
D-Flow: Multi-modality Flow Matching for D-peptide Design

Fang Wu*

Stanford University
CA, USA

Tinson Xu*

The University of Chicago
IL, USA

Shuting Jin*

Wuhan University of Technology
Hubei, China

Xiangru Tang
Yale University

CT, USA

Zerui Xu
The University of Chicago

IL, USA

James Zou
Stanford University

CA, USA

Brian Hie†

Stanford University
CA, USA

Abstract

Proteins play crucial roles in biological processes, with
therapeutic peptides emerging as promising pharmaceuti-
cal agents. They allow new possibilities to leverage target
binding sites that were previously undruggable. While deep
learning (DL) has advanced peptide discovery, generating
D-proteins composed of D-amino acids remains challeng-
ing due to the scarcity of natural examples. This paper
proposes D-Flow, a full-atom flow-based framework for de
novo D-peptide design. D-Flow is conditioned on receptor
binding and utilizes a comprehensive representation of pep-
tide structure, incorporating backbone frames, side-chain
angles, and discrete amino acid types. A mirror-image
algorithm is implemented to address the lack of training
data for D-proteins, which converts L-receptors’ chirality.
Furthermore, we enhance D-Flow’s capacity by integrat-
ing large protein language models (PLMs) with structural
awareness through a lightweight structural adapter. A two-
stage training pipeline and a controlling toolkit also enable
D-Flow to transition from general protein design to targeted
binder design while preserving pretraining knowledge. Ex-
tensive experimental results on the PepMerge benchmark
demonstrate D-Flow’s effectiveness, particularly in devel-
oping peptides with entire D-residues. This approach
represents a significant advancement in computational D-
peptide design, offering unique opportunities for bioorthog-
onal and stable molecular tools and diagnostics. The code
is available in https://github.com/smiles724/
PeptideDesign

*Equal contributions.
†Corresponding author: brianhie@stanford.edu

1. Introduction
Proteins are the building blocks of life and make essential
contributions to nearly all fundamental biological processes
in the cell. They fold into specific 3D conformations to per-
form distinct functionalities [27, 37]. Remarkably, thera-
peutic peptides, compromising a limited number of well-
ordered residues, are single-chain proteins and an irregular
class of pharmaceutical agents [69]. Peptide drugs occupy a
unique chemical and pharmacological space between small
and large molecules [42]. Due to this specialty, increasing
efforts have adopted deep learning (DL) algorithms to fa-
cilitate their discovery [36, 41]. Notably, unbound peptide
chains typically have high free energy and entropy, result-
ing in unstable conformations. In contrast, they can elicit
pharmacological effects upon binding to specific receptors,
forming stable complexes where both the receptor and lig-
and adopt equilibrium structures [31].

Diffusion or flow models [30, 44, 60], a recent gener-
ative family, are revolutionizing the field of image gener-
ation [17], text-to-image generation [50], image segmenta-
tion [7], and also finding rapid applications in other domains
such as video generation [29], and 3D generation [59]. No-
table initiatives [71, 75] have explored the potential of dif-
fusion or flow models in the context of drug discovery.
These models have been applied to various protein repre-
sentations, including carbon-alpha only structures [67], tor-
sion angles [78], and the SE(3) backbone frame representa-
tion [80], and diverse scenes such as molecular design [28],
antibody engineering [46, 48], de novo protein design [79],
and peptide discovery [55] as well.

Despite emerging interest in developing 3D diffusion
or flow to peptides, little attention has been paid to D-
protein generation. It is worth mentioning that though ev-
ery cell in the human body contains proteins, their cor-
nerstone, 20 categories of amino acids, can exist in two
stereoisomers: L (levo) and D (dextro), which are non-
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superimposable mirror images of each other [38], and this
chirality characteristic is determined by the orientation of
the functional groups around the alpha carbon [24]. D-
proteins are protein molecules whose polypeptide chains
consist of D-amino acids and the achiral amino acid glycine.
They can form specific heterochiral protein-protein interac-
tions (PPIs) with natural L-protein targets and possess re-
markable potential as therapeutics, and diagnostics because
of their high bioorthogonality and stability [63]. However,
in nature, the vast majority of peptides and proteins are
made from L-amino acids, which poses a great challenge
for DL mechanisms, as no training data is accessible.

