,(-,b) = F,(-) + iK,.(b) for b € B be the parameterized version. Denote by

T, X5 - x°
the the differential of F,.(-,0) at (0,0). Then F,(-,0) has the expansion
F.(C,0) = F,(0,0) + T(C) + R(C)

where R is the remainder term. We will choose locally constant metric such that the parameterized

operator SNL'T (Q, b) only has one more perturbation term, namely
F(C,b) = F.(0) + T, (C) + R(C) + iK,.(b).
Define

T
L, := lp Tr K S

"7 0

We want to use the eigenspace corresponds to very small eigenvalues to approximate the kernel of this
operator. Let 3, be the subspace of X° spanned by

(5.11) {v; Lyv = Mo, |\ < 772},

Let Y% = YO(r) be the orthogonal complement of 3, in X°. Let 3 be the orthogonal projection of
H, to X%. Let Y9 (r) be the orthogonal projection of Y°(r) to X9.

Let Py = Py be the L?-othogonal projections X — HF and let Q1 = Q. = 1 — P} be the
L?-othogonal projections X% — 9%'

The idea is to decompose the equation F, (Q, b) = 0 to the equations

(5.12)

Denote P7 (Q) by QO and Q' (Q) by QL. Note that C = Qo C—BQl and by BK Remark 6.10

PrT,(C) = T(PrO) = T0(Cy), QU (C) = Q1) = Tu(C).

Hence (5.12) becomes

+(Co) + PLR(C, @QL) + PriK,(b) =0,
T(€) +Q RC®C) + Qrik.(b) = 0.

PrF,.(0)

5.13
o1 Q"F:(0)

J’_
+
First we try to solve the second equation. Define Y* = Yo n X*. Note that by elementary linear

algebra ‘j} sends H’fl to Yk (see Remark 6.10). Let S be the inverse of ‘j} : ljﬁﬂ — Yk Denote
—SQ_F,(0) by U*. Apply the operator S to the second equation of (5.13) then we get

C = U~ SQ_RE +Cy) + SQiK,(b).
To solve this equation, we define

¢ U —SQ_R(IC +Cy) + SQ_iK, (1)

and expect it to be a contraction map and therefore admits a unique fixed point.
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Lemma 5.4. Let Ny be the cylindrical manifold obtained from Xo. For any positive number €, define
O(e) to be a subset of the perturbation families, such that for each n € O(e),

(5.14) Im&, Donlliz x,) < €lme, Dol ez xo)

for any b € B and any solution ¢, for the perturbation n(b). Here Dyn is the differential of n that

projects to the fiber, which is a linear operator
Dyn: TyB — L;*(IA2T*Ny)
and T and Wé are the Li-orthogonal projections
1
me, : Ly (IALT*Ny) — H?(Fe)
me s LIS TNy — H?(Fg

)t = SWe, (Te, (051(C)/G0)),

1

where HQ(FCI)J- is the Li—orthogonal complement of Hz(Fél). Then any 1 € Zyeg found in Theorem
4.8 is in O(e) for some € > 0.

Proof. Choose an arbitrary element in O(e) and denote it by 1. By Theorem 4.8 and the analysis in
Subsection 5.1, for each 7(b)-monopole C; the projection of T,B to HQ(FCI) is an isomorphism, so

there is a positive number €(Cy) satisfying (5.15). By the compactness result the function € is defined
on a compact paramertrized moduli space and therefore there exsits a maximum. O

Lemma 5.5. Let N be the cylindrical manifold obtained from Xo. Fix any n € Zyeq. For any positive

number € < 1, there exists some large R such that for any r > R,
(5.15) |PT oW oms Dynlz(xqy) < €I1P7 oW ome DynllLa (x )
for any b€ B and any solution Cy for the perturbation n(b).

Proof. O

Lemma 5.6. Let N be the cylindrical manifold obtained from Xo. Fix any n € Zyeq. For any positive
number Cy < 1, any be B, t € Ty B, and any solution G for the perturbation n(b), for all sufficiently

large T,
|PZ oW, o Dyn(t)| 2 (x(r)) > Colme, Don(t)] 22 (x)-
Proof. By a result in the linear gluing theorem (conclued in Nic Page 305), the gluing map ¥, :
L}ﬁ(iAiT*]\Afl) — LY2(IALT*X (r)) deﬁn?s an asymptotic map ¥, : H?(Fg ) — 3. Note that
H? (F¢,) consists of two summands: H;,(N1) and the spinor part, which we denote by Ss. H2(Fél)
projects to them surjectively.
First notice that, for any n € LL2(1A2T*Ny),
Il sy — 12emlcexcon = Il oy — 9ol oy
< =9l gz x,)
=(1- ar)ﬁHLi(Nl)
< nllz2 (prr+1]xst x82)
= 5(7")H77HL3(N1)
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and since 7 decays exponentially, €(r) — 0 as r — o0. Therefore we have,

(5.16) | Don(t) ‘|Lﬁ(N1) = [ ¥ Dyn(t)] 22 (x ()
(5.17) |me, Don(t) HLﬁ(Nl) = [ ¥y me, Dun(t) 2z (x ()
(5.18) HWéDw(t) HLﬁ(Nl) - ||\I'r77é_1Db77(t)”Lﬁ(X(r))

for any t € TB. From (5.17), the norm of W, me Dyn(t) is controlled to a positive number, so by the
definition of asymptotic map, the distance from \IlﬂrélDbn(t) to J(,- approaches 0. Hence \Ifﬂré- Dyn(t)

1
almost connects ¥, Dyn(t) to H, . From (5.16), (5.17), and (5.18),

(5.19) 1% e, Don(t)| 22 (x ) + [¥rmz, Don()] ez (x (ryy = |9 Don(t) ] 22 (x (r))-

Hence the triangle they form is almost a right triangle. Note that |Q” W, Dyn(t)] £z (x(r)) is the distance
from U,.Dyn(t) to H;-

o

which by definition, is less than the length of any other vector that connects
U, Dyn(t) to H,-. Combine all these observations, for any C; < 1, there exists a number R(Cy), such
that for r > R(C),

