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The characteristic energy of a relic dark matter interaction with a detector scales strongly with the
putative dark matter mass. Consequently, experimental search sensitivity at the lightest masses will
always come from interactions whose size is similar to noise fluctuations and low energy backgrounds
in the detector.

In this paper, we correctly calculate the net change in measured differential rate due to signal
interactions that overlap in time with noise and backgrounds, accounting for both periods of time
when the signal is coincident with noise/backgrounds and for the decreased amount of time in which
only noise/backgrounds occur. Previous experimental searches have not accounted for this second
fundamental effect, and thus either vastly overestimate their experimental search sensitivity (very
bad) or use ad hoc conservative cuts which can underestimate experimental sensitivity (not ideal).
We find that the detector response to dark matter can be trivially and conservatively understood
as long as the true probability of dark matter pileup is small.

We also show that introducing random events in the continuous raw data stream (a form of
“salting”) provides a correct and practical implementation that correctly accounts for the decreased
live time available for noise fluctuations and background events out of coincidence with a true dark
matter signal.

I. INTRODUCTION

Detectors for direct detection of particle dark
matter (DM) record signals in time streams. In
most cases, a triggering algorithm is applied to
select potentially interesting signals from the
continuous stream. Then, the signals are pro-
cessed to estimate the differential rate as a
function of measured energy, dR

dE′ , and gener-
ate a dark matter sensitivity estimate. Detec-
tors have noise and backgrounds, and an event
with true energy deposition E produces a sig-
nal reconstructed at energy E′ with a probabil-
ity f(E′|E). Understanding f(E′|E), i.e., the
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detector energy response, is the core of an ex-
periment.

For light mass DM, where the mass of the
DM, MDM, is much less than the mass of the
target nuclei in the detector, MN, the energy
deposited in an elastic two-body nuclear scat-

tering interaction is E ≲ 2M2
DMv2

esc

MN
where vesc is

the escape velocity for the Milkyway. ThisM2
DM

dependence means that signals for the lowest
MDM are near or even below the trigger thresh-
old, E′

T . Specifically, it is possible that a DM
interaction with a true energy deposition below
the trigger threshold (E < E′

T ) could occur in
coincidence with a positive random noise fluctu-
ation, δE′, and thus be boosted above the trig-
ger threshold, E + δE′ = E′ > E′

T . We want
to correctly derive the change in the measured
differential rate spectrum, dR

dE′ , due to these in-
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teractions so that we can correctly account for
this sensitivity in our searches.
As we will elaborate in section IV, the net

change in dR
dE′ is due to both:

• the signal interacting with the detector in
coincidence with a large noise fluctuation
or other background.

• a decrease in the rate of large noise
fluctuations/backgrounds that are non-
coincident with signal interactions.

Not accounting for this latter effect can lead to
unphysical overestimation of the sensitivity. For
example, an experiment must obviously have no
sensitivity to a hypothetical interaction that de-
posits identically zero true energy in the detec-
tor. However, this E = 0 event will have a prob-
ability of being in coincidence with background
fluctuations δE′ > E′

t and thus will naively be
boosted above the trigger threshold. Only af-
ter accounting for both of the physical effects
above will dR

dE′ not have unphysical sensitivity
to E = 0 interactions (Sec. II B 2).
To suppress these most blatant unphysi-

cal consequences of incorrectly estimating net
changes in dR

dE′ , previous light dark matter di-
rect detection searches [11, 14, 21], restricted
the allowable noise boosting usually to δE′ =
E′ − E < 3σ, where σ is the baseline energy
RMS. However, the lack of a rigorous theoreti-
cal underpinning led to problematic ambiguity
(is δE′ < 2σ too conservative? Does δE′ < 4σ
overestimate sensitivity?). Thus, only a deeper
understanding of how to correctly model the co-
incidence of signal and noise/background rates
allows one to correctly estimate the actual ex-
perimental sensitivity.
Though we were motivated to understand

noise boosting originally in phonon detectors,
this is a general problem present in all detec-
tor technologies and in any search where the
signal is commingled, coincident, and of sim-
ilar magnitude to the noise and background
events. For example, a light mass dark mat-
ter search with a p-type point contact ger-
manium ionization detector [20] attempted to
search for noise-boosted signals by simply Gaus-

sian smearing the expected dark matter spec-
trum without correctly restricting the boost
and potentially overestimated their dark mat-
ter sensitivity for low mass DM. In detectors
where the signal energy quanta are resolved,
for example, skipper CCDs[15, 16], noble liq-
uid time projection chambers[1, 4, 12], and
phonon sensors with Neganov-Trofimov-Luke
(NTL) amplification[6], noises on the baseline
are truly negligible at the trigger level. But
a high rate of physical background events (i.e.
charge leakage) can boost small signals as well
when they are in coincidence; for example, a
single e− excitation dark matter signal can oc-
cur in coincidence with a single e− charge leak-
age event in a noble two-phase time projection
chamber (TPC) and produce a 2e− above trig-
ger event.

We will first examine a simple scenario of
ideal integrating detectors, and introduce the
concept of the net differential signal response
∆f(E′|E) = f(E′|E) − f(E′|0) in Sec. II. In
Sec. III, we will discuss the subtlety of esti-
mating ∆f(E′|E) when the experimental search
data is contaminated with an unknown rate of
signal interactions and find that as long as the
signal pileup rate is negligible, a conservative
interaction limit that is guaranteed to have a
larger expectation than the true signal rate can
be estimated using the net differential response.
In Sec. IV, we will generalize the discussion to
continuous DM interaction spectra and demon-
strate the conservativeness in a toy example.
Next, we will generalize these concepts to exper-
iments with continuous data streams and tim-
ing information in Sec. V. We will refer to these
detectors as “analog detectors”. In such analog
devices, the concept of a signal interaction being
in “coincidence” with a large noise fluctuation is
qualitative. More rigorously, we should say that
the time difference between a large noise fluctu-
ation and the dark matter event is small. Fi-
nally, in Sec. VI, we will show that introducing
a known rate of artificial random signal events
in the continuous raw data stream (pretrigger
“salting”) correctly estimates the net differen-
tial response.
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II. DERIVATION FOR A DISCRETIZED
INTEGRATING DEVICE

In this section, we will suppress these sub-
tleties and think instead about the behavior of
an idealized integrating time-discretized detec-
tor like a CCD. In an idealized CCD, for in-
stance, the total integrated charge deposited in
the pixel is measured every ∆t, after which the
pixel is reset and begins to integrate the charge
for the next discrete measurement. All mea-
surements are recorded without a trigger. We
will assume that the time scale for energy depo-
sition is instantaneous and the time to measure
and reset is infinitesimal.

A. Single Dirac-Delta True Energy
Deposition

The second simplification we will make, ini-
tially at least, is that each and every interaction
event produces an identical true energy signal in
the sensor, Es. Beyond being easier to under-
stand, this scenario has physical relevance since
it corresponds to bosonic dark matter absorp-
tion.
With these two simplifications, we can calcu-

late the expected differential rate of the mea-
sured energy E′ in terms of:

• f(E′|E = nsEs) ≡ f(E′|nsEs) : the
probability distribution of measured en-
ergy, E′, in the time interval ∆t given a
true deposited energy of E = nsEs from
ns signal interactions occuring in the same
time interval.

• f(E′|E = 0) ≡ f(E′|0) : the probabil-
ity distribution of measured energy, E′, in
the time interval ∆t with no signal inter-
actions in the same time interval. This is
a subgroup of the previous definition and
is the energy point spread function.

• P (ns|λs = Rs∆t) : the Poissonian distri-
bution for having ns events within a time
∆t with an average number of interactions

λs or equivalently an interaction rate of
Rs.

Please note a few things. First, f(E′|nsEs)
and f(E′|0) are highly related. The first ex-
pression is the convolution of the second term
with a delta-function at true energy nsEs, cor-
recting for possible response nonlinearities. For
a perfectly linearly idealized integrating device
where the energies of all the events that occur
within the ∆t time bin just simply add

f(E′|nsEs) = f(E′ − nsEs|0) (1)

Another way to obtain f(E′|nsEs) is to add
ns signals with energy Es in each integration
time ∆t. This is the basic form of salting that
only applies to the simple discretized detector
scenario because it requires the time integration
intervals to be fixed in time and width.
Using these distributions, we can then write

the expected signal rate dR
dE′ as

dR

dE′ (E
′|S(Es, Rs)) =

1

∆t
f(E′|S(Es, Rs))

=
1

∆t

∞∑
ns=0

P (ns|Rs∆t)f(E′|nsEs)
(2)

We use S(Es, Rs) to represent the signal model.
For simplicity, in the later sections, the parame-
ters for the signal model in context will only be
explicitly written out once, and then the model
will be noted as S. This notation allows us to
easily generalize to more complex signal models,
which can produce a continuum of true energy
depositions, like DM scattering (see Sec. IV).

