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Since cosmic shear was first observed in 2000, it has become a key cosmological probe and
promises to deliver exquisite dark energy constraints. However, shear is inferred from coherent
distortions of galaxy shapes, and the relation between galaxy ellipticities and gravitational
shear is a serious potential source of bias. To address this, we are developing a shear estimation
method that makes no assumption on galaxy shapes, in order to avoid the shortcomings of a
simulation-based shear calibration. Our method relies on the estimation of second moments
on the image, and the evaluation of how second moments respond to a shear applied to the
coordinate system, without altering the image itself, at variance with the Metacalibration
method. We also evaluate analytically the noise bias due to the non-linearity of the estimator,
and confront it with the bias derived from noisy image simulations, which allows a fast and
precise noise bias correction.

1 Introduction

Data from future-generation surveys like Vera C. Rubin Observatory (LSST) will pave the
way for precision cosmology. With an image density of ~37 galaxies/arcmin®, and a total of
20 billion galaxies at the end of the full survey data releases, LSST is the first ground-based
telescope designed for weak lensing. Because of its sensitivity to both matter and expansion,
weak lensing (and more specifically cosmic shear) has become a powerful tool to understand
dark energy, being the most sensitive probe to constrain its equation of state parameters wg and
w, according to LSST’s year-10 forecast'. But despite the unprecedented image’s galaxy density
provided by this telescope, the shear measurement remains something complex and associated
with biases. These biases are usually parameterized as follows’ :

gobs — (1 + m)gtrue +e (1)

rue jts true shear, m the multiplicative bias and c the

with g°* the observed shear of a source, g
additive bias. There are many possible sources that can lead to a multiplicative bias, including
a poorly calibrated shape estimator or the noise present in the image. Because a bias on the
shear measurement introduces a bias on the cosmological parameters estimation, a limit to the
multiplicative factor value - compatible with the LSST statistic - must be set : according to
Cropper et al 2013, the limit we need to achieve on the bias is on the order of 1073. With this
in mind, we propose a new approach for shape measurement and calibration independent of the
galaxy profile described in section 2, and an analytical solution to the noise bias described in

section 4.

2 Shear estimation method and technical aspects

The first thing that we need in order to perform a shear estimation is to measure the shape of
the sources affected by cosmic shear, in our case galaxies. Whatever the estimator, the basic



principle relies on the fact that the second moments of a galaxy image are altered by shear. In
the continuous limit, the second moments are expressed as follows :

M = /(X — Xo)(X = X0)TW(X — Xo)I(X — Xo) d>X

(2)
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with X the image coordinates and X the object position, W the weight function (introduced
to optimize the signal-to-noise ratio) and I the image (resulting from the convolution between
the above atmosphere galaxy image [y and the Point Spread Function (PSF) ).

This formula gives a 2x2 matrix thanks to which we can define the ellipticity estimator e, that
describes the shape of the galaxy :
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Defining ¢_(X) = ¢(—X), equation 2 can be rewritten as follows (taking X as X — Xj) :
M = [(XXTW0) 8 9O X @

where we used Parseval’s identity and the convolution theorem. The challenge in designing
the estimator lies in measuring the shear on galaxies with unknown shapes, which can introduce
bias. Even assuming galaxies are randomly oriented, the ellipticity derived from second moments
isn’t enough due to the PSF contribution, requiring a calibration. Moreover, trying to accurately
simulate galaxy profiles is a really non-trivial exercise, but distorting images is more controlled.
The goal is to establish a shear-sensitive estimator reliant on minimal assumptions, particularly
about galaxy profiles.

The introduction of a shear will transform the image plane and coordinates (from X to SX
to first order) before the transformation by the PSF. Starting from this, we can introduce
an artificial shear to the original galaxy image Iy and then reconvolve the distorted galaxy
image with the PSF to recover the initial configuration. This is essentially what is done in
Metacalibration*. Another solution can be to use equation 4 to apply the shear not to I, but
to the other terms of the estimator (i.e. : F(X) = ([XXTW] ® ¢)(X)) :

M(S) = /F(S_lX)Io(X) ?X (5)

where S is the 2x2 shear matrix, with det(S) = 1. Then, we can recover the original image I(X)
by dividing F'(Sk) by 1 in Fourier space, which gives G(S, X) in real space :

