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Abstract

Matrix concentration inequalities, intimately connected to the Non-Commutative
Khintchine inequality, have been an important tool in both applied and pure mathe-
matics. We study tensor versions of these inequalities, and establish non-asymptotic
inequalities for the ℓp injective norm of random tensors with correlated entries. In cer-
tain regimes of p and the tensor order, our tensor concentration inequalities are nearly
optimal in their dimension dependencies. We illustrate our result with applications to
problems including structured models of random tensors and matrices, tensor PCA,
and connections to lower bounds in coding theory.

Our techniques are based on covering number estimates as opposed to operator
theoretic tools, which also provide a geometric proof of a weaker version of the Non-
Commutative Khintchine inequality, motivated by a question of Talagrand.

∗Department of Mathematics, ETH Zürich. bandeira@math.ethz.ch.
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1 Introduction

The following introduction is mainly targeted to a Mathematics audience. An introduction
and technical overview focusing more on the Theoretical Computer Science motivations
behind this work is provided in Appendix A.

The main object of study of this paper is the ℓp injective norm of a jointly Gaussian
random d-dimensional, r-order, tensor T ∈ (Rd)⊗r with an arbitrary entrywise covariance
structure. We denote the ℓp injective norm1 of T by

‖T‖Ip := sup
‖x1‖p,...,‖xr‖p≤1

〈T, x1 ⊗ . . .⊗ xr〉, (1)

where d and r ≥ 2 are integers and p ≥ 2.
This problem has been well studied for the specific case of iid standard Gaussian entries

and p = 2, in that situation it is known that the expected injective norm is of the order
of Cr

√
d, for a constant Cr depending on r. The order of the constant Cr was shown to

be bounded from above by C
√
r log(r) in [TS14, NDT15] and sharper estimates for the

precise constant have been computed recently in [DM24].
Any tensor T ∈ (Rd)⊗r with jointly Gaussian entries can be written in a Gaussian series

form as

T =

n∑

k=1

gkTk, (2)

where gk ∼ N (0, 1) are iid and Ti are deterministic tensors. In the specific euclidean matrix
case (p = 2 and r = 2), (1) corresponds to the operator norm of a random Gaussian matrix.
An important consequence of the celebrated Non-Communitative Khintchine inequalities
of Lust-Piquard and Pisier (see [LPP91, LP86b]), which was noted in [Rud99], states that,
for X =

∑n
k=1 gkAk,

E

∥∥∥
n∑

k=1

gkAk

∥∥∥
op

.
√

log d max

{∥∥∥
n∑

k=1

AT
kAk

∥∥∥
1
2

op
,
∥∥∥

n∑

k=1

AkA
T
k

∥∥∥
1
2

op

}
. (3)

Notably, (3) is tight in two senses: the right-hand side is also a lower bound without
the logarithmic factor and, moreover, the logarithmic factor is required for some choices
of matrices. We point the reader to [BBH23] for a recent line of work trying to better
understand when the logarithmic factor is not required.

However, the question of estimating the injective norm of (2) becomes elusive when
either r 6= 2 or p 6= 2, which are natural extensions of (3) that appear in coding the-
ory [Bri16, Gop18] or dispersive partial differential equations [BDNY24].

1It is also natural to consider a symmetric version of the ℓp injective norm where the vectors x1, · · · , xr

are forced to be the same, i.e., ‖T‖sym(Ip)
:= supx∈Bd

p
|T [x, . . . , x]|. For symmetric tensors, these two

definitions are equivalent up to a factor depending only on the order r (see Proposition 4.15).
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The main reason for this bottleneck is the fact that all known proofs of (3) use operator-
theoretic tools,2 which are thus far unavailable when either r 6= 2 or p 6= 2. We mention
two notable results in this direction that do not assume independent entries, the first one is
by Rudelson [Rud96], who proved (3) (with a logarithmic factor in n rather than d) for the
specific case when the matrices Ak are symmetric rank-1 using Majorizing Measures. The
second result is a volumetric bound by Lata la [Lat06] in the case p = 2, which was used to
derive two-sided moment inequalities for Gaussian chaoses (see Remark 4.8). Rudelson’s
original argument in [Rud96] can be adapted to rank-1 tensors (for p = 2) [Luc23], but it is
unclear how to go beyond rank-1, or p > 2. In fact, there is no known geometric argument
to establish (3), even for the euclidean matrix case, when the summands are high rank. This
is another core motivation of this paper, and in fact, a question in Talagrand’s book [Tal14]
(section 16.10).

1.1 Main Results

Our main contribution is a geometric argument, involving covering numbers and Gaussian
process theory, to bound the expected value of the ℓp injective norm of (2) for a full range
of r ≥ 2 and 2 ≤ p < ∞, where operator theoretic tools are unavailable.

For general tensors it is more convenient to formulate the upper bound in terms of the
so called Type-2 constant of the corresponding Banach space.

Definition 1.1 (Type-2 constant for ℓp injective norm of order r tensors). Given r ≥ 2 an
integer and 2 ≤ p < ∞ we define Cr,p(d) the Type-2 constant of the ℓp injective norm of
order r tensors to be the minimal number, such that for all positive integers n and tensors
T1, . . . , Tn ∈ (Rd)⊗r we have

E

∥∥∥
n∑

k=1

εkTk

∥∥∥
2

Ip
≤ Cr,p(d)2

n∑

k=1

‖Tk‖2Ip . (4)

The ε1, . . . , εn are i.i.d. Rademacher random variables (i.e.: εk = 1 or εk = −1 with
probability 1

2 each).

While our main contributions involve Gaussian series of tensors (2), a standard ar-
gument based on using Jensen’s inequality on the magnitude of the Gaussian shows that
moments of the norm of a Rademacher series are upper bounded by the ones of the Gaussian
series. In particular, they imply the following estimates.

Theorem 1.2. Let r ≥ 2 an integer, 2 ≤ p < ∞, and Cr,p(d) the Type-2 constant of the
ℓp injective norm of order r tensors (see Definition 1.1) then

d
1
2
− 1

p .
r,p

Cr,p(d) .
r,p

d
1
2
− 1

max{p,2r} log d. (5)

2The study of Schatten-p norms (traces of powers) and the fact that they approximate the spectral norm
well for large p are key ingredients in the proof.
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(The expression f .r,p g says that the inequality f ≤ Cr,pg holds for some constant Cr,p

that only depends on r and p.)

Remark 1.3. In the matrix case (r = 2) it is possible to improve upon the type con-
stant estimate from Theorem 1.2 by applying Hölder’s inequality to the noncommuative
Khintchine inequality.3

E

∥∥∥
n∑

k=1

gkAk

∥∥∥
Ip

≤ d1−
2
pE

∥∥∥
n∑

k=1

gkAk

∥∥∥
Ip

.
√

log d · d1−
2
p

√√√√
n∑

k=1

‖Ak‖2I2

Since ‖Ak‖I2 ≤ ‖Ak‖Ip , this inequality implies C2,p(d) .
√

log d ·d1−
2
p , which is better than

Theorem 1.2 when 2 ≤ p ≤ 8
3 .

Note that for p ≥ 2r the upper and lower bounds in Theorem 1.2 match up to a log-
arithmic factor (in terms of their dependence on d). For r = 2 and p = 2, one can easily
adapt the Non-Commutative Khintchine inequality (3) to show that C2,2(d) .

√
log(d),

meaning that our upper bound is suboptimal by a d
1
4 factor (excluding logarithmic fac-

tors). Both d
1
2
− 1

p and d
1
2
− 1

max{p,r} would be natural conjectures for the correct polynomial
dependency on d, and would match Non-Commutative Khintchine in the euclidean matrix
case, unfortunately establishing either upper bound appears to be out of reach of our cur-
rent tools. In comparison a classical ε-net argument would give d

1
2 as an upper bound for

Cr,p(d).
Our estimates are more accurately written in terms of various tensor parameters that

provide sharper control than the sum of squared injective norms (the right-hand-side of (4)).
Among other improvements, they correspond to parameters involving norms of sums of
squares of matrices (such as in (3)) rather than sums of squares of norms.4 Our estimates
also imply better bounds for the inhomogenous independent entry model, as well as models
of structured random matrices (see Section 2). For the sake of exposition, throughout the
majority of the paper we focus on symmetric tensors, as the parameters we introduce are
simpler to define in this case.

Definition 1.4 (⋆q product). Let A,B ∈ (Rd)⊗r be tensors. For 0 ≤ q ≤ r we define a
d-dimensional order 2r − 2q tensor A ⋆q B with entries

(A ⋆q B)i1,...,i2r−2q
:=

d∑

j1,...,jq=1

Ai1,...,ir−q,j1,...,jqBj1,...,jq,ir−q+1,...,i2r−2q .

3This would however be a proof using operator theoretic tools (as it would need noncommuative Khint-
chine inequality).

4The sum of squared norms had already appeared in [TJ74, AW02] in the context of random matrices
as a variance parameter, which is not as precise as the one given in (3), that gained attraction after it
appeared in matrix concentration inequalities [Oli10, Tro10].
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Note that in the matrix case (r = 2), for A and B d × d symmetric matrices, ⋆q
corresponds to familiar matrix operations: A ⋆0 B = A⊗B corresponds to the Kronecker
product (seen as an order 4 tensor), A ⋆1 B = AB to the classical matrix product, and
A ⋆2 B = Tr(ATB) to the Hilbert-Schmidt inner product.

Definition 1.5 (Variance Parameters). Let T ∈ (Rd)⊗r be a symmetric random jointly
Gaussian tensor and 2 ≤ p < ∞. For 0 ≤ q ≤ r we define the parameters

σ2
(q,Ip)

:= ‖E[T ⋆q T ]‖Ip .

In the case p = r = 2 the parameter σ(1,Ip) is the variance parameter appearing in (3),
meanwhile σ(0,Ip) also frequently appears in the literature5 and is often referred to as “weak
variance” [Tro15]. Lemma 3.1 shows

σ2
(1,I2)

=
∥∥∥

n∑

k=1

A2
k

∥∥∥
op

and σ2
(0,I2)

= sup
u,v∈Bd

2

n∑

k=1

(uTAkv)2

in the matrix case. Formally stated, our main theorem provides the following upper bound:

Theorem 1.6 (Main Theorem). Let T ∈ (Rd)⊗r be a symmetric random jointly Gaussian
tensor with E[T ] = 0 and 2 ≤ p < ∞.

d
1
p
− 1

2E ‖T‖Ip .
r,p

(log d)σ(1,Ip) + max
2≤q≤r

σ
1
q

(q,Ip)
σ

q−1
q

(0,Ip)
, (6)

where the parameters in the right-hand side are those of Definition 1.4 and 1.5.

For p = 2 it may be possible to obtain Theorem 1.6 without the logarithmic factor in
front of σ(1,Ip) by modifying results in [Lat06], see Remark 4.8.

We finish the subsection with a few remarks about symmetric tensors. If one does not
strive for optimal dependencies on the order r in upper bounds, the symmetry requirement
does not lose generality. In fact, by considering symmetric embeddings of tensors, which
are tensor-analogues of the hermitian dilation (7), we can reduce the problem to studying
a symmetric object with similar norm properties. We will elaborate on this further in later
sections (see Section 4.3).

1.2 Notation and Terminology

We use E to denote the expectation of a random variable and P for the probability of an
event. We use vol(·) for the Lebesgue measure in R

d. We will often write g1, . . . ,gn for
independent standard Gaussian scalar random variables and b for a random vector dis-
tributed according to the normalized Lebesgue measure on some compact set in R

d (which

5We defined the weak variance in a different, but equivalent form to the one in [Tro15], see also
Lemma 3.1.
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is usually given from the context). For a vector v ∈ R
d we define ‖v‖p := (

∑d
i=1 |vi|p)

1
p

and use B
d
p for the unit ball of the norm ‖·‖p. The tensor v⊗r ∈ (Rd)⊗r is an order

r tensor with entries (v⊗r)i1,...,ir =
∏r

q=1 viq . Similarly for u1, . . . , ur ∈ R
d we define

(u1⊗· · ·⊗ur)i1,...,ir =
∏r

q=1(uq)iq . For tensors A,B ∈ (Rd)⊗r their entry-wise dot product
is defined by

〈A,B〉 :=
d∑

i1,...,ir=1

Ai1,...,irBi1,...,ir .

Moreover, for 0 ≤ q ≤ r their generalized product A ⋆q B ∈ (Rd)⊗(2r−2q) is given by

(A ⋆q B)j1,...,j2r−2q
:=

d∑

i1,...,iq=1

Aj1,...,jr−q,i1,...,iqBi1,...,iq,jr−q+1,...,j2r−2q

if q > 0 and
(A ⋆0 B)j1,...,j2r := Aj1,...,jrBjr+1,...,j2r .

It should be noted that this operation is indeed bilinear and in the case q = r we have
A⋆r B = 〈A,B〉 and if q = 1 and r = 2 then A⋆1B is standard matrix multiplication. The
product A⊙B ∈ (Rd)⊗r denotes the entry-wise product. We will see tensors as multilinear
maps on R

d too, as it can be more convenient to prove statements using this notation:

A[u1, . . . , ur] :=

d∑

i1,...,ir=1

Ai1,...,ir(u1)i1 · · · (ur)ir = 〈A, u1 ⊗ · · · ⊗ ur〉

This allows contracting tensors with vectors, for v ∈ R
d we write Av⊗0 := A and

Av⊗q := (Av⊗q−1)[v, ·, . . . , ·]

for q ≤ r, so Av⊗q becomes an order r − q tensor. The Frobenius norm is given by
‖A‖F :=

√
〈A,A〉 and the injective ℓp tensor norm is written as

‖A‖Ip := sup
u1,...,ur∈Bd

p

A[u1, . . . , ur].

We denote the set of all permutations on the set {1, . . . , r} by Sr. The tensor A is called
symmetric if for all permutations τ ∈ Sr and all 1 ≤ i1, . . . , ir ≤ d we have Ti1,...ir =
Tiτ(1),...iτ(r). The symbols .,.r,.r,p are inequalities that hold up to a factor that are
respectively universal constants, constants depending on r, constants depending on r and
p. If both . and & hold, we also use the symbols ≍,≍r,≍r,p in a similar fashion.
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1.3 Overview of Techniques

We give a brief informal presentation of the external machinery used to derive our results,
a more detailed discussion can be found in Section 3. If T ∈ (Rd)⊗r is a symmetric jointly
Gaussian tensor, the random variable

〈T, x1 ⊗ · · · ⊗ xr〉
is also Gaussian and thus the injective norm of T can be seen as the supremum of a
Gaussian process. Using symmetry arguments,6 it is possible to reduce the problem of
estimating (1) to studying the following expected supremum:

E sup
u∈Bd

p

gu, gu := 〈T, u⊗r〉

As we do not aim for optimal logarithmic factors, we can use Dudley’s entropy integral
(see Theorem 3.9) to bound the expected supremum of this Gaussian process

E sup
u∈Bd

p

gu .

∫ ∞

0

√
logN (Bd

p,d, ε) dε.

Here N (Bd
p,d, ε) denotes the smallest cardinality of an ε-covering of the set Bd

p with respect
to the metric

d(u, v) = E[(gu − gv)2]
1
2 .

We estimate the covering numbers of Bd
p using a volumetric argument. In particular, we

will have to estimate the volume of balls with respect to the metric d that are intersected
with “halved” ℓp balls, more specifically the “half” of an ℓp ball that retains a small ℓp
norm (see Corollary 4.6). To properly make sense of this, we use an inequality on ℓp
spaces which had been an unpublished result by Ball and Pisier until it was generalized to
Schatten classes in [LBC94]:

(‖x− y‖pp + ‖x + y‖pp
2

)2/p

≤ ‖x‖2p + (p− 1) ‖y‖2p

holds for p ≥ 2 and the reverse inequality holds for 1 ≤ p ≤ 2. After a sequence of
computations we arrive at Theorem 1.6. To deduce Theorem 1.2 from this result, we use
comparison inequalities between entry-wise norms on tensors and ℓp injective norms (see
Theorem 3.2), which have been extensively studied in for example [PP81, DSP16, HL34].
These inequalities imply

‖T‖F .
r
dmax{r/p−1/2,0} ‖T‖Ip

for any tensor T ∈ (Rd)⊗r and p ≥ 2, which will allow us to transition from the variance
parameters to the sum of squared injective norms.

6We will use a generalization of the hermitian dilation discussed in Subsection (4.3), this step only loses
a constant factor depending on the order.
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1.4 Warm-Up: A Crude Non-Commutative Khintchine Inequality

This section serves as an informal summary of the key ideas presented in the paper by
focusing on a simplified setting. We consider p = r = 2 and n = d, we have matrices
A′

1, . . . , A
′
d ∈ R

d×d with operator norm at most 1, so ‖A′
k‖I2 ≤ 1 for all 1 ≤ k ≤ d. We will

prove the (suboptimal) bound

E

∥∥∥
d∑

k=1

gkA
′
k

∥∥∥
Ip

. d
3
4 .

Recall that the non-commutative Khintchine inequality gives the better upper bound of
O(

√
d log d) in this setting. Nonetheless, our proof here is purely geometric.