(5.20) C1]Q" o W, 0 Dyn(t)] 2 (x(ry) < 1¥rmz, Don(t)| L2 (x (r))-
Therefore

| PZ oWy o Dyn(t) |z (x(ry) = [¥r © Den(t)|r2 (x(r)) — [QF © ¥y o Dyn(t) |2 (x (1)

by (5.20) 1 1
120 Din(®)lles cxrn — g 19rme, Don(®) g xern

by (5.19) 1 1
(1- a)I\WT o Dyn(t) |2 (x(ry) + a(l = ¥, 7e, Don(t)] 2 (x ()

by (5.17) 1 1 )
(5.21) > (1= a)(l = Do) L2 () + a(l = )" lme, Don(®)]l 22 ()

for any € € (0,1) and any r > R(e). The second term of (5.21) is what we desired, so we consider the

first term now. By Lemma 5.4, there exists some fixed positive constant C'(n), such that
(L+ Cm)lme, Donllrz xo) > lme, Donllrz (xo) + HWéDbUHLﬁ(Xo)
= [Den(t)] 2 (x(r))-

Note that C; < 1 and therefore (1 — c%) < 0. Hence

(1= )= DOl g5, > (L= 5L = L+ CO)lme, Dol
Finally, choose

e (01— (FE)h
and

Cre (ﬁ, 1),

2(1+C(n))
then for r satisfying (5.20) and inequality (5.21),
|1PZ oW, 0 Dyn(t)|r2 (x(r)) > Collme, Don(t)| L2 (xo)

for any t € TB. O

From Lemma 5.6 and Condition (IIc) we have
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Corollary 5.7. P” o WU, o Dyn is an isomorphism.

Remark 5.8. Lemma 5.6 and Corollary 5.7 recover (and stronger than) Lemma 7.16 and Lemma 7.15

of [BK20], but the proof is different since the conditions are released.
From lemma 5.6, use the same strategy in [BK20] Lemma 7.17, we deduce that

. A Al
Corollary 5.9. Let Bo(r—*) < 3" and B, (r=*) = Y be two balls of radius r=*. If C, + C,®C s
. Al
a K,.(b)-monopole, and Cy € By(r~=*), C" € B (r=*) for all sufficiently large r, then

4
22 b| < —r7 5,
(5.22) ] 50"

where § is the one in Condition II.

Recall that

Fil U —8Q R(C + &) + SQ ik (1)
Lemma 5.10. For sufficiently large v, F' sends the ball By (r=*) to itself and is a contraction.
Proof. From [Nic00] (4.5.8) the operator
F:C > U —SQ RE +¢,)

is a contraction, which is only different from F by a constant term. Hence F is a contraction. It
remains to show that F' sends the ball B (r~*) to itself.

From the norm estimate of the operator R ( see [Nic00] Lemma 4.5.6) and the norm estimate of the
operator S (see [Nic00] (4.4.5)) we deduce (see also [BK20] Remark 6.13) for QL e Bi(r %),

IFE)] < Crtes +17130),
Hence
S

[E(C)] < C@Pe +r712) + | SQ_iK,(t)].
From the norm estimate of the operator S (see [Nic00] (4.4.5)) we have
(5.23) [SQ-iK, ()] < Crr?|Q-iK(1)]
Recall that by definition K,.(b) = ¥,. o n(b). Hence we have

QK (b)] = |Q-¥rn(b)|

< [Q-¥,me, n(d)| + Q- 7z (D)

by (5.18) n
(5.24) < Q-Wrme n(d)| + |lmg n(b)]
< [|Q-W,me n(b)] + [n(b)]
by IIb
(5.25) < |Q-Wrme, n(d)] + 6[b].

Recall that the gluing map ¥, : L};Q(iAiT*Nl) — LY2(iA2T*X(r)) defines an_ asymptotic map
U, : H*(F¢) — 3. Recall also that ¢ is the projection from L}*(iA3T*Ni) to H?(F, ), and
|Q" | is the projection from LY2(iA2T*X (r)) to (H; ). Hence as r — 0

|QC oW, =0
60



Ly (iA3T*Ny) LL2(A2T*N,)

im @Cl 40(b) H? (Fél) im @61 An(b)
L . 7 /

Wé] (’](b) s (Tl(b) ’

rescale
—

1,2 — 1,2 —
L;,L ( 0’) L;,L ( 5')

FIGURE 12. When the norm on L}?( A;

LLQ(S(;) would increase to make HZ(FCI) orthogonal to im ﬁfél.

) increases, the angle between H?2 (Fe,) and

and therefore

(5.26) QW me, n(b)| < e(r)|me, n(d),

where ¢(r) — 0 as r — 0.
Combine (5.23), (5.25), and (5.26) we deduce

(5.27) [SQ-iK, (t)| < Crr®(e(r)lme, n(b)] + 8]b])
< Crr? (e(n)[n(®)] + o[1B])
by II

b
< Cur®(e(r)s|o] + d]b]).

We hope to apply Corollary 5.9 to control these terms. The issue is that, the second term cannot
be controlled, since ¢ here cancels with the one in (5.22) when we combine them. Hence we have to
reconsider how to control the second term ’/Té‘l’ﬂ(b) of (5.24).

The main idea is to scale the spinor part to narrow down the angle between the direction of the
perturbation and the image of Seiberg-Witten map. Recall that the target of the linearization @ ¢
is

Yy = L2(S; @iA2T*Ny),
in which the orthogonal complement of @61 (Te, (05" (C0)/G)) is H? (F,)- n(b) lives in L (1AZT*N).
me, and wé‘l project n(b) to H? (Fe,) and @Cl (T¢, (agol(cw)/éﬂ)). Rescaling the norm on the spinor
part of Y » would change H 2 (Fél)7 and therefore changes the norm of these projections (see Figure 12).

Assume that the original norm on the space of spinor is | - s, and the norm on the space of self
dual 2 forms is || - |+. Let k be a positive number, then k| - |5 is equivalent to | - ||s. We show that as
k — o0, Wé‘l (n(b)) — 0, as follows.

