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ABSTRACT

Estimating three-dimensional conformations of a molecular graph allows insight
into the molecule’s biological and chemical functions. Fast generation of valid
conformations is thus central to molecular modeling. Recent advances in graph-
based deep networks have accelerated conformation generation from hours to sec-
onds. However, current network architectures do not scale well to large molecules.
Here we present ConfFlow, a flow-based model for conformation generation based
on transformer networks. In contrast with existing approaches, ConfFlow di-
rectly samples in the coordinate space without enforcing any explicit physical
constraints. The generative procedure is highly interpretable and is akin to force
field updates in molecular dynamics simulation. When applied to the generation
of large molecule conformations, ConfFlow improve accuracy by up to 40% rela-
tive to state-of-the-art learning-based methods. The source code is made available
at https://github.com/IntelLabs/ConfFlow.

1 INTRODUCTION

A fundamental challenge in chemistry and materials science is to deduce valid and stable 3D geo-
metric structures of candidate molecules. These structures, usually represented by a set of atomic
coordinates, are used in tasks such as molecular property prediction Gilmer et al. (2017); Gebauer
et al. (2019), molecular dynamics (MD) simulation, docking Meng et al. (2011); Ferreira et al.
(2015), and structure-based virtual screening Cheng et al. (2012). Traditionally, x-ray crystallogra-
phy and density functional theory (DFT) computation played a central role in computing molecular
conformations. However, these are computationally expensive and prohibitively time-consuming
for industrial-scale prediction on large molecules. Fast refinement of large molecule structures can
be realized by applying classical force fields, such as UFF Rappé et al. (1992) and MMFF Halgren
(1996), but these suffer from limited accuracy.

High-quality reference 3D structures for drug-like molecules have recently become available Axel-
rod & Gomez-Bombarelli (2020). This opens the possibility of training generative models on large
datasets to predict distributions of 3D conformations. Indeed, deep learning has been used in many
recent approaches to fast conformation generation. An important focus in this line of work is to
ensure equivariance under translation and rotation. A common approach is to embed physical sym-
metries by structuring the network such that it operates on interatomic pairwise distances, which
possess the desired invariances. Given any molecular graph, the network first estimates interatomic
distances Simm & Hernández-Lobato (2020); Xu et al. (2021); Xu* et al. (2021) or their gradient
fields Shi et al. (2021); Luo et al. (2021), which are then processed by a heuristic system that satisfies
distance geometry, thus producing the final 3D atomic coordinates. Although such models maintain
symmetries by construction, the generated distances may be inconsistent: for example, they may
violate the triangle inequality. These inconsistencies may propagate into 3D coordinates, yielding
inaccurate conformations.

A straightforward alternative is to directly predict 3D coordinates, without first synthesizing in-
teratomic distances or gradients Mansimov et al. (2019); Garcia Satorras et al. (2021). An early
attempt used a conditional variational graph autoencoder (CVGAE) Mansimov et al. (2019), while
later work enforced symmetries by applying a rotation equivariant graph neural network (EGNN)
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Garcia Satorras et al. (2021). Unfortunately, the accuracy of these approaches has remained well
below distance-based schemes.

Recent work on related problems has achieved impressive results while operating directly on atomic
coordinates. A direct method for protein structure prediction has shown remarkable accuracy Jumper
et al. (2021) and recent work on molecular property prediction has demonstrated promising results
without enforcing rotation equivariance Hu et al. (2021); Godwin et al. (2022). Motivated by these
works, we develop a direct method for highly accurate prediction of 3D atomic structure. We build
upon the point transformer architecture for 3D point cloud processing Zhao et al. (2021) to design
a scalable message passing neural network (MPNN) Gilmer et al. (2017) that encodes intermediate
conformations with no constraints. We integrate the MPNN within a continuous normalizing flow
(CNF) framework that performs iterative refinement of atomic coordinates. The generation process,
illustrated in Fig. 1, can be viewed as analogous to molecular dynamics (MD) simulation where
starting from an initial conformation each refinement step gradually moves atoms until they converge
to an equilibrium. Our model does not enforce any physical constraints. Rather, we deal with
translation invariance by adding a normalization layer at the end of each CNF block.

We conduct extensive experiments on both large and small molecules in the GEOM benchmark
Axelrod & Gomez-Bombarelli (2020), which contains 250K molecular conformation pairs of Drugs
and QM9 molecules. We compare our model, ConfFlow, against state-of-the-art learning-based
approaches on multiple tasks. ConfFlow improves over baselines by up to 40% across multiple
metrics of conformation generation accuracy.