Without loss of generality, we replace the matrices A′
k by their hermitian dilation, which

does not change the operator norm of the matrix and only increases the dimension d by a
factor of 2, so we redefine

Ak :=

(
0 A′

k

A′
k
T 0

)
. (7)

Matrices of this form also satisfy sup‖u‖2≤1 u
TAu = sup‖u‖2≤1 |uTAu| = ‖A‖I2 . (The first

equality follows from the fact that the sign of uTAu can always be changed by changing
the sign of the first half of the coordinates of u and the second equality holds since A is
symmetric.) Hence, we want to estimate

E sup
‖u‖2≤1

d∑

k=1

gku
TAku

using Dudley’s entropy integral (3.9). The natural distance on the Gaussian process is
given by

d(u, v) =

√√√√
d∑

k=1

(uTAku− vTAkv)2

Instead of finding the covering numbers N (Bd
2,d, ε) we find the size of a maximal ε-

separated set D, which is also an ε-covering of B
d
2 (indeed, if there was a point with

distance greater than ε from D, then the set would not be a maximal seperated set). Let
x1, . . . , xm ∈ B

d
2 be a maximal ε-separated set with respect to d, then the balls

Bd(xi,
ε
2) := {x ∈ R

d : d(x, xi) <
ε
2}

are pairwise disjoint for 1 ≤ i ≤ m. Namely, since d is a semi-metric on R
d,

ε ≤ d(xi, xj) ≤ d(xi, x) + d(x, xj) <
ε

2
+

ε

2

9



would otherwise lead to a contradiction for i 6= j. We intersect these balls with euclidean
half-spheres of radius R > 0

Gi := Bd(xi,
ε
2) ∩

{
x ∈ (xi + R · Bd

2) : 〈x− xi, xi〉 ≤ 0
}
.

The sets Gi are also pairwise disjoint. Moreover, the additional condition 〈x − xi, xi〉 ≤ 0
implies

‖x‖22 = ‖x− xi‖22 + 2〈x− xi, xi〉 + ‖xi‖22 ≤ R2 + ‖xi‖22 ,
and hence Gi is also contained in the set

√
1 + R2 · Bd

2. By additivity of the Lebesgue
measure we therefore have

m · min
1≤i≤m

{vol(Gi)} ≤
m∑

i=1

vol(Gi) ≤ vol
(√

1 + R2 · Bd
2

)
.

Since |D| = m is the cardinality of maximal ε-separated set, we can rearrange this inequality
to get

N (Bd
2,d, ε) ≤ |D| ≤ (1 + R2)

d
2 vol(Bd

2)

min1≤i≤m{vol(Gi)}
.

It remains to choose an appropriate R > 0 to make the fraction above small. We choose
R = min{C−1ε,

√
C−1ε} for a sufficiently large chosen constant C. To get a lower bound on

min1≤i≤m{vol(Gi)} we compute the expected distance between a random point y = xi+Rb
uniformly distributed in xi + R · Bd

2.

E[d(xi,y)]2 ≤ E[d(xi,y)2] =

d∑

k=1

E[(yTAky− xTi Akxi)
2] =

d∑

k=1

E[(2RxTi Akb−R2bTAkb)2]

We skip the precise computation here and do it rigorously in the more general setting in the
following sections. For the estimation we mainly rely on the facts E[b2

j ] ≤ 1
d , E[bjbj′ ] = 0

for j 6= j′ and that the matrices Ak have norm at most 1 and are diagonal-free. The next
inequality is valid for the universal constant C > 0 from before, if it was chosen to be
sufficiently large:

E[d(xi,y)] ≤ C

8
max{R,R2} =

ε

8

Therefore by Markov’s inequality we have

P[d(xi,y) ≥ ε
2 ] ≤ 1

4

and thus
vol(Bd(xi,

ε
2 ) ∩ (xi + R · Bd

2)) ≥ 3
4 vol(xi + R · Bd

2).

Since the set Si =
{
x ∈ (xi + R · Bd

2) : 〈x− xi, xi〉 > 0
}

is a half-sphere, we get

vol(Gi) ≥ vol(Bd(xi,
ε
2 ) ∩ (xi + R · Bd

2)) − vol(Si) ≥ 3
4 vol(xi + R · Bd

2) − 1
2 vol(xi + R · Bd

2).

10



So by translation invariance and homogeneity of the Lebesgue measure it follows

vol(Gi) ≥
Rd

4
vol(Bd

2).

This yields the estimate

N (Bd
2,d, ε) ≤

(1 + R2)
d
2 vol(Bd

2)
1
4R

d vol(Bd
2)

≤ 4e
d

2R2 = 4e
d

2C min{ε2,ε} ,

which allows us to bound the log covering numbers.

√
log(N (Bd

2,d, ε)) . 1 +

√
d

min{√ε, ε}

This estimate performs better when ε is large, but in the regime 0 < ε ≤ 1 we will replace
the estimate by

N (Bd
2,d, ε) .

(3d

ε

)d
,

which follows from the inequality d(u, v) .
√
d ‖u− v‖2 and using the covering numbers

of the euclidean sphere. Plugging these bounds into the entropy integral then gives

∫ ∞

0

√
log(N (Bd

2,d, ε)) dε . d
3
4 ,

where we compute the above integration only up to ε =
√
d in above, as the radius of Bd

2

in d is at most
√
d.

2 Applications of Our Results

In this section, we present a few applications of Theorem 1.6 to different tensor models. We
discuss strengths and weaknesses of the results obtained from Theorem 1.6 and compare
them with other known approaches. It is important to keep in mind that our bounds follow
from a completely general theorem that does not exploit additional model assumptions.

2.1 The Independent Entry Model and Tensor PCA

We study the class of tensors with independent entries, where the variances of the entries
potentially differ. We discuss the implications of Theorem 1.6 for these tensors and its
application to the setting of censored (or partial information) tensor PCA. The proofs are
deferred to the end of this subsection for the sake of exposition.

For a symmetric Gaussian tensor with nonhomogeneous independent entries, the pa-
rameters from Theorem 1.6 can be expressed in terms of its variance tensor as follows:

11



Theorem 2.1 (Nonhomogeneous independent entry model). Let T ∈ (Rd)⊗r be a sym-
metric Gaussian tensor with E[T ] = 0, such that the entries Ti1,...,ir are independent for
i1 ≤ i2 ≤ . . . ≤ ir. Define the variance tensor A ∈ (Rd)⊗r as Ai1,...,ir := E[T 2

i1,...,ir
] and let

1 ∈ R
d denotes the vector with all-1 coordinates. Then we have

d
1
p
− 1

2E ‖T‖Ip .
r,p

(log d) ‖A1‖
1
2
Ip/2

+ max
2≤q≤r

∥∥A1⊗q
∥∥

1
2q

Ip/2
‖A‖

q−1
2q

Ip/2
.

In the statement above, recall that A1⊗q means contracting A with 1⊗q as in Section 1.2.
In the case of p = 2, this bound simplifies further, since the ℓ1 injective norm is the largest
entry of the tensor. We illustrate this simplification when A is the adjacency tensor of a
hypergraph H = ([d], E), so Ai1,...,ir = 1 if {i1, . . . , ir} ∈ E and Ai1,...,ir = 0 otherwise.

Corollary 2.2. Consider the setting in Theorem 2.1 and assume that A is the adjacency
tensor of a hypergraph H = ([d], E). Let ∆j be the maximum number of hyperedges in E,
such that their joint intersection has cardinality at least j, then

E ‖T‖I2 .
r

(log d) ∆
1
2
r−1 + max

2≤q≤r
∆

1
2q

r−q.

Application to Censored Tensor PCA. As an application of Corollary 2.2, we give a
brief description of censored tensor PCA: let λ > 0 and v ∈ {−1, 1}d be a signal vector
and T as in Corollary 2.2. We observe the noisy tensor

Y (λ) = (A⊙ λv⊗r) + T.

The tensor Y (λ) only has nonzero entries, where A is nonzero, so A determines how many
measurements are available. We are interested in the question whether one can statistically
detect the presence of the signal given the measurement tensor Y (λ), so whether we can
distinguish between Y (λ) and Y (0). One can take the injective ℓ2 norm as a potential
statistic to differentiate between these two distributions.

Theorem 2.3 (Censored tensor PCA). Consider the setting in Corollary 2.2. There exist
constants C ′

r, Cr > 0, such that detection is possible when

λ ≥ λA := Cr ‖A‖−1
I2

[
(log d) ∆

1
2
r−1 + max

2≤q≤r
∆

1
2q

r−q

]
.

In particular, with high probability as d → ∞, the following inequalities hold:

∥∥(A⊙ λv⊗r) + T
∥∥
I2

> C ′
r ‖A‖I2 λA,

‖T‖I2 < C ′
r ‖A‖I2 λA.

(8)
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The question of signal detection with partial information has been studied before in the
matrix case (e.g., [ABBS14, Cuc15, BCSvH24]). For higher order tensors, to the best of
our knowledge, tensor PCA has only been studied in the full-information case, where more
sophisticated results have been established that also capture the correct dependency of the
critical threshold with respect to r. While we did not optimize for the dependency on r,
Theorem 2.3 does recover the information-theoretically optimal threshold λstat for fixed r

(which is ≍r d
1−r
2 [RM14, LML+17]) up to a logarithmic factor in d, in the full-information

case. Indeed, suppose A = 1⊗r, then ‖A‖I2 = d
r
2 and ∆r−q ≍r d

q, so plugging these values

into Theorem 2.3 yields λA ≍r (log d)d
1−r
2 . We mention in passing that the computational

thresholds for tensor PCA [HSS15, WEAM19], and the statistical thresholds when v is
drawn from priors [PWB20] have also been studied.

Before we proceed with the proofs, we emphasize that the bounds in this section all
follow from Theorem 1.6, which does not exploit any independent entry assumption. We
suspect that by leveraging this assumption, it is possible to use specialized techniques to
refine our bounds. We discuss more in Section 5.2.

Proof of Theorem 2.1. To apply Theorem 1.6, it suffices to bound the tensor parameters
as σ2

q,Ip
= ‖H‖Ip .r ‖A1⊗q‖Ip/2 , where we denote H := E[T ⋆q T ]. To prove this, note

that for any vectors x1, . . . , xr−q, y1, . . . , yr−q ∈ B
d
p, we have

J := H[x1, . . . , xr−q, y1, . . . , yr−q]

=
d∑

i1,...,ir−q=1
j1,...,jr−q=1

Hi1,...,ir−q,j1,...,jr−q(x1)i1 · · · (xr−q)ir−q(y1)j1 · · · (yr−q)jr−q .

Since T is symmetric with independent entries, Hi1,...,ir−q,j1,...,jr−q is given as follows:

• If there is a permutation τ ∈ Sr−q, such that (i1, . . . , ir−q) = (jτ(1), . . . , jτ(r−q)), then

Hi1,...,ir−q,j1,...,jr−q =

d∑

k1,...,kq=1

Ai1,...,ir−q,k1,...,kq = (A1⊗q)i1,...,ir−q .

• If there is no such permutation as above, then Hi1,...,ir−q,j1,...,jr−q = 0.

Thus for fixed (i1, . . . , ir−q), the summand in J is only non-zero for indices (j1, . . . , jr−q),
such that (i1, . . . , ir−q) = (jτ(1), . . . , jτ(r−q)) holds for some permutation τ . Therefore,

J ≤
d∑

i1,...,ir−q=1

(A1⊗q)i1,...,ir−q(x1)i1 · · · (xr−q)ir−q

∑

τ∈Sr−q

(yτ(1))i1 · · · (yτ(r−q))ir−q

=
∑

τ∈Sr−q

d∑

i1,...,ir−q=1

(A1⊗q)i1,...,ir−q

(
x1 ⊙ yτ(1)

)
i1
· · ·

(
xr−q ⊙ yτ(r−q)

)
ir−q

,
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where ⊙ denotes entry-wise multiplication. When upper bounding J , we assumed without
loss of generality, that all vectors have nonnegative entries. Since the vectors x1, . . . , xr−q,
y1, . . . , yr−q ∈ B

d
p, it follows that xi ⊙ yτ(i) ∈ B

d
p/2 by the Cauchy-Schwarz inequality.

Consequently, for any fixed permutation τ ∈ Sr−q, we have the bound

d∑

i1,...,ir−q=1

(A1⊗q)i1,...,ir−q

(
x1 ⊙ yτ(1)

)
i1
· · ·

(
xr−q ⊙ yτ(r−q)

)
ir−q

≤
∥∥A1⊗q

∥∥
Ip/2

.

This shows that J ≤ (r − q)! · ‖A1⊗q‖Ip/2 for any choice of x1, . . . , xr−q, y1, . . . , yr−q ∈ B
d
p.

Thus ‖H‖Ip .r ‖A1⊗q‖Ip/2 , from which the theorem follows.

Proof of Corollary 2.2. We start by showing that the ℓ1 injective norm of a tensor U is
equal to the maximum absolute value of its entry. The lower bound maxi1,...ir∈[d] |Ui1,...ir | ≤
‖U‖I1 is clear. For the other direction, let ‖x1‖1 , . . . , ‖xr‖1 ≤ 1,

∣∣∣U [x1, . . . , xr]
∣∣∣ ≤ max

i1,...ir∈[d]
|Ui1,...ir |

d∑

i1,...,ir=1

|(x1)i1 · · · (xr)ir | ≤ max
i1,...ir∈[d]

|Ui1,...ir |.

Next, we show that the biggest entry of A1⊗q is ≍r ∆r−q. Let {i1, . . . , ir−q} be r − q
vertices and h1, . . . , hl ∈ E be all hyperedges containing {i1, . . . , ir−q}. We have

(A1⊗q)i1,··· ,ir =

d∑

k1,...,kq=1

Ai1,...,ir−q,k1,...,kq .

Note that Ai1,...,ir−q,k1,...,kq is 1 iff {i1, . . . , ir−q, k1, . . . , kq} = hj for some j ∈ [ℓ]. For each
hyperedge hj, there are at most rq choices of k1, · · · , kq so that {i1, . . . , ir−q, k1, . . . , kq} =
hj . Consequently, we have

(A1⊗q)i1,··· ,ir ≍
r
ℓ ≤ ∆r−q.

Maximizing over i1, · · · , ir gives ‖A1⊗q‖1 ≍r ∆r−q, which implies the corollary.

Proof of Theorem 2.3. We apply Corollary 2.2 to get

E ‖T‖I2 .
r

(log d) ∆
1
2
r−1 + max

2≤q≤r
∆

1
2q

r−q.

We can use tail bounds for Gaussian processes (Theorem 2.7.13 in [Tal21]) to show that
this bound also holds with high probability. Since ‖T‖I2 = supx1,...,xr∈Bd

2
〈T, x1 ⊗ · · · ⊗ xr〉

is the supremum of a Gaussian process, its diameter can be bounded as

E〈T, x1 ⊗ · · · ⊗ xr − x′1 ⊗ · · · ⊗ x′r〉2 .
r

∥∥x1 ⊗ · · · ⊗ xr − x′1 ⊗ · · · ⊗ x′r
∥∥2
F
.
r

1.
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Thus applying Theorem 2.7.13 in [Tal21], we have that with probability 1 − 1/poly(d),

‖T‖I2 .
r

(log d) ∆
1
2
r−1 + max

2≤q≤r
∆

1
2q

r−q +
√

log(d) < Kr

[
(log d) ∆

1
2
r−1 + max

2≤q≤r
∆

1
2q

r−q

]
.

This proves the second bound in (8). To show that the first bound in (8) also holds with
high probability, we simply use the triangle inequality.

∥∥(A⊙ λv⊗r) + T
∥∥
I2

>
∥∥A⊙ λv⊗r

∥∥
I2

−Kr

[
(log d) ∆

1
2
r−1 + max

2≤q≤r
∆

1
2q

r−q

]
.

Without loss of generality, we may assume v = 1, since ‖A⊙ λv⊗r‖I2 remains invariant

under the choice of v ∈ {−1, 1}d, so we have ‖A⊙ λ1⊗r‖I2 = λ ‖A‖I2 . When λ ≥ λA for
large enough constant Cr, it then follows that

∥∥A⊙ λv⊗r
∥∥
I2

> 2Kr

[
(log d) ∆

1
2
r−1 + max

2≤q≤r
∆

1
2q

r−q

]
,

from which the second statement in (8) follows. This proves the theorem.

2.2 Matching Matrices

In this subsection, we give an example of structured random matrices where the bound
implied by Theorem 1.6 is superior to those from other approaches in certain regimes.

We consider the structured random matrix model where every matrix in (2) is a match-
ing matrix. A matching M on [d] is a collection of disjoint unordered pairs (also called
edges) in [d]. The adjacency matrix A of matching M is defined as Ai,j = 1 if {i, j} ∈ M
and Ai,j = 0 otherwise. Theorem 1.6 implies the following upper bound for such matrices
when p ≥ 4 (we defer its proof to the end of the subsection).

Theorem 2.4. Let M1, . . . ,Mn be matchings on [d], the respective adjacency matrices be
A1, . . . , An ∈ R

d×d, and E := M1 ⊔ · · · ⊔ Mn. Define µ ∈ R
n by µi := |Mi| and ∆ ∈ R

d

such that ∆i is the degree of vertex i in the multigraph ([d], E) (including multiplicities).
For p ≥ 4 and g1, . . . , gn being i.i.d. standard Gaussians, we have

d
1
p
− 1

2E

∥∥∥
n∑

k=1

gkAk

∥∥∥
Ip

.
p

(log d) ‖µ‖
1
4
1 ‖∆‖

1
p
∞ ‖µ‖

1
2
− 1

p
2p−4
p−4

. (9)

Since we only consider matrices in this example, we could also use the noncommutative
Khintchine inequality (3) together with Hölder’s inequality as in Remark 1.3. This second
natural approach yields the upper bound

d
1
p
− 1

2E

∥∥∥
n∑

k=1

gkAk

∥∥∥
Ip

.
√

log d · d
1
2
− 1

p ‖∆‖
1
2
∞ . (10)
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Before we prove these inequalities, we discuss when the bound in Theorem 2.4 is better
than (10). Ignoring logarithmic factors, this is the case when

‖µ‖−
p−4
2p−4

1 ‖µ‖ 2p−4
p−4

≪ d ‖∆‖∞ ‖µ‖−1
1 . (11)

The quantity on the right-hand side is the ratio of the maximum degree and the average
degree in the multigraph ([d], E). Since the left-hand side of (11) is upper bounded by

‖µ‖
p

2p−4
∞ using Hölder’s inequality, the gap in (10) is sufficiently large whenever

‖µ‖
p

2p−4
∞ ≪ d ‖∆‖∞ ‖µ‖−1

1 .

