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Abstract

Establishing the existence of exact or near Markov or stationary perfect Nash
equilibria in nonzero-sum Markov games over Borel spaces remains a chal-
lenging problem, with few positive results to date. In this paper, we estab-
lish the existence of approximate Markov and stationary Nash equilibria for
nonzero-sum stochastic games over Borel spaces, assuming only mild regu-
larity conditions on the model. Our approach involves analyzing a quantized
version of the game, for which we provide an explicit construction under
both finite-horizon and discounted cost criteria. This work has significant
implications for emerging applications such as multi-agent learning. Our re-
sults apply to both compact and non-compact state spaces. For the compact
state space case, we first approximate the standard Borel model with a finite
state-action model. Using the existence of Markov and stationary perfect
Nash equilibria for these finite models under finite-horizon and discounted
cost criteria, we demonstrate that these joint policies constitute approximate
Markov and stationary perfect equilibria under mild continuity conditions on
the one-stage costs and transition probabilities. For the non-compact state
space case, we achieve similar results by first approximating the model with
a compact-state model. Compared with previous results in the literature,
which we comprehensively review, we provide more general and complemen-
tary conditions, along with explicit approximation models whose equilibria
are ǫ-equilibria for the original model.
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1. Introduction

The existence of Markov or stationary perfect Nash equilibria for nonzero-
sum Markov games is a challenging problem due to the complexities in-
troduced by the nonzero-sum cost structure, where the gains or losses of
one player do not directly offset those of another. Research in this area
builds on Shapley’s foundational work on stochastic games Shapley (1953),
though Shapley’s original model focused on zero-sum games. In the zero-
sum case, the existence of a value and optimal strategies can be established
more straightforwardly through the min-max theorem, leveraging the sym-
metric nature of the game between the players. However, in the nonzero-sum
setting, the complexity increases significantly.

Fink’s extension to Shapley’s model Fink (1964) demonstrated that for
finite state and action spaces, stationary Nash equilibria exist even in the
nonzero-sum case for the discounted cost criterion. This result is proved using
the Kakutani-Fan-Glicksberg fixed point theorem (see (Aliprantis and Border,
2006, Corollary 17.55)), applied to the best-response correspondence. This
result was significant as it opened the door to analyzing more realistic sce-
narios where players’ interests are not strictly opposed. However, the ap-
proach developed by Fink cannot be applied to models with Borel state
spaces, as in this case, we cannot find an appropriate topology on the set
of policies to satisfy the conditions of the Kakutani-Fan-Glicksberg fixed
point theorem. In contrast, for zero-sum games, it is unnecessary to use
the Kakutani-Fan-Glicksberg fixed point theorem; the existence of equilib-
ria can be established via the minimax theorem (Fan, 1953, Theorem 1),
even for models with standard Borel state spaces (see Nowak (2003)). In
this regard, Mamer and Schilling (1986) (see also (Balder, 1988, Theorem
3.4) and (Hogeboom-Burr and Yüksel, 2021, Theorem 3.2)) have shown that
saddle-point equilibria exist under mild conditions.

Research on non-zero-sum discounted Markov games with standard Borel
spaces has been fragmented. Notably, Levy (2013); Levy and McLennan
(2015) reported the non-existence of stationary equilibrium policies for such
games with continuous spaces. Moreover, there have been very few positive
results regarding the existence of stationary equilibria in discounted Markov
games with continuous state spaces. For example, Himmelberg et al. (1976)
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imposed restrictive separability conditions on the transition kernels and cost
functions, Parthasarathy and Sinha (1989) required state independence of
transitions, and Jaśkiewicz and Nowak (2016) presented conditions for equi-
librium under policies with memory. We refer the reader to (Başar and Zaccour,
2018, Chapter 6) for a more comprehensive discussion on this topic.

The situation in the finite horizon case allows for more positive results
than in the infinite horizon discounted cost scenario when it comes to proving
the existence of equilibria. A prominent study on this topic is conducted by
Rieder Rieder (1979), who examines finite-horizon Markov games within the
framework of standard Borel spaces. His approach employs a direct method
based on backward induction, combined with an ingenious measurable se-
lection argument. This analysis is specifically tailored for finite horizons,
where establishing the existence of equilibria is comparatively more straight-
forward. In Rieder’s work, the existence of Markov policies is established,
which is a common consideration in finite-horizon settings. He imposes a
setwise continuity condition on the transition kernel with respect to control
actions.

As is common in the literature, if an exact solution cannot be found or
its existence cannot be established, one seeks approximate solutions. To this
end, in this paper, we investigate the existence of ε-Nash equilibria obtained
through finite state-action approximations under the most general conditions
known to us. Our primary motivation for addressing this problem stems from
its applications in multi-agent learning algorithms, as explicitly discussed in
Yongacoglu et al. (2023, 2024). These studies highlight the convergence to ε-
equilibrium policies through policy revision processes along ε-satisficing paths
Yongacoglu et al. (2024) (where an agent revises a policy only when they
are not ε-satisfied). Specifically, the existence of ε-equilibria is a sufficient
condition for ensuring the convergence of the independent learning algorithms
developed in these studies for a large class of stage games.

On the existence of ε-equilibria for games with uncountable state and
action spaces, there are only a few studies. Whitt Whitt (1980) examines
approximations under conditions more stringent than ours, notably requiring
a uniform version of total variation convergence of the transition probability,
and does so without explicitly constructing the approximating models. The
lack of explicit construction in Whitt’s work arises from the fact that he
conducted his analysis through the dynamic programming principle using a
monotone contraction operator framework.

In contrast, Nowak Nowak (1985) imposes conditions that are comple-

3



mentary to ours. Notably, he requires that the state space be a countably
generated measurable space (whereas we assume the state space has a metric
structure) and also assumes that the transition kernel has a density with
respect to a reference measure. Using this density assumption, he treats
the density as an element of a function-valued L1-space and establishes the
existence of an approximate model with countably many states via the sepa-
rability of this L1-space. Consequently, Nowak does not explicitly construct
the approximating models, and the approximate model generally has count-
ably many elements, unlike in our case.

In (Nowak, 1985, Remark 6.1), Nowak notes that to obtain a finite approx-
imate model, the state space must be compact and the model components
must be continuous on their domains. This observation is comparable to our
findings for the compact-state case, with a significant distinction: in our ap-
proach, the density assumption is not required as our construction is explicit
and differs from Nowak’s method. Building on similar ideas as in Nowak
(1985), Nowak and Altman Nowak and Altman (2002) address the same ap-
proximation problem for unbounded one-stage costs under discounted and
average cost criteria. For the average cost criterion, they assume geomet-
ric ergodicity type conditions as it is common for the average cost criterion.
Once more, a significant difference between their approach and ours lies in
the construction of the approximate model and the density assumption.

Our approximation result is achieved via an explicit finite-game construc-
tion, building on recent work Saldi et al. (2017, 2018) that developed finite
approximations for MDPs with standard Borel spaces. These methods were
initially applied under the assumption of weak continuity for the transition
probabilities and were shown to yield near-optimal approximations. In our
current study, given the game-theoretic nature of the problem, we impose
more stringent conditions on the kernel than weak continuity. This is be-
cause, unlike standard weakly continuous MDPs—where value functions are
continuous in the state—value functions in nonzero-sum games generally lack
this regularity. Indeed, as Rieder suggests, in such cases, we may need to
settle for merely measurable value functions. Nonetheless, our conditions
are still less restrictive than total variation continuity, while being more de-
manding than setwise continuity. Additionally, we extend our analysis to
encompass non-compact state spaces.

Contributions of the Paper.

(i) We present conditions on the existence of near Markov and stationary
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perfect Nash equilibria for nonzero-sum stochastic games with Borel
spaces, under both finite-horizon and discounted cost criteria. Our
results apply to both compact and non-compact state spaces. Our con-
ditions complement and generalize the results reported in the literature,
as reviewed above.

(ii) Furthermore, as previously noted, we establish the existence of near
Markov and stationary perfect Nash equilibria through a finite state-
action model approximation of the original model. Our finite model
construction is explicit, based on the method developed in Saldi et al.
(2017, 2018) for obtaining finite approximations of MDPs with Borel
spaces. Specifically, we construct a finite Markov game model and
demonstrate that, for every ε > 0, a sufficiently fine approximation of
the original model exists. This approximation ensures the existence
of an equilibrium for the finite model (as guaranteed by Fink (1964);
Rieder (1979)), which serves as an ε-Nash equilibrium for the origi-
nal problem. Thus, our result not only establishes existence but also
provides an explicit method to compute or learn near Markov per-
fect equilibria. This approach has implications for multi-agent learning
problems involving general spaces and information structures beyond
finite models Altabaa et al. (2023); Yongacoglu et al. (2024).

(iii) By demonstrating continuous convergence as the approximation be-
comes finer, our contribution also establishes a positive result on the
continuous dependence of equilibria in the refinement of information
structures within Markov games—a question for which there are few
positive results Hogeboom-Burr and Yüksel (2023).