Let

Hi(Fe,)
be the orthogonal complement of @61(Tél(a;1(c@)/§#)) under the norm (k|| - ||s, | - [+). Let S} be
the unit sphere of H{(Fg ), where n = dim H{(Fg ) is a finite number that doesn’t depend on k. Let

(5.28) e:s—i-neS?ch(Fél)
where s is the spinor part of e and n € A?FT*]\AG. Assume that ¢(k) is a positive number such that

e(k) := e(k)s + e(k)k*n e S}.
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To check that e(k) € H(Fg, ), pick any ' + 1/ € SW¢ (Tz. (95" (Co0)/S,)), then
k2 (e(k)s, s") + (e(k)k*n,n') = k2e(k)((s, 8y + (n,n))
P EH e (k) - 0.
From the assumption that the norm of e(k) is 1, we deduce that
(Kle(k)s]s)* + le(k)k*nZ =1
Ze(k)*(s, s) + e(k)*k*(n,m) = 1
e(k ) /(/f2<8 sy + k*(n,m))
(5.28
(k= k)l + k)
When k < 1, there is a unique positive solution for ¢(k). Define
fk : S? i SZ,
e e(k) = e(k)s + e(k)k*n.

By finding its inverse, we can easily show that fj is actually a diffeomorphism. When k& — o0,

1
= \/<k4 e

Hence the angle between H*(F ) and H L2( 1) approaches 0. From the condition (ITa) we have

l7z, (@) — |70 ()] < eln(®)]

as k — co.
We pick (5.24) up and deduce that

1Q-K(b)| = [|Q-¥rn(b)]
< |Q-Wyme, n(d)| + Q- P mz n(b)]

by (5.18)
< Q-Wme n(®)] + |7z, n ()|

by Ila

< Q-Wrme n(d)] + 6[n(b)]

by IIb 2
(5.29) < |Q-Wrme n(b)] + 67b].

Then as what we have already seen in (5.27),
|SQ-iK,(t)] < Cur®(e(r)|me, n(b)| + 6°[b])
< Cur?(e(r) In(b) ] + 6% [bl])

by IIb

< Cur®(e(r)d]b] + 6% |b]))

< ( Crr2(e(r) + 5)ir76
Co
_ 4 4

Therefore, for sufficiently large r and small ¢,

1SQ_iF, ()] <
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which means that F sends the ball B (r—*) to itself.

We have two contraction maps:
Lemma 5.11 ([BK20] Lemma 7.18). For fized Cy and t € U;, the map
(5.30) F: Y2 Y2
(5.31) FE) = Ut = SQ-R(C + Cy) + SQ_iK,(b)
is a contraction for sufficiently large r.

Let
‘I)(gm b)
be the fixed point of F. ® is a smooth function with respect to io and b. Any tuple

(Corb, & = B(Cy, b))

is a solution of the second equation of (5.13). Next we consider the first equation of (5.13):

(5.32) P, (C,b) = PrF, (Cy+C1) + Prike, (b) = PTF,(0)+T,(Cy) + PTR(Cy+C )+ PLik, (b) = 0.

Recall that the isomorphism (5.10) is given by P"iK,. Hence it admits an inverse operator J,.. [BK20]
uses the same strategy by applying J,. to this equation and then try to solve:

TP F(Co+ C) 1 b=0.
They prove
Lemma 5.12 ([BK20] Lemma 7.22).
G(b) == — I PLF,(Co + 2(Cp, b)),
is a contraction on {t | [t| < r=5} for sufficiently large r.

Might be deleted: In [BK20], they consider O-dimensional case, so they don’t need to prove that cy
depends diffentiably on Cy and t. But in our case, the tensor product is 1-dimensional, so we have to
prove this fact:

Theorem 5.13. Cy depends diffentiably on Co and t.

Proof of Theorem 5.2. Let

V(Co)

be the unique fixed point of G. Then for any Qo € Bo(r=*) < K, there exist a unique tuple
- Al
(Q[ﬁ b7 Q )

that can solve (5.13), where b = ¥(C,) and QL = &(C,, b).
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Next for a specified b € B in Proposition 5.1 we identify the finite dimensional space 3" by the
diagram (T).

(T) 0 0 0
. S, $
0 —— ker A9 Hé1®H612 Lf+Lf ——=0
+ 5 T T T
0 H kerg, ‘.TC1 @ ker,, ‘.'J’C2 —— L7 +L; ——0
5,
s ¢
0 — ker AY . croe; ¢F+¢f ——0
0 0 0

We always glue an irreducible to a reducible. Hence ker A% is always trivial. By (5.8), dim ¥} =
dimker A§ is always dim H} +dim H} —1. Hence for N1 = Xo and Ny = S' x D3 or Dy xS2, dim ;-
is the dimension of the fiber product of the moduli spaces on N; and Ny. By (L1), dim H 5121 =1 and
recall that for a specified b € B in Proposition 5.1, the 7(b)-monopole C, satisfies dim Hé2 = 1 for
Ny =St x D3 and dim Hé2 = 0 for NQ = Dy x S? by Corollary 3.6. Hence dim 3" would be either 1
or 0, respectively.

Then repeat the story in section 3.4 we prove that H;} approaches the tangent bundle of the fiber
product of the moduli spaces on N; and ]\72, and therefore, the genuine moduli space of X (r) is isotopic
to the fiber product in its configuration space. O

5.3. Local gluing theory for case 0. Now we try to recover Theorem 5.2 with the surgery on a
homologically trivial loop. In this case, by the analysis in the previous section, the solution on Xg-side
we glue is of type 0. Hence the fiber product in the configuration space of X (r) is also of type 0. All
computation carries on until (5.9). Now we cannot find an inverse of P” K, since we do not have the

isomorphism (5.10). Instead we have the isomorphism (5.7) and it is given by a restriction of P7iK,:
P K gy < don(V) 5 36
Hence we are only able to find an inverse operator of P” K.|g,,v):
erb : g'fr_ — Ty B.