Thus, if ([d], E) is irregular and the matchings Mi are sufficiently sparse, then (9) improves
upon (10). Intuitively it makes sense that there needs to be enough asymmetry in the
multigraph ([d], E) to significantly improve upon the estimate (10): if the injective ℓ2 is
maximized by vectors, whose coordinates all have similar magnitude, the application of
Hölder’s inequality underlying (10) is essentially lossless.

An ideal estimate for the injective norm should be as dimension-free as possible. While
we have successfully reduced the dimensional factor in (9), it remains unclear to us what
the appropriate variance parameters should be to further reduce it.

Remark 2.5. By the discussion above, Theorem 2.4 may not be optimal. However, not
all of the loss is due to Theorem 1.6. Some of the parameter estimations are purposefully
loose to express the upper bound in terms of more explicit parameters of the matchings.

Proof of Theorem 2.4. We estimate the variance parameters for the model. In the case of
σ(2,Ip), we have an exact expression.

σ2
(2,Ip)

=

n∑

k=1

‖Ai‖2F = 2

n∑

k=1

|Mk| = 2 ‖µ‖1 (12)

The parameter σ(1,Ip) can be computed using the following observation: since the Ak are
adjacency matrices of matchings, their squares are diagonal matrices with (A2

k)j,j = 1 if
Mk has an edge containing j and (A2

k)j,j = 0 otherwise. Thus we have

n∑

k=1

(A2
k)j,j = ∆j.

Note that ‖x⊙ y‖p
2
≤ 1 for any x, y ∈ B

d
p by the Cauchy-Schwarz inequality. We then get

σ2
(1,Ip)

= sup
x,y∈Bd

p

d∑

j=1

∆jxjyj ≤ sup
z∈Bd

p/2

d∑

j=1

∆jzj = ‖∆‖ p
p−2

. (13)
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It remains to estimate the parameter σ(0,Ip). Contrary to the other variance parameters,
we have no precise expression for σ(0,Ip) in terms of simple properties of the matchings.
The following estimate can be useful nevertheless.

σ2
(0,Ip)

=
∥∥∥

n∑

k=1

Ak ⋆0 Ak

∥∥∥
Ip

= sup
x,y,x′,y′∈Bd

p

n∑

k=1

〈Ak, x⊗ y〉〈Ak, x
′ ⊗ y′〉

Using the Cauchy-Schwarz inequality on the sum over k, we can get rid of the maximum
over x′, y′ ∈ B

d
p.

σ2
(0,Ip)

≤ sup
x,y∈Bd

p

n∑

k=1

〈Ak, x⊗ y〉2 = sup
x,y∈Bd

p

n∑

k=1

( d∑

i,j=1

(Ak)i,jxiyj

)2

We will apply Hölder’s inequality on the sum over i, j with Hölder conjugates 2
p + p−2

p = 1.
We separate the terms as (Ak)i,jxiyj = (Ak)i,j · (Ak)i,jxiyj, which holds since the matrix
Ak only has entries in {0, 1}.

σ2
(0,Ip)

≤ sup
x,y∈Bd

p

n∑

k=1

( d∑

i,j=1

|(Ak)i,j |
p

p−2

) p−2
p

·2( d∑

i,j=1

|(Ak)i,jxiyj|
p
2

) 2
p
·2

We simplify this expression by noting that the sum of all entries of Ak is twice the number
of edges in Mk.

σ2
(0,Ip)

≤ sup
x,y∈Bd

p

n∑

k=1

(2µk)
2p−4

p

( d∑

i,j=1

|(Ak)i,jxiyj|
p
2

) 4
p

Applying Hölder’s inequality on the sum over k with Hölder conjugates 4
p + p−4

p = 1 and
separating the µk factors yields the following:

σ2
(0,Ip)

≤ sup
x,y∈Bd

p

( n∑

k=1

(2µk)
2p−4
p−4

) p−4
p
( n∑

k=1

d∑

i,j=1

|(Ak)i,jxiyj|
p
2

) 4
p

The first factor is now independent of x, y. In the second factor we use the AM-GM
inequality on |xiyj|

p
2 to bound |(Ak)i,jxiyj|

p
2 ≤ 1

2(Ak)i,j(|xi|p + |yj|p). (The fact that Ak

has entries in {0, 1} was also used here.)

σ2
(0,Ip)

. ‖µ‖
2p−4

p
2p−4
p−4

· sup
x,y∈Bd

p

(
1

2

n∑

k=1

d∑

i,j=1

(Ak)i,j(|xi|p + |yj |p)

) 4
p
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Note that we have a sum of two identical suprema by separating the terms with xi coef-
ficients from the ones with yj and using that Ak is symmetric. Moreover, for a fixed i we

have
∑d

k∈[n],j∈[d](Ak)i,j = ∆i and hence

σ2
(0,Ip)

. ‖µ‖
2p−4

p
2p−4
p−4

·
(

sup
x∈Bd

p

d∑

i=1

∆i|xi|p
) 4

p

= ‖µ‖
2p−4

p
2p−4
p−4

‖∆‖
4
p
∞ . (14)

Plugging (14),(13),(12) into Theorem 1.6 yields

d
1
p
− 1

2E

∥∥∥
n∑

k=1

gkAk

∥∥∥
Ip

.
p

(log d) ‖∆‖
1
2
p

p−2
+ ‖µ‖

1
4
1 ‖∆‖

1
p
∞ ‖µ‖

2p−4
4p

2p−4
p−4

.

To finish the proof, it remains to show that the first term is dominated by the second term.
Using Hölder’s inequality and the fact that 2 ‖µ‖1 = ‖∆‖1 holds, we get

‖∆‖
1
2
p

p−2
= (‖∆‖

p
p−2
p

p−2
)
p−2
2p ≤ ‖∆‖

1
p
∞ (‖∆‖1)

p−2
2p ≍ ‖∆‖

1
p
∞ ‖µ‖

p−2
2p

1 = ‖∆‖
1
p
∞ ‖µ‖

1
4
1 ‖µ‖

p−4
4p

1 .

Since the vector µ only has integer coordinates, taking its coordinates to a power greater
than 1 increases their magnitude and thus

‖∆‖
1
2
p

p−2
. ‖∆‖

1
p
∞ ‖µ‖

1
4
1 ‖µ‖

p−4
4p

1 ≤ ‖∆‖
1
p
∞ ‖µ‖

1
4
1

(
‖µ‖

2p−4
p−4
2p−4
p−4

) p−4
4p

= ‖µ‖
1
4
1 ‖∆‖

1
p
∞ ‖µ‖

2p−4
4p

2p−4
p−4

.

Proof of (10). By Hölder’s inequality, Bd
p ⊆ d

1
2
− 1

pB
d
2, so replacing the injective ℓp norm by

the injective ℓ2 norm and then applying NCK in (3) gives

E

∥∥∥
n∑

k=1

gkAk

∥∥∥
Ip

≤
(
d

1
2
− 1

p

)2 ∥∥∥
n∑

k=1

gkAk

∥∥∥
I2

.
√

log d · d1−
2
p

∥∥∥
n∑

k=1

A2
k

∥∥∥
1
2

I2
.

In the proof of Theorem 2.4, we discussed that
∑n

k=1A
2
k is diagonal with ∆i being the i-th

diagonal element. Thus, its spectral norm corresponds to its largest entry, so

E

∥∥∥
n∑

k=1

gkAk

∥∥∥
I2

.
√

log d · d1−
2
p ‖∆‖

1
2
∞ .
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3 Preliminaries

3.1 Variance Parameters and Tensor Norm Inequalities

For a symmetric Gaussian tensor of the form T =
∑n

k=1 gkTk, we introduced in Defini-
tion 1.5 a number of variance parameters (whose dependency on the tensors T1, . . . , Tn is
omitted when it is clear from the context). The next result presents equivalent formulations
of these parameters, whose proof closely follows [Luc23, Lemma A.4].

Lemma 3.1. Given T1, . . . , Tn ∈ (Rd)⊗r symmetric tensors, T =
∑n

k=1 gkTk a Gaussian
tensor as in (2), and 0 ≤ q ≤ r we have

σ2
(q,Ip)

=
∥∥∥

n∑

k=1

Tk ⋆q Tk

∥∥∥
Ip

= sup
ul∈Bd

p, 1≤l≤r−q

n∑

k=1

‖Tk[u1, . . . , ur−q, ·, . . . , ·]‖2F .

Proof. The first inequality follows from the bilinearity of the ⋆q product.

E[T ⋆q T ] = E

[( n∑

k=1

gkTk

)
⋆q

( n∑

k=1

gkTk

)]
=

n∑

k,k′=1

E[gkgk′ ]Tk ⋆q Tk′ =

n∑

k=1

Tk ⋆q Tk.

For the second equality, we first show that the middle term is upper bounded by the right
term. Let u1, . . . , ur−q, vq+1, . . . , vr ∈ B

d
p, we have

( n∑

k=1

Tk ⋆q Tk

)
[u1, . . . , ur−q, vq+1, . . . , vr]

=

n∑

k=1

d∑

m1,...,mq=1

Tk[u1, . . . , ur−q, em1 , . . . , emq ]Tk[em1 , . . . , emq , vq+1, . . . , vr] (Defin. of ⋆q)

=

n∑

k=1

〈
Tk[u1, . . . , ur−q, ·, . . . , ·], Tk [·, . . . , ·, vq+1, . . . , vr]

〉
(Defin. of dot product)

≤
n∑

k=1

‖Tk[u1, . . . , ur−q, ·, . . . , ·]‖F · ‖Tk[·, . . . , ·, vq+1, . . . , vr]‖F (Cauchy-Schwarz on 〈·, ·〉)

≤

√√√√
n∑

k=1

‖Tk[u1, . . . , ur−q, ·, . . . , ·]‖2F
n∑

k′=1

‖Tk′ [·, . . . , ·, vq+1, . . . , vr]‖2F (Cauchy-Schwarz)

(15)

The last step used the Cauchy-Schwarz inequality on the sum over the index k. Using
symmetry of Tk and taking the supremum over the ul and vl being in B

d
p yields:

∥∥∥
n∑

k=1

Tk ⋆q Tk

∥∥∥
Ip

≤ sup
ul∈Bd

p, 1≤l≤r−q

n∑

k=1

‖Tk[u1, . . . , ur−q, ·, . . . , ·]‖2F (16)
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The vl and the square-root disappeared in this expression, since we are multiplying two
identical suprema. To show that (16) is an equality, we pick our vl such that ul = vl+q

holds for 1 ≤ l ≤ r−q. Then all inequalities in (15) become equalities, since the vectors for
which we used the Cauchy-Schwarz inequality would be identical. Adding this restriction
will end up with the same supremum as the one in (16) due to the symmetry of the Tk,
which proves equality of the two expressions.

It is not immediately clear how these parameters relate to the injective norms of the
tensors T1, . . . , Tn, and we will investigate this in the remainder of this subsection. In the
case p = 2 and r = 2 these parameters have already appeared in the literature, where σ(0,Ip)
is often referred to as the “weak variance” [Tro15] while σ(1,Ip) is the variance parameter
appearing in the noncommutative Khintchine inequality in (3).

In general, relating these variance parameters and the sum of squared injective norms
requires comparison bounds between the Frobenius norm and injective norm of a tensor.
This turns out to be a specific case of a more general problem about boundedness of
multilinear forms in ℓp-spaces, which has been well studied (e.g., [PP81, DSP16]), with
the oldest source dating back to Hardy and Littlewood, who focused on bilinear forms in
[HL34]. We use the following inequality from [PP81, Theorem B], which has been reproved
and generalized in [DSP16, Proposition 4.1 and 4.4].

Theorem 3.2 (Theorem B in [PP81]). Let T ∈ (Rd)⊗r and let p1, . . . , pr ≥ 1 be reals such
that s := 1

p1
+ . . . + 1

pr
≤ 1

2 holds and define p̃ = 2r
r+1−2s . We have

( d∑

m1,...,mr=1

|(T )(m1 ,...,mr)|p̃
)1/p̃

.
r

sup
‖ui‖pi

=1
T [u1, . . . , ur].

Corollary 3.3. Let T be a d-dimensional order r tensor and 2 ≤ p < ∞. We have

‖T‖F .
r
dmax{r/p−1/2,0} ‖T‖Ip .

Proof. We first consider the case p = 2r. We use Theorem 3.2 where we define p1 = · · · =
pr = 2r, so in this case p̃ = 2 holds and we get

‖T‖F =

( d∑

m1,...,mr=1

|(T )(m1,...,mr)|2
)1/2

.
r

sup
‖ui‖2r=1

T [u1, . . . , ur] = ‖T‖I2r .

The result for p ≥ 2r immediately follows since ‖T‖I2r ≤ ‖T‖Ip . If p ≤ 2r, we use Hölder’s
inequality on the vectors ui to prove

‖T‖I2r = sup
‖ui‖2r=1

T [u1, . . . , ur] ≤ sup

‖ui‖p≤d
1
p− 1

2r

T [u1, . . . , ur] = d
r
p
− r

2r ‖T‖Ip .
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Remark 3.4. The upper bound in Corollary 3.3 is tight up to a constant factor in general
in the regime of p ≥ 2. When 2 ≤ p ≤ 2r, a tensor with i.i.d. standard Gaussian entries
proves its tightness (see Lemma 3.14); for p ≥ 2r, a tensor with a single nonzero entry
shows tightness of the bound.

While the bound in Corollary 3.3 also extends to the case of p < 2, it would no longer be
optimal up to constants. For example, for p = 1 the injective norm is simply the maximal
absolute entry of a tensor, so ‖T‖F ≤ dr/2 ‖T‖I1 , which is much smaller than dr−

1
2 .

This result allows us to relate the variance parameters to the sum of squared norms.

Definition 3.5. Given tensors T1, . . . , Tn ∈ (Rd)⊗r we define the type-2 Ip-variance as

σ2
T2Ip

:=

n∑

k=1

‖Tk‖2Ip .

Corollary 3.6. For any 0 ≤ q ≤ r and tensors T1, . . . , Tn ∈ (Rd)⊗r we have

σ(q,Ip) .
r
dmax{q/p−1/2,0}σT2Ip .

Proof. We take the supremum in Lemma 3.1 inside the sum and then use Corollary 3.3 to
bound ‖Tk[u1, . . . , ur−q, ·, . . . , ·]‖F .r dmax{q/p−1/2,0} ‖T‖Ip , since Tk[u1, . . . , ur−q, ·, . . . , ·]
is an order q tensor.

σ2
(q,Ip)

≤
n∑

k=1

sup
ul∈Bd

p, 1≤l≤r−q,

‖Tk[u1, . . . , ur−q, ·, . . . , ·]‖2F .
r

n∑

k=1

d
max{ 2q

p
−1,0} ‖Tk‖2Ip

In the context of random matrices this parameter appeared first for a cruder version of
the noncommutative Khintchine inequality in [TJ74], where Schatten norms were consid-
ered. For the spectral norm of matrices it appeared in [AW02], where the authors proved
a cruder version of a matrix Chernoff inequality using the sum of squared operator norms.
While there are cases where the upper bound in Corollary 3.6 is tight, the loss one gets by
using the type-2 Ip-variance can in general be significant. For the p = r = 2 (Euclidean
matrix) case, this loss has been discussed in more detail in [Tro15].

3.2 The Gaussian Process Setting

Finding the expected injective norm of a symmetric Gaussian tensor T =
∑n

k=1 gkTk boils
down to bounding the expected supremum of the following Gaussian processes.

E

[∥∥∥
n∑

k=1

gkTk

∥∥∥
I

]
= E

[
sup

‖x1‖,...,‖xr‖≤1

n∑

k=1

gk〈Tk, x1 ⊗ . . .⊗ xr〉
]
.
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Since our focus is not on optimizing constant factors that depend on r, we may consider
the following expected supremum instead (using Proposition 4.15 later):

E

[
sup
‖u‖≤1

∣∣∣
n∑

k=1

gk〈Tk, u⊗ . . .⊗ u〉
∣∣∣
]
. (17)

The absolute value inside the supremum can be removed up to a factor of 2 by a symmetry
argument (replacing the gk by −gk will not change the distribution and the supremum is
always nonnegative as 0 is in B

d
p; see also in the proof of Proposition 3.13).

Definition 3.7. Let T ⊂ R
n be a set. A Gaussian process {gu}u∈T is a collection of

centered jointly Gaussian random variables. The natural distance on T induced by the
Gaussian process is defined by

d(u, v) :=
√

E(gu − gv)2.

The celebrated majorizing measures theorem of Talagrand [Tal21] says that the ex-
pected supremum of a Gaussian process (under mild technical assumptions) is determined
by the natural distance structure on the process. The so-called γ2-functional characterizes
up to a universal constant the expected supremum.

E sup
u∈T

gu ≍ γ2(T,d).

Unfortunately, bounding the γ2-functional is a difficult task in general with many open
questions [Tal21]. If one does not aim for the correct polylogarithmic factors (as in this
paper), the expected supremum of the process can be bounded by the covering numbers of
process with respect to the natural distance via Dudley’s entropy integral.

Definition 3.8 (Covering numbers). Let (T,d) be a semi-metric space (i.e., a metric space
without the assumption that d(x, y) = 0 implies x = y). For any ε > 0, we define N (T,d, ε)
to be the minimum cardinality of a subset N ⊆ T , such that for any t ∈ T there exists
a t′ ∈ N with d(t, t′) ≤ ε. We refer to such a set N as an ε-covering, and N (T,d, ε) the
covering numbers of the space (T,d).

Theorem 3.9 (Dudley’s entropy integral). Let {gu}u∈T be a Gaussian process and d be the
natural distance on T . If T contains a countable subset T ′ for which supu∈T gu = supu∈T ′ gu
holds almost surely, then

E sup
u∈T

gu .

∫ ∞

0

√
logN (T,d, ε) dε.