Figure 1: ConfFlow transforms points sampled from a simple prior to a 3D molecular conformation.
Videos are provided in the supplement.

2 FORMULATION

Consider a set of molecules M = {Mk}Nk=1. Let each molecule Mk be represented by a 2D planar
embedding expressed using an undirected graph Gk = (Vk, Ek). Vk = {vi}Mi=1 is a set of nodes
representing atoms and Ek is a set of edges signifying interaction between a pair of atoms. Each
atom vi is characterized by a vector of atomic attributes hi ∈ Ra while an edge eij connecting
the ith and jth atom is defined by an edge attribute vector hij ∈ Rb. The set Ek represents all
chemical bonds between atoms. Since edges between bonded atoms are not sufficient to completely
characterize complex atomic interaction in a molecule, we follow usual practice Simm & Hernández-
Lobato (2020) and extend Ek to include auxiliary edges. These edges are drawn between atoms that
are second- or third-level neighbors. The edges between second-level neighbors aid in fixing angles
between atoms while those between third-level neighbors fix dihedral angles.

Let the atomic coordinates of the ith atom, vi, be denoted by xi ∈ R3 and let any conformation of
a molecule Mk be represented by a stacked matrix Xk ∈ RM×3. Based on the atomic stability and
external factors, molecules continuously transform between different conformations at equilibrium
and can thus have multiple valid conformations. Given a molecular graph Gk, the task of molecular
conformation generation is to generate a set of possible conformations for the molecule. To this
end, we want to build a generative model that learns the conditional distribution over all possible
conformations p(Xk|Gk) and allows us to efficiently sample from this distribution given a molecular
graph G.
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Formally, we aim to solve the following optimization problem:

Fθ (M) = argmax
Fθ

1

|S|

|S|∑
k=1

logPFθ
(Xk|Gk) (1)

where Fθ is a generative model parameterized by θ, and S is a set of pairs {(Gk,Xk)}|S|
k=1 that each

provide a molecular graph and a corresponding conformation. We assume that multiple conformers
of each molecule are represented as distinct datapoints.

2.1 GRAPH-CONDITIONED NORMALIZING FLOWS

We propose to use normalizing flows to model the distribution of conformations for a given molecu-
lar graph G. A normalizing flow is a generative model that defines complex distribution using a series
of invertible bijective transformations of random variables over a simple base distribution Rezende
& Mohamed (2015); Dinh et al. (2016). Since it is invertible, any data point from an induced dis-
tribution can be mapped back into the base distribution using a change of variables, which enables
exact likelihood computation. Consider a learnable function with parameters θ, Fθ : R3 → R3,
given by a series of invertible and differentiable transformations, Fθ = fL ◦ fL−1 · · · ◦ f1, and a
random variable Y ∈ RM×3 sampled from a base density distribution Py . The exact log-likelihood
of output variable X = Fθ (Y) under the distribution Px is given by

logPx (X) = logPy (Y)−
L∑

l=1

log

∣∣∣∣det ∂fl
∂fl−1

∣∣∣∣ (2)

where f0 = Y and ∂fl
∂fl−1

is the Jacobian of function fl. For any given sample X, one estimates

probability density Px(X) by deducing Y using the inverse transformation Y = F−1
θ (X) and

applying (2).

Normalizing flows are trained by maximizing the exact log-likelihood in (2), which is more stable
than optimizing over lower bounds of log-likelihood in variational autoencoders (VAEs). In practice,
each fl is parameterized using a neural network with a simple Jacobian (such as a lower triangular
matrix) whose determinant is computationally tractable. Since our goal is to learn a flow model for
X ∼ Px(X|G) that maps atoms in a given 2D molecular graph to its 3D position, we characterize fl
using a reversible graph processing layer. These layers are then interleaved with graph-independent
reversible batch normalization layers.

For graph processing layer one may use any variant of MPNN Gilmer et al. (2017), a widely used
framework for representation learning on molecular graphs. However, the challenge is in repurpos-
ing these layers to be invertible while preserving expressiveness. We choose to characterize each
graph processing layer using a CNF Chen et al. (2018); Grathwohl et al. (2019), which is readily
invertible and supports unrestricted transformation and interaction between atomic coordinates in
the latent space.