We explicitly highlight the seemingly obvi-
ous relationship between the measured differ-
ential rate and the probability distribution of
the measured energy, dR

dE′ (E
′|S) = 1

∆tf(E
′|S).

In particular, this relationship means that
∆t
∫
dE′ dR

dE′ (E
′|S) = 1. By contrast, the in-

tegral of the differential rate of the signal with
respect to the true energy deposition, dR

dE (E|S),
is ∆t

∫
dE dR

dE (E|S) = λ, and is thus not a prob-
ability distribution. To gain a deeper under-
standing for this difference, we look at the two
limiting cases. When there is no signal interac-
tion at all, ∆t

∫
dE dR

dE (E|S) = λs = 0. How-
ever, the measured differential rate is clearly
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non-zero; it’s a measure of the noise and back-
grounds. On the other hand, when λ ≫ 1, there
is significant pileup of multiple signal interac-
tions in every bin and dR

dE′ bears little resem-

blance to dR
dE .

Returning to 2, we split off and rewrite the
ns = 0 term using the fact that

∑∞
ns=0 P (ns) =

1, and find

dR

dE′ (E
′|S) = 1

∆t
f(E′|0)

(
1−

∞∑
ns=1

P (ns|Rs∆t)

)
+

1

∆t

∞∑
ns=1

P (ns|Rs∆t)f(E′|nsEs)

=
dR

dE′ (E
′|0)

(
1−

∞∑
ns=1

P (ns|Rs∆t)

)
+

1

∆t

∞∑
ns=1

P (ns|Rs∆t)f(E′|nsEs)

(3)

since dR
dE′ (E

′|0) = 1
∆tf(E

′|0).
Eq. 3 shows that signal interactions af-

fect dR
dE′ in two distinct ways, both of

which must be accounted for. The sec-
ond term, 1

∆t

∑∞
ns=1 P (ns|Rs∆t)f(E′|nsEs),

accounts for the change in the differential rate
distribution from those time periods which
have one or more signal interactions. The
dR
dE′ (E

′|0)
(
1−

∑∞
ns=1 P (ns|Rs∆t)

)
term, by

contrast, accounts for the fact that as Rs in-
creases, there are fewer time periods without
a signal interaction; there are fewer time pe-
riods that are solely noise. In other words, the
presence of signal interactions decreases the live
time available for pure noise fluctuations to be
recorded.
Grouping terms in eq. 3 together by

P (ns|Rs∆t), we find that

dR

dE′ (E
′|S) = dR

dE′ (E
′|0)

+
1

∆t

∞∑
ns=1

P (ns|Rs∆t) (f(E′|nsEs)− f(E′|0))

(4)

or equivalently by multiplying through by ∆t

f(E′|S) = f(E′|0)

+

∞∑
ns=1

P (ns|Rs∆t) (f(E′|nsEs)− f(E′|0))

(5)

Under the assumption that there is minimal

signal pileup, Rs∆t ≪ 1, this simplifies drasti-
cally to

dR

dE′ (E
′|S)

=
dR

dE′ (E
′|0) +Rs(f(E

′|Es)− f(E′|0))
(6)

or equivalently

f(E′|S)
= f(E′|0) +Rs∆t(f(E′|Es)− f(E′|0))

(7)

When written in this way, the term
Rs(f(E

′|Es)−f(E′|0)) should be thought of as
the net change of the differential rate due to a
signal interaction with rate Rs and energy Es.
We define

∆f(E′|Es) ≡ f(E′|Es)− f(E′|0) (8)

as the “net differential response” of the detector
to an event of true energy Es.

Eq. 6 (and its non-linear generalization in
Eq. 4) is the core insight of this paper. It de-
scribes how a signal that is overlapping with
background and noise affects the experimentally
measured differential rate, dR

dE′ (E
′|S). Most im-

portantly, correct modeling of the ∆f(E′|Es)
must occur no matter the statistical technique
ultimately used to estimate experimental search
sensitivity.
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B. A Variety of Test Cases

We will discuss a series of intuitive test
cases to demonstrate that Eq. 6 and their DM
high rate generalizations(Eq. 4) should be used
rather than a bad expression later shown as
Eq. 9 in any analysis where there is a signifi-
cant noise/background event rate that overlaps
with the signal.

1. Bosonic DM search with a Gaussian random
noise

Es

E ′

1
2

f(E ′)
f(E ′|0)
f(E ′|Es)

f(E ′|Es)
f(E ′|S(Es, Rs = 0.1/ t))

FIG. 1. Probability distribution functions for when
f(E′, 0) (yellow) is Gaussian distributed noise.The
net change ∆f(E′|Es) (purple) is f(E

′|Es) (dashed
green) subtracted by f(E′, 0). The DM signal en-
ergy Es = 5σ, where σ is the Gaussian RMS. The
signal rate Rs = 0.1/∆t.

We will start with the ideal scenario, a detec-
tor for bosonic DM absorption with Gaussian
noise fluctuations. In Fig. 1, there are 2 peaks
visible in f(E′|S(Es = 5σ,Rs = 0.1/∆t)) (red).
The large peak centered at E′ = 0 consists of
time frames that are not in coincidence with
a signal interaction; they are due to noise-only
time frames. The peak centered at E′ = Es con-
sists of time frames that have a DM interaction
in coincident with the noise.

Notice that the rate of events around zero is
slightly less for f(E′|S) than f(E′|0) because
the former is only those noise events that are
anticoincident with the DM. Those coincident
with the DM have been up-shifted to being cen-
tered around Es. This is a physical effect repre-
sented by the f(E′|0)

(
1−

∑∞
ns=1 P (ns|Rs∆t)

)
Eq. 3 or equivalently the −Rs∆tf(E′|0) term
in Eq. 7.

In experiments like LZ [1], CDMS-II [5], Su-
perCDMS Soudan [6], etc., the second term is
not included because f(E′|0) has no or very
minimal overlap with f(E′|Es). Thus, there ex-
ists an analysis threshold that is above nearly
the entirety of f(E′|0) while being below the
majority of f(E′|Es). Consequently, neglecting
the decrease in the noise-only event rate has no
scientific significance in those experiments.

2. Searches for Dark Matter where MDM → 0

As the mass of dark matter, MDM , ap-
proaches 0, the maximum possible energy trans-
ferred to the detector also approaches zero,
Es → 0. As such, a necessary but certainly not
sufficient condition for a valid DM search analy-
sis technique is that it has no sensitivity to DM
interactions in the limit as MDM → 0. Notice
that eq. 7 naturally satisfies this condition

f(E′|S(Es → 0, Rs))

= f(E′|0) +Rs∆t(f(E′|Es → 0)− f(E′|0))
= f(E′|0)

In this limit, the measured distribution f(E′|S)
is by construction independent of Rs, and thus,
the experiment has absolutely no sensitivity to
DM. By contrast, [11, 14, 21] did not account
for decreased noise only live time and thus in-
correctly assumed that the sensitivity of their
measured differential rate to a signal was

dRbad

dE′ (E′|S(Es, Rs)) =
dR

dE′ (E
′|0)+Rsf(E

′|Es)
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or expressed by the measurement probability
distribution as

fbad(E
′|S(Es, Rs)) = f(E′|0) +Rs∆tf(E′|Es)

(9)
This expression is clearly an ill-defined proba-
bility distribution, as the total probability is no
longer conservative. Additionally, in the limit
of Es → 0, this incorrect formulation calculates

fbad(E
′|S(Es → 0, Rs))

= f(E′|0) +Rs∆tf(E′|Es → 0)

= f(E′|0)(1 +Rs∆t)

a dependence of the differential rate on Rs.
This is clearly unphysical. It falsely claims
that the number of high-energy noise events in-
creases with the dark matter interaction rate,
even though these interactions deposit zero en-
ergy. To suppress this issue, each of the analyses
that used Eq. 35, a generalized version of Eq.
9, added ad-hoc “conservative” constraints to
limit their sensitivity to suppress this unphysi-
cal sensitivity. In particular, in [11], the authors
required that a dark matter event could not be
noise boosted by more than 3σ when they had
a 4.5 σ trigger threshold to explicitly suppress
this unphysical sensitivity to zero energy inter-
actions. However, it bears emphasizing that
these ad-hoc suppression techniques are quite
problematic because it’s unclear precisely how
strong these ad-hoc constraints must be to en-
tirely remove the unphysical and overestimated
experimental sensitivity that comes from using
the incorrect Eq. 9 instead of the correct Eq. 7.