Providing covering number estimates for the Gaussian process corresponding to tensor
injective norms remains a challenging task, even when one is willing to lose logarithmic
factors. In the following Section 4, we present a volumetric argument to bound the covering
numbers, which provides the correct estimate (up to a log factor) for some regimes of r, p
and yields some sub-optimal, but nevertheless new, estimates for other values.
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3.3 Classical Covering Number Bounds

In this subsection, we discuss classical bounds for the covering numbers above and why the
resulting tensor concentration inequality is not satisfactory.

Definition 3.10. Given symmetric tensors T1, . . . , Tn ∈ (Rd)⊗r, we define the natural
distance d on R

d as follows:

d(u, v) :=

√√√√
n∑

k=1

(〈Tk, u⊗r〉 − 〈Tk, v⊗r〉)2.

The indexing set for the process in (17) in our setting will be B
d
p. We omit the depen-

dency on the Tk in the distance d, as it is usually clear from context. There is a direct
relationship between the distance d and the ℓp distance.

Lemma 3.11. Let T1, . . . , Tn ∈ (Rd)⊗r be symmetric tensors and u, v ∈ B
d
p, then

d(u, v) ≤ rσ(0,Ip) ‖u− v‖p .

Proof. We start by writing telescopic sums inside the squares of the natural distance.

d(u, v)2 =
n∑

i=1

(〈Ti, u
⊗r〉−〈Ti, v

⊗r〉)2 =
n∑

i=1

( r∑

q=1

(
〈Ti, u

⊗r−q+1⊗v⊗q−1〉−〈Ti, u
⊗r−q⊗v⊗q〉

))2
.

Using the Cauchy-Schwarz inequality on all n squares yields:

d(u, v)2 ≤
n∑

i=1

r

r∑

q=1

(〈Ti, u
⊗r−q+1 ⊗ v⊗q−1〉 − 〈Ti, u

⊗r−q ⊗ v⊗q〉)2.

Exploiting the symmetry of the Ti, we can rewrite the bound above as follows:

n∑

i=1

r

r∑

q=1

〈Ti, u
⊗r−q⊗v⊗q−1⊗(u−v)〉2 = r ‖u− v‖2p

r∑

q=1

n∑

i=1

〈
Ti, u

⊗r−q⊗v⊗q−1⊗ u− v

‖u− v‖p

〉2

.

Since u, v ∈ B
d
p, the sum over the index i is bounded by σ2

(0,Ip)
(due to Lemma 3.1). Thus,

d(u, v)2 ≤ r ‖u− v‖2p
r∑

q=1

σ2
(0,Ip)

= r2 ‖u− v‖2p σ2
(0,Ip)

.

This lemma provides us with the following first covering number estimate.
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Corollary 3.12. Given symmetric tensors T1, . . . , Tn ∈ (Rd)⊗r. For any 0 < s < rσ(0,Ip),

√
log(N (Bd

p,d, s)) ≤
√

d log(3rσ(0,Ip)/s).

For s ≥ rσ(0,Ip), we have √
log(N (Bd

p,d, s)) = 0.

Proof. Let 0 < ε < 1 and pick a minimal ε-covering of Bd
p with respect to the ℓp-distance

(setting ε = s/(rσ(0,Ip))). A classical volumetric argument shows that the covering number

is bounded by (3/ε)d, see [AAGM15, Corollary 4.1.15]. Since an ε-covering of B
d
p with

respect to ‖·‖p is an s-covering of Bd
p with respect to d by Lemma 3.11, we have

√
log(N (Bd

p,d, s)) ≤
√

d log(3rσ(0,Ip)/s).

In the case s ≥ rσ(0,Ip), the point 0 already forms an s-covering of B
d
p, which implies√

log(N (Bd
p,d, s)) = 0. This proves the corollary.

This covering number bound has been referred to as “Slepian bound” [BvH16], since it
can also be shown using a Gaussian comparison inequality. This bound can be used in the
entropy integral, but as we will see below, the resulting tensor concentration inequality is
not satisfactory, which also serves as additional motivation for this paper.

Proposition 3.13. Let T1, . . . , Tn ∈ (Rd)⊗r be symmetric tensors. For g1, . . . ,gn being
i.i.d. standard Gaussians we have

E

∥∥∥
n∑

k=1

gkTk

∥∥∥
Ip

.
r

√
dσ(0,Ip).

Proof. Using Proposition 4.15 and the symmetry of the Gaussians gk, it suffices to bound

E

∥∥∥
n∑

k=1

gkTk

∥∥∥
Ip

.
r
E sup

‖u‖p≤1

∣∣∣∣∣

m∑

k=1

gk〈Tk, u
⊗r〉

∣∣∣∣∣

= Emax

{
sup

‖u‖p≤1

m∑

k=1

gk〈Tk, u
⊗r〉, sup

‖u‖p≤1

m∑

k=1

−gk〈Tk, u
⊗r〉

}

≤ E sup
‖u‖p≤1

m∑

k=1

gk〈Tk, u
⊗r〉 + E sup

‖u‖p≤1

m∑

k=1

−gk〈Tk, u
⊗r〉

= 2E sup
‖u‖p≤1

m∑

k=1

gk〈Tk, u
⊗r〉.
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The expected supremum of the process in the last equality can be bounded by plugging
the estimate from Corollary 3.12 into Theorem 3.9.

∫ ∞

0

√
log(N (Bd

p,d, s)) ds ≤
∫ rσ(0,Ip)

0

√
d log(3rσ(0,Ip)/s) ds.

We substitute s′ = s
rσ(0,Ip)

, which results in

∫ rσ(0,Ip)

0

√
d log(3rσ(0,Ip)/s) ds = r

√
dσ(0,Ip)

∫ 1

0

√
log(3/s′) ds′ . r

√
dσ(0,Ip).

In the i.i.d. entry case this “classical” bound performs well, as the next result will
show. The parameter σ(0,Ip) in some sense nicely exploits the orthogonality of tensors for
this model. We also prove optimality of the exponent in Corollary 3.3 with this example.

Lemma 3.14. For every (i1, . . . , ir) ∈ [d]r with i1 ≤ . . . ≤ ir, we have an independent
standard Gaussian g(i1,...,ir) and define the symmetric tensor T(i1,...,ir) with

T(i1,...,ir)[eiτ(1) , . . . , eiτ(r) ] = 1

for every permutation τ ∈ Sr and 0 otherwise. The symmetric random tensor

T =
∑

1≤i1,...,ir≤d

g(i1,...,ir)T(i1,...,ir)

has the following properties for 2 ≤ p ≤ 2r:

d
r
2 ≍

r
E ‖T‖F ≍

r
d

r
p
− 1

2E ‖T‖Ip .

Proof. We use Proposition 3.13 to upper bound the expected injective ℓp norm of T , which
requires an estimate for σ(0,Ip). Let u1, . . . , ur ∈ B

d
p. Since the tensors T(i1,...,ir) are orthog-

onal and have Frobenius norm at most
√
r!, we have

∑

1≤i1,...,ir≤d

〈T(i1,...,ir), u1 ⊗ · · · ⊗ ur〉2 ≤ r! ‖u1 ⊗ · · · ⊗ ur‖2F = r!

d∑

i1,...,ir=1

(u1)2i1 · · · (ur)2ir .

Taking the supremum over u1, . . . , ur being in B
d
p we get

σ2
(0,Ip)

≤ r! sup
u1,...,ur∈Bd

p

d∑

i1,...,ir=1

(u1)2i1 · · · (ur)2ir ≤ r! sup
u1,...,ur∈Bd

p

‖u1‖22 · · · ‖ur‖22 ≤ r!d
r− 2r

p .
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The last inequality follows from using Hölder’s inequality (‖uq‖2 ≤ d
1
2
− 1

p ‖uq‖p). Thus,

E ‖T‖Ip .
r

√
dσ(0,Ip) .

r
d

r+1
2

− r
p .

We show that the reverse inequality also holds. We lower bound the expected Frobenius
norm of T . If every Gaussian g(i1,...,ir) was replaced by an independent rademacher random
variable ε(i1,...,ir) (which is 1 with probability 1/2 and −1 with probability 1/2), then the

Frobenius norm of the tensor would be equal to dr/2 almost surely, as every entry has
absolute value 1. The expected norm of the Gaussian tensor dominates the expected norm
of the rademacher tensor, which is a classical fact that holds more generally in Banach
spaces (see section 4.2 in [LT91]). Therefore,

E

∥∥∥
∑

1≤i1,...,ir≤d

g(i1,...,ir)T(i1,...,ir)

∥∥∥
F
& E

∥∥∥
∑

1≤i1,...,ir≤d

ε(i1,...,ir)T(i1,...,ir)

∥∥∥
F

= d
r
2 .

We can use Corollary 3.3 to also get a upper bound for the Frobenius norm using the
injective ℓp-norm.

d
r
2 . E ‖T‖F .

r
d

r
p
− 1

2E ‖T‖Ip .
r
d

r
p
− 1

2d
r+1
2

− r
p = d

r
2 .

This implies that all inequalities here are actually equivalences, (up to constants that may
depend on r) which finishes the proof.

While the bound from Proposition 3.13 captures the correct dimensional dependence
for the i.i.d. entry model, it performs rather poorly for most other models, especially when
σ(0,Ip) ≍ σT2Ip holds, which is the case for example when T1 = . . . = Tn. To further
illustrate the shortcomings of this bound, consider the case n = d, where we have tensors
T1, . . . , Td ∈ (Rd)⊗r with ‖Tk‖Ip ≤ 1 for all 1 ≤ k ≤ d. The best bound for σ(0,Ip) in terms

of d in this case is σ(0,Ip) ≤ σT2Ip ≤
√
d. Thus, Proposition 3.13 provides the estimate

E

∥∥∥
n∑

k=1

gkTk

∥∥∥
Ip

.
r
d.

This does not improve over the trivial triangle inequality:

E

∥∥∥
d∑

k=1

gkTk

∥∥∥
Ip

≤
d∑

k=1

E ‖gkTk‖Ip . d.

In contrast, our result in Theorem 1.2 does not have this drawback and gives the bound

E

∥∥∥
n∑

k=1

gkTk

∥∥∥
Ip

.
r,p

d
1− 1

max{p,2r} .
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4 Proof of Main Results

The goal of this section is to first prove Theorem 1.6, and then Theorem 1.2 as a conse-
quence. More specifically, most of the effort will go into proving

E

[∥∥∥
n∑

k=1

gkTk

∥∥∥
Ip

]
.
r

√
pd

1
2
− 1

p

(
log(d + 1)σ(1,Ip) + max

2≤q≤r

{
σ
1− 1

q

(0,Ip)
σ

1
q

(q,Ip)

})
.

The proof will be divided into three parts (Section 4.1 - 4.3 respectively). The first two
parts will prove this bound for symmetric, diagonal-free tensors with a symmetric version of
the ℓp injective norm. The first part deals with estimations involving the natural distance
d, where diagonal-freeness is used to better estimates in terms of distance d. The second
part then proves the covering number bound and computes the entropy integral. The third
part is devoted to removing the symmetry and diagonal-free assumptions using symmetric
embeddings. Finally, the lower bound in Theorem 1.2 will be proved in Section 4.4.

4.1 Probabilistic Distance Estimates and Diagonal-Free Tensors

As seen in Section 1.4, we will have to upper bound the expected distance between a
point and a random point in an ℓp-ball around it. A helpful step in this computation is
to estimate the second moment of a tensor evaluated at a random point in B

d
p. For some

tensors (like the identity matrix in the case p = 2) this quantity may be of the same order
as its norm, but this issue can be resolved by assuming diagonal-freeness.

Definition 4.1 (Diagonal-freeness). An order r tensor T is called diagonal-free, if Ti1,...,ir =
0 when some index appears at least twice. In other words, Ti1,...,ir = 0, if there exist a 6= b,
such that ia = ib.

As we will see in Section 4.3, the symmetric embedding of a tensor is diagonal-free, so
this assumption is without loss of generality.

Lemma 4.2. Let b ∈ B
d
p be a random vector distributed according to the normalized

Lebesgue measure on B
d
p and let r ≤ d be an integer and 2 ≤ p < ∞, then

E[b2
1 · · ·b2

r] ≤ d−
2r
p .

Proof. It suffices to show
E[|b1|p · · · |br|p] ≤ d−r,

as then the desired statement follows from Jensen’s inequality.

E[b2
1 · · ·b2

r] ≤ E[|b1|p · · · |br|p]2/p ≤ d−
2r
p
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We use induction over r. For r = 1 we have E[|b1|p] ≤ d−1 since

dE[|b1|p] =

d∑

j=1

E[|bj |p] ≤ 1.

Assume the statement holds for r − 1, then because ‖b‖p ≤ 1 almost surely, we get

d−r−1 ≥ E[|b1|p · · · |br−1|p · 1] ≥
d∑

j=1

E[|b1|p · · · |br−1|p|bj |p].

If we manage to show

E[|b1|p · · · |br−2|p|br−1|2p] ≥ E[|b1|p · · · |br|p],

we can use the symmetry of the coordinates to finish the inductive proof. The inequality
above immediately follows from coordinate symmetry when we look at the inequality

E[|b1|p · · · |br−2|p(|br−1|p − |br|p)2] ≥ 0.

Lemma 4.3. Let T be a symmetric diagonal-free order r tensor of dimension d and let
b ∈ B

d
p be a random vector distributed according to the normalized Lebesgue measure on B

d
p

for 2 ≤ p < ∞. We have
E[〈T,b⊗r〉2] .

r
d−2r/p ‖T‖2F .

Proof. In the case d < r this is indeed true by the Cauchy-Schwarz inequality E[〈T,b⊗r〉2] ≤
‖T‖2F E ‖b⊗r‖2F .r ‖T‖2F. Now assume d ≥ r. First note that

E[〈T,b⊗r〉2] =
d∑

n1,...,nr=1

d∑

m1,...,mr=1

E[(T )(n1,...,nr)(T )(m1,...,mr)bn1 · · ·bnrbm1 · · ·bmr ].

The terms being summed can only be nonzero, when {n1, . . . , nk} = {m1, . . . ,mk}, since
both of these sets need to have cardinality r (due to T being diagonal-free) and if one index
(let’s say n1) is only present in one of the sets, then the expectation becomes zero due to
a symmetry argument (bn1 can be replaced by −bn1 without changing the distribution of
b). We can use the symmetry of T to simplify the sum over the indices m1, . . . ,md as
follows:

E[〈T,b⊗r〉2] =
∑

n1,...,nr
ni 6=nj∀i 6=j

r!E[(T )2(n1,...,nr)
b2
n1

· · ·b2
nr

] = E[b2
1 · · ·b2

r ]
∑

n1,...,nr
ni 6=nj∀i 6=j

r!(T )2(n1,...,nr)
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Since T is diagonal-free, we have
∑

n1,...,nr
ni 6=nj∀i 6=j

r!(T )2(n1,...,nr)
=

∑

n1,...,nr

r!(T )2(n1,...,nr)
= r! ‖T‖2F .

Combining these equalities with Lemma 4.2 proves the desired statement.

This estimate allows us to bound the expected natural distance between a point x and
a random point in a scaled ℓp-ball centered at x.

Corollary 4.4. Let T1, . . . , Tn ∈ (Rd)⊗r be symmetric diagonal-free tensors. Let b ∈ B
d
p

be a random vector distributed according to the normalized Lebesgue measure on B
d
p for

2 ≤ p < ∞ and y := x + tb for some t > 0 and x ∈ B
d
p. We have

Eb[d(x,y)] .
r

max
1≤q≤r

{
d−q/ptqσ(q,Ip)

}
.

Proof. By an application of Jensen’s inequality, it suffices to show

Eb[d(x,y)2] .
r

max
1≤q≤r

{
d−2q/pt2q

∑n
k=1

∥∥Tkx
⊗(r−q)

∥∥2
F

}
,

since by Lemma 3.1 the inequality
∑n

k=1

∥∥Tkx
⊗(r−q)

∥∥2
F
≤ σ2

(q,Ip)
holds. We first consider

the case of a single tensor Tk. Let

Dk := Eb[(〈Tk, x
⊗r〉 − 〈Tk,y

⊗r〉)2] = Eb[(〈Tk, x
⊗r〉 − 〈Tk, (x + tb)⊗r〉)2].

Using the symmetry of Tk, we can expand the expression above as follows:

Dk = Eb[(
∑r

q=1

(r
q

)
tq〈Tk, x

⊗r−q ⊗ b⊗q〉)2] = Eb[(
∑r

q=1

(r
q

)
tq〈Tkx

⊗r−q,b⊗q〉)2].

We will use the Cauchy-Schwarz inequality to upper bound Dk by a sum of squares.

Dk .
r

∑r
q=1 t

2q
Eb[〈Tkx

⊗r−q,b⊗q〉2].

The tensor Tkx
⊗r−q is a diagonal-free order q tensor, which allows us to use Lemma 4.3 to

upper bound Eb[〈Tkx
⊗r−q,b⊗q〉2].

Dk .
r

∑r
q=1 t

2q
Eb[〈Tkx

⊗r−q,b⊗q〉2] .
r

∑r
q=1 t

2qd−2q/p ‖Tkx
⊗r−q‖2F .

Summing this bound over k and bounding the sum over the q by their maximum gives

Eb[d(x,y)2] =
n∑

k=1

Dk .
r

max
1≤q≤r

{
d−2q/pt2q

∑n
k=1

∥∥Tkx
⊗(r−q)

∥∥2
F

}
.
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4.2 Covering Number Bound

This subsection contains the key part of the proof. We will summarize in short again
how the covering numbers are going to be bounded. We take a maximal 2ε-seperated set,
(which is also a 2ε-covering) of Bd

p with respect to the natural distance. The ε-balls around
the points in the seperated set are all disjoint, which means their intersection scaled ℓp-
balls around their centers are also disjoint. We can intersect all of these sets with a larger
ℓp-ball centered at 0, while still retaining a constant fraction of their original volume, so
by estimating the volume of these intersections we can bound the maximal number of such
sets, that could fit in the larger ℓp-ball.