To overcome this obstacle, we introduce a mirror-imaged
multi-modality model, named D-Flow (see Fig. 1), to pro-
duce D-peptides. D-Flow characterizes the peptide se-
quence and structure using rigid backbone frames within
the SE(3) manifold, the side-chain angles on the high-
dimensional torus, and the discrete amino acid types on
the categorical space [10]. Each modality has an analyt-
ical flow, and they jointly capture the distribution of full-
atom peptide structure conditioned on the receptor. Dur-
ing the inference phase, a novel mirror-image algorithm is
adopted to transform the L-receptor and convert its natu-
ral chirality. Moreover, as datasets containing complete
3D structures of peptide complexes are orders of magni-
tude smaller than sequence-only databases [77], the scarcity
of high-quality peptide-receptor pairs inevitably constrains
the performance of DL approaches. As a resolution, we pro-
pose to empower the flow model with large protein language
models (PLMs) and a two-stage training pipeline. Specif-
ically, a structural surgery is implemented on PLMs using
a lightweight structural adapter [84]. Consequently, PLMs
are endowed with structural awareness and can facilitate
the regression of residue categories given intermediate-state
conformation information. Secondly, D-Flow embraces a
controlling toolkit [82] to achieve awareness of target pro-
teins and transfer from the general protein design task to the
binder design task with the minimum loss of the pretraining
knowledge. Comprehensive experiments on the PepMerge
benchmark [41] verify the effectiveness of D-Flow, partic-
ularly, for its breakthrough in generating pure D-peptides.
Besides, it also outpasses existing DL baselines in gener-
ating L-peptides by a large margin. Our study opens up
avenues for systematically exploring the DL-based mirror-
image protein universe, paving the way for a wide range of
design applications targeting L-proteins.

2. Related Works

2.1. Diffusion and Flow for Protein Design

Generative models have displayed incredible promise in de-
signing novel protein structures for custom functions, with
much of this progress driven by advancements in diffusion

models [17, 30, 60]. Among distinct protein representa-
tions, the frame representation has achieved state-of-the-art
performance in tasks like de novo backbone design and mo-
tif scaffolds [67], as exemplified by RFdiffusion [71]. Re-
cently, flow methods [44, 64] appear as an alternative to dif-
fusion models, offering a deterministic approach by elimi-
nating stochasticity from the sampling process. They have
been extended to Riemannian manifolds [12, 44] and pos-
sess an attractive connection to optimal transport (OT). The
linear interpolation schedule of flow results in more direct
sampling trajectories, reducing the number of integration
steps needed [44]. In the computer vision field, flow match-
ing (FM) has already demonstrated comparable results to
diffusion models with more computational efficiency [53].

The past few years have witnessed a growth in applying
diffusion and flow models [35, 46, 48, 76] for antibody de-
sign, a special protein family in the immune system to resist
antigens, mainly focusing on inpainting complementarity-
determining regions (CDRs) at the interface between the
antigen and the framework. Lately, non-trivial efforts have
been put into developing DL algorithms for peptides. Li
et al. [41] encompasses the dynamics of side-chain an-
gles. Contrarily, Lin et al. [42] relies on RDE [47] to
complete the solution to full-atom design. Kong et al. [36]
presents a full-atom diffusion on the latent geometric space
learned by VAE. Nevertheless, none considers the exten-
sion of sequence models (e.g., PLMs) and multi-stage train-
ing paradigms to alleviate the shortage of available binding
structures.

2.2. D-peptide Technology

Proteins are built from chiral molecules, specifically amino
acids that exist in two mirror-image forms: L (Levorota-
tory) and D (Dextrorotatory) [16]. Natural ribosomes ex-
clusively use L-amino acids to synthesize proteins, result-
ing in L-framework proteins throughout nature. While engi-
neered ribosomes [26], post-translational modification sys-
tems [34], and non-ribosomal peptide synthetases [51] can
incorporate some D-amino acids into L-protein chains, pro-
teins made entirely of D-amino acids have never been found
in nature [38] and must be chemically synthesized in the
laboratory. Despite the synthetic challenges, D-proteins
are valuable research tools. They fold into mirror images
of their L-counterparts and offer unique opportunities for
studying fundamental protein mechanisms, developing sta-
ble molecular binding agents, and even exploring the pos-
sibility of mirror-image biological systems [19, 49]. To
identify D-proteins capable of binding to a target L-protein,
mirror-image peptide phage display methods have been de-
veloped [9, 11, 54, 58, 85], which involves screening a
phage library of L-peptides with a target D-protein. How-
ever, it remains challenging to precisely target a specific sur-
face region of the target protein and confirm the presence of



Figure 1. Illustration of D-Flow.

valid binders within the initial random library [63]. More
importantly, no preceding works have explored the possi-
bility of DL co-design methods [46, 80] for D-protein gen-
eration, not to mention the incorporation and verification of
this mirror-image technique.

3. Preliminary and Background

Proteins. A protein is a biomolecule consisting of n
amino acid residues, each defined by its type, backbone
frame, and side-chain torsion angles [22]. The type of the
i-th residue, denoted by ai ∈ A, is determined by its side-
chain R group, where A = {1 . . . 20}. The rigid frame
of each residue is constructed from the coordinates of four
backbone heavy atoms N, Cα, C, and O, with Cα posi-
tioned at the origin. This frame is represented by a position
vector xi ∈ R3 and a rotation matrix Oi ∈ SO(3) [32].
Additionally, seven torsion angles χi ∈ [0, 2π)7 are consid-
ered and three of them belong to the backbone, where χi[0]
is the angle around C − N bond, χi[1] is the angle around
N − Cα bond, and χi[2] affects the position of the oxygen
atom. Unlike the backbone, the side-chain conformation is
more flexible, involving up to four rotatable torsion angles
between side-chain atoms, denoted by χi[3 :] ∈ [0, 2π)4.