3. Signal search with a high rate calibration peak

The second scenario to consider is when an
additional high-rate calibration source hits the
detector during the experimental search. For
example, in the CPDv1 DM search [11], a 55Fe
x-ray calibration source was hitting the detec-
tor during the DM search. To be explicit, we
assume this calibration source has a true en-
ergy, Ecal, and a rate of 0.2/∆t, so that 20%
of the integration windows have a calibration

Es Ecal     Es + Ecal

E ′

1
2

f(E ′)
f(E ′|0)
f(E ′|Es)

f(E ′|Es)
f(E ′|S(Es, Rs = 0.1/ t))

FIG. 2. Same probability distributions as Fig. 1
but assuming a non-Gaussian baseline distribution
(yellow) which includes a calibration source at Ecal

and rate Rcal = 0.2/∆t. The signal S is the same
as in Fig. 1

pulse. With this in mind, various probability
distributions have been drawn in Fig. 2. In fig.
2, the red f(E′|S) (where there is DM hitting
the detector) has four peaks:

• a peak centered at E′ = 0: these are
from noise-only time frames with neither a
calibration photon nor a DM interaction.
Compared to the yellow no-DM spectrum,
the noise peak is suppressed by a factor of
(1−Rs∆t) as we expect from Eq. 6. Com-
pared to the no-DM, no-calibration spec-
trum in Fig. 1, the rate is suppressed by
∼ (1−Rs∆t)(1−Rcal∆t).

• a peak centered at E′ = Es: these are
time frames that have a DM interaction
but no calibration photon. The total rate
here is Rs(1−Rcal∆t)

• a peak centered at E′ = Ecal: these are
time frames that have a calibration pho-
ton but no DM interaction. This peak has
been suppressed by a factor of (1−Rs∆t)
compared to the no DM scenario per our
intuition from Eq. 6. The total rate here
is Rcal(1−Rs∆t).
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• a very small peak centered at E′ = Ecal+
Es: these are time frames where both a
calibration photon and a DM interaction
have occurred in coincidence. This peak
has an integrated rate of Rs(Rcal∆t).

Notice that just like in the first case with
Gaussian noise, the peaks at 0 and Ecal

have slightly less total rate in f(E′|S)(red)
than f(E′|0)(yellow), again, due to the DM-
coincident time frames being shifted to the
peaks at Es and Ecal + Es, respectively.

In principle, one could do a DM search
only looking at the coincidence peak be-
tween the calibration source and the DM
at Ecal+Es. However, the sensitivity of such a
search will likely be worse than one looking for
the peak at Es for a few reasons. First, the ex-
pected rate of the peak at Es is 1−Rcal∆t

Rcal∆t times
the peak at Ecal + Es, where Rcal∆t ≪ 1. Sec-
ondly, a Es+Ecal peak search has identical noise
contamination as the Es peak; noise-boosted
calibration-only events will contaminate the cal-
ibration + DM signal, just like noise-only events
contaminate the DM-only events. Third, the
resolution of a high energy peak in real detec-
tors is always worse than the baseline resolu-
tion due to statistical fluctuations and position-
dependent effects. Finally, in real analog de-
tectors, coincidence is a much more qualitative
concept, and thus, the response is much more

complicated (see Sec. V).
We explicitly highlight this scenario for a few

reasons. First, our derivation of the net sig-
nal response (Eq. 6) doesn’t distinguish between
“noise” and “backgrounds”. Both are things
that occur in coincidence with signal and thus
must be treated similarly. Secondly, this is the
extreme limit of a noise distribution with a non-
Gaussian, non-monotonic tail. For example, a
constant energy EMI glitch would have all the
same effects as a calibration source. The key
here is that Eq. 6 allows us to correctly un-
derstand and model how a dark matter signal
would impact the measured differential rate in
experiments with non-Gaussian non-monotonic
measured noise and background spectra.
4. Effect of slowly varying non-Gaussian noise

tails

Next, we consider the scenario with a non-
Gaussian, monotonically decreasing noise tail
of unknown origin. This scenario is extremely
pertinent since the current generation of light
mass DM searches based on cryogenic calorime-
ters measures a poorly understood near thresh-
old background excess of this type[3, 11, 18].

For concreteness, we will model this scenario
with an exponential plus a flat background,
which accounts for the low energy excess back-
grounds and environmental radioactive back-
grounds, respectively. These backgrounds have
then been smeared by Gaussian noise:

f(E′|0) = 1−∆t(ατ + βEmax)√
2πσ

e−
E′2
2σ2 +

∆t√
2πσ

∫ ∞

0

(
αe−E/τ + βH(Emax − E)

)
e−

(E′−E)2

2σ2 dE (10)

where H(·) is the Heaviside step function, limit-
ing the maximum energy of the flat background
to Emax, and the first Gaussian term accounts
for the pure noise frames in the discretized de-
tector such that f(E′|0) integrates to unity.

An example of this scenario is shown in Fig.3.
In the tail region of the noise spectrum, the sen-
sitivity of the differential rate to dark matter,

the net response curve (purple in Fig. 3), is
found to be significantly suppressed compared
to f(E′|Es)(dashed green). This is due to the
fact that for small DM energy depositions, Es,
the net response (Eq. 6) is proportional to the
slope of f(E′|0); or equivalently, the vast ma-

jority of our reach will occur at where d2R
dE′2 is

large. In fact, in the extreme limit of a
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EsEs

E ′

1
2

f(E ′)
f(E ′|0)
f(E ′|Es)

f(E ′|Es)
f(E ′|S(Es, Rs = 0.1/ t))

FIG. 3. Same probability distributions as Fig. 1 but
assuming a non-Gaussian noise following Eq. 10.
α = 0.1/∆t/σ, β = 5 × 10−4/∆t/σ, τ = 2σ. The
signal model here represents a case with low DM
energy, where Es = σ and Rs = 0.1/∆t.

perfectly flat background, there would be
absolutely zero sensitivity to signal in this
portion of the spectrum.

Again, the historically used, but incorrect,
rate model of Eq. 35 tends to drastically overes-
timate signal sensitivity in this critical noise sce-
nario, largely invalidating the use of ad-hoc con-
servative cuts to suppress the unphysical sensi-
tivity in these searches. It strongly motivates
the use of the correct net differential signal re-
sponse function in future experiments with such
backgrounds so that the actual sensitivity can
be correctly estimated.

III. ESTIMATING THE SIGNAL RATE

Now that we understand theoretically how
f(E′), and equivalently dR

dE′ , varies with a
known signal rate Rs of true energy depositions
Es in the linear (Eq. 6) and non-linear regimes
(Eq. 4), we can attempt to statistically estimate
an unknown measured signal rate in experimen-
tal search data.

The first step, of course, is to simply mea-
sure the potentially signal contaminated differ-

ential rate, d̂R
dE′ (E

′|S(Es, λs = Rs∆t))), where
the S explicitly highlights that the measured
search data is potentially contaminated by an
unknown signal with rate Rs and true energy
deposition Es while the ‘ˆ’ communicates that
this is a statistical estimator. Specifically, we
can count the number of measurements, NE′ ,
with an estimated energy E′ within the range

of [E′ − ∆E′

2 , E′ + ∆E
2 ] over a time Ttotal. In

the limit of small energy intervals, the estima-
tor becomes

d̂R

dE′ (E
′|S)

≡ lim
∆E′→0

NE′([E′ − ∆E′

2 , E′ + ∆E
2 ])

∆E′Ttotal

(11)

This estimator and the related estimator
for f̂(E′|S) are both unbiased and consistent
with the true value [19] since their expectation
matches the true value and therefore

⟨ d̂R
dE′ (E

′|S)⟩∆t = ⟨f̂(E′|S)⟩ = f(E′|0) +
∞∑

ns=1

P (ns|λs) (f(E
′|nsEs)− f(E′|0)) (12)

where the second equality follows from Eq. 5.
To generate an unbiased and consistent esti-
mator of λs = Rs∆t from Eq. 12 clearly re-
quires an additional estimation of background

+ noise distribution without any potential
signal contamination, f(E′|0). If this is

possible, then f̂(E′|nsEs) can be generated ei-
ther by shifting the distribution in the case of
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ideal linear integrating detectors, f̂(E′|nsEs) =

f̂(E′ − nsEs|0) or via salting methods (Eq. 1).

With this additional knowledge, λ̂s(E
′) is the

solution of

f̂(E′|S) = f̂(E′|0)

+

∞∑
ns=1

P (ns|λ̂s)
(
f̂(E′|nsEs)− f̂(E′|0)

)
(13)

which in the small pileup limit becomes

R̂s(E
′|Es)∆t = λ̂s(E

′) =
f̂(E′|S)− f̂(E′|0)
f̂(E′|Es)− f̂(E′|0)

(14)
where we’ve explicitly highlighted that
R̂s(E

′|Es) is a function of E′. More complex
estimators can be constructed by an optimal
weighted integration of R̂s over a range of E′

or even using maximum likelihood methods,
but they basically share the same features as
Eqs. 13 and 14.