To find a contraction map as in the previous subsection, we want to control the norm of J; .
The first step is to estimate the norm of P” K,. Lemma 5.6 does not hold for this case, but the
statement is still true if we restrict the domain of P" K, to V:

Lemma 5.14. Let N be the cylindrical manifold obtained from Xo. Fiz anyn € Zyeq. For any positive
number Co < 1, any b € B, t € V < Ty,B, and any solution Cy for the perturbation n(b), for all
sufficiently large r,

|PZ 0¥, 0 Dyn(t)| 2 (x(r)) > Collme, Dyn(t)]l 12 (xo)-

Now we can control the location of the genuine solutions on V':
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Lemma 5.15. If for sufficiently large r, C, € Bo(r=*), QL eB (r™1),teV and
t= TP (Cy+ C),
thente {t||t|<r 5} nV.
Proof. By Lemma 5.14,
IPLE ()22 (x(ry) = IPL © w0 Dyt 22 (x )
> Collme, Dyn(t) | r2 (x,)-
By the assumption Ilc on the family of perturbations, we have

. )
IPLE (1) 22 (xry) > Cog It

Hence the operator norm |P" K, |op > Co3. Therefore [Jy4]lop < CLOJ. We have

~ Al
GO < Trplop PZFr(Co + €

Aoa ~ ALl
< [ Trpllop (IPZFr(0)] + [ T0(Co) | + [ PZR(Co + C)I)

As a projection, the operator norm of P” can not be larger than 1. Recall that the configuration from

gluing is an approximation of the genuine solution, so we have the estimate (see Nico00, Lemma 4.5.5)

|PTF,(0)] < |F.(0)] < Crer

and (see Nico00, Lemma 4.5.6)
|R(C) |12 < Cor®?|C[7 2.
From the definition (5.11) that &, is the subspace of X° spanned by

{v; Lyv = M, |A| < 7723,

we deduce that H} < f{g is the span of the eigenspaces of ‘j'f‘j} with the eigenvalues in the range

[0,7~%) (which is a basic observation of linear algebra, see BK Remark 6.10). Because QO e HF we

have

1T1(Co)lI” = (T (Co), To(Co))
= <§0a ‘j‘;k‘j'r (§0)>
< 7"_4H§0H2-
Combine these estimates, we deduce

1G] < 1 Tebllop (1P T2 ()| + [T(Co)] + [PZR(Cy + €]

Aoa ~ Al
< [ Trplop (1PZF(O)] + [T(Co) | + [ PZR(Co) | + [ PER(C)])

S

Cod

When QO € Bo(?“_4) and QJ_ € BJ.(T_4)7

2
1G] < 0706(0167*”“ + 170 4 20,07 13/2),

2 - . AL
< == (Cre " 4+ 172Gy | + Cor®?(Co T2 + Cor®?|C[F2.2).

Recall that in Proposition 5.3 we can choose d to be any large positive number, and in Lemma 5.14

we can choose Cj to be closed to 1. Hence when r is large enough, we have |G(t)| < 6.
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Now we recover Lemma 5.10. Let

Ftiél

S UL~ SQ_R(E + &) + SQUiK,(1).

Lemma 5.16. For all sufficiently large r, for any t € V, F, sends the ball By (r=*) to itself and is a
contraction.

Proof. The proof is almost the same as Lemma 5.10. The only change is to replace (5.22) by Lemma
5.15 in the last part. O

Let
(G, t)
be the fixed point of F).
Lemma 5.17. When C, € By(r—*),
G(t) i= =, PLF,(Co + ®(Cy, 1))
is a contraction on {t | [t| < r=8} AV for all sufficiently large 7.

Proof. The proof is exactly the same as the proof of Lemma 5.12. O

Let
u(Cy)

be the unique fixed point of G. Then for any QO € Bo(r=*) < K, there exist a unique tuple
. AL
(G, 1, C)

that can solve (5.13), where t = ¥(C,) € V and QL = ®(Cy,t) e Yo.
Next we identify the finite dimensional space ;" by the diagram (T).

(T) 0 0 0
. S +
0 —— ker Ag Hél@Héz L +L; —=0
0 HF ker,,, ‘j'é @ kerey ‘j‘CQ — Li+Lj —0
%
5 ¢
0 — ker A9 - croe; ¢ +¢f ——0
0 0 0

By (LO0), dim Hél =0, s0 L{ =im (Hél) = 0. Recall that by Corollary 3.6, for a specified b € B
and Ny = S* x D3, the n(b)-monopole C, satisfies dim H} =1landdimL; =1. By (5.6), dim3( =
2
dimker A = dim Hél + dim HéQ — 1. Hence dim K, = 0.
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In this case, ;" is not longer the tangent bundle of the fiber product obtained by gluing, which has
formal dimension 1 from our dimension assumption. Instead, for each configuration Cl#réz, we can

assign a 1-dimensional space Rov (see Figure 10), which is orthogonal to V. Now
(T(0), 2(0, ¥(0))) e V@YY

is the unique genuine solution on V. Such V and the corresponding genuine solution form a normal
bundle and a section of this bundle. Hence the genuine moduli space of X (r) is isotopic to the fiber
product in its configuration space.

For Ny = S! x D3, the configuration obtained by gluing is of type 1 (see Figure 11), so the local

gluing theory is described in the previous section.
5.4. The proof of family surgery formulas.

Theorem 5.18. Let B be any compact manifold and X be a smooth 4-manifold with bt (X) > dim B+1
and HY(X) = Z. Let s be a sping,;, structure on X (defined in Subsection 4.1) such that
ci(s) — (2x(X) + 30(X))
4
Suppose that Ex is a bundle over B with fiber X and structure group G = Aut(X,s,0) (defined
in (4.2). Let o = (g,m) be a generic parameter family (defined in Theorem 4.5). Assume that © =

+dimB = 1.

PD([Ecp=]) € H (FB%) is a well defined cohomology class in the configuration space (see Subsection
4.2). Let FM(s,0) be the parameterized Seiberg-Witten moduli space defined in (4.7). Denote the
integral
(FM(Ex,s,0),0)
by FSW®(Ex,s) since it doesn’t depend on the choice of the parameter family.
Let 7 be a generator of HY(X). Suppose Egi is an S'-subbundle of Ex and T evaluates 1 at each
fiber of Esi. Assume that family 1-surgery for Ex at Eg is well defined (see Subsection 4.3). Denote

the resulting bundle by Ex: and the sping; structure by s’. Denote the number of signed points
#?W(EX/, 8/, U)
by FSW(Ex,s"). Then
FSWG(E)(, 8) = FSW(EX/, S/).