Flow on Riemannian Manifolds. Flow matching
(FM) [1, 2, 44, 64] is a simulation-free method for learning
a continuous normalizing flow (CNF). On a manifold M
with a Riemannian metric g, the CNF Φ : M → M
is defined by a one-parameter diffeomorphism that inte-
grates along a time-dependent vector field ut ∈ U , where
ut(x) ∈ TxM falls at the tangent space of the manifold at
x ∈ M.

With an initial condition of ϕ0(x) = x, the time-
dependent flow ϕt : M → M and the final diffeomorphis-
mis are attained by setting Φ(x) = ϕ1(x) and solving the
ordinary differential equation (ODE) dϕt

dt (x) = ut(ϕt(x))
on M over t ∈ [0, 1]. Remarkably, ϕt(x) transports the
point x along the vector field ut(x) from time 0 up to time
t, satisyfing another ODE: dx = ut(x)dt.

Denote P(M) as the space of probability distributions
on M. Then the flow can transform a simple prior density
p0 ∈ P(M) towards the data distribution p1 ∈ P(M) via
the push-forward equation pt = [ϕt]#p0, and its density is

pt(x) = [ϕt]#p0(x) = p0
(
ϕ−1
t (x)

)
det

[
∂ϕ−1

t

∂x (x)
]
. This

sequence of probability distributions {pt : t ∈ [0, 1]} is
referred to the probability path, which interpolates P(M)
between p0 and p1.

The density pt is characterized by the Fokker-Planck
equation: dpt

dt = −div(utpt), also known as the con-
tinuity equation. Under these conditions, ut is said to
be the probability flow for pt, and pt is said to be the
marginal probability path generated by ut. Although ut is
intractable in general, it can be learned efficiently by de-
composing the target probability path pt as a mixture of
tractable conditional probability paths pt(x|x1), which sat-
isfy p0(x|x1) = p0(x) and p1(x|x1) = δx1

(·). Conse-
quently, the desired unconditional pt is an average of the
conditional probability paths with respect to the data distri-
bution: p(x) =

∫
pt(x|x1)p(x1)dx1

The key insight of conditional Riemannian flow match-
ing (CRFM) is to fit a vector field vθ ∈ U with parameters
θ to the conditional vector field ut(x|x1), which produces
pt(x|x1). Its objective falls at the tangent space TxM as:

LCRFM(θ) = Et∼U[0,1],p1(x1),pt(x|x1)∥vθ(x, t)− ut(x|x1)∥2g,
(1)



This loss can be parameterized by defining the condi-
tional flow xt = ϕt(x0|x1), where ϕt is the solution to
dϕt

dt (x) = ut(ϕt(x0|x1)|x1) with an initial condition of
ϕ0(x0|x1) = x0. Finally, the loss can be written as
LCRFM(θ) = Et∼U [0,1],x1∼p1(x1),x0∼p0(x0)∥vθ(x, t)− ẋt∥2g .
During the inference period, samples can be generated by
solving the ODE related to the neural vector field vθ to push
x0 ∈ M from the source density p0 to the data distribution
p1 in time efficiently.

4. Methods
4.1. Flow for Full-atom Protein Generation

Discrete Flow for 1D Amino Acid Sequence. Though
flow models succeeds in continuous spatial signals like im-
ages [30, 57], they falter when applied to discrete sequential
data. Two recent lines adapt diffusion or flow to the discrete
setting: one embeds the discrete data in continuous space
and adopts the continuous diffusion or flow [18, 41, 70],
and the other designs the transformation process immedi-
ately over categorical state spaces [6, 10, 25]. In this work,
we investigate both approaches and observe a significant ad-
vantage of discrete flow over the continuous version.

Following Campbell et al. [10] and Gat et al. [25], we
define FM in a discrete setting and consider a Continuous-
Time discrete Markov Chain (CTMC) paradigm. The cate-
gorical variable ait jumps between states in the amino acid
type space A depending on a continuous time t ∈ [0, 1]. ut,
called the probability velocity as reminiscent of the velocity
field in CNF, is defined as the rate of probability change
of the current sample ait in each of its ∥A∥ = 20 cate-
gories. Thus, each category of the residue type ait ∼ pt
is updated independently with the Euler step as ai

t+ 1
N

∼
δait(·) +

1
N ut

(
ai, ·

)
. For a sufficiently large number of

timesteps N → ∞ and any potential state z ∈ A, the prob-
ability velocity ut is required to satisfy∑

ai∈A

ut

(
ai, z

)
= 0 and ut

(
ai, z

)
≥ 0, (2)

for ∀i ∈ [n] and ai ̸= z. Then the unconditional proba-
bility velocity ut can be constructed as the marginalization
of conditional one ut