A. The difficulties of measuring f(E′|0)

Unfortunately, in a large class of experiments,
it is impossible to “turn off” the DM interaction
signal to directly measure f(E′|0). High mass
dark matter experiments like the noble gas 2
phase TPCs, for example, depend upon a wealth

of event information (ionization and scintilla-
tion signal amplitudes, position information)
and an enormous amount of calibration data
to both separate the majority of backgrounds
and model the residual overlapping background
f(E′|0). Unfortunately, the current generation
of light mass dark matter experiments have
minimally understood indistinguishable back-
grounds (charge leakage [7, 9], dark counts [4, 8],
low energy event excess [2, 3, 11, 13]) and thus
an understanding of f(E′|0) is currently impos-
sible.
B. Measuring the net differential response

While in many cases f(E′|0) is not directly
estimable and thus a background subtracted
signal rate is impossible, one can still esti-
mate the net differential response ∆f(E′|Es) ≡
f(E′|Es)−f(E′|0) (Eq. 8) from potentially con-
taminated search data in the no pileup limit.

To prove this let us take the probability dis-
tribution, f(E′|S), that is potentially contam-
inated by the signal S(Es, λs), and generate
the distribution f(E′|S +nsEs) either by shift-
ing the distribution in the case of ideal lin-
ear integrating detectors, f(E′|S + nsEs) =
f(E′ − nsEs|S) or by explicitly adding a true
energy deposition of nsEs to the search data be-
fore measurement via salting (Eq. 1). Following
from Eq. 12, we can relate these boosted signal
contaminated search distributions to that of the
boosted background-only distributions:

f(E′|S + nsEs) = f(E′|nsEs) +

∞∑
ms=1

P (ms|λs) (f(E
′|(ms + ns)Es)− f(E′|nsEs)) (15)

Flipping Eqs. 12 and 15 to write f(E′|0) and f(E′|nsEs) in terms of these measurable search
distributions and a higher order signal pileup residuals, we find

f(E′|0) = f(E′|S)−
∞∑

ms=1

P (ms|λs) (f(E
′|msEs)− f(E′|0)) (16)

and

f(E′|nsEs) = f(E′|S + nsEs)−
∞∑

ms=1

P (ms|λs) (f(E
′|(ns+ms)Es)− f(E′|nsEs)) (17)
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which we can then use to rewrite the unmeasurable net differential sensitivities in Eq. 12 in terms of
measurable differences between signal contaminated distributions and unmeasurable signal pileup
residuals:

f(E′|S) = f(E′|0)+
∞∑

ns=1

P (ns|λs) (f(E
′|S + nsEs)− f(E′|S))

−
∞∑

ns=1

∞∑
ms=1

P (ns|λs)P (ms|λs) [f(E
′|(ms+ns)Es)−f(E′|nsEs)−f(E′|msEs)+f(E′|0)]

(18)

If the unknown average signal interaction
number in each time bin, λs = Rs∆t, is al-
ready known to be ≪ 1, then Eq. 18 can be
Taylor expanded to first order λs and we find

f(E′|S)
= f(E′|0) + λs (f(E

′|S + Es)− f(E′|S))
= f(E′|0) + λs∆f(E′|S + Es)

(19)

where ∆f(E′|S+Es) ≡ f(E′|S+Es)−f(E′|S)
is the measurable net differential signal sensi-
tivity with potential signal contamination. In
other words, Eq. 19 specifically shows that sig-
nal contamination doesn’t significantly affect
the estimate of the net differential sensitivity
in the no-pileup regime.

C. Conservative upper bound in the
no-pileup regime

Using the result of the previous section, we
can derive in the no-pileup regime a conserva-
tive upper bound on the presence of a signal,
R̂lim, which requires no understanding of the
noise, backgrounds and possibly contaminating
signals S.

A conservative upper bound, R̂lim(E
′|Es),

can be defined as

R̂lim ≡ 1

∆t

f̂(E′|S)
∆̂f(E′|S + Es)

(20)

whose value for large exposure becomes

R̂lim(E
′|Es)

Ttotal→∞−−−−−−→ 1

∆t

f(E′|S)
∆f(E′|S + Es)

=
1

∆t

f(E′|0)
∆f(E′|S + Es)

+Rs

(21)

Since f(E′|0) is non-negative everywhere,

limTtotal→∞ R̂lim ≥ Rs for all E′ where
∆f(E′|S + Es) > 0 in the no pileup regime.
It is conservative for all possible back-
ground scenarios in the no pileup regime.
Of course, more complex upper limits that are

constructed by weighted integration of R̂lim(E
′)

taking into account the various statistical penal-
ties [22] will also be conservative.

D. Lack of conservativeness in the pileup
regime (λs ≫ 1)

In Sec. III C, we showed that when λs ≪ 1,

R̂lim conservatively overestimates Rs for all pos-
sible background scenarios. We didn’t, how-

ever, explicitly show that R̂lim could be non-
conservative and potentially underestimate Rs

in the pileup regime. Below are 2 important

background scenarios in which R̂lim unfortu-
nately underestimates Rs. They give us signif-
icant intuition into scenarios where we can and
can not conservatively apply Eq. 21.

The absolute most challenging scenario to
make conservative is one where the measured
background is entirely due to dark matter inter-
actions plus a known Gaussian noise, N(E′|σ).



11

On the surface, this scenario is quite similar to
II B 3. However, in the calibration case, we ex-
plicitly know that the peak is due to calibra-
tion events and not due to dark matter events.
When seeing an unknown event peak in the dark
matter search, this peak could be partially or
fully a dark matter signal.
Therefore to calculate f(E′|S) we use Eq. 2

to allow for the possibility of m signal coinci-
dences within a single time bin:

f(E′|S) =
∞∑

m=0

P (m|λs)N(E′ −mEs|σ)

=

∞∑
m=0

λm
s e−λs

m!
N(E′ −mEs|σ)

(22)

1. Non-Conservative Examples: λs ≫ 1 and
Gaussian Noise with σ ≪ Es

For the limit where σ ≪ Es, the measured
background consists of isolated quantized back-
ground peaks corresponding to m dark matter
coincidences in a single time bin. f(E′|S +Es)
is found by shifting the f(E′|S) by Es

f(E′|S + Es) = f(E′ − Es|S)

=

∞∑
m=0

λm
s e−λs

m!
N(E′ − (m+ 1)Es|σ)

=

∞∑
m=1

λm−1
s e−λs

(m− 1)!
N(E′ −mEs|σ)

(23)

Finally, we can calculate the contaminated
net differential sensitivity at Es

∆f(E′|S + Es) = −e−λsN(E′|σ)

+

∞∑
m=1

(
1− λs

m

)
λm−1
s e−λs

(m− 1)!
N(E′ −mEs|σ)

(24)

As shown in Fig. 4, for m < λ peaks,
∆f(E′|S + Es) is negative, while for m > λ
it’s positive. This is a true effect that’s quali-
tatively similar to the fact that the probability

of measuring a bin with no dark matter inter-
actions decreases as we increase the signal rate
(Sec. II B 1). Integrating both ∆f(E′|S + Es)
and f(E′|S) over the discrete peaks we find that

F (m|S) = λm
s e−λs

m!
(25)

and

∆F (m|S + Es) =

(
1− λs

m

)
λm−1
s e−λs

(m− 1)!
(26)

form >= 1 and generate a limit from each peak:

R̂lim(m|Es)
TTotal→∞−−−−−−−→ 1

∆t

F (m|S)
∆F (m|S + Es)

=
Rs

m− λs

(27)

and thus only the peak where 0 ≤ m − λs ≤ 1
is conservative and overestimates Rs. All peaks
with m− λs ≥ 1 will underestimate Rs and be
non-conservative.

This is both completely consistent with our
general proof for conservativeness in the λ ≪ 1
limit and illustrates the natural conservative-
ness of standard rare event searches that set
limits on signals whose deposition energy is well
above the noise resolution of the detector, say
Es ≳ 3σ by looking for a non-coincident single
event interaction signal.

2. λs ≫ 1 with Gaussian Noise where σ ≫ Es

Perhaps a more pertinent and relevant sce-
nario is when λs ≫ 1 and σ ≫ Es. In this
scenario, the distributions from the various m
signal event coincidences comingle and strongly
overlap, and the Poissonian signal distribution
can be approximated as an off-centered Gaus-
sian distribution, N(E′ − λEs|σs =

√
λsEs).

When convoluted with a non-signal normal
noise distribution of unknown size, σ?, one finds
that

f(E′|S) = N(E′ − λsEs|σ =
√
σ2
? + λsE2

s )

(28)
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FIG. 4. Left: probability distributions for the case where there is DM contamination of the background
data (see text). Here, the unknown true dark matter rate λs = 1.5, and the net response is negative at the
single Es peak. Right: limit set by eq. 27. The gray line indicates the true DM background rate. The limit
is conservative only when 1.5Es < E′ < 2.5Es.