Proof. The parameterized configuration space FB% is a bundle over B with fiber B%.

We will apply the gluing results in the previous sections to
Xo Us1 x§2 Sl X D3
and
XO Uslt x§2 D2 X SQ.

First, we consider the gluing theory for Xy ugixg2 S' x D3. By Theorem 5.2, we have the isotopy
(through out the proof we will omit the input of the sping; structure and the perturbation family, for
example FM(Xo) := FM(Fx,, S|x,,0lx,))

FIM(Xo Usixsz S' x D) = FM(Xo) X gon(st xs2) FM(S' x D?).

Recall that by the choice of the perturbation family, the Seiberg-Witten equations on S' x S? and
St x D? have 0 perturbation. So FIM(S! x S?) and FM(S! x D3) consist of flat connections, and both

of them is a circle bundle over B. The map between them is the identity.
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Denote by FB™?, FB* — FB the reducible configuration space, the irreducible configuration space,
and the configuration space. Denote by f : FB — FB™? the forgetting map that throws away the
spinor. Since the structure map of Ex preserves the homology orientation, FB7¢%(X) is homotopy

equivalent to the trivial bundle S* x B. Hence we have the following diagram:

FIX) --mwmmmmmmmmmmm e > FO(S! x DY)
Wusi(m de
TBX fFBSl % D3 /

f f
/
\Sle ——+ S'xB L//

FBx, 5 FBst w52 \
O
/ncl'usion inclum

FM(X) FM(S x S?)

where the largest square is a pullback square, and all triangles and squares commute. By the property
of the pullback diagram, FI(X) is isotopic to FM(Xy) as 1-dimensional manifolds in S* x B. Hence

(5.33) (FM(X), ©) = (IM(X,),6)
Second, we consider the gluing theory for X ugt xg2 D? x S2. By Theorem 5.2, we have the isotopy
FM(Xo Usixsz D? x §?) = FM(Xo) X gon(st xs2) FM(D? x §?).

The only difference is that, for each parameter, the configuration space B"*¢(D? x §?) is contractible
since H(D? x §?) is trivial. So FB"4(D? x S?) =~ B. But we cannot recover the previous commutative

diagram since the squre

FB p2 «s2
/
B
““Bl o
S'xB

T

?BS] XS2




is noncommutative. However, FIM(D? x S?) >~ B maps to the zero zection of FM(S! x §?) =~ S! x B

and thus the diagram
FMp2ys2

inchy

FBp2 52 /
% =

B

(5.34) {1}><Bl O

SW{\\

CTHBSI xS§2
inclum

FMs1 g2

still commutes. Therefore, we have the commutative diagram

(s o

SNBXD P) ?Bgl xS2
o0
/ncl'usion inclusik

FM(Xo) O FM(S! x §?)

Recall that by Propsition 5.1, FM(X,) consists of finite many circle, and they are contained in
finite many fibers of S' x B under the map f o inclusion. In addition, from the sequence (L1),
we deduce that the map from Hél (the tagent space of FM(Xy)) to Hl(BCI) (the tangent space of
FM(ST x S?)) is surjective, so FM(Xg) = 0 (FM(Xy)) intersects the zero section of FM(S! x §?) ~
S! x B transversally. We have:

e Their intersection is just FM(X'), a set of finite many points, by the property of the fiber
product.
e the number of their intersection is (FM(Xy), O), by the definition of ©.

Combine these with (5.33), the conclusion follows. O
Remark 5.19. It’s important to note that. Thanks to Propsition 5.1

In the previous theorem, the structure group of E'x is chosen to preserve the homology orientation. If

it is not the case, the space of reducible solutions might be nonorientable S'-bundle. For example, when
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B = S!' and Ex is the mapping torus of some reflection map that reverses the homology orientation,
the space of reducible solutions is a Klein bottle. In this case © = PD([Ecp=]) € HY(FB%,Zs). The
surgery formula still holds:
Theorem 5.20. Use the notation of Theorem 5.18. But assume the following instead:

o The structure group of Ex is G = Aut(X, s);

We can still define a Zo invariant

FSWO22(Ex,s) = (FM(Ex,s,0),0)
and a Zo invariant

FSW%(Ex:,s') := #FM(Ex, s, 0).
We still have

FSWO%(Ex,s) = FSW(Ex., ).

Proof. The proof is exactly the same as the previous one, with S! x B in those diagrams replaced by

some possible nonorientable S'-bundle. O

Now we consider the case where we do the surgery on a homologically trivial loop. We have the
following vanishing result:
Theorem 5.21. Use the notation of Theorem 5.18. But assume the following instead/additionally:

e dim B > 0;
e FEgi is an orientable S'-subbundle of Ex;
o HY(X) is trivial and each fiber of Es1 is homologically trivial in the fiber of Ex.

Then
FSVV(.EX/7 Sl) =0.

Proof. In this case, we are doing surgery on a homologically trivial loop of X. We will apply the gluing
results in Section 5.3 to

Xo Ugixsz St x D?
and
Xo Ugt g2 D? x S2.
First, we consider the gluing theory for Xo Ugi sz ST x D3. We still have
FM(Xo Usixsz S' x D?) = FM(Xo) X gam(st xs2) FM(S' x D?),
but now FM(Xy) =~ B and we don’t have the commutative diagram

B —— S'xB

e R

FBy, FBs1 g2

O
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Unlike (5.34), we don’t know the top arrow in the diagram

B ——5 S'xB

T PN

FBx, FBei g2
/ncl'usion inclum

ffi)ﬁ(Xo) 3"9}2(81 X 82)

neither, since FM(X() can be any 1-manifold.
The solution is to record more infomation then just the reducible solution. We want to remenber
the holonomy. Let hol : FBx, — R x B be the holonomy along the loop that we do the surgery. Then

the diagram
Rx B —— S'xB

FBx,

?‘Bgl xS§2
O
%usion inclu‘k

FM(Xo) FM(S! x S2)

commutes, where p is the covering map times the identity on B. Therefore, we have the commutative

diagram

FIMUX) > FM(S! x D?)
i wusion inch
i EFBX ?‘Bgl x D3
i hol / / =
RxB Lo §'xB |
| RxB —2 S'xB —
3 FBx, 5 FBgi 52 \
\L /ncl'usion inclm

FM(Xo) FM(S' x S?)