By the triangle inequality, the ball x + tBd
p is contained in (1 + t)Bd

p. However, using a
ball of this radius to perform our volume argument will be too loose. Instead we will show
that at least half of the ball x + tBd

p is contained in
√

p− 1 + t2Bd
p. This statement is a

direct consequence of 2-uniform convexity in Lp spaces. It has been extended to Schatten
classes in [LBC94] (Theorem 1), here we state a much weaker version of the result.

Theorem 4.5 (2-uniform convexity). Let x, y ∈ R
d and p ≥ 2. It holds

(‖x− y‖pp + ‖x + y‖pp
2

)2/p

≤ ‖x‖2p + (p− 1) ‖y‖2p .

Corollary 4.6. Let t > 0, 2 ≤ p < ∞, x ∈ B
d
p deterministic and b ∈ B

d
p uniformly

distributed according to the normalized Lebesgue measure. We have

P[‖x + tb‖p ≤
√

t2 + p− 1] ≥ 1

2
.

Proof. By symmetry of b, the following random variables are identically distributed:

‖x + tb‖p ∼ ‖x + tεb‖p ∼ ‖εx + tb‖p
Here ε is a rademacher random variable (ε = ±1 with probability 1/2 each) which is
independent from b. Conditioning on b = b for any fixed b ∈ B

d
p, we get

P
[
‖εx + tb‖p = min

{
‖x + tb‖p , ‖−x + tb‖p

}]
=

1

2
.

Using Theorem 4.5, we see that

min
{
‖x + tb‖p , ‖−x + tb‖p

}
≤

(‖tb− x‖pp + ‖tb + x‖pp
2

)1/p

≤
√

‖tb‖2p + (p− 1) ‖x‖2p.

Since b and x are in B
d
p, we get that for any fixed outcome b ∈ B

d
p,

P
[
‖εx + tb‖p ≤

√
t2 + p− 1

]
≥ 1

2
.

Integrating this conditional probability w.r.t. the distribution of b finishes the proof.
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This improvement is crucial, as large values of t contribute more to the entropy integral.
We now have all ingredients for our volumetric estimate the covering numbers.

Lemma 4.7 (Covering number estimate). Let T1, . . . , Tn ∈ (Rd)⊗r be symmetric diagonal-
free tensors and 2 ≤ p < ∞. For any t > 0 we have

N (Bd
p,d, C(r) max1≤q≤r

{
d−q/ptqσ(q,Ip)

}
) ≤ 4e

(p−1)d

2t2 ,

where C(r) > 0 is a constant only depending on r.

Proof. Let x ∈ B
d
p and let y := x+ tb be a uniformly distributed random vector in x+ tBd

p

as in Corollary 4.6. We estimated the expected distance between x and y in Corollary 4.4.
There exists a constant C(r) > 0 depending on r, such that

M := C(r) max
1≤q≤r

{
d−q/ptqσ(q,Ip)

}
≥ Eb[d(x,y)]

holds. Thus, an application of Markov’s inequality yields:

Pb [d(x,y) ≥ 4M ] ≤ 1

4
.

Corollary 4.6 gives the estimate

P[‖y‖p >
√

t2 + p− 1] ≤ 1

2
.

By union bounding the probability of either of these events occurring, we get the following
lower bound on the complement:

P[‖y‖p ≤
√

t2 + p− 1, d(x,y) < 4M ] ≥ 1

4
.

In other words, at least a “quarter” (of the Lebesgue measure) of x + tBd
p has natural

distance at most 4M from x and ℓp-norm at most
√

p− 1 + t2. Now let x1, . . . , xN be a
maximal 8M -separated set in B

d
p with respect to d. This set forms a 8M -covering of Bd

p

with respect to d, as otherwise there would be a point in B
d
p that has distance at least 8M

from x1, . . . , xN , which contradicts maximality. The open balls Bd(xi, 4M), 1 ≤ i ≤ N
must be disjoint, hence the sets

Gi := Bd(xi, 4M) ∩
√
p− 1 + t2Bd

p ∩ (xi + tBd
p)

are also disjoint. By the computation at the start of our proof we have

vol(Gi) ≥
1

4
vol(xi + tBd

p) =
td

4
vol(Bd

p).
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The union of all Gi is also contained in
√
p− 1 + t2Bd

p, therefore,

N
td

4
vol(Bd

p) ≤
N∑

i=1

vol(Gi) ≤ vol(
√

p− 1 + t2Bd
p) = (p − 1 + t2)d/2 vol(Bd

p),

which implies the desired covering number bound

N (Bd
p,d, 8M) ≤ N ≤ 4

(
p− 1 + t2

t2

)d/2

≤ 4e
(p−1)d

2t2 .

Remark 4.8. While preparing this manuscript, it was brought to our attention7 that an
essentially equivalent version of this covering number estimate has already been attained
in the special case p = 2 in [Lat06, Corollary 2]. In contrast to our techniques, Lata la’s
argument uses an inductive procedure over the tensor order, combined with Gaussian
measure estimates.

The bound was later used to obtain a different tensor concentration inequality for the
special case of p = 2 using chaining machinery (Theorem 2 and Theorem 3 in [Lat06]).
This bound does not have the logarithmic factor in Theorem 1.6 but comes with additional
terms which are too large for the purpose of estimating type constants. For the application
in [Lat06] the bound sufficed, as the dimension-freeness of the bound was one of the main
goals in Lata la’s paper. Although it is not the focus of the present manuscript, it might
further be possible to use Lata la’s chaining argument to obtain an analogue of Theorem 1.6
without logarithmic factors.

Corollary 4.9. Let T1, . . . , Tn ∈ (Rd)⊗r be symmetric diagonal-free tensors and 2 ≤ p <
∞. For any s > 0 we have

√
log(N (Bd

p,d, s)) .
r

1 +
√
pd

1
2
− 1

p max
1≤q≤r

{
s−

1
q σ

1
q

(q,Ip)

}

Proof. Let s > 0 and pick t > 0, such that s = C(r) max1≤q≤r

{
d−q/ptqσ(q,Ip)

}
holds, with

C(r) being the constant in Lemma 4.7. (Such a t always exists by continuity of the previous
expression with respect to t, if any of the variances is nonzero.) We claim

√
d

t
.
r
d

1
2
− 1

p max
1≤q≤r

{
s−

1
q σ

1
q

(q,Ip)

}

holds, which combined with Lemma 4.7 yields the desired statement. To prove our claim,
let q be the index, such that

s = C(r)d−q/ptqσ(q,Ip)

7We thank Ramon van Handel for pointing out the reference [Lat06].
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holds. Rearranging this equality shows

√
d

t
= C(r)

1
q s

− 1
q d

1
2
− 1

pσ
1
q

(q,Ip)
.

The claim follows by taking the maximum on the right side over all indices 1 ≤ q ≤ r.

The estimate from Corollary 4.9 is problematic for small s, since the entropy integral
would in that case diverge. Fortunately, we can replace the estimate by the estimate from
Corollary 3.12. It remains to integrate these bounds using Dudley’s entropy integral. The
main result for the norm of arbitrary tensors will follow in the next section from a technical
trick using the symmetric embedding.

Theorem 4.10. Let T1, . . . , Tn ∈ (Rd)⊗r be symmetric diagonal-free tensors and 2 ≤ p <
∞. If g1, . . . ,gn are i.i.d. standard Gaussians, then

E

[
sup
u∈Bd

p

n∑

k=1

gk〈Tk, u
⊗r〉

]
.
r

√
pd

1
2
− 1

p

(
log(d + 1)σ(1,Ip) + max

2≤q≤r

{
σ
1− 1

q

(0,Ip)
σ

1
q

(q,Ip)

})
.

Proof. Let ∆ be the diameter of Bd
p with respect to d. Dudley’s entropy integral gives:

E

[
sup
u∈Bd

2

n∑

k=1

gk〈Tk, u
⊗r〉

]
.

∫ ξ

0

√
log(N (Bd

p,d, s)) ds +

∫ ∆

ξ

√
log(N (Bd

p,d, s)) ds

The integral from 0 to ξ will use the estimate from Corollary 3.12. We substitute s′ = s/ξ.

∫ ξ

0

√
d log(3rσ(0,Ip)/s) ds =

∫ 1

0
ξ
√
d log(3rσ(0,Ip)/(s′ξ)) ds′ . ξ

√
d log(3rσ(0,Ip)/ξ) + ξ

√
d

Setting ξ = σ(0,Ip)/
√
d yields

∫ ξ

0

√
log(N (Bd

p,d, s)) ds .
r
σ(0,Ip)

√
log(d + 1).

The integral from ξ to ∆ uses the bound from Corollary 4.9, the maximum will be replaced
by a sum and we consider each term separately. Let 2 ≤ q ≤ r, then

√
pd

1
2
− 1

p

∫ ∆

0
s−

1
q σ

1
q

(q,Ip)
ds .

r

√
pd

1
2
− 1

p ∆1− 1
q σ

1
q

(q,Ip)
.

For q = 1 we have

√
pd

1
2
− 1

p

∫ ∆

ξ
s−1σ(1,Ip) ds .

r

√
pd

1
2
− 1

p log(∆/ξ)σ(1,Ip).

33



The diameter can be upper bounded using the Cauchy-Schwarz inequality:

∆ = max
u,v∈Bd

p

√√√√
n∑

i=1

(〈Ti, u⊗r〉 − 〈Ti, v⊗r〉)2 ≤ max
u,v∈Bd

p

√√√√2

n∑

i=1

(
〈Ti, u⊗r〉2 + 〈Ti, v⊗r〉2

)
≤ 2σ(0,Ip)

Moreover, σ(0,Ip) ≤ d
1
2
− 1

pσ(1,Ip) holds, which can be seen by applying Hölders inequality:

d1−
2
pσ2

(1,Ip)
≥ sup

ul∈Bd
p, 1≤l≤r−1,

n∑

k=1

‖Tk[u1, . . . , ur−1, ·]‖2 p
p−1

≥ sup
ul∈Bd

p, 1≤l≤r,

n∑

k=1

(Tk[u1, . . . , ur])
2 = σ2

(0,Ip)

Thus, the integral from 0 to ξ is being absorbed by the other terms. Combining all
upper bounds and bounding the sum by a maximum yields:

∫ ∆

0

√
log(N (Bd

p,d, s)) ds .
r

√
p log(d + 1)d

1
2
− 1

pσ(1,Ip) +
√
pd

1
2
− 1

p max
2≤q≤r

{
σ
1− 1

q

(0,Ip)
σ

1
q

(q,Ip)

}

Remark 4.11. It is possible to reduce the logarithmic factor in Theorem 4.10 by choosing
the splitting of the two integrals at a slightly better place. This will only make a difference
in special cases and since logarithmic factors are not our highest priority, we decided not
to include this improvement.

4.3 Extending to Asymmetric Tensors via Symmetric Embeddings

The goal of this section is to remove the diagonal-freeness as well as bounding the injective
norm instead of the maximum of the symmetric form, to then prove a more general version
of Theorem 4.10. We will do so by using the symmetric embedding of tensors, which
generalizes the standard approach of Hermitian dilation for matrices. The calculations for
general order r and order 2 are essentially the same, just more notational difficulties are
going to arise.

Definition 4.12. Let v ∈ R
rd be a vector. We will define the q-th piece of v (with respect

to the order r) to be the vector v[q] ∈ R
d that has coordinates

v
[q]
i := v(q−1)d+i.

We leave out the “with respect to r” if it is clear from the context.
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Definition 4.13. Let T ∈ (Rd)⊗r be a tensor. We define the symmetric embedding of T
to be the rd-dimensional order r tensor sym(T ) ∈ (Rrd)⊗r characterized by

sym(T )[v1, . . . , vr] :=
∑

τ∈Sr

T [v
[1]
τ(1), . . . , v

[r]
τ(r)].

(Here v
[q]
τ(q) denotes the q-th piece of the vector vτ(q).)

Remark 4.14. The symmetric embedding is both symmetric and diagonal-free, the latter
follows because a canonical basis vector has at most one nonzero coordinate, thus if one
inputs such a vector twice, then every term in the sum over the permutations must be zero.

Spectral properties of symmetric embeddings have been studied before in [RV13]. It is
not hard to be convinced of the fact that in the case r = 2 the symmetric embedding and
the hermitian dilation coincide.

For symmetric tensors a natural question is whether it makes more sense to study one
of the following two norms:

‖T‖Ip = sup
u1,...,ur∈Bd

p

T [u1, . . . , ur] or ‖T‖sym(Ip)
:= sup

u∈Bd
p

|T [u, . . . , u]|

In the case p = 2 these norms actually coincide, which is a fact that has been reproved
several times in the literature. The earliest reference we are aware of is [Kel28]. For other
pairs (r, p) this is generally not true, the simplest example would be the 2 × 2 diagonal
matrix that has a 1 and a −1 on the diagonal, there for any p > 2 the norms are not
the same. The norms are however equivalent up to constants that do not depend on the
dimension d. This is a consequence of a classical application of the polarization formula
for symmetric multilinear maps, see Corollary 1.6 and Proposition 1.8 in [Din99], here we
state a weaker version of the result. (It is important to note that while these results were
stated for complex vector spaces, they still hold for R

d by the same method of proof.)

Proposition 4.15 (Equivalence between injective norms). Let T ∈ (Rd)⊗r be a symmetric
tensor and let ‖·‖ be a norm on R

d. The following inequalities hold:

sup
‖u‖≤1

|T [u, . . . , u]| ≤ sup
‖u1‖,...,‖ur‖≤1

|T [u1, . . . , ur]| ≤
rr

r!
sup
‖u‖≤1

|T [u, . . . , u]|.

The symmetric norm ‖·‖sym(Ip)
of sym(T ) is connected to the injective norm of T as

the next lemma shows. This makes Proposition 4.15 for our purposes essentially irrelevant.

Lemma 4.16. Let T ∈ (Rd)⊗r be a tensor. We have

sup
u∈Bd

p

〈sym(T ), u⊗r〉 = ‖sym(T )‖sym(Ip)
=

r!

r
r
p

‖T‖Ip .
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Proof. Let u ∈ B
rd
p , then

| sym(T )[u, . . . , u]| ≤
∑

τ∈Sr

|T [u[1], . . . , u[r]]| ≤ r!
∥∥∥u[1]

∥∥∥
p
· · ·

∥∥∥u[r]
∥∥∥
p
‖T‖Ip .

By the AM-GM inequality we have

r!
(∥∥u[1]

∥∥p
p
· · ·

∥∥u[r]
∥∥p
p

) r
rp ‖T‖Ip ≤ r!

(∥∥u[1]
∥∥p
p

+ · · · +
∥∥u[r]

∥∥p
p

r

) r
p

‖T‖Ip .

Therefore, since
∥∥u[1]

∥∥p
p

+ · · · +
∥∥u[r]

∥∥p
p

= ‖u‖pp ≤ 1, we get

| sym(T )[u, . . . , u]| ≤ r!

r
r
p

‖T‖Ip .

To finish the proof of the statement we need to show that there exists u ∈ B
rd
p , for which

this upper bound is an equality. Let v1, . . . , vr ∈ B
d
p be vectors, such that

‖T‖Ip = T [v1, . . . , vr].

These vectors must all have p-norm equal to 1 by maximality. Now for 1 ≤ q ≤ r, we
define u ∈ B

rd
p piece-wise as follows:

u[q] := r−1/pvq.

The factor r−1/p ensures that ‖u‖p = 1 holds. Multilinearity shows that this vector admits
the upper bound.

sym(T )[u, . . . , u] =
∑

τ∈Sr

T [u[1], . . . , u[r]] =
r!

r
r
p

‖T‖Ip .

The connection given by Lemma 4.16 allows us to use Theorem 4.10 to provide bounds
for the norm of arbitrary tensors. The variance parameters would still depend on the
symmetric embeddings of the tensors though. They can be expressed more conveniently
in terms of the initial tensors when we assume symmetry as Lemma 4.17 will show. This
Lemma may also be extendable to asymmetric tensors by considering more parameters
that appear due to the asymmetry.

Lemma 4.17. Let T1, . . . Tn ∈ (Rd)⊗r be symmetric tensors. For all 0 ≤ q ≤ r we have

∥∥∥
n∑

k=1

Tk ⋆q Tk

∥∥∥
1/2

Ip
&
r

∥∥∥
n∑

k=1

sym(Tk) ⋆q sym(Tk)
∥∥∥
1/2

Ip
.
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Proof. We first analyze the Frobenius norm of sym(Tk). Let u1, . . . ur−q ∈ B
rd
p

‖sym(Tk)[u1, . . . , ur−q, ·, . . . , ·]‖2F =

rd∑

m1,...mq=1

sym(Tk)[u1, . . . , ur−q, em1 , . . . , emq ]2

Since Tk is symmetric, we can write

sym(Tk)[u1, . . . , ur−q, em1 , . . . , emq ] =
∑

τ∈Sr

Tk[u
[τ(1)]
1 , . . . , u

[τ(r−q)]
r−q , e[τ(r−q+1)]

m1
, . . . , e[τ(r)]mq

].

Applying the Cauchy-Schwarz inequality to this sum yields

sym(Tk)[u1, . . . , ur−q, em1 , . . . , emq ]2 ≤ r!
∑

τ∈Sr

Tk[u
[τ(1)]
1 , . . . , u

[τ(r−q)]
r−q , e[τ(r−q+1)]

m1
, . . . , e[τ(r)]mq

]2.