Since Es is small with respect to the varia-
tion scale of f(E′|S), ∆f(E′|S+Es) is approx-
imately

∆f(E′|S + Es) ∼ −∂f(E′|S)
∂E′ Es (29)

and therefore

R̂lim =
−1

∆tEs

f(E′|S)
∂f(E′|Es)

∂E′

=
−1

∆tEs

1
∂ ln f(E′|S)

∂E′

(30)

Plugging in Eq.28, we find that

R̂lim(E
′|Es))

TTotal→∞−−−−−−−→
σ2
?

∆tEs(E′ − λsEs)
+

Rs

E′

Es
− λs

(31)

and we end up again with the unfortunate con-
clusion that if the Gaussian noise is dominated
by Poissonian noise fluctuations of the signal
(i.e., σ2

? ≪ λsE
2
s ), then Rlim(E

′|Es) will under-

estimate Rs by the factor E′

Es
−λs. This explicit

test case really highlights the most important
scenario for which using the net linear differ-
ential signal response (Eq. 21) to set an upper

limit can be non-conservative; high signal pileup
(λs ≫ 1) is largely indistinguishable from noise
fluctuations and thus there is no way to de-
termine if the signal is being boosted by true
noise/background instead of other pileup signal
interactions when Es ≪ σ. To both determine
the relevant conservative range precisely and set
conservative limits on signals where Es ≪ σ,
we suggest using methods that set signal limits
based upon the noise distribution itself [17].

IV. GENERALIZATION TO A
SPECTRUM OF ENERGY DEPOSITION

In the previous two sections, we have worked
with the case where the putative signal was ex-
pected to deposit a single true energy in the
detector, e.g., to take the example of DM, a
simple Bosonic DM interaction. This simplified
the calculation and allowed us to gain intuition.
In this section, we extend the discussion to the
general case of DM interactions with a continu-
ous true energy deposition spectrum.
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A. The case for a generic dark matter
interaction

Before we consider a generic DM interaction,
let us first consider the signal model of multiple
discrete ture energies Esi, with rate Rsi respec-
tively. We would have to take into account not
only the pile-ups between the same energies as
in Eq. 5, but also pile-ups between different en-
ergy Esi and Esj , and triple pile-ups between
Esi, Esj and Esk, and so on. The formulae
get rapidly out off hand but we can notice that
any of these pile-up terms are at least of order
two either in Rsi∆t ≡ λsi or products of several
rates λsi, λsj , ..., which are also at least of order

two in rates. Therefore, if we limit ourselves to
the first-order terms in rates, which is the case
of negligible pile-ups, Eq. 7 becomes

f(E′|S({Esi, Rsi}))

= f(E′|0) +
∑
i

Rsi∆t(f(E′|Esi)− f(E′|0))

(32)

Now, in the no pile-up approximation, for in-
teraction processes that produce a continuum of
energy depositions/signal magnitudes as found
in DM scattering, one can easily generalize Eq. 7
and Eq. 32 by simply integrating over the true
energy, Es:

f(E′|S(Ms, σs)) = f(E′|0) + ∆t

∫
dEs

dR

dEs
(Es|S(Ms, σs))

(
f(E′|0 + Es)− f(E′|0)

)
+ ...

where dR
dEs

(Es|S) is the differential rate of DM with mass Ms at the true but unknown cross-section

σs. The common practice is to calculate DM spectrum shape dR
dEs

(Es|S)/R(S) at an arbitrary refer-

ence cross-section σ0, and move the linear dependence on σs to the total signal rate Rs(S(Ms, σs)):

f(E′|S(Ms, σs))

= f(E′|0) +Rs(S(Ms, σs))∆t

∫
dEs

dR
dEs

(Es|S(Ms, σ0))

R(S(Ms, σ0))

(
f(E′|0 + Es)− f(E′|0)

)
+ ...

= f(E′|0) +Rs∆t∆f(E′|0 + s(Ms)) + ...

(33)

f(E′|0+Es) has the same meaning as f(E′|Es)
in Sec. II A, and we use the ‘0+’ to empha-
size that f(E′|0 + Es) is generated from a
noise+background distribution without any po-
tential signal contamination. In essence, in
Eq. 33 we are simply weighting the various
∆f(E′|0 + Es) by the shape of the true recoil
spectrum to calculate ∆f(E′|0+s(Ms)), the net
differential sensitivity for a single elastic scatter
with mass Ms. s(Ms) is the generalization of

salting with a true energy deposition Es where
one salts with true energy deposition distribu-
tion whose shape is parameterized by the DM
mass, Ms. As with Eq. 6, this equation is only
valid in the limit of a minimal signal pileup,
(λs = Rs∆t ≪ 1).

Just as for the case of Bosonic DM, for small
λs, one can use measurements of the potential
signal contaminated search distributions to es-
timate the true net differential signal sensitivity
as well
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f(E′|S(Ms, σs)) = f(E′|0)

+Rs(S(Ms, σs))∆t

∫
dEs

dR
dEs

(Es|S(Ms, σ0))

R(S(Ms, σ0))

(
f(E′|S(Ms, σs)+Es)− f(E′|S(Ms, σs))

)
+ ...

= f(E′|0)+Rs∆t∆f(E′|S(Ms, σs) + s) + ...

(34)

This equation can be understood as the generalization of Eq. 19. And the DM signal upper limit
can be estimated in the same form as Eq. 20.
What is interesting is that Eq. 34 is not the equation used to calculate dR

dE′ in recent noise
boosting analyses. Instead the CPDv1 DM search [11], the EDELWEISS search [14], and the
CRESST searches [21], have all used

fbad(E
′|S(Ms, σs)) = f(E′|0) +Rs(S(Ms, σs))∆t

∫
dEs

dR
dEs

(Es|S(Ms, σ0))

R(S(Ms, σ0))
f(E′|S(Ms, σs) + Es)

(35)

They are not taking into account the fact that as
Rs increases, the amount of time in which noise
is non-coincident with DM signal decreases. As
we will see below, not taking this into ac-
count can lead to several non-physical
effects and is certainly not conservative
when there is overlap between f(E′|S) and

f(E′|S+Es) . The ad-hoc correction being ap-
plied to this bad boosting method is to set the
boosted energy E′ no more than 3σ higher than
the true energy E. Since f(E′|S + Es) can be
well approximated by a Gaussian within ±3σ
around E′−Es = 0, the corrected boosting can
be written as

f3σlim(E
′|S(Ms, σs))

= f(E′|0) +Rs(S(Ms, σs))∆t

∫
dEs

dR
dEs

(Es|S(Ms, σ0))

R(S(Ms, σ0))

1√
2πσ

e−
(E′−Es)2

2σ2 H(Es + 3σ − E′)
(36)

The effects of all three boosting methods are
shown in the next section.

B. Simulated Light Mass Dark Matter
Search

In order to give a semi-realistic example of
what a dark matter search could look like, we
explore a scenario with 50MeV Dark matter
from a standard halo velocity distribution that
interacts via scalar nuclear scattering with a
5.6 × 10−33 cm2 cross section with a 10g Si de-
tector that has an intrinsic Gaussian noise of

1 eVrms. The same event and backgrounds are
observed with two different integration times,
one at 100µs per frame and one ×100 slower,
at 10ms per frame. The resulting difference in
λs creates drastically different measured experi-
mental differential rates and transitions us from
having noise-boosted limits that are guaranteed
to be conservative (Sec. III C) to the high pileup
regime where it’s possible that the derived lim-
its could be non-conservative (Sec. IIID).

The true energy differential signal rate,
dR
dE (E|S(Ms, σn)), where S represents the un-
known signals from DM of Ms = 50MeV and
σn = 5.6× 10−33 cm2, is shown in Fig. 5 scaled
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by the integration time ∆t. We explicitly note
that unlike dR

dE′ (E
′)∆t = f(E′) that has an in-

tegral of 1, the integral of dR
dE (E|S)∆t is λs

and therefore is not a probability distribution
function. The signal cross section was purpose-
fully chosen such that λs = 0.02 for the detec-
tor with the faster integration time (left) and
2.0 for the detector with the slower integration
time (right). The true energy background dif-
ferential rate, dR

dE (E|B), was chosen to be qual-
itatively similar in shape to the low energy ex-
cess [3] commonly seen in the current generation
light mass dark matter calorimeters but scaled
to not completely dominate the signal. Specif-
ically, we use the shape described by eq. 10,
with τ = 2 eV, α = 1 × 10−3 s−1 eV−1, and
β = 5× 10−6 s−1 eV−1.