The CNF architecture generalizes normalizing flows from a discrete number of layers to a continuous
flow with an invertible transformation fl defined using a differential equation fl

(
Zl(t), t;G

)
=

∂Zl(t)
∂t , while the change in log-density is given by ∂ log p(Zl(t))

∂t = tr
(

∂fl
∂Zl(t)

)
. The output variable

Xl and its exact log-likelihood are now obtained by integrating across time:

Xl = Zl(t0) +

∫ t1

t0

fl
(
Zl(t), t;G

)
dt s.t. Zl(t0) = Xl−1 (3a)

logPx(X
l|G) = logPz(Z

l(t0))−
∫ t1

t0

tr

(
∂fl

∂Zl(t)

)
dt (3b)

while an inverse transformation is realized by reversing the order of integration: Zl(t0) = Xl +∫ t0
t1
fl
(
Zl(t), t;G

)
dt, where Zl(t1) = Xl. In practice, the trace is approximated using the Hutchin-

son trace estimator Hutchinson (1989), while the integral and backpropagation are straightforwardly
computed using a black-box ordinary differential equation (ODE) solver Chen et al. (2018). In
comparison to neural layers in discrete flows, only mild constraints are enforced on functions fl
– second-order differentiability and Lipschitz continuity, with a possibly large Lipschitz constant,
which is readily satisfied by using smooth activations.
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Figure 2: Illustration of ConfFlow with an architectural overview (left), a graph continuous flow
(GCF) block (middle), and a graph conditional point transformer (GCPT) message passing layer
used within GCF (right).

2.2 GCF: GRAPH CONTINUOUS FLOWS

We implement the dynamics fl of the continuous flow using an MPNN based on point trans-
former Zhao et al. (2021), a self-attention layer for point cloud processing. Fig. 2 depicts the overall
architecture of our graph-conditioned normalizing flow (ConfFlow). Given atom and bond attributes
as inputs, they are first embedded into feature space Re using feedforward neural networks:

h0
i = NodeEmbedding(hi), i ∈ V (4)

h0
ij = EdgeEmbedding(hij), ij ∈ E (5)

Subsequently, the embeddings, coordinates, and input graph structure G are processed using S mod-
ules of Point Transformer blocks, each containing R message passing layers of graph conditional
point transformer (GCPT) and a coordinate update layer.

At layer r and time t, GCPT takes as input the set of node embeddings Hr
V = {hr

1, . . . ,h
r
M},

edge embeddings Hr
E = {hr

ij , ∀ ij ∈ E}, and coordinate embeddings Zl(t) = {zl1, . . . , zlM}, and
computes a transformation Hr+1

V and Hr+1
E by aggregating information from neighboring nodes

and edges:

dij = zli − zlj and δ = ∆(dij , t) (6)

ĥr+1
ij = Γ

(
ψ (hr

i , t)− ϕ
(
hr
j , t
)
+ hr

ij , δ, t
)

(7)

mr+1
i =

∑
j∈Ni

ρ
(
ĥr+1
ij

)
⊙
(
α
(
hr
j , t
)
+ δ
)

(8)

hr+1
i = hr

i +Θ
(
hr
i ,m

r+1
i , t

)
(9)

hr+1
ij = hr

ij + ĥr+1
ij (10)

Here Ni is a set of neighbors connected to the ith node in graph G and ρ : Re → [0, 1]e is a softmax
normalization that functions as a vector attention mechanism over neighboring nodes. ϕ, ψ, α and
∆,Γ,Θ denote time-dependent linear functions and multi-layer perceptrons (MLPs), respectively.
Multiple input variables within (.) are concatenated along the feature dimension. ∆ in (6) repre-
sents a position encoding function whereas (7) and (8) resemble message computation and message
aggregation operations of an MPNN, respectively.
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Coming back to the point transformer block in GCF, note that the coordinate embeddings are shared
across R message passing layers while the node and edge features are regularly updated using resid-
ual connections in (9) and (10). After R rounds of message passing using GCPT, these transformed
embeddings are fed into the MLP layer, Ω, which independently updates each coordinate embedding
using

z̃li = Ω

zli,h
R
i ,

1

|Ni|
∑
j∈Ni

hR
ij , t

 (11)

while combining the node and its corresponding edge features. As they are processed using Ω at
each of the S modules of Point Transformer, these input embeddings at layer fl, zl−1 ∈ R3, are
transformed to higher dimensionality. The final Ω layer projects these embeddings back to 3D
Euclidean space following which the dynamics of fl at time t are given by

∂Zl(t)

∂t
=

(
∂zl1
∂t

, . . . ,
∂zlM
∂t

)
where

∂zli
∂t

= z̃li − zli (12)

As t → ∞, the continuous-time dynamics in neural ODEs can be viewed as unrolled infinite-layer
residual networks Chen et al. (2018). Similarly, GCF unrolls into infinite message passing layers
and is thus capable of modeling long-range dependencies.