By the property of the pullback squre, we have
(5.35) FM(X) = FM(Xo)

in R x B.
Second, we consider the gluing theory for Xy ugt g2 D? x S?. We have the isotopy

(5.36) FM(Xo Usixsz D? x §%) = FM(Xo) X gam(st xs2) FM(D? x §2).
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and the commutative diagram

FOM(X') ~m o > FIM(D? x S?)
Wusion incllV
FBx: FBp2 xS2

3 l: J{{I}XB {1}xB
i RxB —2 S'xB
i Az ‘\(\_

FBy, — FBg1 g0 \
/ncl'usion inclusik
FM(Xo) FM(S! x S?)

We see that F9(Xy) is a loop in R x B under the map hol o inclusion, so is it in S! x B under the
map p o hol o inclusion. By the lifting property of the covering map we have a diagram

{0}xB

R x B B
i expXid (1}xB
RxB—2 S'xB

FM(Xo)

We see that the image of F9(X) and B in S' x B have algebraic intersection 0. We still need to show
that they intersect transversally.

We choose the perturbation family such that 1 € St is the point where the argument around (4.30)
applies. In this case, we have Figure 10, and it shows that the differential of the moduli space on X
to the moduli space of the boundary (which is reducible) is surjective. This exactly means that the
differential of FIM(Xy) to the S'-factor (connection part) in S' x B is surjective at 1 € S'. Hence the
image of FMM(Xy) and B intersect transversally.

Therefore, the fiber product has 0 signed points and by (5.36) we have

#S:mt(Xo Ust x§2 l)2 X 82) =0.
g

Theorem 5.22. Use the notation of Theorem 5.18. But assume the following instead/additionally:
e B is a circle;
o Eg is an S'-subbundle of Ex, and it is a Klein bottle;
e Each fiber of Esi is homologically trivial in the fiber of Ex.
Then
FSWZ2(Ex.,s') = SW(X,s) mod 2.

(Here the family invariant is defined by counting the points.)
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Proof. First consider the shape of the parameterized moduli space FIM(X). Since we have chosen a
regular parameter o = (g,n), on B minus any point, FN(X) is a cobordism. At each point b of B, the
parameter o (b) = (g(b),n(b)) is regular to define

M(X, g(b),n(b)).

Hence the projection FM(X) — B has degree #M(X). Here #M(X) doesn’t depend on the choice
of b, so we obmit the input.
Since Fg: is a nonorientable S'-subbundle, the holonomy around each fiber of Eg: would give the

map

FBx — RXB

where RX B is the nonorientable R bundle over B. As in the first part in the proof of Theorem 5.21,

we have the diagram

FOM(X) e s FM(S! x D)
X’ncﬁusion inch
FBx S'MBSl x D3

m

RXxB —25 S'XB

Fo

RxB —2 S'XB

|

I

|

|

|

|

|

|

I

|

|

|

I

|

|

|

I

|

|

|

I

|

|

|

i hol
|

1 FBx, FBs1 xs2
i 0w
|

|

‘L /ncl'usion inclusik

FM(Xo) FM(St x S?)

/N

from which we have

(5.37) FM(X) = FM(X,)

in RxB.
Now consider the gluing theory for Xo ugixs2z D? x S2. We have the isotopy

(5.38) FM(Xo Usixsz D? x S%) = FM(Xo) X gam(st xs2) FM(D? x S§?).
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Remember now B =~ S!. Let RX B be the Mobius band and S'X B be the Klein bottle. We have

FOM(X) e > FM(D? x S?)
ch/l‘usion inch
FBx FBp2 xS2

hol {//
RXB —% ., B
l: J{l}xB {1}xB

RXB —" S'%B
i FBx, o TBsinse
i /’ﬂc;usion inclusion\\

FM(Xo) FM(S! x S?)

To understand the intersection of F9M(Xy) and FM(D? x S?) in S' X B, we consider the universal cover
of the Klein bottle

expxerp:R xR — S'XB
and the universal cover of the Mdbius band
idxexp: R x R — RXB.

Consider the diagram

R x R ¢------toee- B = FM(D? x S?)
kd
7/
// ~
4 ~ X
/ idxexp crpxerp {1}xB
///
/
/
// ~ p ~
/ RxB S B
////
/
7/
/

where dashed lines indicate lifts of paths if we regard both B and FM(X) as a path. Cosider the lift of
FM(Xp) in R x R. Each component of the lift of FM (X)), that winds around B once, would intersect
Z x R at odd number of points (see Figure 13). Hence the algebraic intersection number between the
lift of FM(Xp) and Z x R is exactly the degree of the projection FIM(Xy) — B (mod 2).

Note that Z x R is the preimage of FM(D? x S?) = S' X B under the map expXexp. So the algebraic
intersection number between FM(X,) and FM(D? x S?) is exactly #9M(X) (mod 2). As in the proof

of Theorem 5.21 we can assume that they intersect transversally. Hence we have

HIM(Xo Ugt xg2 D? x S?) = #M(X).
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A

! FM(Xo) 1 » FM(D? x §?)
FIGURE 13

6. APPLICATIONS

6.1. Exotic diffeomorphisms on nonsimply connected manifolds. Many exotic diffeomorphisms
on symply connected 4-manifolds are detected by the family Seiberg-Witten invariant. These results

can be generalized to nonsymply connected manifolds by the surgery formula.

Theorem 6.1. Suppose X is a symply connected smooth oriented compact 4-manifold that admits
an oriantation-preserving diffeomorphism f. Let Ex be the mapping torus of f. Suppose the family
Seiberg- Witten moduli space associated to the sping;, strcture s on Ex is 0-dimensional, and

FSW(Ex,s) # 0.
Furthermore, assume that f admits an fized point. Then the diffeomorphism f#ids: «ss of X #S' x S3

s not smoothly isotopic to the identity.