Notation

For a metric space E, the Borel σ-algebra (the smallest σ-algebra that
contains the open sets of E) is denoted by B(E). We letB(E) and Cb(E) denote
the set of all bounded Borel measurable and continuous real functions on E,
respectively. For any u ∈ Cb(E) or u ∈ B(E), let ‖u‖ := supe∈E |u(e)| which
turns Cb(E) and B(E) into Banach spaces. Let P(E) denote the set of all
probability measures on E. A sequence {µn} of probability measures on E is
said to converge weakly (resp., setwise) (see Hernández-Lerma and Lasserre
(2003)) to a probability measure µ if

∫
E
g(e)µn(de) →

∫
E
g(e)µ(de) for all g ∈

Cb(E) (resp., for all g ∈ B(E)). For any µ, ν ∈ P(E), the total variation
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distance between µ and ν, denoted as ‖µ− ν‖TV , is equivalently defined as

‖µ− ν‖TV := 2 sup
D∈B(E)

|µ(D)− ν(D)| = sup
‖g‖≤1

∣∣∣∣
∫

E

g(e)µ(de)−

∫

E

g(e)ν(de)

∣∣∣∣.

Unless otherwise specified, the term ‘measurable’ will refer to Borel measur-
ability in the rest of the paper.

2. Nonzero Sum Stochastic Games

A discrete-time nonzero sum stochastic game can be described by a tuple

(
X,A1, . . . ,AN , c1, . . . , cN , p

)
,

where Borel spaces (i.e., Borel subsets of complete and separable metric
spaces) X and {Ai}Ni=1 denote the state and action spaces, respectively. The
stochastic kernel

p : X×A ∋ (x, a) 7→ p(·|x, a) ∈ P(X)

denotes the transition probability of the next state given that previous state
and actions are (x, a) (see Hernández-Lerma and Lasserre (1996)), where

A :=

N∏

i=1

A
i, a = (a1, . . . , aN ).

Hence, it satisfies: (i) p( · |x, a) is an element of P(X) for all (x, a) ∈ X× A,
and (ii) p(D| · , · ) is a measurable function from X × A to [0, 1] for each
D ∈ B(X). The one-stage cost function ci for player i is a measurable function
from X×A to R.

Define the history spaces

H0 = X, Ht = (X× A)t × X, t ≥ 1

endowed with their product Borel σ-algebras generated by B(X) and B(Ai),
i = 1, . . . , N . A policy for player i is a sequence πi = {πi

t} of stochastic
kernels on A

i given Ht. The set of all policies for player i is denoted by Πi.
Let Φi denote the set of stochastic kernels on A

i given X, and let Fi denote the
set of all measurable functions from X to A

i. A randomized Markov policy
for player i is a sequence πi = {πi

t} of stochastic kernels on A
i given X. A
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deterministic Markov policy is a sequence of stochastic kernels πi = {πi
t} on

A
i given X such that πi

t( · |x) = δft(x)( · ) for some ft ∈ F
i, where δz denotes the

point mass at z. The set of randomized and deterministic Markov policies for
player i are denoted by RM

i and M
i, respectively. A randomized stationary

policy for player i is a constant sequence πi = {πi
t} of stochastic kernels on A

i

given X such that πi
t( · |x) = ϕ( · |x) for all t for some ϕ ∈ Φi. A deterministic

stationary policy is a constant sequence of stochastic kernels πi = {πi
t} on

A
i given X such that πi

t( · |x) = δf(x)( · ) for all t for some f ∈ F
i. The set

of randomized and deterministic stationary policies for player i are identified
with the sets Φi and F

i, respectively. Hence, we have

F
i ⊂ M

i ⊂ Πi, Φi ⊂ RM
i ⊂ Πi, F

i ⊂ Φi, M
i ⊂ RM

i.

According to the Ionescu Tulcea theorem (see Hernández-Lerma and Lasserre
(1996)), an initial distribution µ on X and a joint policy π := (π1, . . . , πN)
define a unique probability measure Pπ

µ on H∞ = (X×A)∞. The expectation
with respect to Pπ

µ is denoted by E
π

µ . If µ = δx, we write P
π

x and E
π

x instead
of Pπ

δx
and E

π

δx
. For player i, the cost functions to be minimized in this paper

are the finite-horizon cost and the β-discounted cost, respectively given by

J i(π, x) = E
π

x

[T−1∑

t=0

ci(xt,at)

]
,

J i(π, x) = E
π

x

[ ∞∑

t=0

βt ci(xt,at)

]
.

Remark 1. We observe that the infinite sum
∑∞

t=0 β
tci(xt, at) may not be

finite or well-defined in the definition of J i if ci is assumed only to be mea-
surable. However, additional assumptions introduced in subsequent sections
guarantee the well-defined nature of J i.

In the definition below, the cost is either finite-horizon or discounted.

Definition 1 (Nash equilibrium). A joint policy π∗ is said to be ε-Nash
equilibrium (ε ≥ 0) if

J i(π∗, x) ≤ inf
πi∈Πi

J i(π−i, πi, x) + ε ∀x ∈ X,

for all i = 1, . . . , N , where π−i := π \ {πi}. If ε = 0, it is called Nash
equilibrium.
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In nonzero-sum stochastic games, the primary objective is to establish
the existence of (and, if possible, compute or learn) a Markov perfect Nash
equilibrium for the finite-horizon case and a stationary perfect Nash equilib-
rium for the discounted case. This task becomes especially challenging when
dealing with uncountable Borel spaces in the state and action spaces. In con-
trast, for finite cases—where both the state and action spaces are finite—the
existence of such equilibria can be established relatively easily, as shown in
Fink (1964); Rieder (1979). To address the challenge of establishing approx-
imate Markov or stationary perfect Nash equilibria in uncountable cases, we
employ a finite approximation method. By approximating our model with
a finite one, we prove that the stationary or Markov perfect Nash equilib-
rium of the finite model serves as an approximate equilibrium for the original
problem. This approach not only provides existence results for near Markov
or stationary equilibria but also enables effective computation and learning
of these near equilibria using the finite model. To this end, we first present
the construction of the finite model.

3. δ-Approximation of N -player Game

In this section, we construct the finite approximation of the game model
introduced in the previous section. We impose the assumptions below on the
components of the original nonzero sum stochastic game.

Assumption 1.

(a) The one-stage cost functions ci are in Cb(X× A).

(b) The stochastic kernel p( · |x,a) is setwise continuous in (x,a).

(c) X and A
i, i = 1, . . . , N , are compact.

Let dX and dAi denote the metric on X and A
i, respectively, for all i =

1, . . . , N . Fix any δ > 0. Since the state space X and action spaces A
i

are assumed to be compact, one can find finite sets Xδ = {x1, . . . , xkδ} and
A
i
δ = {ai1, . . . , a

i
hδ
} such that they are δ-nets in the corresponding uncountable

spaces. Define functions Qδ and Qi,δ by

Qδ(x) := argmin
z∈Xδ

dX(x, z),
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Qi,δ(a
i) := argmin

bi∈Ai
δ

dAi(ai, bi),

where ties are broken so that functions are measurable. Note that Qδ induces
a partition {Si

δ}
kδ
i=1 on the state space X given by

Si
δ = {x ∈ X : Qδ(x) = xi},

with diameter diam(Si
δ) ≤ 2 δ. Let νδ be a probability measures on X satis-

fying

νδ(S
i
δ) > 0 for all i = 1, . . . , kδ.

We let νi
δ be the restriction of νδ to Si

δ defined by

νi
δ( · ) :=

νδ( · )

νδ(Si
δ)
.

The measures νi
δ will be used to define a finite game model with resolution δ.

To this end, the one-stage cost functions ciδ : Xδ ×A → R and the transition
probability pδ on Xδ given Xδ × A are defined by

ciδ(xi,a) :=

∫

Si
δ

ci(x,a) νi
δ(dx),

(1)

pδ( · |xi,a) :=

∫

Si
δ

Qδ ∗ p( · |x,a) ν
i
δ(dx),

where Qδ∗p( · |x,a) ∈ P(Xδ) is the pushforward of the measure p( · |x,a) with
respect to Qδ. For each δ, we define δ-approximation of the original game as
a finite nonzero sum stochastic game with the following components: Xδ is
the state space, {Ai

δ}
N
i=1 are the action spaces, pδ is the transition probability

and {ciδ}
N
i=1 are the one-stage cost functions. History spaces, policies and cost

functions are defined in a similar way as in the original model. To distinguish
them from the original game model, we add δ as a subscript in each object
for the finite model.

4. Finite-Horizon Cost

Here, we consider the approximation problem for the finite-horizon cost
criterion. Throughout this section, Assumption 1 is assumed to hold. We
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first introduce the best response mappings in the original and approximate
models. Then, we state the approximation result. However, before proceed-
ing, let us define the subgame perfect Nash equilibrium for the finite-horizon
cost criterion.