2.3 REGULARIZATION

The computational cost of numerically integrating ODEs is prohibitively high. Moreover, while
training on large molecules we find the dynamics of ODE solver to be numerically unstable. In
order to effectively learn fl we regularize the dynamics with two terms Finlay et al. (2020), the
kinetic energy of the flow and the Jacobian Frobenius norm:

FK
l =

∫ t1

t0

∥∥fl (Zl(t), t;G
)∥∥2 dt (13a)

FJ
l =

∫ t1

t0

∥∥∇Zfl
(
Zl(t), t;G

)∥∥2
F
dt (13b)

where (13a) penalizes distance travelled by atoms under the flow fl and (13b) improves generaliza-
tion by regularizing the Jacobian. In trace form, the Jacobian Frobenius norm is easily approximated
using the Hutchinson trace estimator without any additional computational cost.

2.4 TRAINING OBJECTIVE

Combining Eqs. (1, 2, 3, 13), the final optimization problem to be solved is

Fθ = argmax
Fθ

1

3A

|S|∑
k=1

logPz(Zk)−
L∑

l=1,3,..

log

∣∣∣∣det ∂fl
∂fl−1

∣∣∣∣− L∑
l=2,4,..

∫ t1

t0

tr

(
∂fl

∂Zl
k(t)

)

− λK
∥∥fl (Zl

k(t), t;Gk

)∥∥2 − λJ
∥∥∇Zfl

(
Zl

k(t), t;Gk

)∥∥2
F
dt

]
(14)

where Zk = f−1
l (Xk;Gk) as we transform Xk backwards through ConfFlow. Note that instead of

total input graph pairs |S|, we average over the total number of atoms A =
∑|S|

k |Vk| and dimension.
This ensures that weights λK and λJ can be fixed independently of the size of molecules across
batches and datasets. By simply augmenting the dynamics of the ODE with multiple state vectors,
all terms within the integral are numerically integrated using a single ODE solver.

2.5 SAMPLING

The invertibility of Fθ enables fast sampling. To generate a molecular conformer for a given
graph representation G = (V, E), we first independently sample a set of latent vectors Z

.
={

zi ∈ R3, 1 ≤ i ≤ |V |
}

from standard Gaussian space N (0, I), mapping each to a correspond-
ing atom and then processing Z via Fθ conditioned on G to produce 3D coordinates of atoms in a
molecule, X = Fθ (Z;G) ∈ R|V |×3.
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2.6 IMPLEMENTATION

Our model is implemented in PyTorch Paszke et al. (2019). We use the same settings across all
datasets. Our ConfFlow architecture contains two blocks of GCF each stacked between reversible
batchnorm layers as shown in Fig. 2 (left). GCF employs S = 3 point transformer blocks with output
embedding dimensionality fixed to 32, 32, and 3, respectively. Each point transformer block contains
R = 2 GCPT message passing layers. All the MLPs within GCPT are implemented with two linear
layers and a Swish nonlinearity Ramachandran et al. (2017); Elfwing et al. (2018). We solve the
dynamics for (3) using a Runge-Kutta 4(5) adaptive solver Dormand & Prince (1980) with error
tolerances 1e−3, while the backpropagation through solver steps is realized using a memory efficient
adjoint method Farrell et al. (2013); Chen et al. (2018). The coefficients of both regularization terms
are set to 0.2. We train ConfFlow with two GPUs for 32K iterations using the Adam optimizer
Kingma & Ba (2015) with learning rate 1e−3, per-GPU batch size 125, and gradient norm restricted
to 0.05. SI lists the full set of node and edge attributes. We preprocess features by normalizing them
across datasets and mapping them into an input embedding space of dimensionality e = 128.

3 EXPERIMENTS

We assess the performance of ConfFlow by comparing against state-of-the-art learning-based meth-
ods for molecular conformation generation. We use the following standard tasks. a) Conformation
Generation tests the model’s ability to learn the distribution of conformations by measuring the
diversity and accuracy of generated samples. b) Property Prediction measures the accuracy of a
predicted chemical property for a molecular graph.