Next, we construct the experimentally mea-
sured probability with signal and background
events hitting the detector, f(E′|S) (red). For
the fast integrating detector, λs is small, and
the first order Taylor expansion formulation,
Eq.34, can be used. For the slowly integrat-
ing detector, a continuum true energy depo-
sition generalized form of Eq. 4 is needed
since there is significant signal pileup. To high-
light the changes in the spectrum from the sig-
nal interaction, we also plot the unmeasurable
background-only distribution, f(E′|0) (yellow).
The high energy tail of f(E′|S) and f(E′|0)

for both detectors is simply a convolution of
the noise point spread function (σ =1 eV) with
the true dR

dE (E|B). Since the background event
distribution is relatively slowly varying com-
pared to the noise energy scale, f(E′|S) and
f(E′|0) ∼ dR

dE (E|B)∆t in the high energy range.

At low measured energies, there are substan-
tial differences in the performance of the two
detectors. For the quick detector, differences
between f(E′|S) and f(E′|0) do exist but are
difficult to see since only 2% of the bins have a
signal interaction, and even then, a single signal
interaction event has an average energy deposi-
tion ∼ σ. For the slow detector, however, there
is a significant noise broadening for f(E′|S) due
to DM signal shot noise as derived and discussed
in Sec. IIID 2 compared to f(E′|0)
Positive portions of the linear net differential

sensitivity for DM nuclear scattering (Eq. 34)
with Ms = 50MeV is shown in black. For com-
parison, the dotted black spectrum is boosted
with the bad Eq. 35, which fails to consider
the time occupancy by signals in coincidence
with backgrounds. At all E′, this incorrect dif-
ferential sensitivity estimate overestimates ex-
perimental sensitivity. In particular, above
10 eV where the backgrounds are relatively flat
(Sec. II B 4), it overestimates sensitivity by or-
ders of magnitude. The dashed black spec-
trum is boosted by a simple Gaussian with
3σ cutoff (Eq. 36), which is the conventional
non-rigorous method adapted by many collab-
orations to avoid sensitivity to zero mass DM.
Above ∼ 4 eV (4σ), this method drastically un-
derestimates the true sensitivity compared to
the ∆f(E′|S + s); it’s too conservative. Below
4 eV (4σ), however, this attempted protection
isn’t sufficient, and the experimental sensitivity
is still overestimated.

Finally, we can look at the expectation of the
derived limit using the three boosting methods.
As shown in fig. 6, the expectation of Rlim is
conservative and over-estimates Rs over the en-
tire range of E′ when λs ≪ 1 for this specific
signal and background scenario when one
uses both the net differential sensitivity,∆f , and
for both the incorrect sensitivities. Of course,
for experimental scenarios with even smaller
backgrounds, only ∆f estimators are guaran-
teed to be conservative in the small signal pileup
limit. We note that for this specific scenario, the
3σ boost constraint is conservative for ≳ 3 eV
(3σ). This likely suggests that [11] is in fact con-
servative since the trigger threshold is 4.5σ, but
we emphasize this is a non-rigorous claim from a
small sampling of the noise/signal/background
parameter space.

For the slow detector with λs = 2, unfortu-
nately, all 3 scenarios have energy ranges over
which the derived limits are too strict and are
thus not conservative. This case study once
again explicitly demonstrates the perils of us-
ing linear net differential rate estimators when
the true signal is not guaranteed to be in the
λs ≪ 1 regime (sec. IIID 2).
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FIG. 5. A realistic detector background spectrum without dark matter, yellow, f(E′|0), and with the
presence of unknown dark matter signals, red,f(E′|S). The background spectrum, gray, follows Eq. 10
with σ = 1 eV, τ = 2 eV, α = 1 × 10−3 s−1 eV−1, and β = 5 × 10−6 s−1 eV−1. The unknown signal, blue,
is from 50MeV nuclear recoil dark matters with σn = 5.6× 10−33 cm2 scattering in a 10g silicon detector.
The resulting expected signal per integration time, λs, is 0.02 (2) for the fast (slow) integration time. The
detected DM spectrum, black, is modeled using different methods of detector response boosting. The solid
black line uses the correct net differential rate change proposed in this work, Eq. 34, the dotted black line
uses the bad smearing that was applied in previous works, Eq. 35, and the dashed line is smeared assuming
Gaussian baseline fluctuation and limiting the boost to 3σ, Eq. 36.
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FIG. 6. Limit of DM rate with respect to the true DM background rate, assuming infinite exposure. Line
styles are the same as in fig. 5. Limits in the left figure are conservative. In the right figure, long frame
time results in λs > 1, and the limits are underestimated at certain E′.
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V. UNDERSTANDING ANALOG
DETECTORS

So far, we have correctly calculated dR
dE′ as a

function of Rs for only an idealized time-binned
detector like a CCD. In this section, we will
qualitatively discuss the steps in turning a con-
tinuous time stream from an analog detector
into a set of events above a trigger threshold,
and show that the simplified model we devel-
oped is still qualitatively accurate. In particu-
lar, the fact that an increase in signal rate both
increases the rate of noise+signal coincidence
and decreases the noise-only event rate is
simply a consequence of the fact that the to-
tal data acquisition time is fixed regardless of
detector subtleties.
A modern readout that maximizes signal to

noise will take an analog continuous stream of
data, demix the stream if necessary, Nyquist
filter, and then digitize the stream at a high
enough rate that nearly the entire information
content of the signal remains with high fidelity
(a good rule of thumb is that the Nyquist fre-
quency is at least ×10 larger than the funda-
mental dynamical poles of the signal referenced
to detector output for small signals and ∼ ×10
than the largest dynamical pole for optimum
large signal fidelity). An acausal optimum filter
or matched filter is then applied to this digitized
stream to calculate a signal amplitude estimator
for an event that occurs at t, E′(t).

A trigger algorithm will then go through this
time stream and find regions where E′ > E′

t, the
trigger threshold energy. Each above-threshold
region is then converted to a discrete number of
energy depositions occurring at precise times.
The simplest possible trigger algorithm, for ex-

ample, is to associate a single signal event with
each above threshold region that has a signal
amplitude estimator, E′, and an event time es-
timator, t′ that occurs at the relative maximum
of E′(t) in the above threshold region.
After acquiring the triggered regions, various

additional selections are made to cull events
that aren’t consistent with high-quality signal
events (pileups, saturated events, events occur-
ring in periods of poor detector performance,
events with pulse shapes inconsistent with true
signal events, etc.).

A. Optimum Filter Signal Amplitude
Estimator

The simplest one time degree of free-
dom (DOF), one amplitude DOF optimum or
matched filter [23] generates a signal amplitude
estimator for an event occurring at t with the
highest signal-to-noise ratio on an experimental
trace, Y (ω), provided that:

• the noise is stationary, Gaussian dis-
tributed and characterized by a measured
noise variance, σ2(ω)

• the signal shape is constant for all events
regardless of size and is well modeled by
a template, T (ω).

• at most, there exists only a single event
within the trace.

A derivation for the optimal estimator follows
from maximizing the probability likelihood or
equivalently minimizing the χ2 of the residual

χ2 =
∑
ω

(
Y ∗(ω)− E′T ∗(ω)eiωt

)
σ(ω)−2(Y (ω)− E′T (ω)e−iωt) (37)

with respect to E′ if the event time is known (as
in the case during detector calibration with an

LED pulse) and the resulting best-fit amplitude
is
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E′(t) =

∑
ω T †(ω)σ(ω)−2Y (ω)ejωt∑

ω T †(ω)σ(ω)−2T (ω)
(38)

To understand how a hypothetical true signal
impacts E′(t), we can replace Y with the sum
of a noise trace, Yn, and a true signal event
that occurs at time ts with amplitude Es and
pulse shape T (ω) as shown graphically in Fig.
7. After Optimum filtering, we find

E′(t) =

∑
ω T †(ω)σ(ω)−2(Yn + EsT (ω)e

−jωts)ejωt∑
ω T †(ω)σ(ω)−2T (ω)

=

∑
ω T †(ω)σ(ω)−2Yne

jωt∑
ω T †(ω)σ(ω)−2T (ω)

+ Es

∑
ω T †(ω)σ(ω)−2T (ω)ejω(t−ts)∑

ω T †(ω)σ(ω)−2T (ω)

=E′
n(t) + Esρ(|t− ts|)

(39)

where ρ(|t − ts|) is the normalized weighting
function which encapsulates how a true signal
at ts affects E′ at t. ρ’s behavior largely de-
pends upon the precise noise and template used.
However, there are 2 completely general prop-
erties. First, at t = ts, ρ(0) = 1. Secondly,
|ρ(|t − ts|)| <= 1 for all t. The former means
that when estimating E′(t = ts) the filter be-
haves like the perfect simplistic discrete inte-
grator: E′(ts) = E′

n(ts) + Es. For all other t
(t ̸= ts), the effect of the signal is attenuated.