Definition 2 (Subgame perfect Nash equilibrium). A joint policy π∗ is said
to be subgame perfect ε-Nash equilibrium (ε ≥ 0) if, for each i = 1, . . . , N ,
we have

E
π∗

[T−1∑

k=t

ci(xk,ak)

∣∣∣∣ht

]
≤ inf

πi∈Πi
E
(π∗,−i,πi)

[T−1∑

k=t

ci(xk,ak)

∣∣∣∣ht

]
+ ε,

for all ht ∈ Ht and t = 0, . . . , T − 1, where in the expectations starting from
time t, policies prior to time t are considered irrelevant, while other policies
that utilize information preceding time t rely on a fixed historical variable,
denoted as ht. If ε = 0, it is called subgame perfect Nash equilibrium.

We note that it suffices to consider Markovian policies in the infimum on
the right-hand side of the expression in the above definition. Consequently,
conditioning on the last state xt in the history variable ht is adequate on the
right-hand side, as the past becomes irrelevant in such cases.

Best Response Mapping

Given some fixed Markov policies π−i of all players except player i, the
player i best response is characterized via dynamic programming principle:

Tπ−i

t J∗
t+1(π

−i; ·) = J∗
t (π

−i; ·), for t = 0, . . . , T − 1, (2)

where the operator Tπ
−i

t : B(X) → B(X) is defined as

Tπ−i

t J(x) := min
ai∈Ai

[
ci(x,π−i

t (x), ai) +

∫

X

J(y) p(dy|x,π−i
t (x), ai)

]

= min
γi∈P(Ai)

[
ci(x,π−i

t (x), γi) +

∫

X

J(y) p(dy|x,π−i
t (x), γi)

]

and J∗
T (π

−i; ·) = 0. Here, with an abuse of notation, for any collection of
probability measures (γ1, . . . , γN) ∈ P(A1)× . . .× P(AN ), we define

ci(x, γ1, . . . , γN) :=

∫

X

ci(x, a1, . . . , aN) γ1(da1)⊗ . . .⊗ γN (daN)
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p(·|x, γ1, . . . , γN) :=

∫

X

p(·|x, a1, . . . , aN) γ1(da1)⊗ . . .⊗ γN(daN).

In above recursion, J∗
t (π

−i; ·) is the optimal cost-to-go at time time t of the
player i, if the policies of other players are fixed as π−i:

J∗
t (π

−i; x) := inf
πi∈Πi

E
(π−i,πi)
x

[
T−1∑

l=t

ci(xl,al)

]
, (3)

where subscript x in the expectation means that xt = x and the stochastic
kernels after time t in the policies are used only. For instance, {πi

l}
t−1
l=0 are

irrelevant in this case. If the measurable functions π∗,i
t (·;π−i) (t = 0, . . . , T −

1) from X to P(Ai) minimizes the expression in (2) for all x ∈ X, then it is

known that the Markov policy π∗,i(·;π−i) = {π∗,i
t (·;π−i)}T−1

t=0 is the optimal
solution of the optimization problem in (3) for each t = 0, . . . , T − 1 (again
for each t, functions before time t are irrelevant). Hence, we can define the
best response of player i to the joint policy π

−i as

Besti(π
−i) =

{
π∗,i(·;π−i) : π∗,i

t (·;π−i) (t = 0, . . . , T − 1) minimizes (2) ∀ x ∈ X

}
.

Using this, we define the best response map of all players as follows:

Best :
N∏

i=1

RM
i ∋ π 7→

N∏

i=1

Besti(π
−i) ∈ 2

∏N
i=1 RM

i

.

Therefore, a joint policy π∗ is Markov perfect Nash equilibrium if π∗ ∈
Best(π∗).

For the approximate finite model, similar definitions can be made if we
replace

(
X,A1, . . . ,AN , c1, . . . , cN , p

)
with

(
Xδ,A

1
δ, . . . ,A

N
δ , c

1
δ, . . . , c

N
δ , pδ

)
and

integral with summation. In this case, we also add δ as a subscript to the
operators and the optimal cost-to-go functions.

Existence of Approximate Markov Perfect Nash Equilibrium

For any δ > 0, by Rieder (1979), it is known that there exists a Markov
perfect Nash equilibrium π∗

δ for the finite δ-approximation of the original
game problem. Hence, for all i = 1, . . . , N , we have

T
π

∗,−i
δ

δ,t J∗
δ,t+1(π

∗,−i
δ ; ·) = J∗

δ,t(π
∗,−i
δ ; ·), for t = 0, . . . , T − 1, (4)
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where the operator T
π

∗,−i
δ

δ,t : B(Xδ) → B(Xδ) is defined as

T
π

∗,−i
δ

δ,t J(xj)

:= min
ai∈Ai

δ

{∫

Sj
δ

[
ci(x,π∗,−i

δ,t (xj), a
i) +

∫

X

Ĵ(y) p(dy|x,π∗,−i
δ,t (xj), a

i)

]
ν
j
δ (dx)

}

= min
γi∈P(Ai

δ
)

{∫

Sj
δ

[
ci(x,π∗,−i

δ,t (xj), γ
i) +

∫

X

Ĵ(y) p(dy|x,π∗,−i
δ,t (xj), γ

i)

]
ν
j
δ (dx)

}
,

Ĵ = J ◦ Qδ, and J∗
δ,T (π

∗,−i
δ ; ·) = 0. For each i = 1, . . . , N , the minimum in

(4) is achieved by the policies in Markov perfect Nash equilibrium π∗
δ .

We now extend the definition of the operators T
π

∗,−i
δ

δ,t to B(X) as follows:

T̂
π

∗,−i
δ

δ,t J(z)

:= min
ai∈Ai

δ

{∫

S
i(z)
δ

[
ci(x,π∗,−i

δ,t (z), ai) +

∫

X

Ĵ(y) p(dy|x,π∗,−i
δ,t (z), ai)

]
ν
i(z)
δ (dx)

}

= min
γi∈P(Ai

δ
)

{∫

S
i(z)
δ

[
ci(x,π∗,−i

δ,t (z), γi) +

∫

X

Ĵ(y) p(dy|x,π∗,−i
δ,t (z), γi)

]
ν
i(z)
δ (dx)

}
,

Ĵ = J ◦ Qδ, and with an abuse of notation, we denote the extended policy
π

∗,−i
δ,t ◦ Qδ as π

∗,−i
δ,t in order not to complicate the notation further. Here,

i : X → {1, . . . , kδ} gives the index of the bin to which z belongs. One can
prove that

T̂
π

∗,−i
δ

δ,t Ĵ∗
δ,t+1(π

∗,−i
δ ; ·) = Ĵ∗

δ,t(π
∗,−i
δ ; ·), for t = 0, . . . , T − 1, (5)

where ”̂ ” means piece-wise constant extensions of functions defined on Xδ

to X.
To prove the next result, we need to put further conditions on the tran-

sition probability in addition to Assumption 1-(b). To this end, define the
stochastic kernel pδ : X×A → P(Xδ) for each δ ≥ 0 as

pδ(·|x,a) := Qδ ∗ p(·|x,a).

Since p(·|x,a) is setwise continuous, the conditional probability p(Sj
δ |x,a) is

continuous in (x,a) for each j = 1, . . . , kδ. Hence, if (xn,an) → (x,a), then

lim
n→∞

‖pδ(·|xn,an)− p(·|x,a)‖TV = lim
n→∞

kδ∑

j=1

|pδ(Sj
δ |xn,an)− p(Sj

δ |x,a)| = 0.

12



Hence, pδ(·|x,a) is continuous in total variation norm. As X and A are
compact, pδ(·|x,a) is also uniformly continuous, and therefore, we can define
the modulus of continuity of pδ(·|x,a) as

ωδ(r) := sup
dX(x,y)+dA(a,b)≤r

‖pδ(·|x,a)− pδ(·|y, b)‖TV ,

which converges to zero as r → 0. In the assumption below, we want this
convergence to be fast enough.

Assumption 2.

(d) We suppose that limδ→0 ωδ(2δ) = 0.

This additional assumption is true if the original transition probability
p(·|x,a) is continuous in total variation norm.

Theorem 1. Under Assumption 1 and Assumption 2, for each i = 1, . . . , N ,

we have

lim
δ→0

‖Ĵ∗
δ,t(π

∗,−i
δ ; ·)− J∗

t (π
∗,−i
δ ; ·)‖ = 0 ∀ t = 0, . . . , T.

Proof. We prove the result by backward induction. Since the terminal cost
at time T is zero for each problem, the result trivially holds.