(
ai, z | ai0, ai1

)
. As a consequence,

we attain the marginal velocity written as ut
(
ai, z

)
=∑

ai0,a
i
1∈A ut

(
ai, z | ai0, ai1

)
pt

(
ai0, a

i
1 | z

)
, which gener-

ates the probability path pt
(
ai
)
. Generally, the condi-

tional probability paths can be represented as a convex sum
of m conditional probabilities, namely, pt

(
ai | ai0, ai1

)
=∑k

j=1 κ
j
tp
j(ai | ai0, ai1), where the schedulers κjt are col-

lectively non-negative and satisfy
∑
j κ

j
t = 1. A sim-

ple yet useful instance of conditional probability paths is
pt

(
ai | ai0, ai1

)
= κtδai1

(
ai
)
+ (1 − κt)δai0

(
ai
)
, where

the scheduler κt satisfies κ0 = 0, κ1 = 1 and mono-
tonically increases in t (i.e., κ̇t ≥ 0). This results in

p0(a
i|ai0, ai1) = δai0(a

i) and p1(a
i|ai0, ai1) = δai1(a

i). Sub-
sequently, we get the marginal probability velocity:

ut

(
ai, z

)
=

κ̇t

1− κt

[
p1|t

(
ai | z

)
− δz

(
ai
)]

, (3)

where p1|t
(
ai | z

)
=

∑
ai0,a

i
1
δai1

(
ai
)
pt

(
ai0, a

i
1 | z

)
is

used as the notation for the probability denoiser. The train-
ing goal is to learn this denoiser p1|t by minimizing the
cross-entropy (CE) loss:

Laa(θ) =Ei∈[n],t∼U(0,1),p0(ai),p1(ai),pt(ai|ai
0,a

i
1)[

log p1|t

(
ai
1 | ai

t

)]
.

(4)

where U(0, 1) is a uniform time distribution on [0, 1], and
vaa

(
ait, t

)
is the neural network with parameters θ to ap-

proximate the true denoising distribution p1|t. Given a noisy
input ait ∼ pt|1

(
ai | ai1, ai0

)
, the model learns to predict

the clean data point ai1. Here, rather than a linear interpo-
lation towards ai1 from a prior of uniform categorical dis-
tribution punif

t|1
(
ait | ai0, ai1

)
= Cat

(
tδai1(·) + (1− t) 1

∥A∥

)
,

we adopt an artificially introduced mask state M and the
conditional path becomes [10]:

pmask
t|1

(
ai
t | ai

0, a
i
1

)
= Cat

(
tδai

1
(·) + (1− t)δM(·)

)
. (5)

Multi-modality FM for 3D Protein Structures. Apart
from the sequential amino acid type, we follow common
practice [10, 41, 42, 79] and construct different probabil-
ity flows containing Euclidean, spherical, and toric FMs for
positions x ∈ Rn×3, orientations O ⊆ SO(3), and tor-
sion angles χ ∈ [0, 2π)n×7, respectively. To be specific, a
vanilla Gaussian FM on Euclidean manifolds with the prior
N (0, I3) is leveraged to generate xi. As for 3D rotation
group SO(3), it is also a smooth Riemannian manifold with
its tangent space so(3) forming a Lie algebra consisting
of skew-symmetric matrice. We establish flows based on
the geodesics in the context of SO(3) [39] and select the
uniform distribution over SO(3) as the prior p

(
Oi

0

)
. For

torsion angles χi ∈ [0, 2π)7, each of them can be repre-
sented as a point on the unit circle S1. Thus, χi lies on
the 7-dimensional hypertorus T7 = (S1)7 as the Cartesian
product of all seven unit circles. This flat torus T7 can be
viewed as the quotient space (R7 mod 2πZ)7 that inher-
its the Riemannian metric from Euclidean space, where the
uniform distribution on [0, 2π)7 is utilized as the prior. The
conditional flows are prescribed as:

ϕpos
t

(
xi

0,x
i
1

)
= txi

1 + (1− t)xi
0, xi

0 ∼ N (0, I3) , (6)

ϕori
t

(
Oi

0, O
i
1

)
= expOi

0

(
t logOi

0

(
Oi

1

))
, Oi

0 ∼ U(SO(3)),

(7)

ϕang
t (χi

0,χ
i
1) =

[
tχi

1 + (1− t)χi
0

]
mod 2π, (8)