This bound will be summed over all possible tuples (m1, . . . ,mq). Given numbers 1 ≤
n1, . . . , nq ≤ d and a fixed permutation τ ∈ Sr, there exists at most 1 tuple (m1, . . . ,mq)
in the summation, such that

(e[τ(r−q+1)]
m1

, . . . , e[τ(r)]mq
) = (en1 , . . . , enq )

holds, since the standard basis vectors have precisely one nonzero entry, which determines
the tuple (m1, . . . ,mq) uniquely. For the other tuples (m1, . . . ,md) that do not correspond
to any choice of 1 ≤ n1, . . . , nq ≤ d there must therefore exist some zero vector among

{e[τ(r−q+1)]
m1 , . . . , e

[τ(r)]
mq }. Thus, the following equalities holds:

rd∑

m1,...mq=1

Tk[u
[τ(1)]
1 , . . . , u

[τ(r−q)]
r−q , e[τ(r−q+1)]

m1
, . . . , e[τ(r)]mq

]2

=
d∑

n1,...nq=1

Tk[u
[τ(1)]
1 , . . . , u

[τ(r−q)]
r−q , en1 , . . . , enq ]2

=
∥∥∥Tk[u

[1]
τ(1), . . . , u

[r−q]
τ(r−q), ·, . . . , ·]

∥∥∥
2

F

Summing this over all permutations yields:

rd∑

m1,...mq=1

sym(Tk)[u1, . . . , ur−q, em1 , . . . , emq ]2 ≤ r!
∑

τ∈Sr

∥∥∥Tk[u
[1]
τ(1), . . . , u

[r−q]
τ(r−q), ·, . . . , ·]

∥∥∥
2

F
.

We sum this bound over k.

n∑

k=1

‖sym(Tk)[u1, . . . , ur−q, ·, . . . , ·]‖2F ≤ r!
∑

τ∈Sr

n∑

k=1

∥∥∥Tk[u
[1]
τ(1), . . . , u

[r−q]
τ(r−q), ·, . . . , ·]

∥∥∥
2

F
.
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Taking the supremum over u1, . . . , ur−q ∈ B
rd
p and exchanging the sum over the permuta-

tions with the supremum results in the inequality

∥∥∥
n∑

k=1

sym(Tk) ⋆q sym(Tk)
∥∥∥
Ip

≤ r!
∑

τ∈Sr

sup
u1,...,ur−q∈Brd

p

n∑

k=1

∥∥∥Tk[u
[1]
τ(1), . . . , u

[r−q]
τ(r−q), ·, . . . , ·]

∥∥∥
2

F
.

Since pieces of vectors do not have bigger p-norm than the original vector, we have that

u
[1]
τ(1), . . . , u

[r−q]
τ(r−q) ∈ B

d
p, and therefore

sup
u1,...,ur−q∈Brd

p

n∑

k=1

∥∥∥Tk[u
[1]
τ(1), . . . , u

[r−q]
τ(r−q), ·, . . . , ·]

∥∥∥
2

F
≤

∥∥∥
n∑

k=1

Tk ⋆q Tk

∥∥∥
Ip
.

Hence, we have shown

∥∥∥
n∑

k=1

sym(Tk) ⋆q sym(Tk)
∥∥∥
Ip

≤ (r!)2
∥∥∥

n∑

k=1

Tk ⋆q Tk

∥∥∥
Ip
.

The link between the variance parameters of the embeddings and the original tensors
was the last ingredient needed to prove our main result Theorem 1.6 in its full generality.
We emphasize that the geometric part of the proof was already done in the previous two
subsections.

Theorem 4.18. Let T1, . . . , Tn ∈ (Rd)⊗r be symmetric tensors and 2 ≤ p < ∞. Then

E

[∥∥∥
n∑

k=1

gkTk

∥∥∥
Ip

]
.
r

√
pd

1
2
− 1

p

(
log(d + 1)σ(1,Ip) + max

2≤q≤r

{
σ
1− 1

q

(0,Ip)
σ

1
q

(q,Ip)

})
.

Proof. Using Lemma 4.16 and linearity of the symmetric embedding we have

E

[∥∥∥
n∑

k=1

gkTk

∥∥∥
Ip

]
.
r
E

[
sup
u∈Bd

p

〈 n∑

k=1

gk sym(Tk), u⊗r
〉]

.

The tensors sym(Tk) are diagonal-free and symmetric. Hence, we can apply Theorem 4.10.
To avoid confusion between the different variance parameters in this context we define

σsym
(q,Ip)

:=
∥∥∥

n∑

k=1

sym(Tk) ⋆q sym(Tk)
∥∥∥
1/2

Ip
σ(q,Ip) :=

∥∥∥
n∑

k=1

Tk ⋆q Tk

∥∥∥
1/2

Ip

for 0 ≤ q ≤ r. Theorem 4.10 shows:

E

[
sup
u∈Bd

p

〈 n∑

k=1

gk sym(Tk), u⊗r
〉]

.
r

√
pd

1
2
− 1

p

(
log(d + 1)σsym

(1,Ip)
+ max

2≤q≤r

{
σsym
(0,Ip)

1− 1
q σsym

(q,Ip)

1
q

})
.
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For any 0 ≤ q ≤ r the variance parameter σsym
(q,Ip)

is upper bounded up to order-dependent

factor by σ(q,Ip), which was proven in Lemma 4.17. Thus,

E

[
sup
u∈Bd

p

〈 n∑

k=1

gk sym(Tk), u⊗r
〉]

.
r

√
pd

1
2
− 1

p

(
log(d + 1)σ(1,Ip) + max

2≤q≤r

{
σ
1− 1

q

(0,Ip)
σ

1
q

(q,Ip)

})
.

The bound given in Theorem 4.18 is the sharpest one we are able to provide using
our techniques (for general unspecified Tk). The next theorem will present the slightly
more transparent Theorem 1.2 involving the sum of squared injective norms (the type-2
variance). This result may yield significantly worse estimates than Theorem 4.18, but it
illustrates well the worst-case performance of our bounds.

Theorem 4.19. Let T1, . . . , Tn ∈ (Rd)⊗r be symmetric tensors and 2 ≤ p < ∞, we have

E

[∥∥∥
n∑

k=1

gkTk

∥∥∥
Ip

]
.
r

√
p log(d + 1)d

1
2
−min{ 1

p
, 1
2r

}σT2Ip .

Proof. Corollary 3.6 provides the estimates

σ
1
q

(q,Ip)
.
r
dmax{ 1

p
− 1

2q
,0}σ

1
q

T2Ip

for 1 ≤ q ≤ r. Combining these inequalities with σ(0,Ip) ≤ σT2Ip and Theorem 4.18 yields

E

[∥∥∥
n∑

k=1

gkTk

∥∥∥
Ip

]
.
r

√
pd

1
2
− 1

p

(
log(d + 1)σT2Ip + max

2≤q≤r

{
d
max{ 1

p
− 1

2q
,0}

σT2Ip

})
.

The result then follows from the fact

1

2
− 1

p
+ max

{1

p
− 1

2q
, 0
}

=
1

2
− min

{1

p
,

1

2q

}
.

4.4 Proof of Lower Bound in Theorem 1.2

In this subsection, we prove the lower bound in Theorem 1.2. In particular, we construct
an example of tensors, for which it is attained.

Lemma 4.20. There exist tensors T1, . . . , Td ∈ (Rd)⊗r, such that the following holds:

E

[∥∥∥
n∑

k=1

gkTk

∥∥∥
Ip

]
&
r,p

d
1
2
− 1

pσT2Ip .
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Proof. We define the entries of the tensor Tk by (Tk)1,...,1,j = 1 for all 1 ≤ j ≤ d and

all other entries being zero. Let ε1, . . . , εd ∈ {−1, 1}, the sum
∑d

k=1 εkTk is essentially a
column vector having εk as k-th entry. Pick vectors vq = e1 for 1 ≤ q ≤ r − 1 and define

the last vector entry-wise (vr)k = εkd
− 1

p . Then v1, . . . , vr ∈ B
d
p and

∥∥∥
d∑

k=1

εkTk

∥∥∥
Ip

≥
d∑

k=1

εkTk[e1, . . . , e1, vr] = d
1− 1

p = d
1
2
− 1

pσT2Ip

holds, since σT2Ip =
√
d as every tensor has injective norm 1. Taking the expectation over

εk being random finishes the proof, since the expected supremum of Gaussian processes
dominate the expected supremum of rademacher processes (see section 4.2 in [LT91]):

E

[∥∥∥
n∑

k=1

gkTk

∥∥∥
Ip

]
& E

[∥∥∥
n∑

k=1

εkTk

∥∥∥
Ip

]
≥ d

1
2
− 1

pσT2Ip .

Remark 4.21. Several steps of our proof techniques generalize to ℓp injective norms for
p being outside of the regime we discussed. In fact, Theorem 1.6 also holds for p = ∞ by
simply leaving out the ball halving step in Corollary 4.6, which doesn’t involve the constant√
p that would tend to infinity in this case. The bound does improve upon the classical

ε-net approach from Proposition 3.13, but we decided to omit it from our results as the
question about the type 2 constant being ≍r

√
d for this norm is already solved by the

standard approach.

5 Open Problems and Further Related Directions

In this section, we mention further connections to other areas of mathematics and theoret-
ical computer science to motivate the future study of injective norms of random tensors.
In particular, we discuss open questions, unexplored directions or special cases and how
these could lead to improvements of state-of-the-art results in different fields.

5.1 Locally Decodable Codes and Type Constants

The connections between type (and cotype) constants of the ℓp injective norm and locally
decodable codes have been observed in [BNR12, Bri16, Gop18]. We give a brief overview of
LDCs and mention their relationship with our bounds and conjectures. A (binary) locally
decodable code (LDC) C : {0, 1}n → {0, 1}d is a mapping from any n-bit message b ∈ {0, 1}n
to a d-bit codeword C(b) ∈ {0, 1}d that satisfies the following property: given an arbitrary
vector y ∈ {0, 1}d obtained by corrupting C(b) in a constant fraction of its coordinates,
one can recover any message bit bi with non-trivial probability by only querying y in a few
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locations. The code is said to be linear if the mapping C : {0, 1}n → {0, 1}d is a linear
map. Formally, LDC codes are defined as follows [KT00].

Definition 5.1 (Locally Decodable Code). A code C : {0, 1}n → {0, 1}d is (q, δ, ε)-locally
decodable if there exists a randomized decoding algorithm Dec(·), which takes an i ∈ [k]
as input and given oracle access to some y ∈ {0, 1}d satisfies the following properties:

(1) The algorithm Dec never makes more than q queries to the string y;

(2) For all b ∈ {0, 1}n, i ∈ [n], and y ∈ {0, 1}d such that ∆(y, C(b)) ≤ δn, one has
P[Decy(i) = bi] ≥ 1

2 + ε, where ∆(x, y) is the Hamming distance between x and y.

LDCs are extensively studied in computer science. Apart from being natural objects
in coding theory, locally decodable codes are closely related to many other areas of the-
oretical computer science, such as the PCP theorem [AS98, ALM+98], complexity the-
ory [Yek12], worst-case to average-case reductions [Tre04], private information retrieval
[Yek10], secure multiparty computation [IK04], derandomization [DS05], matrix rigidity
[Dvi11], data structures [CGdW13], and fault-tolerant computation [Rom06]. We refer to
the excellent survey [Yek12] for more background and applications of LDCs.

A central question studied in coding theory is the smallest possible blocklength n, or
equivalently, the largest possible rate, that can be achieved by a (q, δ, ε)-LDC (or q-LDC
for short, as δ, ε are usually taken as some small constants). The case of q = 2 is essentially
resolved by classical results: the Hadamard code is a 2-LDC with blocklength d = 2n and
a matching lower bound of 2Ω(n) is known [KDW03, GKST06, Bri16, Gop18].

For the case of q = 3, there is still a wide gap in our understanding. The current best
known lower bound is d ≥ Õ(n3) given in recent work [AGKM23, HKM+24], while the best
known construction gives a linear binary 3-LDC with d ≤ exp(exp(O(

√
log n log log n)))

[Yek08, Efr09]. For larger (but constant) q > 3, the construction in [Efr09] gives an upper

bound of d ≤ exp(exp(O((log n)
1

log q (log log n)
log q−1
log q ))), while the best known lower bound

is d ≥ n
q

q−2 /polylog(n) when q is even and d ≥ n
q+1
q−1 /polylog(n) when q is odd. We refer to

the recent work of [AGKM23, KM24, HKM+24] and references therein for more background
on LDCs and the related notion of locally correctable codes (LCCs).

We now focus on connections between LDCs and random tensors. In particular, we
highlight their relation to conjectured refinements of Theorem 1.2.

Definition 5.2 (Normal LDC). A code C : {−1, 1}n → {−1, 1}d is (q, δ, ε)-normally locally
decodable if for each i ∈ [n], there is a q-uniform hypergraph matching Hi on the set [d]
(a collection of vertex disjoint hyperedges, where every edge has q vertices) with at least
δd hyperedges such that for every C ∈ Hi, one has Pb∼{±1}n(bi =

∏
v∈C C(b)v) ≥ 1

2 + ε. In
particular, for linear codes, one has bi =

∏
v∈C C(b)v with probability 1. We therefore call

these linear (q, δ)-normally locally decodable codes.

Using known reductions [Yek12], it is possible to turn any LDC codes into normal form.
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Fact 5.3 (Reduction to LDC Normal Form [Yek12]). Let C : {0, 1}n → {0, 1}d be a (q, δ, ε)-
locally decodable codes, then there exists another code C′ : {−1, 1}n → {−1, 1}O(d) that is
(q, δ′, ε′)-normally decodable, where δ′ ≥ εδ/3q22q−1 and ε′ ≥ ε/22q .

While we have presented the above definitions and results for general ε and δ, in the
following we are going to consider ε, δ > 0 being some small constants, and the focus lies
on understanding the dependencies between d and n.

For p < 2r, Theorem 1.2 does not have matching exponents in the upper and lower
bounds (in terms of their dependence on d), and it does not immediately imply any progress
for LDCs. Nevertheless, natural conjectured strengthening of Theorem 1.2 would imply im-
proved lower bounds for the blocklength of certain q-LDCs. We formulate two conjectures,
and discuss their implications to LDC lower bounds.

Conjecture 5.4. Let Cr,p(d) be Type-2 constant as in Definition 1.1(2 ≤ p < ∞), then

Cr,p(d) .
r,p

d
1
2
− 1

max{p,r} (log d)Er,p (18)

holds, where Er,p is an exponent only depending on r and p. We cannot rule out that the
following stronger inequality also holds:

Cr,p(d) .
r,p

d
1
2
− 1

p (log d)Er,p .

Both of the conjectured inequalities are consistent with the noncommutative Khintchine
inequality (3), (which shows C2,2 .

√
log d,) and extend it naturally. A proof of either of

them would have interesting implications in coding theory, which we discuss in Section 5.1.
Conjecture 5.4 would imply new lower bounds for the length of q-normal LDCs and

thus also for q-LDCs for odd (and fixed) q ≥ 5. The proof essentially mimics a lower bound
proof for 2-LDCs [Bri16, Gop18].

Lemma 5.5. If Conjecture 5.4 is true, then for any (q, δ, ε)-normally locally decodable code
C : {−1, 1}n → {−1, 1}d we have

εδn
q

q−2 .
q
d(log d)E

′
q

for some exponent E′
q only depending on q.

Proof. Let H1, . . . ,Hn be the hypergraph matchings on the set [d] of a (q, δ, ε)-normal
LDC C : {−1, 1}n → {−1, 1}d. Let T1, . . . , Tn ∈ (Rd)⊗q be the adjacency tensors of the
hypergraph matchings. Let ε1, . . . , εn be independent Rademacher random variables and
C(ε) ∈ {−1, 1}d be the corresponding codeword, which satisfies that for any i and for any
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C ∈ Hi we have P[εi =
∏

v∈C C(ε)v] ≥ 1
2 + ε. Since Hi is a hypergraph matching and its

every hyperedge is represented in Ti by index symmetry q! times, we deduce

E[εi〈Ti, C(ε)⊗q〉] =
∑

C∈Hi

q!E

[
εi

∏

v∈C

C(ε)v

]
≥

∑

C∈Hi

q!2ε ≥ q!2εδd.

Summing this bound over the index i and dividing everything by d yields

E

[ n∑

i=1

εi〈Ti, (d
− 1

q C(ε))⊗q〉
]
≥ q!2εδn.

Since the vector d−
1
q C(ε) has ℓq norm 1, we also get an upper bound using Conjecture 5.4.

E

[
n∑

i=1

εi〈Ti, (d
− 1

q C(ε))⊗q〉
]
≤ E

∥∥∥
n∑

i=1

εiTi

∥∥∥
Iq

.
q
d

1
2
− 1

q (log d)Eq

√√√√
n∑

i=1

‖Ti‖2Iq .

We claim ‖Ti‖Iq .q 1. Indeed, let u ∈ B
d
q , then we have by the AM-GM inequality

|〈Ti, u
⊗q〉| =

∣∣∣∣
∑

C∈Hi

q!
∏

v∈C

uv

∣∣∣∣ ≤
∣∣∣∣
∑

C∈Hi

q!
∑

v∈C

|uv|q
q

∣∣∣∣ ≤ (q − 1)!.

The last inequality follows from the fact that every coordinate uv appears at most once
in the sum, since Hi is a hypergraph matching. The claim ‖Ti‖Iq .q 1 then follows from

polarization (Proposition 4.15). Combing all estimates we derived thus far gives

εδn .
q
d

1
2
− 1

q (log d)Eq .
√
n

This can be rewritten as the upper bound εδn
q

q−2 .q d(log d)E
′
q .

5.2 Directions for the Independent Entry Model

Gaussian (and Rademacher) matrices with independent entries (but potentially different
variances among the entries) is a model structure where geometric approaches have proven
to be successful [BvH16, vH17b, Lat24, GHLP17, APSS24]. In a recent breakthrough
by Latala [Lat24], bounds on the spectral norm of random Rademacher matrices were
obtained that are accurate up to a constant factor when the variances are either 0 or
1, and a log log log d factor in general. For p 6= 2, the works [GHLP17, APSS24] have
made substantial progress in understanding Gaussian matrices with independent entries.
Matching upper and lower bounds that are accurate up to logarithmic factors for different
matrix injective norms were proven in [APSS24]. If one were to study tensor generalizations
of this problem (as in Section 2.1), this reference might be a good starting point.