If the noise and template have no peaks in the
frequency space, then additionally ρ(|t−ts|) de-
creases monotonically with |t−ts| as seen in Fig.
7. For these models, ρ(|t − ts|) effectively de-
fines a natural effective digitization scale ∆tOF

below which the noise and signal qualitatively
sum, and above which the change is qualita-
tively negligible. This behavior is qualitatively
similar to the boxcar function response seen in
the idealized CCD.

Somewhat surprisingly, ρ(t) is also the Pear-
son correlation coefficient (the normalized au-
tocorrelation function) for the optimum filtered
traces, and thus ρ is a measurement of the corre-
lation time scale on E′

n(t): for |t1− t2| < ∆tOF ,
E′

n(t1) and E′
n(t2) are strongly correlated. For

|t1 − t2| > ∆tOF, E
′
n(t1) and E′

n(t2) are weakly
correlated. This is again qualitatively like the
idealized CCD where the noise in the j and j+1

bins are uncorrelated. In summary, an analog
detector acts qualitatively similar to the ideal-
ized integrating detector with an effective ∆tOF

and thus the intuition that we developed with
idealized integrating detectors is still valid.

There are two more non-intuitive deviations
that we regularly encounter when implementing
optimum filters. First, as foreshadowed above,
sharp peaks at a given frequency in the noise or
signal template, for example, a large 60Hz peak
due to EMI pickup, will produce a ρ(|t − ts|)
that is non-monotonic and has multiple rela-
tive minima or “echoes”. Secondly, we regularly
find that our DC noise is significantly larger
than our AC noise terms. In fact, we usually
artificially set the DC noise to ∞ to minimize
propagation of very long time scale changes in
the detector equilibrium into our energy esti-
mator. This lack of a DC term in the optimum
filter means that the time average of the weight-
ing function, ⟨ρ(|t − ts|)⟩t = 0. Consequently,
⟨ρ(|t − ts| ≫ ∆tOF )⟩ < 0; counter-intuitively,
the addition of a positive true signal far from a
noise peak will actually slightly decrease E′.

B. Choosing Trace Length for the
Optimum Filter

To our knowledge, there isn’t a clear opti-
mization strategy for choosing the trace length,
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FIG. 7. A small true signal event (green, scaled by 10) is in coincidence with various noise fluctuations
(black), producing the summed coincidence trace (Red). The top panel shows traces before optimal filtering,
while the bottom panel displays the traces after optimal filtering. In the bottom panel, the black trace
is E′

n(t) and the green trace is Esρ(|t − ts|) (scaled by x10). Finally, the red curve is the optimum filter
output of the salted trace, which shows the behavior that we derived in eq. 39.

Ttrace, used in generating the Optimum fil-
ter. On the one hand, larger Ttrace gives one
greater frequency sensitivity and thus the op-
timum filter has improved ability to optimally
weight different frequencies for improved sen-
sitivity which is extremely useful in removing
sharp environmental noise peaks like 60Hz. On
the other hand, larger trace lengths mean a
higher probability of pileup of both signal and
background events which breaks one of the as-
sumptions required for optimality of the esti-
mator. Thus, the total background rate and
the needed calibration rate set a soft upper
bound on Ttrace since having 1/Ttrace ⪆ to the
signal+background+calibration rate will signif-
icantly increase the complexity and/or the live
time loss. Consequently, Ttrace, is commonly
chosen to be the shortest possible length that
doesn’t significantly degrade the resolution (by
say ∼ 5%).

C. Estimating Event Time In Trigger
Algorithm

Finally and most importantly, the distilla-
tion of E′(t) into an event time estimate has
no direct analog in an integrating detector and
thus it unfortunately adds significant additional
complexity that must be at least qualitatively
understood. If neither the event time nor ampli-
tude is known for the signal, the χ2 is minimized

with respect to both E′ and t. Since ∂χ2

∂t = 0
occurs at the relative extrema of E′(t), the stan-
dard event time estimation is at the maximum
E′(t) in some fixed time window Tmerge after
the trigger goes above the trigger threshold.

We want to specifically emphasize that se-
lecting the maximum from a random distribu-
tion is an explicitly non-linear algorithm and
thus its effects must be at minimum qualita-
tively modeled and understood. Since only one
event is recorded within the Tmerge window, the
larger the Tmerge, the higher the probability of
not triggering on an event, and thus in some
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ways Tmerge acts as dead time. However, it is
truly qualitatively different than a hardware-
enforced trigger dead period; bigger events are
more likely to be tagged and smaller events
are more likely to be untagged either due to
pileup with a larger event or a larger noise fluc-
tuation within the merge window. Minimiz-
ing these effects would suggest a smaller Tmerge

on the scale of ∆tOF. On the other hand, a
Tmerge ∼ ∆tOF ≪ Ttrace will have multiple
echoes of large pulses tagged as events outside
the merge window if the filter is purposefully
deweighting noise peaks; there is no perfect
choice for simplistic trigger algorithms.

As an intermediate step to full modeling of
an analog detector with an optimum filter trig-
ger, let’s follow [14] and qualitatively model the
effects of the trigger algorithm searching for the
maximum E′ throughout a Tmerge. To do this,
we will take our idealized integrating detector,
but rather than store the measured signal in
every bin, we will instead store only the maxi-
mum measured energy in everyN adjacent bins,
which models a Tmerge = N∆tOF. For simplic-
ity, we will also assume that the signal pileup
probability,λs = Rs∆tOF, is small.
Redoing our original derivation for dR

dE′ in Eq.
2 with a Tmerge window, we find

dR

dE′ (E
′|S(Es, Rs)) ≈

1

N∆tOF

(
P (0|RsN∆tOF)fmax(E

′|0) + P (1|RsN∆tOF)fmax(E
′|Es)

)
≈ 1

N∆tOF

(
(1−RsN∆t)fmax(E

′|0) + (RsN∆t)fmax(E
′|Es)

)
≈ 1

N∆tOF
fmax(E

′|0) +Rs

(
fmax(E

′|Es)− fmax(E
′|0)
) (40)

where fmax(E
′|0) is the probability distribution

of the maximum of the measured energies in
N bins, none of which have a signal interac-
tion. Though it can be calculated directly, it’s
perhaps easiest to first calculate its cumulative
distribution function, which is the probability
that each and every bin has as energy < E′

Fmax(E
′|0) = F (E′|0)N (41)

where F (E′|0) is the CDF of the individual bin
energy distribution with no signal events and
therefore

fmax(E
′|0) = dFmax(E

′|0)
dE′

= Nf(E′|0)F (E′|0)N−1
(42)

In these equations (41 and 42) we have made the
simplifying assumptions that the E′ measure-
ment in different ∆tOF intervals are indepen-
dent and that the signal appears only in one of

these intervals. This is approximately true with
our choice of the time interval ∆tOF.

In Fig. 8, fmax(E
′|0) is shown for a wide

variety of merge window sizes for a normally
distributed f(E|0). For E′ where F (E′|0) <
N−1/(N−1), fmax(E

′|0) < f(E′|0) and this sup-
pression of low energy events increases with
N . Simply put, to have a low-energy event
in the maximum distribution requires a low-
energy event in every bin. On the other hand,
the probability of sampling a higher outlier tail
event goes up substantially: in the limit as
F (E′|0) → 1, fmax(E

′|0) = Nf(E′|0).

Likewise, Fmax(E
′|Es) can be derived by rec-

ognizing that the bin with the signal event and
the N−1 bins without the signal event must all
have energies < E′,

Fmax(E
′|Es) = F (E′|Es)F (E′|0)N−1 (43)



21

-2 - 2 3 4
E ′

fmax(E ′|0)
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FIG. 8. A normally distributed f(E′|0) in black,
and the resultant fmax(E

′|0) for N = 10 (red), 100
(green), and 1000 (blue)

and therefore

fmax(E
′|Es) =

dFmax(E
′|Es)

dE′

= f(E′|Es)F (E′|0)N−1

+ F (E′|Es)(N − 1)f(E′|0)F (E′|0)N−2

(44)

Because only the maximum of the N bins is
stored, there is a substantial probability that
a time bin with a true signal whose amplitude
is small compared to the noise fluctuation (i.e.,
when F (Es|0) < 1) will be unrecorded because
there will be a larger noise fluctuation in one
of the other N − 1 bins. By contrast, for large
amplitude signals, F (Es|0) ≈ 1, fmax(E

′|Es) ≈
f(E′|Es).