χi
0 ∼ U

(
[0, 2π)7

)
, (9)



where exp(·) and log(·) are the exponential and logarithm
maps on SO(3) that can be computed efficiently using Ro-
drigues’ formula [41, 79]. Subsequently, the conditional
vector fields upos

t , uori
t , and uang

t can be obtained by taking
the time derivative of linear flows ϕpos

t , ϕori
t , and ϕang

t using
Independent Coupling techniques:

upos
t

(
xi

t | xi
1,x

i
0

)
= xi

1 − xi
0 =

xi
1 − xi

t

1− t
. (10)

uori
t

(
Oi

t | Oi
0, O

i
1

)
=

logOi
t

(
Oi

1

)
1− t

, (11)

uang
t (χi

t | χ
i
0,χ

i
1) =

(
χi

1 − χi
t

1− t
+ π

)
mod 2π − π, (12)

Ultimately, time-dependent and equivariant neural networks
vpos(·), vori(·), and vang(·), which share the same back-
bone architecture as vaa(·) but have different head predic-
tors, are employed to approximate the conditional gradient
fields upos

t , uori
t , and uang

t . The corresponding FM objectives
are given below, separately:

Lpos(θ) =Ei∈[n],t∼U(0,1),p(xi
1),p(xi

0),p(xi
t|x

i
0,x

i
1)∥∥∥vpos

(
xi

t, t
)
−

(
xi

1 − xi
0

)∥∥∥2

2
,

(13)

Lori(θ) =Ei∈[n],t∼U(0,1),p(Oi
1),p(Oi

0),p(Oi
t|O

i
0,O

i
1)∥∥∥∥∥vori

(
Oi

t, t
)
−

logOi
t

(
Oi

1

)
1− t

∥∥∥∥∥
2

SO(3)

,
(14)

Lang(θ) =Ei∈[n],t∼U(0,1),p(χi
1),p(χi

0),p(χi
t|χ

i
0,χ

i
1)∥∥∥vang

(
χi

t, t
)
− (χi

1 − χi
0)
∥∥∥2

2
.

(15)

We summarize losses of all different modalities to acquire
the overall FM objective as LCFM = λposLpos + λoriLori +
λangLang+λaaLaa, where λ∗ are the hyperparameters to con-
trol the impact of different loss components. Two additional
losses are also imposed concerning the backbone atoms and
distance matrix [79].

During the inference phase, we first sample from sev-
eral distinct priors, i.e., xi0 ∼ N (0, I3), Oi

0 ∼ U(SO(3)),
and χi0 ∼ [0, 2π)7. After that, we solve the probabil-
ity flow with learned predictors vpos(·), vori(·), and vang(·)
using the N -step forward Euler method to get the posi-
tion, orientations, and torsion angles of i-th residue with
t =

{
0, . . . , N−1

N

}
:

xi
t+ 1

N
= xi

t +
1

N
vpos

(
xi

t, t
)
, (16)

Oi
t+ 1

N
= expOi

t

(
1

N
vori

(
Oi

t, t
))

, (17)

χi
t+ 1

N
=

[
χt +

1

N
vang

(
χi

t, t
)]

mod 2π. (18)

4.2. Parameterization with Adapter-guided Protein
Language Models

To efficiently learn (ai,xi, Oi,χi) for every residue, we
adopt and improve the FramePred architecture introduced
in FrameDiff [80] and FrameFlow [79]. It effectively incor-
porates the Invariant Point Attention (IPA) [32] to encode
spatial features and ensure the equivariance. IPA consists of
multiple Transformer layers [68] to capture sequence-level
attributes. In addition, considering the periodicity, torsion
angles χ ∈ [0, 2π)7 are flexibly encoded by applying multi-
frequency sine and cosine transformations [41], which are
also fused with the timestep embedding and residue se-
quence embedding into IPAs.

PLMs capture the evolutionary patterns from large-scale
sequence data, and this knowledge is proven to be support-
ive of protein folding [43] and inverse design [84], which
is evidently beneficial for our co-design task as well. Some
prior studies [77] integrate this knowledge by immediately
appending the geometric networks to PLMs. Drawing in-
spiration from LM-Design [84], we employ a lightweight
structural adapter to endow PLMs with structural aware-
ness. In our approach, if the output of IPA is denoted as
hIPA ∈ RψIPA , the attention at the l-th layer is computed as:

o = softmax

(
hseqWQ·h⊤

IPAW
⊤
V√

ψseq

)
hIPAW V , where hseq ∈

Rψseq is the sequential embedding of the last (l − 1)-th
layer. WK , WQ, and W V are trainable weights for key,
query, and values, separately. This module allows the usage
of both sequence-based and structure-based information for
protein understanding.

4.3. Controlling Flow Matching with Target Pro-
teins

Existing de novo design algorithms [79, 80] are mainly tar-
geting monomers or biomolecules without receptors. Some
recent studies [41, 42, 46] have considered binder design
but their performance is strictly restricted by the number of
available complex structures (e.g., SabDAB [20] and Pep-
Merge [41]). To bridge the gap and exploit all crystal struc-
tures, we propose to pretrain our flow model on the vast
amount of general proteins (i.e., Protein Data Bank) and
then fine-tune it on the target-specific design challenges.