43



We emphasize that the independent entry assumption changes the nature of the prob-
lem. One reason is that the metric space given by the natural distance gains a susbtantial
amount of symmetry: multiplying such a tensor entry-wise with any tensor that has ±1 en-
tries leaves the distribution invariant. Moreover, we can expect much better concentration
of the norm than in the general setting. Using Gaussian concentration one can show

P[‖T‖Ip ≥ t + E ‖T‖Ip ] ≤ exp
(
− t2

2σ2
(0,Ip)

)
,

(see Corollary 4.14 in [BBH23] for a quick proof in the case of p = r = 2; the tensor
generalization follows similarly). For p = 2, the parameter σ(0,I2) in the independent entry
model is the largest variance of the entries in T , which can be shown with an orthogonality
argument similar to the proof of Lemma 3.14. In the general case, however, we may just get
concentration of a single scalar random variable when all tensors are the same. We leave
the study of the independent entry model for tensors and further applications to tensor
PCA as interesting open problems.

5.3 Alternative Approaches for the Euclidean Case

Theorem 1.6 takes the following form in the case of p = r = 2 (the Euclidean matrix case):

E ‖T‖I2 . log d σ(1,I2) + σ
1
2

(2,I2)
σ

1
2

(0,I2)
.

The term σ
1
2

(2,I2)
σ

1
2

(0,I2)
is unnecessary as the noncommutative Khintchine inequality (3)

shows. It is therefore tempting to conjecture that the second term

max
2≤q≤r

σ
1
q

(q,Ip)
σ

q−1
q

(0,Ip)

in (6) might not be needed when p = 2. We were thus far unable to come up with an
example where this term is required. There is further evidence why this suspicion may
be correct. Consider the modified model where T1, . . . , Tn ∈ (Rd)⊗r are symmetric tensors
and Q1, . . . , Qn are random orthogonal matrices distributed according to the Haar measure
on O(d). [Luc23] showed the following bound via a classical discretization argument:

E

∥∥∥
n∑

k=1

Tk[Qk·, ·, . . . , ·]
∥∥∥
I2

≍
r

∥∥∥
n∑

k=1

Tk ⋆1 Tk

∥∥∥
1/2

I2
= σ(1,I2)

This model can be seen as a type of “free analogue” of the Gaussian model we study in
the Euclidean matrix case. Informally, the orthogonal matrices induce noncommutativity
between the matrices, which causes the logarithmic term in the noncommutative Khintchine
inequality (3) to disappear. A more detailed discussion on this phenomenon can be found
in [BBH23]. The fact that such a generalization is also true for tensors leads us to conjecture
that only the parameter σ(1,I2) is relevant for controlling the injective ℓ2 norm.
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Conjecture 5.6. Let T ∈ (Rd)⊗r be a symmetric random jointly Gaussian tensor with
E[T ] = 0, there exists an exponent E(r) > 0 only depending on r, such that

E ‖T‖I2 .
r

(log d)E(r)σ(1,I2).

This estimate would actually be two-sided, since one can also show by an application
of Lemma 3.1 and Jensen’s inequality that

E ‖T‖2I2 = E

[
sup

u1,...,ur−1∈Bd
2

‖T [u1, . . . , ur−1, ·]‖2F

]
= E ‖T ⋆1 T‖I2 ≥ σ2

(1,I2)
,

which would imply E ‖T‖I2 & σ(1,I2), since we have E ‖T‖2I2 ≍ (E ‖T‖I2)2, this is a fact
that holds more generally for Gaussian vectors in banach spaces (see section 4.3 in [LT91]).
We remark that Conjecture 5.6 requires the stronger version of our type constant conjecture
in Conjecture 5.4 to be true for the case p = 2.

Restricting to ℓ2 injective norms may allow for a wider range of tools to be used. For
instance, tensor generalizations of the moment method (or tensor networks) have been
studied recently [Gur14, Gur16, Evn21, KMW24, Bon24]. There are a few difficulties that
arise, however, if one were to use these techniques to attack Conjecture 5.6. One obstacle for
this approach is the missing algebraic machinery for deterministic tensor networks, i.e., it is
unclear how to generalize all the trace inequalities used in the proof of the noncommutative
Khintchine inequality to tensor networks.

There are alternative approaches based on tensor flattening, which have already proven
to be useful in practice [HSSS16, GM15, BDNY24]. One could see a tensor T ∈ (Rd)⊗4

as a matrix in R
d2×d2 , the operator norm of this matrix would also dominate the tensor

injective norm. This approach, however, disregards the higher degree structure of tensors
and cannot give accurate bounds for deterministic tensors, which Conjecture 5.6 also covers.
There exist tensors A ∈ (Rd)⊗4 with ‖A‖I2 ≤ 1, but when seen as a d2 × d2 matrix has
operator norm at least c

√
d, incurring a Ω(

√
d) factor loss. Such a tensor A can be obtained

by sampling its entries as independent Gaussians and then divide the entries by C
√
d for

a sufficiently large C.
Due to such issues, more sophisticated flattening techniques have been considered

in [HSSS16, GM15, BDNY24], but the core problem remains of finding a general flattening
technique from which one can trace back to the injective norm without losing dimensional
factors. The difficulty is likely to be fundamental, as there are conjectures about the hard-
ness of approximating the injective ℓ2-norm using low-degree polynomials [HKP+17], which
would contradict the possibility of using a low power moment method to get bounds for the
injective norm. Being able to use a power of order polylog(d) is necessary to prove a version
of Conjecture 5.6, as otherwise the moment growth of the Gaussian random variables starts
having a superpolylogarithmic contribution.

45



A An Introduction for A Theoretical CS Audience

Matrix concentration inequalities have played an increasingly important role in many ap-
plications in computer science, mathematics, and other related fields. A well-studied and
very general question in the study of matrix concentration inequalities is the operator norm
of an arbitrary d×d symmetric8 random matrix X with mean-zero jointly Gaussian entries.
Any such random matrix can be expressed as

X =

n∑

k=1

gkAk, (19)

where gk’s are i.i.d. standard Gaussian variables, and Ak’s are (deterministic) d× d sym-
metric matrices. For such matrices, the classical non-commutative Khintchine (NCK)
inequality [LP86a, LPP91, Pis03] or matrix Chernoff bounds [AW02, Oli10, Tro15] imply9

σ(X) . E‖X‖op . σ(X)
√

log d, (20)

where the matrix standard deviation parameter σ(X) is defined as

σ(X)2 := ‖EX2‖op =
∥∥∥

n∑

k=1

A2
k

∥∥∥
op
.

Both the upper and lower bounds in (20) are tight in general, and they can be further
extended to asymmetric matrices via a standard dilation argument, and to sums of gen-
eral random matrices, e.g. the matrix Bernstein inequality, either by a symmetrization
argument [Rud99, Tro16], or the general proof method in [Oli10, Tro15], or via a univer-
sality principle [BvH22]. There have also been recent successful efforts in sharpening these
bounds when the matrices Ai are non-commutative [BBH23, BvH22, BCSvH24].

These matrix concentration inequalities have been successfully applied to a wide range
of applications, such as numerical linear algebra [Mah11, Woo14], high dimensional statis-
tics [Mui09, MKT24], compressed sensing [FR13, CRPW12], principle component analysis
(PCA) [ABBS14], combinatorial optimization [So11, NRV13], discrepancy theory [BJM23],
and coding theory [Bri16, Gop18]. We refer to the monograph [Tro15] for more details.

Tensor Concentration Inequalities. Despite their tremendous success, matrix concen-
tration inequalities fall short in the study of many important problems, where the random
objects that naturally appear in these applications are tensors in (Rd)⊗r. Here, d is called
its dimension and r is its order. Examples of such applications include locally decodable
(or correctable) codes [Yek12, Bri16, Gop18], tensor decomposition [AGH+14, GHJY15],
tensor completion [JO14, MS18], tensor PCA [RM14, AMMN19], community detection on

8The symmetry assumption can be removed by using hermitian dilation (see Section 4.3).
9We write x . y if x ≤ Cy for a universal constant C (see Appendix A.4).
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hypergraphs [KBG17, GD17, PZ21], statistical inference in tensor ensembles [KMW24], hy-
pergraph expanders [ZZ21], and dispersive partial differential equations [BDNY24]. These
applications raise a need to understand random tensors and their concentration properties
under more general norms (beyond the natural counterpart of the matrix operator norm).10

For a d-dimension, r-order tensor T ∈ (Rd)⊗r, denote its ℓp injective norm11 by

‖T‖Ip := sup
‖x1‖p,...,‖xr‖p≤1

〈T, x1 ⊗ . . .⊗ xr〉, (21)

where d, r ≥ 2 are integers and p ≥ 2. Note that r = 2 and p = 2 correspond to the operator
norm of matrices. ℓp injective norms for p > 2 appear in various applications, e.g. q-query
locally decodable codes correspond to ℓq injective norms of q-order tensors (see Section 5.1),
and have also been considered in the context of random matrices [GHLP17, APSS24].

In stark contrast to the significant progress made in studying matrix concentration
inequalities for the operator norm, little is known for their tensor counterpart or for general
ℓp injective norms, i.e. when either r 6= 2 and p 6= 2. Let us consider a mean-zero symmetric
jointly Gaussian tensor, the natural analog of (19), which can be written as

T =

n∑

k=1

gkTk, (22)

where gk ∼ N (0, 1) are i.i.d. but Ak ∈ (Rd)⊗r are now symmetric order-r tensors. Previ-
ously, progress in understanding (22) has been made in the following special cases:

1. When T has i.i.d. standard Gaussian entries (i.e., each Tk corresponds to a single
entry of 1 in T ) and p = 2, it is well-known that E[‖X‖ℓ2 ] . Cr

√
d for a constant Cr

depending on r [TS14, NDT15, DM24].

2. When each tensor Tk in (22) is rank-1, i.e. Tk = u⊗r
k for some uk ∈ R

d, and p = 2, the
argument based on majorizing measures in the classical work of Rudelson [Rud96]
can be extended to derive an analog of the non-commutative Khintchine inequality
(with a logarithmic factor in n instead of d) [Luc23].

3. In the different context of moment inequalities for Gaussian chaoses, a volumetric
bound for the case of p = 2 was proved by Lata la [Lat06].12

10Sometimes, it is possible to apply matrix concentration inequalities to the matrices obtained by “flaten-
ning out” the tensors (see Appendix A.3), but this approach usually relies on additional structural assump-
tions of the underlying problems and often don’t achieve the best possible result.

11It is also natural to consider a symmetric version of the ℓp injective norm where the vectors x1, · · · , xr

are forced to be the same, i.e., ‖T‖sym(Ip)
:= supx∈Bd

p
|T [x, . . . , x]|. For symmetric tensors, these two

definitions are equivalent up to a factor depending only on the order r (see Proposition 4.15).
12While preparing this manuscript, it was brought to our attention that Lata la’s work [Lat06] provides

a tensor concentration inequality for p = 2. While the inequality is different, it is based on an essentially
equivalent covering estimate (that was proved with a rather different approach, see Remark 4.8). It may
further be possible to obtain an analogue of Theorem A.6 (for the specific case of p = 2) without logarithmic
factors by using the chaining argument in [Lat06].
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Beyond these special cases, the question of bounding the ℓp injective norm of (22)
beyond the trivial triangle inequality, i.e. E‖T‖Ip .

∑n
k=1 ‖Ak‖Ip , becomes elusive. The

main reason for this bottleneck is that all known proofs of (20) use operator-theoretic
tools,13 which are thus far unavailable when either r 6= 2 or p 6= 2. In fact, there is
no known geometric argument to establish (20), even for the operator norm of matrices,
when the summands have rank higher than one. This is another core motivation of this
paper, and in fact, a question of Talagrand’s [Tal14, Section 16.10]. Additionally, we
note that this geometric perspective to concentration is crucial for several applications,
such as hypergraph sparsification [Lee23, JLS23] and quantum cryptography [LMW24]
(see Appendix A.3 for more details).

A.1 Our Contributions

Our main contribution is a geometric approach, involving covering numbers and Gaussian
process theory, to estimate the expected ℓp injective norm of a jointly Gaussian tensor T
as in (22) for a full range of r ≥ 2 and 2 ≤ p < ∞, where operator theoretic tools are
unavailable. Our main result (Theorem A.6 below) bounds this expected ℓp injective norm
in terms of natural parameters associated with the random tensor T .

Type-2 Constants of Banach Spaces. Before formally defining these tensor parameters
and stating our general result in Theorem A.6, we first present its implication to the type-
2 constants of the Banach spaces corresponding to ℓp injective norms. It is considerably
easier to state this specialized result and discuss its optimality.

Definition A.1 (Type-2 constant for ℓp injective norm of order r tensors). Given r ≥ 2
an integer and 2 ≤ p < ∞, we define the type-2 constant of the ℓp injective norm of order
r tensors to be the smallest number Cr,p(d) such that for all positive integers n and tensors
T1, . . . , Tn ∈ (Rd)⊗r, we have14

E

∥∥∥
n∑

k=1

εkTk

∥∥∥
2

Ip
≤ Cr,p(d)2 ·

n∑

k=1

‖Tk‖2Ip , (23)

where ε1, . . . , εn are i.i.d. Rademacher variables, i.e., εk = ±1 with probability 1
2 each.

While we have been focusing on jointly Gaussian tensors as in (22), a standard appli-
cation of Jensen’s inequality on the magnitude of Gaussian random variables shows that
moments of the norm of a Rademacher series are upper bounded by that of a Gaussian
series. In particular, we have the following estimates.

13The study of Schatten-p norms (traces of powers) and the fact that they approximate the spectral norm
well for large p are key ingredients in the proof.

14The sum of squared norms on the right-hand side of (23) have also appeared in [TJ74, AW02] in the
context of random matrices as a variance parameter, which is not as precise as the one given in (20) that
gained attention after it appeared in matrix concentration inequalities [Oli10, Tro10].
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Theorem A.2 (Type-2 constant bounds). Let r ≥ 2 an integer, 2 ≤ p < ∞, and Cr,p(d)
the type-2 constant of the ℓp injective norm of order r tensors as in Definition A.1. Then15

d
1
2
− 1

p .
r,p

Cr,p(d) .
r,p

d
1
2
− 1

max{p,2r} log d. (24)

Note that for p ≥ 2r, the upper and lower bounds in Theorem A.2 match up to a log d
factor (in terms of dependence on d), and thus our results are nearly tight in this regime.
In the regime of p < 2r, however, the bounds in Theorem A.2 differ by a poly(d) gap.

For the correct polynomial dependence on d, both d
1
2
− 1

p and d
1
2
− 1

max{p,r} would be natural
conjectures. Ruling either of them out seems to be beyond reach of current techniques (see
Section 5.1 for a more detailed discussion).

Remark A.3. In the matrix case (r = 2), it is possible to improve upon the upper bound
in Theorem A.2 (in some regimes) by applying Hölder’s inequality to NCK in (20):

E

∥∥∥
n∑

k=1

gkAk

∥∥∥
Ip

≤ d
1− 2

pE

∥∥∥
n∑

k=1

gkAk

∥∥∥
2
.

√
log d · d1−

2
p

√√√√
n∑

k=1

‖Ak‖2I2 .

Since ‖Ak‖I2 ≤ ‖Ak‖Ip , this inequality implies C2,p(d) .
√

log d ·d1−
2
p , which is better than

the upper bound in Theorem A.2 when 2 ≤ p ≤ 8
3 .

Our Main Result. Our bounds are more accurately written in terms of tensor parameters
that provide sharper control than the sum of squared injective norms in (23). To formally
state our result in Theorem A.6, we first define these tensor parameters.

Definition A.4 (⋆q product). Let A,B ∈ (Rd)⊗r be tensors. For 0 ≤ q ≤ r we define a
d-dimensional order 2r − 2q tensor A ⋆q B with entries

(A ⋆q B)i1,...,i2r−2q
:=

d∑

j1,...,jq=1

Ai1,...,ir−q,j1,...,jqBj1,...,jq,ir−q+1,...,i2r−2q .

To illustrate this definition, in the matrix case (r = 2) where A,B ∈ R
d×d are symmetric

matrices, ⋆q corresponds to familiar matrix operations: A ⋆0 B = A ⊗ B corresponds to
tensor product (seen as an order 4 tensor), A ⋆1 B = AB to matrix multiplication, and
A ⋆2 B = Tr(ATB) to the Hilbert-Schmidt inner product.

Definition A.5 (Tensor parameters). Let T ∈ (Rd)⊗r be a symmetric random jointly
Gaussian tensor and 2 ≤ p < ∞. For 0 ≤ q ≤ r, we define the parameters

σ2
(q,Ip)

:= ‖E[T ⋆q T ]‖Ip .
15The notation f .r,p g means that the inequality f ≤ Cr,pg holds for some constant Cr,p that only

depends on r and p (see Appendix A.4).
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In the case of matrix operator norm (p = r = 2), the parameter σ(1,Ip) is the variance
parameter in NCK (20), while σ(0,Ip) also frequently appears in the literature16 and is often
referred to as “weak variance” [Tro15]. Lemma 3.1 shows that for p = r = 2,

σ2
(1,I2)

=
∥∥∥

n∑

k=1

A2
k

∥∥∥
op

and σ2
(0,I2)

= sup
u,v∈Bd

2

n∑

k=1

(uTAkv)2.

Formally stated, our main result provides the following upper bound:

Theorem A.6 (Main Theorem). Let T ∈ (Rd)⊗r be a symmetric random jointly Gaussian
tensor with E[T ] = 0 as in (22), and 2 ≤ p < ∞. Then,

d
1
p
− 1

2E ‖T‖Ip .
r,p

(log d)σ(1,Ip) + max
2≤q≤r

σ
1
q

(q,Ip)
σ

q−1
q

(0,Ip)
, (25)

where the parameters on the right-hand side are those in Definition A.4 and A.5.