Suppose that the statement is true for t + 1 and consider t. Then, we
have

‖Ĵ∗
δ,t(π

∗,−i
δ ; ·)− J∗

t (π
∗,−i
δ ; ·)‖ = ‖T̂

π
∗,−i
δ

δ,t Ĵ∗
δ,t+1(π

∗,−i
δ ; ·)− T

π
∗,−i
δ

t J∗
t+1(π

∗,−i
δ ; ·)‖

≤ ‖T̂
π

∗,−i
δ

δ,t Ĵ∗
δ,t+1(π

∗,−i
δ ; ·)− T

π
∗,−i
δ

t Ĵ∗
δ,t+1(π

∗,−i
δ ; ·)‖

+ ‖T
π

∗,−i
δ

t Ĵ∗
δ,t+1(π

∗,−i
δ ; ·)− T

π
∗,−i
δ

t J∗
t+1(π

∗,−i
δ ; ·)‖,

where the second term in the last expression converges to zero as δ → 0 by

the induction hypothesis as the operator T
π

∗,−i
δ

t is non-expansive. Hence, it
remains to prove that the first expression converges to zero as δ → 0. To
this end, we define K := T supi=1,...,N ‖ci‖. Then, we have

‖T̂
π

∗,−i
δ

δ,t
Ĵ∗
δ,t+1(π

∗,−i
δ

; ·)− T
π

∗,−i
δ

t Ĵ∗
δ,t+1(π

∗,−i
δ

; ·)‖

= sup
z∈X

∣

∣

∣

∣

min
ai∈Ai

δ

{

∫

S
i(z)
δ

[

ci(x,π∗,−i
δ,t

(z), ai) +

∫

X

Ĵ∗
δ,t+1(π

∗,−i
δ

; y) p(dy|x,π∗,−i
δ,t

(z), ai)

]

ν
i(z)
δ

(dx)

}
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− min
ai∈Ai

[

ci(z,π∗,−i
δ,t

(z), ai) +

∫

X

Ĵ∗
δ,t+1(π

∗,−i
δ

; y) p(dy|z,π∗,−i
δ,t

(z), ai)

]
∣

∣

∣

∣

≤ sup
z∈X

∣

∣

∣

∣

min
ai∈Ai

δ

{

∫

S
i(z)
δ

[

ci(x,π∗,−i
δ,t

(z), ai) +

∫

X

Ĵ∗
δ,t+1(π

∗,−i
δ

; y) p(dy|x,π∗,−i
δ,t

(z), ai)

]

ν
i(z)
δ

(dx)

}

− min
ai∈Ai

{

∫

S
i(z)
δ

[

ci(x,π∗,−i
δ,t

(z), ai) +

∫

X

Ĵ∗
δ,t+1(π

∗,−i
δ

; y) p(dy|x,π∗,−i
δ,t

(z), ai)

]

ν
i(z)
δ

(dx)

}

∣

∣

∣

∣

+ sup
z∈X

∣

∣

∣

∣

min
ai∈Ai

{

∫

S
i(z)
δ

[

ci(x,π∗,−i
δ,t

(z), ai) +

∫

X

Ĵ∗
δ,t+1(π

∗,−i
δ

; y) p(dy|x,π∗,−i
δ,t

(z), ai)

]

ν
i(z)
δ

(dx)

}

− min
ai∈Ai

[

ci(z,π∗,−i
δ,t

(z), ai) +

∫

X

Ĵ∗
δ,t+1(π

∗,−i
δ

; y) p(dy|z,π∗,−i
δ,t

(z), ai)

]
∣

∣

∣

∣

≤ sup
z∈X

sup
ai∈Ai

∣

∣

∣

∣

∫

S
i(z)
δ

[

ci(x,π∗,−i
δ,t

(z), Qi,δ(a
i)) +

∫

X

Ĵ∗
δ,t+1(π

∗,−i
δ

; y) p(dy|x,π∗,−i
δ,t

(z), Qi,δ(a
i))

]

ν
i(z)
δ

(dx)

−

∫

S
i(z)
δ

[

ci(x,π∗,−i
δ,t

(z), ai) +

∫

X

Ĵ∗
δ,t+1(π

∗,−i
δ

; y) p(dy|x,π∗,−i
δ,t

(z), ai)

]

ν
i(z)
δ

(dx)

∣

∣

∣

∣

+ sup
z∈X

sup
ai∈Ai

∣

∣

∣

∣

∫

S
i(z)
δ

ci(x,π∗,−i
δ,t

(z), ai) ν
i(z)
δ

(dx)− ci(z,π∗,−i
δ,t

(z), ai)

∣

∣

∣

∣

+ sup
z∈X

sup
ai∈Ai

∣

∣

∣

∣

∫

S
i(z)
δ

∫

X

Ĵ∗
δ,t+1(π

∗,−i
δ

; y) p(dy|x,π∗,−i
δ,t

(z), ai) ν
i(z)
δ

(dx)

−

∫

X

Ĵ∗
δ,t+1(π

∗,−i
δ

; y) p(dy|z,π∗,−i
δ,t

(z), ai)

∣

∣

∣

∣

.

In the last expression, the second term converges to zero as δ → 0 by uniform
continuity of the function ci(x,a). The last term can be written as

sup
z∈X

sup
ai∈Ai

∣∣∣∣
∫

S
i(z)
δ

∑

y∈X

J∗
δ,t+1(π

∗,−i
δ ; y) pδ(y|x,π∗,−i

δ,t (z), ai) ν
i(z)
δ (dx)

−
∑

y∈X

J∗
δ,t+1(π

∗,−i
δ ; y) pδ(y|z,π∗,−i

δ,t (z), ai)

∣∣∣∣,

and so, it can be upper bounded by K ωδ(2 δ) as supj=1,...,kδ
diam(Sj

δ ) ≤ 2 δ,
which converges to zero as δ → 0 by Assumption 2. In the last expression,
the first term can be upper bounded by

sup
z∈X

sup
ai∈Ai

∣∣∣∣c
i(z,π∗,−i

δ,t (z), Qi,δ(a
i)) +

∫

X

Ĵ∗
δ,t+1(π

∗,−i
δ ; y) p(dy|z,π∗,−i

δ,t (z), Qi,δ(a
i))

− ci(z,π∗,−i
δ,t (z), ai)−

∫

X

Ĵ∗
δ,t+1(π

∗,−i
δ ; y) p(dy|z,π∗,−i

δ,t (z), ai)

∣∣∣∣

≤ sup
z∈X

sup
ai∈Ai

∣∣∣∣c
i(z,π∗,−i

δ,t (z), Qi,δ(a
i))− ci(z,π∗,−i

δ,t (z), ai)

∣∣∣∣
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+ sup
z∈X

sup
ai∈Ai

∣∣∣∣
∫

X

Ĵ∗
δ,t+1(π

∗,−i
δ ; y) p(dy|z,π∗,−i

δ,t (z), Qi,δ(a
i))

−

∫

X

Ĵ∗
δ,t+1(π

∗,−i
δ ; y) p(dy|z,π∗,−i

δ,t (z), ai)

∣∣∣∣

= sup
z∈X

sup
ai∈Ai

∣∣∣∣c
i(z,π∗,−i

δ,t (z), Qi,δ(a
i))− ci(z,π∗,−i

δ,t (z), ai)

∣∣∣∣

+ sup
z∈X

sup
ai∈Ai

∣∣∣∣
∑

y∈X

J∗
δ,t+1(π

∗,−i
δ ; y) pδ(y|z,π∗,−i

δ,t (z), Qi,δ(a
i))

−
∑

y∈X

J∗
δ,t+1(π

∗,−i
δ ; y) pδ(y|z,π∗,−i

δ,t (z), ai)

∣∣∣∣

The first term above converges to zero as δ → 0 again by uniform continu-
ity of the function ci(x,a) and the second term can be upper bounded by
K ωδ(2 δ) as supai∈Ai dAi(Qi,δ(a

i), ai) ≤ δ, which converges to zero as δ → 0
by Assumption 2. This completes the proof.

We now proceed to prove the key result of this section, which implies that
the Markov perfect Nash equilibrium of the finite model, when extended to
the original model, serves as an approximate Markov perfect equilibrium for
the original game.

Theorem 2. Under Assumption 1 and Assumption 2, for each i = 1, . . . , N ,

we have

lim
δ→0

‖J i
t (π

∗
δ, ·)− J∗

t (π
∗,−i
δ ; ·)‖ = 0 ∀ t = 0, . . . , T,

where J i
t (π

∗
δ, ·) is the cost-to-go of player i at time t under the joint policy

π∗
δ.

Proof. We again prove the result by backward induction. Since the terminal
cost at time T is zero, the result trivially holds.