3.1 DATA

Following the protocol in Shi et al. (2021), we benchmark conformation generation and property pre-
diction on GEOM data Axelrod & Gomez-Bombarelli (2020), which provides multiple high-quality
stable conformations per molecule. The GEOM-QM9 dataset, an extension of QM9 Ramakrish-
nan et al. (2014), contains multiple conformations for small molecules with up to nine heavy atoms
(29 total atoms). The GEOM-Drugs dataset consists predominantly of medium-sized organic com-
pounds having an average of 44 and a maximum of 181 atoms per molecule. For each of these
datasets we randomly sample 40,000 molecules and select the five most likely conformations per
molecule, yielding a training set of 200,000 conformation-molecule pairs Shi et al. (2021). Another
200 randomly sampled molecules and their corresponding conformations constitute a test split of
22,408 and 14,324 conformation-molecule pairs, for GEOM-QM9 and GEOM-Drugs respectively.

3.2 BASELINES

We benchmark ConfFlow against eight state-of-the-art methods for conformation generation. CV-
GAE Mansimov et al. (2019) is a variational graph auto-encoder that processes any given molecular
graph through multiple layers of GRUs to directly generate 3D atomic coordinates. GraphDG
Simm & Hernández-Lobato (2020) and CGCF Xu* et al. (2021) employ conditional graph VAE
and CNF networks, respectively, to learn distributions over interatomic distances. These distances
are later post-processed using a Euclidean distance geometry (EDG) algorithm to generate 3D con-
formations. ConfVAE Xu et al. (2021) addresses noise in the sampled distances by training an
end-to-end framework using bilevel programming. ConfVAE optimizes for pairwise distances and
atomic coordinates jointly. ConfGF Shi et al. (2021) trains noise-conditional score networks to es-
timate gradient fields of the log density of atomic coordinates via interatomic distances. Using these
estimated gradient fields, the stable conformers are generated using annealed Langevin dynamics.
GeoMol Ganea et al. (2021) builds local structure by predicting the coordinates of non-terminal
atoms, which are then refined and assembled using torsion angles learned from local distances and
dihedral angles. Finally, RDKit Riniker & Landrum (2015) is a classic EDG approach built upon
manually crafted rules for distance-bound matrices. The results for all baselines are obtained by
running publicly available code provided by the authors.
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3.3 CONFORMATION GENERATION

This task is designed to evaluate the model’s capacity to generate realistic and diverse molecular
conformations. For each of the unique molecular graphs in the test set, we sample twice the number
of conformations found in the reference set. We measure discrepancy between the generated R and
reference R∗ conformations using Root Mean Squared Deviations (RMSD) of the atoms Mansimov
et al. (2019); Hawkins (2017):

RMSD (R,R∗) = min
A

(
1

n

n∑
i=1

∥R−A (R∗)∥2
) 1

2

(15)

Here n denotes the number of atoms in the molecule and A is the optimal alignment between two
conformations w.r.t. rotation and translation. The hydrogen atoms cannot be located accurately using
x-ray crystallography Ogata et al. (2015) and their ground-truth 3D coordinates are therefore con-
tentious. Following standard practice, we restrict evaluation to only heavy atoms unless otherwise
stated. Xu et al. Xu* et al. (2021) define three scores based on RMSD – Coverage (COV), Matching
(MAT), and Mismatch (MIS) – to measure the diversity, accuracy, and quality of generated samples,
respectively:

COV (Sg,Sr) =

∣∣∣{R ∈ Sr |RMSD
(
R, R̂

)
< δ, ∃ R̂ ∈ Sg

}∣∣∣
|Sr|

(16)

MAT (Sg,Sr) =
1

|Sr|
∑
R∈Sr

min
R̂∈Sg

RMSD
(
R, R̂

)
(17)

MIS (Sg,Sr) =

∣∣∣{R ∈ Sg |RMSD
(
R, R̂

)
> δ, ∀ R̂ ∈ Sr

}∣∣∣
|Sg|

(18)

Here for any given molecular graph, Sg and Sr represent generated and reference sets of conforma-
tions, respectively. Given an RMSD threshold δ, COV measures the fraction of reference conforma-
tions that are matched by at least one of the generated samples. MIS counts the fraction of generated
samples that are not covered by any of the reference conformations. MAT focuses on raw accuracy.
In general, higher COV corresponds to better diversity while lower MIS and MAT indicate higher
accuracy. Following Xu* et al. (2021), we set the threshold δ to 0.5 for GEOM-QM9 and 1.25 for
GEOM-Drugs.