Proof. Let Exyg1yss be the mapping torus of f#idg: wgs. Since H*(S' x §*) = 0, the sping;;, strcture
s on Ex can be extended to a sping; strcture s’ on Exugiygs by trivial extension. Choose the loop
St x {pt} in the S' x S? to be the surgery loop v. Then all assumptions in Theorem 5.18 are satisfied
and we have
FSWO(Exysixs3,5) = FSW(Ex,s) # 0.
If f is replaced by the identity on X, we will have the trivial product S! x (X#S! x S?) and S! x (X),
and accordingly

(6.1) FSWO(S! x (X#S! x §3),8') = FSW(S! x (X),s) =0

for any spin® strcture s on X (the last equality comes from that the formal dimension of the Seiberg-
Witten moduli space of X is —1).

Suppose that f#idsi xss is smoothly isotopic to the identity, then the isotopy H : (X#S! xS3) x I —
X#S! x S* gives a diffeomorphism F between Exygiyss and St x (X#S! x S?) that preserves the
fiber by

F:S' x (X#S! x §%) — Expugxss
(t,x) — H(x,t).

But by (6.1)
FSW®(Exysixss,s') # FSWO (St x (X#S' x §*), F*s')
which contradicts the hypothesis. O

Corollary 6.2. Let X be one of the following manifolds:
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. CPQ#(#sz)#E(n) forn = 2.

o #"(S? x S?)#(#"K3) forn = 2.

. #2"((31?’2#(#’"@2) forn =2 and m > 10n + 1.
Then X#S! x S? admits an exotic diffeomorphism.

=
=

Proof. By [Rub98] and [BK20], there exists a diffeomorphism f : X — X which is continuously isotopic
to the identity, but the family Seiberg-Witten invariant of it is nonzero. It’s possible to change f by a
smooth isotopy and get a diffeomorphism f’ that admits a fixed point.

Let H : X x I — X be a continuous isotopy from idx to f’. Denote the fixed point of f’ by z. Let

p:I—-X
t— H(z,t)
be the trajectory of x under the isotopy H. We want to squeeze this path to a point. By the property
of the smooth manifold, there is a smooth isotopy G : X x I — X starts from the identity, such that
G(p(t),t) = x. Denote the end of G by g. Then g still fixes . Let
H:XxI—->X

(x,t) — G(H(z,t),t).
Then H’ is a continuous isotopy starts from the identity, and preserves x. Denote the end of H' by
. f"is just go f', so f” is smoothly isotopic to f’. Form the connected sum X#S!' x S3 at z € X
and any point in S! x S3. Then H'#idg: «ss gives a continuous isotopy from idx s xss to f"#idsi xss.

1" is smoothly isotopic to f. So the family Seiberg-Witten invariant of f” is also nonzero. Therefore
f" satifies all assumptions in Theorem 6.1. So f”#idgi xs3 is not smoothly isotopic to the identity. [

6.2. Positive scalar curvature metrics on nonsimply connected 4-manifolds. Ruberman [Rub02]
gives examples of simply connected manifolds for which the space of positive scalar curvature (psc)
metrics is disconnected. This is demonstrated using family Seiberg-Witten invariant. We can generalize
these results by the surgery formula.

First recall some definitions in [Rub02]:

Definition 6.3. Let X be a symply-connected smooth oriented compact 4-manifold. For two generic
parameters hg and h; on X, and s a spin® structure such that the formal dimension of the Seiberg-

Witten moduli space of X is —1, define
I(X,s;hg, hy) := #IM(X x [0,1],s; {h+})
for any generic path {h;} connecting hy and h;.
Definition 6.4. For f a diffeomorphism of X and hg a parameter on X,
SW(f,s;ho) := I(X,5; ho, f*ho)
Let O(f,s) be the orbit of s by the action of the group {f) < Diff(X),

SWiot(f,s) := Z SW (f,s'; ho).
s'€O(f,s)

Also recall that
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e If f preserves the orientation of H? (X), then

SWtot(f75) = ZI(Xvﬁ;f:h()vf:-&-lhO)v

where f, is the n-fold composition of f. If f doesn’t preserve the orientation of Hf_ (X), then
above equation is true in Z/2.

o SWiot(f,s) is a finite sum since there are finite number of spin® structures on X for which the
parameterized moduli space is non-empty.

o SWiot(f,s) doesn’t depend on the choice of the ground parameter hy.

This invariant is used to show that the space of psc metrics has infinite many components for some
simply connected manifold, by showing that the total invariant is nonzero. We can generalize such
result to nonsimply connected manifold. First we convert the definition of Ruberman to the family
invariant setting in this paper. We can easily see the following facts from the definition of the family

invariant.

Proposition 6.5. Let hg be any generic parameter of X. Let Ex and the parameter family h be the
following:
o If|O(f,s)| = n is finite, let Ex be the mapping torus of f,, and h be any generic path connecting
ho, f*ho, -+, f¥ho (note that h is a parameter family on Ex since f, sends the start of h to
the end of h).
o If |O(f,5)| is infinite, let Ex be the the family of X indexed over R, and h be any infinite
generic path passing through - -- | f* ho, ho, f*ho,- - .
Then SWiot(f,5) = FSW(Ex,s,h).

For a nonsimply connected manifold X with H'(X;Z) = Z and a spin®-structure s such that the

formal dimension of the parameterized moduli space is dim FM(Ex,s) = 1, we can similarly define
(6.2) SWE,(f,s) := FSW®(Ex,s,h).

When |O(f,s)] is infinite, © is a noncompact element in the first cohomology group of the parameterized
configuration space CP® x S! xR. In this case FSW®(Ex, s, h) is still well defined because the param-
eterized moduli space is compact by an analogue of [Rub02] Proposition 2.4. Also, FSW®(Ex,s,h)
doesn’t depend on the choice of the ground parameter, so the definition (6.2) makes sense:

Theorem 6.6. Suppose that b*(X) > 2 and that f is a diffeomorphism preseving both the orientation
and the homology orientation. Let hg and kg be generic paramters and h,k be corresponding path.
Then FSW®(Ex,s,h) = FSW®(Ex,s, k).