Suppose that the statement is true for t + 1 and consider t. Then, we
have

‖J i
t (π

∗
δ, ·)− J∗

t (π
∗,−i
δ ; ·)‖ = ‖T

π
∗
δ
,i

t J i
t+1(π

∗
δ , ·)− T

π
∗,−i
δ

t J∗
t+1(π

∗,−i
δ ; ·)‖, (6)

where

T
π

∗
δ
,i

t J(z) := ci(z,π∗
δ,t(z)) +

∫

X

J(y) p(dy|z,π∗
δ,t(z)).
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Then, we can bound (6) via triangle inequality as follows

(6) ≤ ‖T
π

∗
δ
,i

t J i
t+1(π

∗
δ, ·)− T̂

π
∗,−i
δ

δ,t Ĵ∗
δ,t+1(π

∗,−i
δ ; ·)‖

+ ‖T̂
π

∗,−i
δ

δ,t Ĵ∗
δ,t+1(π

∗,−i
δ ; ·)− T

π
∗,−i
δ

t J∗
t+1(π

∗,−i
δ ; ·)‖ (7)

The second term in the last expression converges to zero as δ → 0 by The-

orem 1. For the first term, the minimum is achieved in T̂
π

∗,−i
δ

δ,t Ĵ∗
δ,t+1(π

∗,−i
δ ; ·)

by π
∗,i
δ,t as π

∗
δ is a Nash equilibrium in the finite game. Hence, we can write

T̂
π

∗,−i

δ

δ,t Ĵ∗
δ,t+1(π

∗,−i
δ ; ·)

= min
ai∈Ai

δ

{∫

S
i(z)
δ

[
ci(x,π∗,−i

δ,t (z), ai) +

∫

X

Ĵ∗
δ,t+1(π

∗,−i
δ ; y) p(dy|x,π∗,−i

δ,t (z), ai)

]
ν
i(z)
δ (dx)

}

=

∫

S
i(z)
δ

[
ci(x,π∗

δ,t(z)) +

∫

X

Ĵ(y) p(dy|x,π∗
δ,t(z))

]
ν
i(z)
δ (dx).

Hence, the first term in (7) can be written as

sup
z∈X

∣∣∣∣
∫

S
i(z)
δ

[
ci(x,π∗

δ,t(z)) +

∫

X

Ĵ∗
δ,t+1(π

∗,−i
δ ; y) p(dy|x,π∗

δ,t(z))

]
ν
i(z)
δ (dx)

−

[
ci(z,π∗

δ,t(z)) +

∫

X

J i
t+1(π

∗
δ , y) p(dy|z,π

∗
δ,t(z))

] ∣∣∣∣.

Using exactly the same arguments that we used in the proof of Theorem 1,
we can establish that this term converges to zero as δ → 0. This completes
the proof.

Now, it is time to discuss the implications of Theorem 2. Note that for
each i = 1, . . . , N , we have

J∗
0 (π

∗,−i
δ ; x) = inf

π∈Πi
E
(π∗,−i

δ
,πi)

x

[
T−1∑

t=0

ci(xt,at)

]
. (8)

Hence, Theorem 2 implies that for any ε > 0, there exists δ(ε) such that for
any δ ≤ δ(ε), the policy π∗

δ is Markov perfect ε-Nash equilibrium. Moreover,
since Theorem 2 is true for other t values greater than zero, we can conclude
that Markov perfect ε-Nash equilibrium π∗

δ is also subgame perfect ε-Nash
equilibrium.
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5. Discounted Cost

In this section, we address the approximation problem related to the dis-
counted cost criterion. We assume that Assumption 1 remains valid through-
out this section. Initially, we present the best response mappings for both
the original and approximate models. Following this, we outline the approx-
imation result. However, prior to this, we again need to define the subgame
perfect Nash equilibrium for the discounted cost criterion.

Definition 3 (Subgame perfect Nash equilibrium). A joint policy π∗ is said
to be subgame perfect ε-Nash equilibrium (ε ≥ 0) if, for each i = 1, . . . , N ,
we have

E
π∗

[ ∞∑

k=t

βkci(xk,ak)

∣∣∣∣ht

]
≤ inf

πi∈Πi
E
(π∗,−i,πi)

[ ∞∑

k=t

βkci(xk,ak)

∣∣∣∣ht

]
+ ε,

for all ht ∈ Ht and t = 0, . . ., where in the expectations starting at time
t, policies prior to time t are considered irrelevant, while other policies that
utilize information preceding time t rely on a fixed historical variable, denoted
as ht. If ε = 0, it is called subgame perfect Nash equilibrium.

Note focusing solely on stationary policies in the infimum on the right side
of the expression in the aforementioned definition is adequate. Consequently,
conditioning on the latest state xt in the history variable ht suffices on the
right-hand side, as earlier states become irrelevant in such cases.

Best Response Mapping

Given some fixed stationary policies π−i of all players except player i, the
player i best response is characterized via dynamic programming principle:

Tπ
−i

J∗(π−i; ·) = J∗(π−i; ·), (9)

where the operator Tπ−i

: B(X) → B(X) is defined as

Tπ
−i

J(x) := min
ai∈Ai

[
ci(x,π−i(x), ai) + β

∫

X

J(y) p(dy|x,π−i(x), ai)

]
.

Here, similar to the operators defined for the finite-horizon cost criterion, one
can always perform the minimization over the set of probability measures on
the action spaces, i.e. P(Ai), which yields the same operator. However, to
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avoid complicating the notation, we omit explicitly stating this each time we
define such an operator, but we implicitly assume its ability to be defined
and minimized over the set of probability measures as well.

It is straightforward to prove that Tπ
−i

is β-contraction on B(X) with
respect to sup-norm. Hence, it has a unique fixed point by Banach fixed
point theorem and this unique fixed point J∗(π−i; ·) is the optimal cost of
the player i, if the policies of other players are fixed as π−i:

J∗(π−i; x) := inf
πi∈Πi

E
(π−i,πi)
x

[
∞∑

t=0

βtci(xt,at)

]
. (10)

If the measurable function π∗,i(·;π−i) from X to P(Ai) minimizes the expres-
sion in (9) for all x ∈ X, then it is known that the stationary policy π∗,i(·;π−i)
is the optimal solution of the optimization problem in (10). Hence, we can
define the best response of player i to the joint policy π−i as

Besti(π
−i) =

{
π∗,i(·;π−i) : π∗,i(·;π−i) minimizes (9) for all x ∈ X

}
.

Using this, we define the best response map of all players as follows:

Best :
N∏

i=1

Φi ∋ π 7→
N∏

i=1

Besti(π
−i) ∈ 2

∏N
i=1 Φi

.

Therefore, a joint policy π∗ is stationary perfect Nash equilibrium if π∗ ∈
Best(π∗).

For the approximate finite model, similar definitions can be made if we
replace

(
X,A1, . . . ,AN , c1, . . . , cN , p

)
with

(
Xδ,A

1
δ, . . . ,A

N
δ , c

1
δ, . . . , c

N
δ , pδ

)
and

integral with summation. In this case, we also add δ as a subscript to the
operators and the optimal cost function.

Existence of Approximate Stationary Perfect Nash Equilibrium

For any δ > 0, by Fink (1964), it is known that there exists a stationary
perfect Nash equilibrium π∗

δ for the finite δ-approximation of the original
game problem. Hence, for all i = 1, . . . , N , we have

T
π

∗,−i
δ

δ J∗
δ (π

∗,−i
δ ; ·) = J∗

δ (π
∗,−i
δ ; ·), (11)

where the operator T
π

∗,−i
δ

δ : B(Xδ) → B(Xδ) is defined as
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T
π

∗,−i
δ

δ J(xj) := min
ai∈Ai

δ

{∫

Sj
δ

[
ci(x,π∗,−i

δ (xj), a
i) + β

∫

X

Ĵ(y) p(dy|x,π∗,−i
δ (xj), a

i)

]}
,

where Ĵ = J ◦ Qδ. For each i = 1, . . . , N , the minimum in (11) is achieved
by the policies in stationary perfect Nash equilibrium π∗

δ .

We now extend the definition of the operator T
π

∗,−i
δ

δ to B(X) as follows:

T̂
π

∗,−i
δ

δ J(z)

:= min
ai∈Ai

δ

{∫

S
i(z)
δ

[
ci(x,π∗,−i

δ (z), ai) + β

∫

X

Ĵ(y) p(dy|x,π∗,−i
δ (z), ai)

]
ν
i(z)
δ (dx)

}
,

where Ĵ = J ◦ Qδ, and with an abuse of notation, we denote the extended
policy π

∗,−i
δ ◦ Qδ as π

∗,−i
δ in order not to complicate the notation further.

Recall that i : X → {1, . . . , kδ} gives the index of the bin to which z belongs.
One can prove that

T̂
π

∗,−i
δ

δ Ĵ∗
δ (π

∗,−i
δ ; ·) = Ĵ∗

δ (π
∗,−i
δ ; ·), (12)

where we recall that ”̂ ” means piece-wise constant extensions of functions
defined on Xδ to X. To prove the next result, we again need to suppose that
Assumption 2 holds.

Theorem 3. Under Assumption 1 and Assumption 2, for each i = 1, . . . , N ,

we have

lim
δ→0

‖Ĵ∗
δ (π

∗,−i
δ ; ·)− J∗(π∗,−i

δ ; ·)‖ = 0.