To begin with, FΘ : P0 → Cpro is a co-design flow model
without target awareness, which can de novo design a pro-
tein Cpro from any initial protein C0 that is drawn from a
prior distribution p0. It is trained on general proteins to ap-
proximate p(a,x, O,χ). To enable the awareness of FΘ

to the receptor Crec, we borrow ideology from the popular
ControlNet architecture [82], locking (freeze) the parame-
ters Θ of the original block and simultaneously cloning the
block to a trainable copy with parameters Θc. The trainable
copy takes a receptor protein Crec as input and is connected
to the locked model with zero IPAs denoted as Z(·). No-
tably, both weight and bias in Z(·) are initialized to zeros.



In practice, two instances of zero IPAs are used with param-
eters Θz1 and Θz2, respectively:

Ĉpep = FΘ(C0) + ZΘz2 (FΘc (C0 + ZΘz1 (Crec))) , (19)

where Ĉpep is the designed peptide that is expected to bind
with Crec. In the first training step, since both the weight
and bias parameters of IPAs are initialized to zero, both
Z(·) terms evaluate to zero, and Ĉpep = Ĉpro. In this way,
harmful noise cannot influence the hidden states of the net-
work layers in the trainable copy when the training starts.
Zero IPA layers protect this backbone by eliminating ran-
dom noise as gradients in the initial training steps.

4.4. D-peptide Design

Mirror-image peptides and proteins, composed of D-amino
acids and the achiral glycine, have garnered significant at-
tention as potential therapeutic and enzymatic tools due
to their remarkable resistance to enzymatic digestion by
natural-chirality enzymes and their exceptional biostabil-
ity [81]. However, the development of mirror-image bio-
logical systems and related applications faces challenges,
primarily due to the lack of effective methods for designing
mirror-image (D-) proteins [38].

In this work, we generate mini D-protein binders, specif-
ically D-peptides, using the mirror-image algorithm [54,
63]. The mirror-image operation, denoted as Ψ(·), trans-
forms any given protein structure into its corresponding
mirror image. Ψ(·) inverts the spatial configuration of the
protein, effectively reflecting it across an imaginary plane
while preserving the relative distances and angles between
atoms. In our approach, we first apply Ψ(·) to the receptor
protein Crec, converting it into its mirror-image counterpart.
Then, we pass this mirrored receptor through a flow model
fθ(·) : Crec → Cpep, which is trained on natural-chirality (L-
) proteins, to yield the corresponding peptide. Finally, we
apply the inverse operation Ψ−1(·) to convert the resulting
peptide back to the D-configuration. Formally, the genera-
tion process can be expressed as:

CD-pep = Ψ−1(fθ(Ψ(Crec))). (20)

5. Experiments
We execute two types of experiments to validate the ef-
fectiveness of our D-Flow approach. The first, detailed
in Sec. 5.1, involves the conventional co-design challenge
for L-proteins, where models generate peptides’ both se-
quences and structures based on a given receptor binding
site. The second experiment, described in Sec. 5.2, fo-
cuses on generating D-peptides. For benchmarking, we
use the PepMerge dataset [41], derived from PepBDB [73]
and Q-BioLip [72]. To ensure a fair comparison with prior
work [41], we cluster peptide-protein complexes based on
40% sequence identity using MMseqs2 [61], after remov-

ing duplicates and applying empirical filters (e.g., resolu-
tion < 4Å, peptide length between 3 and 25). This process
results in 8,365 non-redundant complexes across 292 clus-
ters. For consistency in comparison, we use the same test
set as Li et al. [41], consisting of 10 clusters and 158 com-
plexes. Pretraining data contain monomers between lengths
60 and 384 with resolution < 5Å downloaded from PDB [8]
on August 8, 2021, ensuring no data leakage for peptides.
The data is then filtered by including proteins with high sec-
ondary structure compositions only. Monomers with more
than 50% loops are also removed using DSSP [33], result-
ing in 18,684 proteins.

5.1. Unconditioned Sequence-structure Co-design

Baselines. We select two categories of state-of-the-art
protein design methods as baselines. The first category dis-
regards side-chain conformations and includes approaches
such as RFDiffusion [71] and ProteinGen [45]. RFDif-
fusion generates protein backbones, with sequences pre-
dicted afterward using ProteinMPNN [15], while Protein-
Gen improves on RFDiffusion by jointly sampling both
backbones and sequences. The second category consid-
ers full-atom protein generation, containing Diffusion [46],
PPIFlow [42], and PepFlow [41]. PepFlow has three vari-
ants based on whether backbones, sequences, and side-
chain angles are sampled.