Writing the measured differential rate (Eq.
40) in terms of f(E′|0) using Eq. 42 and 44 we
find

dR

dE′ (E
′|S) = 1

∆tOF
f(E′|0)F (E′|0)N−1

+RsF (E′|0)N−1

(
[f(E′|Es)−f(E′|0)]+[F (E′|Es)−F (E′|0)] (N−1)f(E′|0)

F (E′|0)

) (45)

Due to the facts that F (E′|0))N−1 < 1 and
[F (E′|Es)−F (E′|0)] < 0 always, the net dif-
ferential sensitivity is always suppressed by a
large merging window, though, of course, the
sensitivity loss is most egregious for small sig-
nals. Consequently, we strongly recommend one
uses the smallest feasible merge window when
searching for signals that comingle with noise.
However, when searching for large signals where
there is no overlap with the noise distribution as
occurs in high mass dark matter searches when
F (Es|0) ∼ 1 Eq. 40 simplifies back to the ex-
pected

lim
F (Es|0)→1

dR

dE′ (E
′|S)

=
1

∆tOF
f(E′|0) +Rsf(E

′|Es)

(46)

VI. MEASURING POTENTIALLY
CONTAMINATED NET DIFFERENTIAL

SIGNALS IN ANALOG DETECTORS
WITH SALTING

In Sec. III, we showed that conservative lim-
its on signal interaction rates could be estimated
from the measureable potentially signal con-
taminated background distribution f(E′|S) and
the measureable potentially contaminated net
differential signal sensitivity ∆f(E′|S + Es) =
f(E′|S+Es)−f(E′|S) for an idealized integrat-
ing detector. Then in Sec. V, we showed that
analog detectors with a continuous time stream
were qualitatively similar to the idealized inte-
grating detectors and thus all of our intuition
remains intact and we should be able to follow a
similar procedure to produce conservative signal
rate limits. Unfortunately, the quantitative de-
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tailed differences require a change in approach.
Specifically:

• In analog detectors, the correlation time
∆tOF and even the concept of coincidence
are qualitative concepts. Consequently,
the simplistic relationship that dR

dE′ =
1
∆tf(E

′) is not rigorously correct. As a
consequence, we will work directly with
the differential rates such as dR

dE′ (E
′|S).

• Triggering and merging algorithms are all
fundamentally non-linear. As a result,
dR
dE′ (E

′|S+Es) ̸= dR
dE′ (E

′−Es|S). In Sec.
V, we did produce a qualitatively accu-
rate, but very simplistic model of these
non-linear effects for a specific trigger al-
gorithm but using this model for sensitiv-
ity estimates would certainly incur some
systematic modeling error.

What remains true for analog detectors is
that the dependence of the search differential
rate, dR

dE′ (E
′|S), on the signal rate can be tay-

lor expanded to first order in the signal rate as
long as the true signal pileup rate is small:

dR

dE′ (E
′|S({Rsi, Esi}))

=
dR

dE′ (E
′|0) +

∑
i

Rsi∆f(E′|0 + Esi)
(47)

Here, we have again made explicit that S de-
scribes the potential superposition of signals of
various true energies (the sum can also include
integration over true energies). This expresses
that, in the non-pileup limit, both the increase
in measured energy differential rate and the
dead time it imposes on the noise and back-
ground differential rate are both proportional to
Rsi. The constant of proportionality is as be-
fore, the net differential sensitivity for a signal
of that true energy. We kept for it the same no-
tation, ∆f(E′|0+Esi), although it is no longer
a difference between f ’s.

Following the same logical arguments that led
to Eq. 19 and 34, we show that salting the sig-
nal contaminated search data can be used to

estimate ∆f(E′|0+Esi) with an accuracy suffi-
cient for approximation to first order in the rate
used in Eq 47.

Specifically, let us add a known random rate
rs of events with true energy Es to the raw
analog search data stream before the trig-
gering algorithm. To first order in rates, the
salted events behave in the same way as the sig-
nal events Si and Eq. 47 becomes

dR

dE′ (E
′|S({Rsi, Esi}) + s(rs, Es))

=
dR

dE′ (E
′|0) +

∑
i

Rsi∆f(E′|0 + Esi)

+ rs∆f(E′|0 + Es)

=
dR

dE′ (E
′|S({Esi, Rsi})) + rs∆f(E′|0 + Es)

(48)

Therefore, to first order in signal rates the net
differential sensitivity

∆f(E′|0 + Es) =
dR
dE′ (E

′|S + s)− dR
dE′ (E

′|S)
rs

≡ ∆f(E′|S + Es)

(49)

∆f(E′|S +Es) is the salting-derived net differ-
ential sensitivity, which can be estimated from
the salting rate normalized difference between
the measured salted and unsalted differential
rates:

∆̂f(E′|S + Es) =
d̂R
dE′ (E

′|S + s)− d̂R
dE′ (E

′|S)
rs

(50)
This result makes intuitive sense. The differ-
ence between the post-analysis differential rates
between the salted and non-salted searches is
the net effect of the salted signal interaction.
At small signal rates, the probability of pileup
between salt and potential signals is negligible,
and the theoretical and salted differential sensi-
tivity are essentially the same.

This equation is valid for arbitrary rs under
the limit of rs∆tOF ≪ 1. The choice of rs does
not affect the result, as it scales simultaneously
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in the denominator and numerator of Eq. 50. It
should not be confused with the potential DM
signal rate Rs. In practice, a high rs may be
desired for computational efficiency. As we have
full control of the salting process, one can force
the Monte Carlo process to avoid salt-salt pile-
up. This procedure also avoids the subtlety of
estimating ∆tOF.
Notice that this salting scheme requires no

definition of any ad hoc effective coincidence
time scale. In fact, this scheme never attempts
to explicitly define if the trigger is coincident
or not coincident with the salted signal (which
we know is a simplification since the weighting
function, ρ, is a continuum and thus the concept
of coincidence is also a continuum). Addition-
ally, since the data is salted before the trigger-
ing algorithm, all subtleties, non-linearities, and
quirks of this algorithm are by construction ac-
counted for, even if the algorithm is challenging
to understand.
If an estimate of the no-signal differential

rate, dR
dE′ (E

′|0) is possible, then background
subtracted estimators for the signal interaction
rate can be constructed using Eq. 50 to estimate
the ∆f(E′|0 + Es).
If we do not have enough confidence to esti-

mate no-signal differential rates, one can obtain
in the no-pileup assumption a conservative up-
per limit for a putative signal in the following
way. We salt separately for each energy. This
salting will be repeated on the raw data stream

(not cumulatively) to estimate ∆̂f(E′|S + Es)
of each different Es. Then, following Eq. 34,
we convolve the net differential response of each
true energy with the true DM spectrum shape

to estimate ∆̂f(E′|S+s(Ms)). Finally, we set a
conservative upper limit to the DM signal rate
similarly as Eq. 20.

R̂lim ≡
d̂R
dE′ (E

′|S)
∆̂f(E′|S + s(Ms))

(51)

VII. CONCLUSION

Previous light mass dark matter searches that
set limits on dark matter interaction rates by

searching for interactions whose sub-threshold
true energy depositions were boosted above
threshold by being in coincidence with large
positive noise fluctuations could potentially
overestimate their experimental signal sensitiv-
ity because they did not account for the effect
of having a decreased rate of background/noise
only interactions in their detector.

Furthermore, we explicitly proved that cor-
rect estimation of the signal contaminated net
differential signal sensitivity would give conser-
vative interaction limits for all possible back-
ground scenarios, provided that the true
interaction signal rate produced mini-
mal signal-signal pileup. We also explicitly
proved that large signal-signal pileup could in-
deed produce non-conservative interaction lim-
its using this linear approximation for some
background cases. Consequently, the conserva-
tiveness of this linear interaction estimate tech-
nique for signals with interactions whose aver-
age value is of the order of the noise resolu-
tion must be confirmed with measurement tech-
niques like [17].

We also showed that analog detectors that
produce a continuous time stream of data
are qualitatively similar to idealized time dis-
cretized integrating detectors like CCDs in so
far as there exists an effective timescale, ∆tOF,
below which noise is strongly correlated and sig-
nal interactions roughly add to the noise fluc-
tuation, and above which noise is uncorrelated
and signal interactions do not affect the noise
and thus all of our intuition regarding estimat-
ing interaction rates in the linear regime re-
main valid as long as one takes into account
non-linearities introduced by the triggering al-
gorithm. This is most easily done by salting the
raw data stream.
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R. Gäıor, A. Garai, C. Garrah, J. Gascon,
G. Gerbier, M. Ghaith, V. Ghete, D. Gift,
I. Giomataris, G. Giroux, A. Giuliani,
P. Gorel, P. Gorla, C. Goupy, J. Goupy,
C. Goy, M. Gros, P. Gros, Y. Guardincerri,
C. Guerin, V. Guidi, O. Guillaudin, S. Gupta,
E. Guy, P. Harrington, D. Hauff, S. T.
Heine, S. A. Hertel, S. Holland, Z. Hong,
E. Hoppe, T. Hossbach, J.-C. Ianigro, V. Iyer,
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