Proof. To prove the result, we use contraction property of the operators

T̂
π

∗,−i
δ

δ and Tπ
∗,−i
δ . Indeed, by Banach fixed point theorem, if we start with a

common initial function J0 ∈ B(X), then

(
T̂

π
∗,−i

δ

δ

)t

J0 =: Ĵ∗
δ,t(π

∗,−i
δ ; ·) → Ĵ∗

δ (π
∗,−i
δ ; ·),

(
Tπ

∗,−i

δ

)t

J0 =: J∗
t (π

∗,−i
δ ; ·) → J∗(π∗,−i

δ ; ·)

in sup-norm as t → ∞. Hence, by using induction, we first prove that

lim
δ→0

‖Ĵ∗
δ,t(π

∗,−i
δ ; ·)− J∗

t (π
∗,−i
δ ; ·)‖ = 0
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for all t ≥ 0. Then, the result follows from the triangle inequality.
Since the function J0 at time zero is common, the result trivially holds.

Suppose that the statement is true for t and consider t + 1. Then, we have

‖Ĵ∗
δ,t+1(π

∗,−i
δ ; ·)− J∗

t+1(π
∗,−i
δ ; ·)‖ = ‖T̂

π
∗,−i
δ

δ Ĵ∗
δ,t(π

∗,−i
δ ; ·)− Tπ

∗,−i
δ J∗

t (π
∗,−i
δ ; ·)‖

≤ ‖T̂
π

∗,−i
δ

δ Ĵ∗
δ,t(π

∗,−i
δ ; ·)− Tπ

∗,−i
δ Ĵ∗

δ,t(π
∗,−i
δ ; ·)‖

+ ‖Tπ
∗,−i
δ Ĵ∗

δ,t(π
∗,−i
δ ; ·)− Tπ

∗,−i
δ J∗

t (π
∗,−i
δ ; ·)‖,

where the second term in the last expression converges to zero as δ → 0

by the induction hypothesis as the operator Tπ
∗,−i
δ is contraction. Hence, it

remains to prove that the first expression converges to zero as δ → 0. To
this end, we define K := supi=1,...,N ‖ci‖. Then, we have

‖T̂
π

∗,−i
δ

δ
Ĵ∗
δ,t(π

∗,−i
δ

; ·)− Tπ
∗,−i
δ Ĵ∗

δ,t(π
∗,−i
δ

; ·)‖

= sup
z∈X

∣

∣

∣

∣

min
ai∈A

i
δ

{

∫

S
i(z)
δ

[

ci(x,π∗,−i
δ

(z), ai) + β

∫

X

Ĵ∗
δ,t(π

∗,−i
δ

; y) p(dy|x,π∗,−i
δ

(z), ai)

]

ν
i(z)
δ

(dx)

}

− min
ai∈Ai

[

ci(z,π∗,−i
δ

(z), ai) + β

∫

X

Ĵ∗
δ,t(π

∗,−i
δ

; y) p(dy|z,π∗,−i
δ

(z), ai)

]
∣

∣

∣

∣

≤ sup
z∈X

∣

∣

∣

∣

min
ai∈Ai

δ

{

∫

S
i(z)
δ

[

ci(x,π∗,−i
δ

(z), ai) + β

∫

X

Ĵ∗
δ,t(π

∗,−i
δ

; y) p(dy|x,π∗,−i
δ

(z), ai)

]

ν
i(z)
δ

(dx)

}

− min
ai∈Ai

{

∫

S
i(z)
δ

[

ci(x,π∗,−i
δ

(z), ai) + β

∫

X

Ĵ∗
δ,t(π

∗,−i
δ

; y) p(dy|x,π∗,−i
δ

(z), ai)

]

ν
i(z)
δ

(dx)

}

∣

∣

∣

∣

+ sup
z∈X

∣

∣

∣

∣

min
ai∈Ai

{

∫

S
i(z)
δ

[

ci(x,π∗,−i
δ

(z), ai) + β

∫

X

Ĵ∗
δ,t(π

∗,−i
δ

; y) p(dy|x,π∗,−i
δ

(z), ai)

]

ν
i(z)
δ

(dx)

}

− min
ai∈Ai

[

ci(z,π∗,−i
δ

(z), ai) + β

∫

X

Ĵ∗
δ,t(π

∗,−i
δ

; y) p(dy|z,π∗,−i
δ

(z), ai)

]
∣

∣

∣

∣

≤ sup
z∈X

sup
ai∈Ai

∣

∣

∣

∣

∫

S
i(z)
δ

[

ci(x,π∗,−i
δ

(z), Qi,δ(a
i)) + β

∫

X

Ĵ∗
δ,t(π

∗,−i
δ

; y) p(dy|x,π∗,−i
δ

(z), Qi,δ(a
i))

]

ν
i(z)
δ

(dx)

−

∫

S
i(z)
δ

[

ci(x,π∗,−i
δ

(z), ai) + β

∫

X

Ĵ∗
δ,t(π

∗,−i
δ

; y) p(dy|x,π∗,−i
δ

(z), ai)

]

ν
i(z)
δ

(dx)

∣

∣

∣

∣

+ sup
z∈X

sup
ai∈Ai

∣

∣

∣

∣

∫

S
i(z)
δ

ci(x,π∗,−i
δ

(z), ai) ν
i(z)
δ

(dx) − ci(z,π∗,−i
δ

(z), ai)

∣

∣

∣

∣

+ sup
z∈X

sup
ai∈Ai

∣

∣

∣

∣

∫

S
i(z)
δ

β

∫

X

Ĵ∗
δ,t(π

∗,−i
δ

; y) p(dy|x,π∗,−i
δ

(z), ai) ν
i(z)
δ

(dx)

− β

∫

X

Ĵ∗
δ,t(π

∗,−i
δ

; y) p(dy|z,π∗,−i
δ

(z), ai)

∣

∣

∣

∣

.

In the last expression, the second term converges to zero as δ → 0 by uniform
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continuity of the function ci(x,a). The last term can be written as

β sup
z∈X

sup
ai∈Ai

∣∣∣∣
∫

S
i(z)
δ

∑

y∈X

J∗
δ,t(π

∗,−i
δ ; y) pδ(y|x,π∗,−i

δ (z), ai) ν
i(z)
δ (dx)

−
∑

y∈X

J∗
δ,t(π

∗,−i
δ ; y) pδ(y|z,π∗,−i

δ (z), ai)

∣∣∣∣,

and so, it can be upper bounded by K ωδ(2 δ) as supj=1,...,kδ
diam(Sj

δ ) ≤ 2 δ,
which converges to zero as δ → 0 by Assumption 2. In the last expression,
the first term can be upper bounded by

sup
z∈X

sup
ai∈Ai

∣∣∣∣c
i(z,π∗,−i

δ (z), Qi,δ(a
i)) + β

∫

X

Ĵ∗
δ,t(π

∗,−i
δ ; y) p(dy|z,π∗,−i

δ (z), Qi,δ(a
i))

− ci(z,π∗,−i
δ (z), ai)− β

∫

X

Ĵ∗
δ,t(π

∗,−i
δ ; y) p(dy|z,π∗,−i

δ (z), ai)

∣∣∣∣

≤ sup
z∈X

sup
ai∈Ai

∣∣∣∣c
i(z,π∗,−i

δ (z), Qi,δ(a
i))− ci(z,π∗,−i

δ (z), ai)

∣∣∣∣

+ β sup
z∈X

sup
ai∈Ai

∣∣∣∣
∫

X

Ĵ∗
δ,t(π

∗,−i
δ ; y) p(dy|z,π∗,−i

δ (z), Qi,δ(a
i))

−

∫

X

Ĵ∗
δ,t(π

∗,−i
δ ; y) p(dy|z,π∗,−i

δ (z), ai)

∣∣∣∣

= sup
z∈X

sup
ai∈Ai

∣∣∣∣c
i(z,π∗,−i

δ (z), Qi,δ(a
i))− ci(z,π∗,−i

δ (z), ai)

∣∣∣∣

+ β sup
z∈X

sup
ai∈Ai

∣∣∣∣
∑

y∈X

J∗
δ,t(π

∗,−i
δ ; y) pδ(y|z,π∗,−i

δ (z), Qi,δ(a
i))

−
∑

y∈X

J∗
δ,t(π

∗,−i
δ ; y) pδ(y|z,π∗,−i

δ (z), ai)

∣∣∣∣

The first term above converges to zero as δ → 0 again by uniform continu-
ity of the function ci(x,a) and the second term can be upper bounded by
K ωδ(2 δ) as supai∈Ai dAi(Qi,δ(a

i), ai) ≤ δ, which converges to zero as δ → 0
by Assumption 2. This completes the proof.

We will now demonstrate the main result of this section, which indicates
that the stationary perfect Nash equilibrium from the finite model, when
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applied to the original model, functions as an approximate stationary perfect
equilibrium for the original game.