Metrics. Generated peptides are evaluated across three
key aspects. (1) Geometry: Designed peptides should
closely mirror native sequences and structures. We quantify
sequence similarity through the amino acid recovery rate
(AAR), which measures sequence identity between gener-
ated and ground truth peptides. Structural similarity is eval-
uated using the root-mean-square deviation (RMSD) of Cα
atoms after complex alignment. The secondary-structure
similarity ratio (SSR) captures the proportion of match-
ing secondary structures, while the binding site ratio (BSR)
evaluates the overlap between generated and native peptide
binding sites on the target protein. (2) Energy: We aim to
design high-affinity peptide binders that enhance protein-
peptide complex stability. Affinity represents the percent-
age of generated peptides achieving higher binding affini-
ties (lower binding energies) than the native peptide. Sta-
bility indicates the fraction of complexes exhibiting lower
total energy than the native state. All energy calculations
are performed using Rosetta [3]. (3) Design: Designability
measures the consistency between designed sequences and
structures, calculated as the proportion of sequences that
fold into structures similar to their generated conformations
(Cα RMSD < 2 Å). Sequence refolding is performed us-
ing ESMFold [43]. Diversity, computed as the average of
one minus the pairwise TM-Score [83], quantifies structural
variation among the designed peptides.



Table 1. Evaluation of methods in the traditional L-peptide sequence-structure co-design task. The best and suboptimal results are labeled
boldly and underlined, respectively. Baselines with † are reproduced.

Geometry Energy Design
AAR % ↑ RMSD Å ↓ SSR% ↑ BSR % ↑ Stb. % ↑ Aff. % ↑ Des. % ↑ Div. ↑

RFdiffusion [71] 40.14 4.17 63.86 26.71 26.82 16.53 78.52 0.38
ProteinGen [45] 45.82 4.35 29.15 24.62 23.48 13.47 71.82 0.54
Diffusion [46] 47.04 3.28 74.89 49.83 15.34 17.13 48.54 0.57
PPIFlow† [42] 48.35 – – – – – – –

PepFlow-Bb [41] 50.46 2.30 82.17 82.17 14.04 18.10 50.03 0.64
PepFlow-Seq [41] 53.25 2.21 85.22 85.19 19.20 19.39 56.04 0.50
PepFlow-Ang [41] 51.25 2.07 83.46 86.89 18.15 21.37 65.22 0.42

D-Flow 58.69 1.63 89.02 88.47 26.85 24.31 75.14 0.60

Main Results. As documented in Tab. 1, D-Flow gener-
ates peptide sequences with the closest resemblance to na-
tive ones, achieving a high amino acid identity of 58.69%,
a 14.51% improvement over PepFlow. It excels in all
geometry-related metrics, highlighting its close alignment
with the binding sites of native peptides. Besides, D-
Flow scores 75.14% in designability and 0.60 in diver-
sity, maintaining a good balance between structural fidelity
and variety. Moreover, D-Flow also demonstrates superior
energy-based properties, achieving the best stability score
at 26.85% and the best affinity score at 24.31%, which are
critical for the formation of strong and stable complexes. In
a nutshell, D-Flow outpasses all baselines across most key
metrics, indicating its strength in consistently producing the
most accurate peptide sequences and structures along with
the optimal stability and affinity for their targets.

We also navigate the contribution of different compo-
nents of D-Flow, containing the discrete flow matching
(DFM), structural-adapted PLM, the pretraining on PDB,
and the ControlNet-style transfer learning technique. Tab. 2
reports the ablation study results. It can be observed
that the integration of additional unlabeled structural data
yielded the most substantial improvement, increasing AAR
by 5.93%. This supports our hypothesis that limited bind-
ing complex data significantly constrains generative mod-
els’ de novo design capabilities. While incorporating 1D
sequence information improved D-Flow’s performance by
0.58%, this impact was less pronounced than in previous
protein-related tasks [77] like ligand docking [14], ligand
efficacy prediction [66], or model quality assessment [13].
We attribute this to PLMs’ inherent limitations with short
sequences like peptides, compared to their effectiveness
with longer proteins. This gap generally arises because
PLMs learn contextual relationships by observing long-
range dependencies and conserved motifs – key elements
that characterize protein families and evolutionary relation-
ships [21, 56]. In short sequences, like peptides, these rela-
tionships are limited due to a lack of length and structure,
making it harder for the model to capture evolutionary pat-

DFM PLM Pretrain Control AAR% ∆

1 - - - - 50.43
2 ✓ - - - 51.86 +1.43
3 ✓ ✓ - - 52.44 +0.58
4 ✓ ✓ ✓ - 58.37 +5.93

5 ✓ ✓ ✓ ✓ 58.69 +0.32

Table 2. Ablation studies on the effects of each module.

terns effectively. Peptides often lack secondary and tertiary
structure information present in longer sequences, which
is critical for understanding function and evolutionary con-
text [4]. Those attention-based models, such as transform-
ers [68], distribute attention weights over the input length.
Shorter sequences provide fewer tokens to which attention
can be allocated, which can limit the richness of the learned
representation. Regarding other components, DFM demon-
strated superior performance over the probability simplex
mechanism [41] for amino acid type representation, im-
proving AAR by 1.43%. The control technique provided
a modest 0.32% enhancement in AAR.