Proof. Denote the path from ho to f*ho by Ko, and the path from ko to f*kg by K, ;. Since
bt (X) > 1, by Theorem 4.5, there exists a generic path Koy, from hg to ko, and a generic path K,
from f*hg to f*kg. Since b*(X) > 2, by Theorem 4.5 again, there exists a generic 2-parameter family
K+ bounded by K, o, K51, Ko+, and K; ;. Do this inductively we obtain a generic 2-parameter family
from h to k. Hence there exists a cobordism from FM(Ex, s, h) to FM(Ex,s, k). This cobordism is
a 2-dimensional manifold with 1-dimensional boundary, so after cutting it by the class ©, we obtain a
I-dimensional cobordism which gives FSW®(Ex,s,h) = FSW®(Ex,s, k) (see Figure 14 for infinite

|O(f,s)| case). O
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h W<EX757h)

FM(Ex, s, k)

FIGURE 14. The cobordism in CP® x S! x R x I

We can show that the cut-down total invariant SW2,(f,s) detects path components of the space of
all psc metrics PSC:

Theorem 6.7. Suppose b3 (X) > 2 and b'(X) = 1. If go is a psc metric onY such that hg = (go,0) is a
generic parameter, and there exists a path g; in PSC(X) connecting go with f*go, then SWE,(f,s) = 0.

Proof. In the case where we don’t perturb the self dual two form, we can perturb the metric instead.
The ordinary generic parameter argument (see Theorem 4.5) can be modified for a path of metrics,
such that the term FXQ plays the role as the perturbing 2-form in that theorem. Hence b (X) > 2
implies that the regular paths of metrics are generic. Being positive is an open condition, so PSC(X)
is open in the space of all metrics Met(X ). Therefore, there exists a regular path g; in a neighborhood
of g; with the same end points. Regularity means that FI(X x [0,1],s;{g;}) contains no reducible
solutions.

By the Weitzenbock formula, a non-negative scalar curvature on 3- or 4-manifolds leads solely to
reducible solutions of the Seiberg-Witten equations without the perturbing 2-forms (see [KMO07] (4.22)).
Hence F9M(X x [0,1],5;{g,}) contains no irreducible solutions. Therefore SW2,(f,s) is the integral
on an empty space. Thus SW,(f,s) = 0. O

On the other hand, the surgery formula we proved gives a relation between the total invariant and

the cut-down total invariant:

Theorem 6.8. Suppose X is a nonsimply connected manifold with HY(X;Z) = 7Z, a diffeomor-
phism f, and a spin®-structure s such that the formal dimension of the parameterized moduli space
is dim FM(M(f),s) = 1.

Let 7 be a generator of H(X;Z). Suppose 7 is a loop of X and T evaluates 1 at . Denote the
resulting manifold by X' and the spin® structure by s'. Let f' be a diffeomorphism of X' such that a
family surgery on (M(f),s) produces (M(f'),s’). Then
(6.3) SWo,(f.5) = SWiot(f,8).

Proof. By Theorem 5.18, we have
SWioi(f,s) = FSWO(M(f),s)
— FSWO(M(f)),5')
= SWtot(flvsl)‘
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Corollary 6.9. Let X = #QHCPQ#(#k@Q) for any n < 2 and k > 10n. Then the space of psc
metrics on
X#(S' x §?)

is nonempty and has infinitely many path components.

Proof. By [Rub02] Corollary 5.2, the space of psc metrics on X is nonempty and has infinitely many
path components. By the results on how a surgery preserves the psc metrics (see [SY79] and [GL80]),
the space of psc metrics on

X#(S' x §?)
is nonempty. By [Rub02] Theorem 4.1, X supports a diffeomorphism g such that SW;.:(g,5) # 0. By
a smooth isotopy of f, we can find a fixed point of f and do the connected sum over that point, and
get the diffeomorphism f := g#(idg1 xs3) on X#(S' x S3). Now we can apply Theorem 6.8 and get

SWE,(f,5#50) = SWiot(g,5) # 0,

where sg is the unique spin®-structure of S' x S3.

Now we claim that PSC(X#(S' x §)) has infinitely many path components. Indeed, if f;*go and
f¥go are in the same component of PSC(X#(S' x §*)) for different integer k and [, then there exists
a path g; in PSC(X#(S' x S*)) connecting f}*go and f*go, which indicates SWE,(fr_i,5#s0) = 0 by
Theorem 6.7. But this means that SW.2,(f, s#s0) = 0 by definition (see the proof of [Rub02] Theorem
3.4). O

6.3. Path components of Diff(X) for nonsimply connected manifold X. We can generalize

half-total invariant to nonsimply connected manifolds.

6.4. Family surgery on a homologically trivial but homotopically nontrivial loop. To con-
struct a nontrivial example, we use the construction of Gompf ([Gom95], see also [GS99] Theorem
10.2.10) that can construct a symplectic manifold with desired fundamental group.

Use the notations in [GS99] Theorem 10.2.10. Let F be a genus 2 surfaces with circles oy, as, 81, B2
that represent a basis of H!(F;Z) and oo = 0 = 3;3;, 2;3j = 8;;. Take a 2-torus T2 with generating
circles o, 3. In the product F x T2, take a collection of tori T; = 3; x a(i = 1,2) and Ty = {pt} x T>.
Purturb these tori and the product symplectic form w on F x T2 such that the resulting tori {T}}3 are
disjoint symplectic submanifolds in (F' x T2,w’). Let X to be the symplectic normal connected sum
of F' x T? and 3 copies of E(1) along each torus 7] = F' x T? and a genetic fiber in each copy of E(1).
Then X is symplectic 4-manifold with a symlectic form wx and 7 (X) = {aq, az).

Take a reflection r of F' that fixes 3; and reverse o;. This map can be extended to an involution of
X, and we still call it . The loop we choose to do the surgery is v = (aja0a; oy ) (ag tag tasay).

v is a commutator so it is trivial in the homology. As the involution r sends «; to «; 1 we see that
r(y) ="
From the construction of X, x(X) = o(X) = 0. So the formal dimension of the moduli space with

the class ¢1(X,wx) is 0. Moreover,
SW(X,c1(X,wx)) = +1.

Let Ex to be the mapping torus of r. Ex satisfies the condition of Theorem 5.22. Let X’ be the

surgery manifold of X along ~.
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Let E'x/ be the resulting mapping torus after the family surgery. Then

FSW(Ex:,s')=SW(X,c(X,wx)) = £1.

Therefore, there exists an exotic diffeomorphism of X".
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