Theorem 4. Under Assumption 1 and Assumption 2, for each i = 1, . . . , N ,

we have

lim
δ→0

‖J i(π∗
δ, ·)− J∗(π∗,−i

δ ; ·)‖ = 0,

where J i(π∗
δ, ·) is the cost of player i under the joint policy π

∗
δ.

Proof. We prove the result by contraction property of the operators. We first
define the following operator on B(X):

Tπ
∗
δ
,iJ(z) := ci(z,π∗

δ(z)) + β

∫

X

J(y) p(dy|z,π∗
δ(z)).

It is trivial to prove that Tπ∗
δ
,i is β-contraction and the unique fixed point of

it is J i(π∗
δ , ·). We also define the following operator on B(X):

T̂π
∗
δ
,iJ(z) :=

∫

S
i(z)
δ

[
ci(x,π∗

δ(z)) + β

∫

X

J(y) p(dy|x,π∗
δ(z))

]
ν
i(z)
δ (dx).

This operator is also β-contraction and the unique fixed point of it is Ĵ∗
δ (π

∗,−i
δ ; ·)

since the minimum is achieved in T̂
π

∗,−i
δ

δ Ĵ∗
δ (π

∗,−i
δ ; ·) by π

∗,i
δ as π

∗
δ is a Nash

equilibrium in the finite game; that is

Ĵ∗
δ (π

∗,−i
δ ; ·) = T̂

π
∗,−i
δ

δ Ĵ∗
δ (π

∗,−i
δ ; ·) = T̂π

∗
δ
,iĴ∗

δ (π
∗,−i
δ ; ·).

With these observations, we then have

‖J i(π∗
δ , ·)− J∗(π∗,−i

δ ; ·)‖

≤ ‖Tπ∗
δ
,iJ i(π∗

δ , ·) − Tπ∗
δ
,iJ∗(π∗,−i

δ ; ·)‖ + ‖Tπ∗
δ
,iJ∗(π∗,−i

δ ; ·)− T̂π∗
δ
,iJ∗(π∗,−i

δ ; ·)‖

+ ‖T̂π∗
δ
,iJ∗(π∗,−i

δ ; ·)− T̂π∗
δ
,iĴ∗

δ (π
∗,−i
δ ; ·)‖+ ‖Ĵ∗

δ (π
∗,−i
δ ; ·)− J∗(π∗,−i

δ ; ·)‖

≤ β ‖J i(π∗
δ , ·)− J∗(π∗,−i

δ ; ·)‖+ ‖Tπ
∗
δ
,iJ∗(π∗,−i

δ ; ·) − T̂π
∗
δ
,iJ∗(π∗,−i

δ ; ·)‖

+ (1 + β) ‖J∗(π∗,−i
δ ; ·)− Ĵ∗

δ (π
∗,−i
δ ; ·)‖

Hence we obtain

‖J i(π∗
δ, ·)− J∗(π∗,−i

δ ; ·)‖
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≤
‖Tπ

∗
δ
,iJ∗(π∗,−i

δ ; ·)− T̂π
∗
δ
,iJ∗(π∗,−i

δ ; ·)‖+ (1 + β) ‖J∗(π∗,−i
δ ; ·)− Ĵ∗

δ (π
∗,−i
δ ; ·)‖

1− β

The second term in the last expression converges to zero as δ → 0 by Theo-
rem 3. For the first term, using exactly the same arguments that we used in
the proof of Theorem 3, we can establish that this term converges to zero as
δ → 0. This completes the proof.

Now, it is time to discuss the implications of Theorem 4. Note that for
each i = 1, . . . , N , we have

J∗(π∗,−i
δ ; x) = inf

π∈Πi
E
(π∗,−i

δ
,πi)

x

[
∞∑

t=0

βt ci(xt,at)

]
. (13)

Hence, Theorem 4 implies that for any ε > 0, there exists δ(ε) such that
for any δ ≤ δ(ε), the policy π∗

δ is stationary perfect ε-Nash equilibrium.
Moreover, since Theorem 4 is still true if the initial time is greater than
zero, we can conclude that stationary perfect ε-Nash equilibrium π∗

δ is also
subgame perfect ε-Nash equilibrium.

6. Extension to Non-Compact State Spaces

In this section, we briefly explain how the results established in the pre-
vious sections can be extended to non-compact state stochastic games. We
employ the following strategy: (i) first, we define a sequence of compact-state
games to approximate the original game; (ii) then, we use the previous re-
sults to approximate the compact-state games with finite-state models; and
(iii) finally, we prove the convergence of the finite-state models to the original
model. Notably, steps (ii) and (iii) will be accomplished simultaneously.

We impose the assumptions below on the components of the stochastic
game. With the exception of the local compactness of the state space, these
are the same with Assumption 1.

Assumption 3.

(a) The one-stage cost functions ci are in Cb(X× A).

(b) The stochastic kernel p( · |x,a) is setwise continuous in (x,a).

(c) X is locally compact and {Ai}
N
i=1 are compact.
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6.1. Compact Approximation of N-player Game

Since X is locally compact separable metric space, there exists a nested
sequence of compact sets {Kn} such that Kn ⊂ intKn+1 and X =

⋃∞
n=1Kn

(Aliprantis and Border, 2006, Lemma 2.76, p. 58). Let {νn} be a sequence of
probability measures and for each n ≥ 1, νn ∈ P(Kc

n). Similar to the finite-
state game construction in Section 3, we define a sequence of compact-state
games to approximate the original model.

To this end, for each n, let Xn = Kn∪{∆n}, where ∆n ∈ Kc
n is a so-called

pseudo-state. We define the transition probability pn on Xn given Xn × A

and the one-stage cost functions cin : Xn ×A → R by

pn( · |x, a) =

{
p
(
·
⋂
Kn|x,a

)
+ p

(
Kc

n|x,a
)
δ∆n

, if x ∈ Kn∫
Kc

n

(
p
(
·
⋂

Kn|z,a
)
+ p

(
Kc

n|z,a
)
δ∆n

)
νn(dz), if x = ∆n,

cin(x,a) =

{
ci(x,a), if x ∈ Kn∫
Kc

n
ci(z,a) νn(dz), if x = ∆n.

With these definitions, compact-state non-zero sum stochastic game is de-
fined as a stochastic game with the components

(
Xn,A, pn, c

1
n, . . . , c

N
n

)
. His-

tory spaces, policies and cost functions are defined in a similar way as in the
original model. To distinguish them from the original game model, we add
n as a subscript in each object for the compact model.

In addition to Assumption 3, we suppose that the following is true.

Assumption 4. For each n ≥ 1, the transition probability pn satisfies
Assumption 2.

This additional assumption is true if the original transition probability
p(·|x,a) is continuous in total variation norm.

Note that under Assumption 3 and Assumption 4, for each n ≥ 1,
compact-state game model with state space Xn satisfies Assumption 1 and
Assumption 2. Hence, approximation results established in the previous sec-
tions are applicable to this game model. In the rest of this section, we will
concentrate on the discounted cost criterion. However, a similar analysis can
be applied to the finite-horizon cost criterion under the same set of assump-
tions. To avoid repetition, we will not include that analysis here.
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For each n ≥ 1, Theorem 4 guarantees the existence of a stationary
perfect ε(n)-Nash equilibrium π∗

n for a compact-state game with state space
Xn, derived from some finite game model, where ε(n) → 0 as n → ∞. Hence,
we have the following:

‖J i
n(π

∗
n, ·)− J∗

n(π
∗,−i
n ; ·)‖ ≤ ε(n) ∀i = 1, . . . , N.

Note that, for all i = 1, . . . , N , we have

Tπ
∗,−i
n

n J∗
n(π

∗,−i
n ; ·) = J∗

n(π
∗,−i
n ; ·),

where the operator Tπ
∗,−i
n

n : B(Xn) → B(Xn) is defined as

Tπ
∗,−i
n

n J(x) := min
ai∈Ai

[
cin(x,π

∗,−i
n (x), ai) + β

∫

Xn

J(y) pn(dy|x,π
∗,−i
n (x), ai)

]
.

We now extend the definition of the operator Tπ
∗,−i
n

n to B(X) as follows:

T̂π
∗,−i
n

n J(x) := min
ai∈Ai

[
ĉin(x,π

∗,−i
n (x), ai) + β

∫

X

J(y) p̂n(dy|x,π
∗,−i
n (x), ai)

]
,

where

p̂n( · |x, a) =

{
p( · |x,a), if x ∈ Kn∫
Kc

n
p
(
· |z,a) νn(dz), if x ∈ Kc

n,

ĉin(x,a) =

{
ci(x,a), if x ∈ Kn∫
Kc

n
ci(z,a) νn(dz), if x ∈ Kc

n.