We discuss applications and connections of this more general result to several other
problems, such as tensor PCA, various models of random tensors, and locally decodable
codes, in the subsequent Appendix A.2.

We finish this subsection with a quick remark about symmetric tensors. If one does not
strive for an optimal dependence on the order r, the symmetry assumption in Theorem A.6
is without loss of generality via symmetric embeddings of tensors (see Section 4.3).

A.2 Applications and Connections

Tensor PCA. The tensor principle component analysis (tensor PCA) problem was in-
troduced by Montanari and Richard [RM14] as a model for studying statistical inference
under observations of higher order interactions among data elements. In this model (also
known as the spiked tensor model), one is given λ > 0, a signal v ∈ {±1}d, and noisy
observations of the r-order tensor

Y (λ) = λv⊗r + T,

where T ∈ (Rd)⊗r is a random noise tensor with i.i.d. standard Gaussian entries. The key
question in this context is to understanding for which signal-to-noise ratio λ can one detect
the presence of the signal v, and reliably recover it.

In the case where the noisy tensor Y (λ) is fully observed, it is known that informa-
tion theoretically, one can detect and recover the signal v when λ ≫ d(1−r)/2 [RM14,
LML+17]. The sum-of-squares (SoS) hierarchy or Kikuchy hierarchy provide efficient algo-
rithms for detection and recovery when λ ≫ d−p/4 [HSS15, WEAM19, KMW24], and
SoS lower bounds provide evidence that no polynomial time algorithm can do better

16We define the weak variance in a different but equivalent form to that in [Tro15] (see Lemma 3.1).
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[HSS15, HKP+17]. Asymptotically optimal information-theoretic thresholds for detection
and recovery are also shown when the signal v is drawn from various priors [PWB20].

We study the tensor PCA problem in the more general censored (or partial information)
model, where potentially only part of the entries of the noisy tensor Y (λ) is available. This
type of partial information models have been well-studied for matrices (corresponding to
graphs), where the statistical threshold is characterized by properties of the underlying
graphs (e.g., [ABBS14, Cuc15, BCSvH24]). To the best of our knowledge, there is no non-
trivial bound known in the censored model for tensor PCA, which might be partially due
to a lack of understanding of random tensors beyond the i.i.d. entry or rank-1 cases.

As an application, our result in Theorem A.6 leads to the first non-trivial information-
theoretic threshold for detection in the setting of censored tensor PCA, in terms of natural
quantities associated with the hypergraph corresponding to the observed entries of Y (λ).
This result also generalizes the information-theoretically optimal threshold for the full
information setting [RM14, LML+17] (up to a logarithmic factor). We postpone the formal
definition of the censored tensor PCA problem to Section 2.1 and the statement of this
result to Theorem 2.3.

Nonhomogenous Independent Entry Tensors. As a key intermediate step towards
proving our result for censored tensor PCA in Theorem 2.3, we obtain improved bounds
for the ℓ2 injective norm of a random tensor with nonhomogeneous independent entries17

(see Theorem 2.1 and Corollary 2.2 for the formal statements).
The nonhomogeneous model, a special case of the jointly Gaussian model in (22) and

its Rademacher version, has received significant attention in the modern development of
random matrix theory [Seg00, Lat05, BvH16, VH17a, LvHY18]. It is not only among the
first natural random matrix models (beyond classical Wigner ensembles) where sharper
bounds than NCK (20) have been attained, but also a testbed where geometric approaches
have been successfully applied [vH17b, Lat24, GHLP17, APSS24].

In contrast, to the best of our knowledge, there has not been any notable develop-
ments of the nonhomogeneous independent model for tensors (see Section 5.2 for further
discussions). Despite not relying on the independence structure of the entries, our result
in Theorem A.6 implies the first non-trivial bound for this natural model (Theorem 2.1
and Corollary 2.2). It is an intriguing open problem to further improve on these bounds
by taking advantage of the independence of entries in the nonhomogeneous independent
entry model (which might also lead to better bounds for censored tensor PCA).

Structured Random Matrices/Tensors. Beyond the independent entry model, our
result in Theorem A.6 also implies better bounds for more structured models, even in the
case of random matrices. We demonstrate such an application in Section 2.2, where each
Ti in (22) corresponds to the adjacency matrix of a matching Mi. We show that our bound
in Theorem A.6 is superior than previous bounds when Mi have certain structures.

17This means the entries of the random tensor are independent (up to symmetry) Gaussian random
variables with arbitrary variances.
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Type-2 Constants of Banach Spaces. The (Rademacher) type and cotype and their
corresponding constants are fundamental quantities associated with Banach spaces that
capture a notion of orthogonality, e.g., [AK06, LT13]. They have been widely studied in
the literature for various Banach spaces, and are connected to applications such as locally
decodable codes [BNR12]. As already discussed in Appendix A.1, our main result in Theo-
rem A.6 implies better bounds for the type-2 constants of the Banach spaces corresponding
to ℓp injective norms of tensors, which are tight up to constants when p ≥ 2r.

Locally Decodable Codes. Locally decodable codes (LDC) are ones where each mes-
sage bit can be decoded with non-trivial probability by (randomly) accessing only a small
number q of bits of the codeword. They are widely studied and are closely connected to
many other central questions in computer science [Yek12, Gop18] (also see Section 5.1). A
natural question for LDCs is the smallest achievable blocklength n for different values of
q (in terms of the message length k). Although the case of q = 2 is quite well-understood,
there is a significant gap between the current upper and lower bounds when q ≥ 3.

While the bound in Theorem A.6 currently falls short of providing improved bound for
LDCs, we show that a natural strengthening of Theorem A.6 (as stated in Conjecture 5.4)
would imply better upper bound on the blocklength n for LDC with an odd number of
queries q > 3. Notably, such an improvement does not follow from the best possible
bound on the ℓ2 injective norm for tensor concentration inequalities; it crucially relies
on considering the ℓq injective norms of order-q tensors. We postpone a more detailed
discussion of this connection to LDCs to Section 5.1.

A.3 Further Related Work

Applying Matrix Concentration Inequalities to Tensor Applications. In appli-
cations where (random) tensors are natural objects of study, matrix concentration in-
equalities can still be used by first “flattening out” the random tensor into a matrix that
captures certain spectral properties. For example, matrix concentration inequalities have
been successfully applied to the higher-dimensional Kikuchy matrix (corresponding to ten-
sor problems) in applications such as tensor PCA [WEAM19], refuting semi-random and
smoothed CSPs [GKM22], hypergraph Moore bound [HKM23], lower bound for 3-LDCs
and LCCs [AGKM23, KM24]. Other applications of tensor flattening approaches include
[GM15, HSSS16, BDNY24]. The success of these approaches often rely on additional struc-
tural properties of the underlying problem.

Geometric Perspectives of Concentration Inequalities. Besides being interesting
and fundamental mathematical questions in their own right, developing geometric ap-
proaches for matrix and tensor concentration inequalities have strong motivations from
applications where either the objects are not matrices (e.g., tensors, norms, etc.), or when
the norms are not the operator norm. For example, they are useful for hypergraph sparsi-
fication [Lee23, JLS23], sparsifying sums of norms [JLLS23], sparsifying generalized linear
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models [JLLS24], breaking quantum cryptography [LMW24], and studying nonhomoge-
neous independent entry random matrices [vH17b, GHLP17, Lat24, APSS24].

A.4 Notation and Terminology

We use ‖ · ‖p to denote the ℓp norm in R
d and B

d
p its unit ball. For u1, . . . , ur ∈ R

d, the

tensor u1 ⊗ · · · ⊗ ur ∈ (Rd)⊗r is given by (u1 ⊗ · · · ⊗ ur)i1,...,ir =
∏r

q=1(uq)iq ; in particular,

denote v⊗r := v ⊗ · · · ⊗ v. For tensors A,B ∈ (Rd)⊗r, define

〈A,B〉 :=

d∑

i1,...,ir=1

Ai1,...,irBi1,...,ir = A ⋆r B,

where we recall ⋆q from Definition A.4. We use A⊙ B ∈ (Rd)⊗r to denote the entry-wise
product. We will also see tensors as multilinear maps on R

d:

A[u1, . . . , ur] :=
d∑

i1,...,ir=1

Ai1,...,ir(u1)i1 · · · (ur)ir = 〈A, u1 ⊗ · · · ⊗ ur〉

This allows contracting tensors with vectors. For v ∈ R
d, we recursively define Av⊗0 := A

and Av⊗q := (Av⊗q−1)[v, ·, . . . , ·] for q ≤ r. Note that Av⊗q is an order r − q tensor. The
Frobenius norm is given by ‖A‖F :=

√
〈A,A〉.

We denote [r] := {1, . . . , r}, and the set of all permutations on [r] by Sr. A tensor
A is called symmetric if for all permutations τ ∈ Sr and all 1 ≤ i1, . . . , ir ≤ d, we have
Ti1,...ir = Tiτ(1),...iτ(r) . The symbols .,.r,.r,p are inequalities that hold up to a factor that
are respectively universal constants, constants depending on r, constants depending on r
and p. If both . and & hold, we also use the symbols ≍,≍r,≍r,p in a similar fashion.

A.5 Technical Overview

In this section, we give a brief overview of the techniques used to derive our results. We
focus on the proof of Theorem A.6, from which Theorem A.2 can be deduced by upper
bounding the tensor parameters via comparison inequalities between different tensor norms
(see Theorem 3.2). A formal presentation of our proofs can be found in Section 4.

The Gaussian Process View. For a symmetric jointly Gaussian tensor T ∈ (Rd)⊗r as
in (22), its ℓp injective norm can be viewed as the supremum of a gaussian process18

‖T‖Ip ≈ E sup
u∈Bd

p

gu, where gu := 〈T, u⊗r〉.

18Formally, one needs to use the equivalence between symmetric and asymmetric versions of the ℓp
injective norms given in Proposition 4.15, which only loses a constant factor depending on r.
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As we do not aim for optimal logarithmic factors, we can apply Dudley’s entropy integral
(see Theorem 3.9) to bound the expected supremum of this Gaussian process as

E sup
u∈Bd

p

gu .

∫ ∞

0

√
logN (Bd

p,d, ε) dε, (26)

where N (Bd
p,d, ε) denotes the covering number of Bd

p at scale ε w.r.t. to the (semi-)metric

d(u, v) := E[(gu − gv)2]
1
2 , i.e. it is the smallest cardinality of an ε-covering of Bd

p in d. We
estimate this covering numbers using a geometric argument in the following.

Warm-Up: Operator Norm for Matrices. We first present a covering number bound
in the simplified setting where (1) p = r = 2, i.e., the operator norm of matrices, (2) n = d,
and (3) each ‖Tk‖op ≤ 1. In this special case, the distance function d is given by

d(u, v)2 =

d∑

k=1

(
〈Tk, uu

⊤〉 − 〈Tk, vv
⊤〉

)2
. (27)

The proof in this case already contains many of the key ideas behind the proof of Theo-
rem A.6, and the quantities are more explicit. We may further assume Tk’s are diagonal-
free, i.e. diag(Tk) = 0, by replacing Tk with its Hermitian dilation (see Section 4.3).

For small ε ∈ (0, 1], the standard estimate N (Bd
2 ,d, ε) ≤ (3d/ε)d already suffices (see

Corollary 3.12), so we focus on ε > 1. In this regime, we prove the bound

N (Bd
2 ,d, ε) . eO(d/ε). (28)

Once (28) is established, plugging it into (26) gives19 a bound of E‖T‖op . d3/4, which is
weaker than the O(

√
d log d) bound achieved by non-commutative Khintchine in (20). We

remark that up to a logarithmic factor, the NCK bound would be recovered if one could
prove the better covering number bound of N (Bd

2 ,d, ε) . eO(d/ε2) instead of (28). This
might also provide a proof strategy that recovers NCK up to logarithmic factors, getting
close to answering Talagrand’s question in [Tal14], and is left as an open problem.

In the following, we present the key ideas behind the proof of (28). To bound the cov-
ering numbers N (Bd

2 ,d, ε), it suffices to bound the size of a maximal set D = {x1, · · · , xN}
that is ε-separated in d, i.e. d(xi, xj) > ε. In particular, we show that

N . eO(d/ε), (29)

which immediately implies (28) by a standard packing to covering argument.

Volume Counting: A First Attempt. We establish (29) via a volume counting ar-
gument. Specifically, note that the regions Bd(xi,

ε
2) := {x ∈ R

d : d(x, xi) < ε/2} are
mutually disjoint, since d(xi, xj) > ε. Consequently, it makes sense to try to define regions
Gi ⊆ Bd(xi,

ε
2) which satisfy the following conditions:

19Here, the diameter of Bd
2 in metric d is

√
d, so the integration in (26) can be truncated at

√
d.
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(a) The volumes of Gi’s are “large”.

(b) Gi are all enclosed in a set K whose volume is “small”.

Once these conditions are satisfied, as Gi’s are disjoint, one immediately obtains the bound

N ≤
vol

(
∪i∈[N ] Gi

)

mini∈[N ] vol(Gi)
≤ vol(K)

mini∈[N ] vol(Gi)
.

So the main question is: how should we define Gi’s satisfying both conditions (a) and (b)?
As a first attempt, one might want to define Gi to be Bd(xi,

ε
2)∩Bd

2 , i.e. choose K = Bd
2

in (b). This choice is rather natural since all points in D lie inside Bd
2 . Unfortunately,

this instinctive idea does not work for the following reason. When T1 = · · · = Td (with
‖Ti‖i = 1) and xj is the maximum eigenvector of the Ti’s, we have

d(xj , u)2 =

d∑

k=1

(
〈Tk, xjx

⊤
j 〉 − 〈Tk, uu

⊤〉
)2

= d(1 − 〈Tk, uu
⊤〉)2.

For the distance to be smaller than ε/2, one must have 〈Tk, uu
⊤〉 ≥ 1− ε/2d, which means

that u has to lie very close to xj. Consequently, the Gj defined this way have volume too
small (aka failing condition (a)) to obtain a non-trivial bound on N in (29).

Volume Counting Outside the Euclidean Ball. Surprisingly, we are able to bypass
the aforementioned issue by carrying out the volume counting argument far outside the
Euclidean ball Bd

2 , despite that we are bounding the covering number inside Bd
2 .

In particular, we define the regions G̃i := Bd(xi,
ε
2) ∩ (xi + RBd

2), where we choose

R > 1 (to be fixed later) so that vol(G̃i) ≥ 3
4 vol(RBd

2). This guarantees the satisfaction

of condition (a). For condition (b), there is of course the trivial bound of G̃i ⊂ (R + 1)Bd
2 .

Nonetheless, this trivial bound is not strong enough to establish (28).
To achieve the desired bound, it turns out we can further strengthen (b) by “slicing the

ball xi+RBd
2 and define Gi := G̃i∩{x ∈ xi+RBd

2 : 〈x−xi, xi〉 > 0}. This additional linear
constraint implies that Gi ⊆

√
R2 + 1 ·Bd

2 (which is considerably smaller than (R+ 1)Bd
2),

while we still have vol(Gi) ≥ 1
4 vol(RBd

2). It follows that

N ≤ vol(
√
R2 + 1Bd

2)
1
4 · vol(RBd

2)
.

(R2 + 1

R2

)d/2
≤ ed/2R

2
. (30)

So it remains to decide how large R can be set so that vol(G̃i) ≥ 3
4 vol(RBd

2) holds.

Determining the Radius. To this end, we estimate the expected distance of a uniformly
random vector y ∈ xi + RBd

2 from xi as

E[d(xi,y)2] =

d∑

k=1

E[(〈Tk,yy
⊤〉 − 〈Tk, xix

⊤
i 〉)2] .

d∑

k=1

E

[
R2〈Tk, xib

⊤〉2 + R4〈Tk,bb
⊤〉2

]
,
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where b is uniformly random from Bd
2 . We skip through the precise computation (see

Lemma 4.3 and Corollary 4.4 for more general bounds), but it is possible to bound

E[〈Tk, xib
⊤〉2], E[〈Tk,bb

⊤〉2] .
1

d
.

We remark that it is crucial that b has sufficient “symmetry” for this computation to
go through (as Tk’s can be quite arbitrary), and this is another technical reason why we
have to work outside the unit ball Bd

2 . Consequently, we have E[d(xi,y)] . R2. Thus
choosing R =

√
ε/C for a large enough constant C, Markov’s inequality suggests that

vol(G̃i) ≥ 3
4 vol(RBd

2). Plug this choice of R into (30) immediately implies our desired
covering number bound in (29) and (28).

Note that as ε approaches the diameter
√
d (i.e., the Dudley integration upper limit),

the choice of R grows to d1/4/C which is substantially larger than the unit ball Bd
2 that we

aim to bound the covering numbers for in the first place. It is quite surprising that in such
enormous space outside of the unit ball, sufficient metric information between the points
in D gets preserved for one to still deduce a meaningful bound on its cardinality!

Generalization to Tensors and p ≥ 2. The argument above provides a systematic
avenue for estimating ℓp injective norms of tensors. This approach is quite mechanical –
all one has to do is to (1) upper bound the expected distance E[d(xi,y)] for a uniform
y ∼ xi + RBd

p to determine the largest possible radius R for (a), and (2) find a way to

“slice” Bd
p to obtain a better volume bound in (b) than the trivial vol((R + 1)Bd

p).
We show how to do (1) in Lemma 4.3 and Corollary 4.4 through a direct computation,

and (2) in Corollary 4.6 via a consequence of the 2-uniform convexity for ℓp norms in
Theorem 4.5. Combine these bounds with our general machinery leads to Theorem A.6.
The full details of our proofs are postponed to Section 4.
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[LML+17] Thibault Lesieur, Léo Miolane, Marc Lelarge, Florent Krzakala, and Lenka
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