Dataset GEOM-QM9 GEOM-Drugs

Algorithm COV (%) MAT (Å) MIS (%) COV (%) MAT (Å) MIS (%) Rank
Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

CVGAE 0.14 0.00 0.867 0.863 99.60 100.00 0.00 0.00 3.070 2.994 100.00 100.00 7.7
GraphDG 14.71 2.58 0.963 0.935 78.54 98.78 2.43 0.00 2.493 2.459 97.81 100.00 7.2
CGCF 81.11 85.90 0.393 0.363 57.74 61.00 54.50 56.00 1.245 1.227 77.80 84.50 5.0
ConfVAE 79.11 83.40 0.405 0.384 62.32 65.40 41.40 36.10 1.332 1.335 85.80 93.40 6.0
ConfGF 90.55 95.13 0.269 0.270 52.06 53.02 61.50 71.20 1.170 1.148 76.80 84.10 2.7
GeoMol 71.18 72.76 0.375 0.375 17.84 14.04 56.73 60.00 1.236 1.179 22.39 2.90 3.0
ConfFlow 91.08 95.60 0.278 0.287 47.60 50.70 88.30 97.60 0.895 0.874 39.80 38.30 1.8

RDKit 84.22 90.51 0.334 0.291 8.36 1.31 61.60 62.40 1.195 1.139 28.90 15.10 2.5

Table 1: Comparison of COV, MAT, and MIS scores for different approaches on the GEOM-QM9
and GEOM-Drugs datasets.

RESULTS

Table 1 reports the mean and median of the three scores for all models trained on GEOM-QM9 and
GEOM-Drugs. In addition, Table 1 also reports the average rank of each algorithm across scores
and datasets. For instance, if an algorithm achieves the 2nd best score on half the metrics and the
3rd best on the other half, its average rank is 2.5.

ConfFlow has the best performance on 6 out of the 12 scores and achieves the best rank overall
across datasets and metrics. In particular, on the large-molecule GEOM-Drugs dataset, ConfFlow
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Figure 3: Visualization of conformations generated by CGCF, ConfGF, and ConfFlow (our ap-
proach) for four randomly selected molecular graphs from the test set of GEOM-Drugs. Following
a similar protocol to Table 1, for each approach we sample 2× conformations and pick the one that
aligns best with the reference.

outperforms baselines by up to 40%. Note that our model is non-equivariant and directly optimizes
for atomic coordinates. Equivariant models that operate on distances, such as GraphDG, CGCF,
ConfVAE, and ConfGF yield lower accuracy because they incur extra error in the conversion from
distance geometry to 3D space. Furthermore, when evaluated by considering all the atoms (i.e.,
including H), the coverage score attained by the baselines drops dramatically, as can be seen in Table
2. The ConfFlow performance drops the least and is 3× better than ConfGF, the next best learning-
based method. ConfFlow is the only neural model that consistently outperforms the rule-based
RDKit on COV and MAT scores across datasets without relying on any extra force-field computation
Xu et al. (2021); Xu* et al. (2021). Figure 3 illustrates conformations sampled by trained CGCF,
ConfGF, and ConfFlow models. ConfFlow generates more realistic and diverse structures.

Algorithm COV (%) MAT (Å) MIS (%)
Mean Median Mean Median Mean Median

CGCF 6.90 0.50 1.782 1.753 97.30 99.70
ConfGF 9.00 2.20 1.717 1.690 96.70 99.30
ConfFlow 31.60 25.50 1.427 1.380 84.30 90.00

RDKit 28.20 22.60 1.678 1.578 74.20 84.00

Table 2: Results on GEOM-Drugs when measured using RMSD over all atoms, including H.

3.4 PROPERTY PREDICTION

This task measures ensemble properties of a molecular graph, each calculated by aggregating the
property estimate from multiple conformations. We consider 30 molecular graphs randomly drawn
from the test set of GEOM-Drugs. For each conformation of a molecular graph we first compute
the total energy, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO) energies, and the dipole moment using the quantum chemical calculation package
Psi4 Turney et al. (2012). Then the ensemble properties – lowest energy Emin, mean energies of
HOMO and LUMO, minimum and maximum HOMO-LUMO gap ∆ϵ, and average dipole moment
µ – of each molecular graph are calculated based on their corresponding conformational properties.
Following this, we sample 50 conformations per molecular graph from each baseline and compute
ensemble properties by repeating the above mentioned procedure.
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Algorithm Emin ∆ϵmin ∆ϵmax ϵHOMO ϵLUMO µ