One can prove that

T̂π
∗,−i
n

n Ĵ∗
n(π

∗,−i
n ; ·) = Ĵ∗

n(π
∗,−i
n ; ·),

where, in this case, ”̂ ” means extensions of functions defined on Xn to X as
follows:

Ĵ(x) = J(x) if x ∈ Kn, Ĵ(x) = J(∆n) if x ∈ Kc
n.

We can also extend policies in a similar manner, but to avoid complicating
the notation, we will not use the notation ”̂ ” in this case.
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Theorem 5. Under Assumption 3 and Assumption 4, for each i = 1, . . . , N ,

we have

lim
n→∞

‖Ĵ∗
n(π

∗,−i
n ; ·)− J∗(π∗,−i

n ; ·)‖K = 0

for any compact K ⊂ X, where ‖ · ‖K is the sup-norm on the set K.

Proof. To prove the result, we use contraction property of the operators

T̂π
∗,−i
n

n and Tπ
∗,−i
n . Indeed, by Banach fixed point theorem, if we start with a

common initial function J0 ∈ B(X), then

(
T̂

π
∗,−i
n

n

)t

J0 =: Ĵ∗
n,t(π

∗,−i
n ; ·) → Ĵ∗

n(π
∗,−i
n ; ·),

(
Tπ

∗,−i
n

)t

J0 =: J∗
t (π

∗,−i
n ; ·) → J∗(π∗,−i

n ; ·)

in sup-norm as t → ∞ (and so, in sup-norm on any compact setK as t → ∞).
Hence, by using induction, we first prove that

lim
n→∞

‖Ĵ∗
n,t(π

∗,−i
n ; ·)− J∗

t (π
∗,−i
n ; ·)‖K = 0

for all t ≥ 0 and for any compact K ⊂ X. Then, the result follows from the
triangle inequality.

Since the function J0 at time zero is common, the result trivially holds.
Suppose that the statement is true for t and consider t+1. Fix any compact
K ⊂ X. By definition of p̂n and ĉin, there exists n0 ≥ 1 such that for all
n ≥ n0, we have p̂n = p and ĉin = ci on K as K ⊂ Kn. With this observation,
for each n ≥ n0, we have

‖Ĵ∗
n,t+1(π

∗,−i
n ; ·)− J∗

t+1(π
∗,−i
n ; ·)‖K

= sup
x∈K

∣∣∣∣ min
ai∈Ai

[
ci(x,π∗,−i

n (x), ai) + β

∫

X

Ĵ∗
n,t(π

∗,−i
n ; y) p(dy|x,π∗,−i

n (x), ai)

]

− min
ai∈Ai

[
ci(x,π∗,−i

n (x), ai) + β

∫

X

J∗
t (π

∗,−i
n ; dy) p(dy|x,π∗,−i

n (x), ai)

] ∣∣∣∣

≤ β sup
(x,ai)∈K×Ai

∣∣∣∣
∫

X

Ĵ∗
n,t(π

∗,−i
n ; y) p(dy|x,π∗,−i

n (x), ai)−

∫

X

J∗
t (π

∗,−i
n ; y) p(dy|x,π∗,−i

n (x), ai)

∣∣∣∣.

(14)

Note that since p is setwise continuous, it is also weakly continuous. There-
fore, the set of probability measures {p(·|x,π∗,−i

n (x), ai)}(x,n,ai)∈K×N×Ai is
tight. Hence, for any ǫ > 0, there exists a compact set Kǫ ⊂ X such that

sup
(x,n,ai)∈K×N×Ai

p(Kc
ǫ |x,π

∗,−i
n (x), ai) ≤ ǫ.
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Let M := supi=1,...,N ‖ci‖. One can prove that

‖Ĵ∗
n,t(π

∗,−i
n ; ·)‖, ‖J∗

t (π
∗,−i
n ; ·)‖ ≤

M

1− β
.

In view of this, we can obtain

(14) ≤ β ‖Ĵ∗
n,t(π

∗,−i
n ; ·)− J∗

t (π
∗,−i
n ; ·)‖Kǫ

+ β
2M

1− β
ǫ.

The first term in the last expression converges to zero as n → ∞ by the
induction hypothesis. Since ǫ is arbitrary, this completes the proof.

We will now establish the central result of this section, which shows that
the stationary perfect Nash equilibrium derived from the finite model, when
applied to the original model, acts as an approximate stationary perfect
equilibrium for the original game.

Theorem 6. Under Assumption 3 and Assumption 4, for each i = 1, . . . , N ,

we have

lim
n→∞

‖J i(π∗
n, ·)− J∗(π∗,−i

n ; ·)‖K = 0

for any compact K ⊂ X, where J i(π∗
n, ·) is the cost of player i under the joint

policy π∗
n.

Proof. We prove the result by contraction property of the operators. We first
define the following operator on B(X):

Tπ∗
n,iJ(x) := ci(x,π∗

n(x)) + β

∫

X

J(y) p(dy|x,π∗
n(x)).

It is trivial to prove that Tπ∗
n,i is β-contraction and the unique fixed point of

it is J i(π∗
n, ·). We also define the following operator on B(X):

T̂π∗
n,iJ(x) := ĉin(x,π

∗
n(x)) + β

∫

X

J(y) p̂n(dy|x,π
∗
n(x)).

This operator is also β-contraction and the unique fixed point of it is Ĵ i
n(π

∗
n, ·),

which is the extension of the cost J i
n(π

∗
n, ·) of player i in the compact-state

game to the whole state space X. Using exactly the same arguments that we
used in the proof of Theorem 5, we can establish that

lim
n→∞

‖J i(π∗
n, ·)− Ĵ i

n(π
∗
n, ·)‖K = 0
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for any compact K ⊂ X.
With these observations, we then have

‖J i(π∗
n, ·)− J∗(π∗,−i

n ; ·)‖K

≤ ‖J i(π∗
n, ·)− Ĵ i

n(π
∗
n, ·)‖K + ‖Ĵ i

n(π
∗
n, ·)− Ĵ∗

n(π
∗,−i
n ; ·)‖K + ‖Ĵ∗

n(π
∗,−i
n ; ·)− J∗(π∗,−i

n ; ·)‖K

≤ ‖J i(π∗
n, ·)− Ĵ i

n(π
∗
n, ·)‖K + ε(n) + ‖Ĵ∗

n(π
∗,−i
n ; ·)− J∗(π∗,−i

n ; ·)‖K

The third term in the last expression converges to zero as n → ∞ by Theo-
rem 5. The first term converges to zero by above argument. By assumption
ε(n) → 0 as n → ∞ as well. This completes the proof.

Now, it is time to discuss the implications of Theorem 6. Note that for
each i = 1, . . . , N , we have

J∗(π∗,−i
n ; x) = inf

π∈Πi
E
(π∗,−i

n ,πi)
x

[
∞∑

t=0

βt ci(xt,at)

]
. (15)

Hence, Theorem 6 implies that for any compact K ⊂ X and for any ε > 0,
there exists n(K, ε) such that for any n ≥ n(K, ε), the policy π∗

n is stationary
perfect ε-Nash equilibrium if the initial points are in K. Moreover, since
Theorem 6 is still true if the initial time is greater than zero, we can conclude
that stationary perfect ε-Nash equilibrium π∗

n is also subgame perfect ε-Nash
equilibrium if the initial points are in K.

7. Conclusion

In this paper, we have established the existence of near Markov and sta-
tionary perfect Nash equilibria for nonzero-sum stochastic games using finite
state-action approximation method, under both finite-horizon and discounted
cost criteria, addressing both compact and non-compact state spaces. For
compact state spaces, our approach involves initial approximation using a
finite state-action model. Leveraging the existence of Markov and station-
ary perfect Nash equilibria within these finite models, under the respective
finite-horizon and discounted cost criteria, we have demonstrated that these
joint policies serve as approximate Markov and stationary perfect equilibria,
subject to specific continuity conditions on the one-stage costs and transition
probabilities. In the case of non-compact state spaces, we have introduced
a sequence of compact-state games to approximate the original game, subse-
quently employing prior findings to approximate these compact-state games
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with finite-state models. Ultimately, we have validated the convergence of
these finite-state models to the original model.

Building on our findings in establishing approximate Markov and sta-
tionary perfect Nash equilibria for nonzero-sum stochastic games, our next
step is to integrate these results into the framework of multi-agent learn-
ing algorithms, as discussed in Yongacoglu et al. (2023, 2024). These al-
gorithms emphasize the convergence towards ε-equilibrium policies through
policy revision processes along ε-satisficing paths Yongacoglu et al. (2024).
Our established existence of ε-equilibria serves as a foundational condition
for ensuring the convergence of these independent learning algorithms across
a broad spectrum of stage games. Moving forward, we aim to validate and en-
hance the practical applicability of our theoretical findings by implementing
them within these learning algorithms.

References

Aliprantis, C., Border, K., 2006. Infinite Dimensional Analysis. Berlin,
Springer, 3rd ed.
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