5.2. D-peptide Design

Generation of Pure D-peptides. Our analysis confirms
that D-Flow successfully produces pure D-peptides in all
cases (Fig. 3). Remarkably, this achievement occurs with-
out any D-protein training corpus, requiring only our spe-
cialized post-processing technique Ψ(·). To understand
it, as D-Flow gradually moves the peptide’s sequence and
structure (a,x, O,χ) from a prior distribution p0 to the tar-
get data distribution p1 at a speed of vt during t ∈ [0, 1],
its moving trajectory is heavily dependent on the anchor
fixed receptor Crec. The velocity vectors vpos(·), vori(·), and
vang(·) for Cα locations, frame orientations, and angles are
computed based on the interactions between the intermedi-
ate state of peptide Ctpep and the target protein Crec. Once
a D-chirality receptor Ψ(Crec) is provided as the condition,
our D-Flow fθ(·) captures the chirality nuance of this given



Figure 2. Comparison of L- and D-peptide examples generated by D-Flow with the same target receptor, where the red one is the ground
truth L-peptide.

input. As a response, it adjusts vpos(·), vori(·), and vang(·) to
accord with this D-target protein, which leads to a product
with considerable D-residues.

Model Robustness Assessment. We examined the ro-
bustness of D-Flow by testing multiple mirror-image ap-
proaches for the input receptor. Despite there being infinite
possible mirror transformations, we focused on the three
fundamental axes (x, y, and z). Our results demonstrate that
the chirality of generated peptides remains consistently D-
configured regardless of the mirroring approach used.

Conformational Distribution Analysis Fig. 2 visualizes
a few examples of designed L- and D-peptides. While D-
Flow successfully generates both configurations, our analy-
sis reveals a striking contrast: L-peptides show remarkable
consistency in their structural and sequence distributions,
whereas D-peptides exhibit significantly higher variability,
particularly in longer sequences. This phenomenon can be
attributed to several fundamental factors.

Training Distribution Mismatch. Our model, trained
exclusively on L-peptides, has learned to navigate L-peptide
conformations’ natural distribution and energy landscape.
When presented with a D-receptor through the mirror-
image algorithm, the model must operate in a conforma-
tional space absent from its training distribution. This dis-
tributional shift forces the model to explore the D-space
with less confidence, increasing structural diversity [65].
Loss of Evolutionary Constraints. L-peptides in our train-
ing data reflect millions of years of evolutionary optimiza-
tion, containing implicit biases about energetically favor-
able conformations [23, 40]. While the mirror-image trans-
formation preserves theoretical symmetry, these evolution-
ary constraints don’t translate perfectly to the D-space, po-
tentially contributing to the observed variability. Asymmet-
ric Energy Landscape Exploration. The FM process relies

on smooth transitions across the conformational space [44].
However, the mirror-image transformation introduces sub-
tle numerical asymmetries in the computational representa-
tion of D-peptides. These asymmetries can affect how the
model explores the energy landscape, leading to more di-
verse intermediate states and final structures [74]. Stereo-
chemical Environment Adaptation. The significant change
in the stereochemical environment during mirroring poses
a unique challenge. The flow model must adapt its learned
representations of molecular interactions to account for the
inverted chirality [5]. This adaptation process isn’t perfect,
resulting in broader conformational sampling and increased
structural diversity in the generated D-peptides.

These challenges align with recent findings in protein
design that highlight the challenges of transferring learned
molecular representations across different stereochemical
spaces [62]. The energy landscape learned for L-peptides
doesn’t directly translate to the D-space due to fundamental
differences in molecular interactions and packing arrange-
ments. This leads to broader structural exploration and
increased diversity in the generated structures [52]. This
analysis suggests potential avenues for improvement, such
as incorporating symmetry-aware constraints or developing
specialized adaptation mechanisms for D-peptide genera-
tion, which could help stabilize the output distribution while
maintaining the desired chirality.

6. Conclusion

D-peptides, being the mirror image forms, often have differ-
ent properties. They are more resistant to enzymatic degra-
dation, making them interesting for therapeutic applica-
tions, such as drug design and antimicrobial peptides [54].
This work introduces a multi-modality flow model dubbed
D-Flow to generate D-peptides from scratch. D-Flow is
proven to produce peptides with a considerable propor-
tion of D-residues via the novel mirror-image algorithm.



Figure 3. Perspective view of D-residues within the D-peptides,
where stereogenic carbon alpha to the amino group has the D-
configuration.

Moreover, it is equipped with an adapter-guided protein
language model with structural awareness and leverages a
ControlNet-style mechanism to bridge the gap between pre-
training and fine-tuning stages.

7. Limitations and Future Works

Despite our progress, there remain significant opportunities
for further improvement and exploration. This work evalu-
ates designed proteins solely through in silico analysis. A
more comprehensive validation of D-Flow’s effectiveness
would require experimental laboratory testing.
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