M(S) = / G(S,X)I(X)d*X (6)

These distorted second moments will be used to define the derivatives. In practice, because we
chose to work with a sampled PSF, we need to calculate numerical derivatives : using the S
matrix, we define 4 shear variations (4€ on g; and same for go) that we apply to the coordinates
system to distort the pixel grid. We then interpolate the F' function on these new grids, which
leads to 4 new images, for which we calculate the respective distorted second moments (noted
M7, and My ). Because we are working on sampled images, the second moments we get from
the image are the sum of the continuous moments (equation 2) and a pizel second moments. As
we measure the M® matrices on a distorted grid, we should subtract a distorted pixel second
moments matrix to recover the real object one. We can rewrite a new formalism for M :

M(s,€) o v+ ae+ o'e* + Bs* + B's* + ds?e + §'s%e (7)



where s is the image’s pixel scale. The v + ae + o/€® term represents the continuous sheared
second moments, 3s2 + 3's* the sampling correction, and the term including ¢’ the cross-effect
between shear and sampling. Since the § and ' terms are only involved in the M, and M,,
components, they cancel each other out because of the subtractions in e and R. Thus, the only
term we need to put into the correction to perform a shear estimation is the last one, ¢’. Then,
after this correction applied to the distorted M*°, the derivatives are calculated as follows :

oM MP, — M{. oM M — My
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Thanks to these derivatives, we can define the self-calibration factor R :
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Given e and R, we can then define an estimator of the shear (g) :

(9) = (R)"H{e) (9)

The advantages of this methods are multiple : all the calculations are based on second moments,
rather than model fitting methods, so we don’t have to make any assumption about the galaxy
profile. Moreover, the F' function is more extensive than the “above atmosphere” image I, it
is therefore better to apply shear distortion on it, because distorting Iy introduces correlated
noise. It also allows to perform shear estimations on under-sampled galaxy images.

3 First results on noise-free simulations

In order to test the estimator performances, we set different galaxy simulations, starting from
elliptical Gaussians to more realistic profiles from the COSMOS catalog. We also tested for
different PSF profiles (Gaussians, Kolmogorov and Moffat), and we choose a Gaussian weight
function that is identical for all galaxies in the same size range, whose second moments are
equivalent to those of considered galaxy sample images. All the simulations were performed
thanks to the Galsin? package. Carried out over 40 random shear values and averaged over
20 pairs of random (and opposite) intrinsic ellipticities, these estimations show very satisfying
results, with a bias under our of 10~3 upper limit (see figure 1).
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Figure 1: Absolute (top) and relative (bottom) differences between input and output shear values (g1 blue and
g2 red). Estimation performed on elliptical galaxies (left) and COSMOS galaxy (right).



4 Noise bias analytical correction

As we measure the position of the galaxy directly on the received - and noisy - image, it creates
a bias in the second moments calculation. This position is indeed re-injected into the pixel
coordinates and the weight function W (see formula 2). The dominant term of the bias affecting
the second moments can be estimated by evaluating the second derivatives of the moment with
respect to the image, considering its dependency on the position xg :

0 0
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As we are taking the average on a set of realizations, and we assume the mean of the noise
to be zero, the linear terms disappear. It is only necessary to calculate the quadratic terms, in
other words 0%m;y/ 83:3 and 0%my/01,0x¢. This leads to several correction terms, depending on
the position variance and the size of the different components involved in M. This noise bias
correction applied to M gives successful results on the estimation of e, as shown on figure 2.
The same kind of noise bias analytical formulas needs to be calculated for the distorted M*, in
order to correct R, but this is still a work in progress.
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Figure 2: First (left) and second (right) parameters of ellipticity calculated from noisy second moments (blue)

and corrected seconds moments using the analytical noise bias prediction (red), as a function of oroesse-

5 Conclusion

To achieve precision cosmology analysis with cosmic shear thanks to future LSST data, we need
to limit the multiplicative bias on shear measurement to 1073, In this context, we developed
an unbiased self-calibrated shear estimator independent of the galaxy profile without applying
any distortion to the galaxy image, and giving satisfying results on basic tests. Furthermore,
we calculated analytical formulas to correct the noise bias affecting the estimator, with a good
correction on ellipticity and promising results on the calibration factor.
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