GraphDG 25.9901 2.8715 5.8113 3.3564 1.1126 2.4256
CGCF 15.0759 1.0777 7.0687 1.9896 1.7726 2.4816
ConfGF 2.7526 0.2197 5.5104 1.7925 0.8149 1.3028
ConfFlow 0.9927 0.1801 5.0715 0.9380 0.1280 0.8962

RDKit 1.8400 0.1953 0.3515 0.1164 0.2665 1.1098

Table 3: Median of absolute prediction errors of various ensemble properties measured on GEOM-
Drugs. Properties related to energy are reported in eV and the dipole moment µ in debye.

RESULTS

We use the median of absolute error (MedAE) w.r.t. the test set to measure the accuracy of predicted
ensemble properties Simm & Hernández-Lobato (2020); Shi et al. (2021). As reported in Table
3, ConfFlow is the only learning-based method that achieves lower MedAE than RDKit in four of
the six properties; it is the next best on the other two. The better performance of RDKit on ∆ϵmax
(maximum HOMO-LUMO gap) is due to the presence of occasional outliers in the conformations
synthesized by learning-based methods. A large error for ∆ϵmax can be induced by even a small
number of outlier conformers.

4 CONCLUSION

We have presented a new computational approach to generating 3D conformations of any molecular
graph. Our approach, ConfFlow, is based on continuous normalizing flows and does not enforce
any explicit geometric constraints. This enables ConfFlow to quickly generate stable and diverse
structures, yielding high accuracy in conformation generation and property prediction of large drug-
like molecules.
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A ADDITIONAL EXPERIMENTS

A.1 DISTRIBUTION OVER DISTANCES

In Simm & Hernández-Lobato (2020), authors considers additional task that evaluates whether the
method can model the underlying distance distribution. This is estimated by computing maximum
mean discrepancy (MMD) of generated distances relative to the ground-truth distance distribution
extracted from reference conformations. This metric assesses how closely the generated distribution
over distances matches that of the ground truth. As ConfFlow do not explicitly model molecular
distance geometry, we substitute interatomic distances calculated from the generated coordinates.
For each molecular graph G in the test set, we sample the same number of conformations as found
in the test set. Following the evaluation procedure recommended by Simm & Hernández-Lobato
(2020); Xu* et al. (2021), we ignore edges associated with H atoms and evaluates MMD between
the generated and ground-truth distributions for three different statistics – the joint distribution over
all distances p(d|G) (All), the pairwise marginal distribution p(dij , duv|G) (Pair), and the marginal
distribution of individual distances p(dij |G) (Single).
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Dataset No Hydrogen With Hydrogen

Algorithm Single Pair All Single Pair All
Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

CVGAE 6.710 7.208 6.976 7.286 7.074 7.230 6.851 7.270 7.031 7.243 7.073 7.216
GraphDG 3.628 3.631 4.120 4.113 4.571 4.491 2.033 1.787 2.051 1.874 2.030 1.987
CGCF 0.250 0.161 0.237 0.163 0.216 0.169 0.260 0.151 0.233 0.148 0.214 0.160
ConfVAE 0.209 0.151 0.204 0.158 0.198 0.169 0.190 0.146 0.177 0.148 0.177 0.162
ConfGF 0.951 0.846 1.111 1.039 1.303 1.240 1.307 1.319 1.539 1.518 1.939 1.933
ConfFlow 1.454 1.412 1.735 1.739 2.023 2.013 1.351 1.311 1.586 1.580 2.034 2.040

RDKit 3.378 3.335 3.762 3.790 4.107 4.241 3.518 3.611 3.934 3.991 4.188 4.191

Table 4: Comparison of mean and median MMD between the distance distribution of ground-truth
and generated conformations on the GEOM-QM9 datasets.

RESULTS

We aggregate results over all graphs in the test set and report mean and median MMD in Table
4 on GEOM-QM9 dataset. We observe that the distance distribution of baselines that explicitly
optimize for molecular distance geometry is significantly closer to the ground-truth distribution than
the models that train only on atomic coordinates. In particular, ConfVAE and CGCF yield the lowest
MMD despite performing moderately on the conformation generation task. This is due to the bilevel
optimization setup in ConfVAE, which tightly grounds distances using multiple losses. On the other
hand, ConfFlow falls short on the distance modeling task, with its MMD on par with ConfGF.
In contrast, other coordinate-based models such as CVGAE and RDKit seem to struggle with the
distance modeling task. Since RDKit is designed to generate conformations only at equilibrium
states, i.e., distribution modes, it fails to model the overall underlying distribution. Furthermore, for
GraphDG and ConfFlow model the MMD score improves marginally on incorporating the distances
w.r.t. hydrogen atoms.

A.2 ABLATION STUDIES

We conduct a number of ablation studies on the GEOM-QM9 dataset. Table 5 shows the accuracy
of various ablated forms of our model. We begin by varying the number of point transformer blocks
S within GPTF. We observe that removing or adding a point transformer block only marginally
effects the overall accuracy. For the rest of the ablation study we fix S = 2. This is done so that
all ablated models can be trained with the same batch size per GPU, factoring out variation in other
hyperparameters on the results.

Next we experiment with varying the depth L of ConfFlow and the number R of message passing
layers. Here, L denotes total number of reversible batch normalization (BN) and GCF blocks in
ConfFlow. By default we set R = 2 and L = 5, that consists of three BN layers interleaved with
two blocks of GCF. If we reduce each of these settings by a factor of two, performance declines.
Doubling of these settings yields only a marginal increase in accuracy. In general, we observed
that the performance of ConfFlow is most affected by the variation in the basic processing block
of the model, i.e., the message passing layer. For instance, replacing all point transformer message
passing layers with GN layers Battaglia et al. (2018) leads to overall performance degradation. We
also tried replacing GCFs with recently introduced reversible GNN layer named GRevNet Liu et al.
(2019). As with discrete normalizing flows, the invertibility in GRevNets is achieved by splitting and
alternatingly updating each part of 3D coordinates while conditioned on the other parts. However,
for molecular setting we find GRevNets training to be quite unstable with model collapsing within
few iterations.

Finally, we quantify the effect of training regularization terms. As expected, disabling regularization
reduces test accuracy. Simply regularizing the Jacobian Frobenius norm achieves stable training and
comparable performance to ConfFlow.
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Ablate Params COV (%) MAT (Å) MIS (%)
Mean Median Mean Median Mean Median

- 1.7M 91.08 95.60 0.278 0.287 0.476 0.507

S = 2 1.1M 90.20 94.20 0.300 0.307 0.490 0.525
S = 4 2.3M 91.90 95.60 0.263 0.269 0.455 0.480
L = 3 0.6M 80.50 85.60 0.359 0.373 0.544 0.588
L = 9 2.2M 92.00 94.80 0.294 0.299 0.477 0.524

R = 1 0.7M 75.70 77.10 0.398 0.405 0.572 0.616
R = 4 2.0M 91.90 95.40 0.253 0.252 0.436 0.483

GN 1.4M 86.70 92.40 0.347 0.352 0.535 0.573

w/o regularization 1.1M 88.40 92.60 0.305 0.311 0.490 0.530
only KE 1.1M 55.30 55.30 0.484 0.481 0.813 0.848
only JN 1.1M 90.00 94.80 0.294 0.296 0.479 0.514

Table 5: Ablation experiments on the GEOM-QM9 dataset.

Features Data Type Dimension

atomic number integer {1-119, None} 1
hybridization integer {’S’, ’SP’, ’SP2’, ’SP3’, ’SP3D’, ’SP3D2’, None} 1
atomic degree integer {0-10, None} 1
formal charge integer {-5 - +5, None} 1
total hydrogen atoms integer {0-8, None} 1
implicit valence electrons integer { 1-15, None } 1
total valence electrons integer { 1-15, None } 1
total radical electrons integer {0-4, None } 1
chirality integer { ’CW’, ’CCW’, Others, None} 1
is aromatic binary 1
is in ring binary 1

Table 6: Node Attributes.

B INPUT FEATURES

Table 6 and Table 7 lists node and edge attributes used across all experiments and tasks.

C SUPPLEMENT VIDEO

It demonstrates the step-by-step transformation of molecular conformation, starting from initial
Gaussian noise and progressing to the final 3D equilibrium structure through ConfFlow.

Features Data Type Dimension

type integer {’single’, ’double’, ’triple’, ’aromatic’, None } 1
stereo chemistry integer {’Z’, ’E’, ’CIS’, ’TRANS’, ’ANY’, None} 1
is conjugated binary 1
is same ring binary 1
shortest path integer { 1-3, None} 1
is in ring of size (3-9) binary 7

Table 7: Edge Attributes.
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