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Figure 1. ARM generates high-quality, relightable 3D content from a single image input. This figure presents sample results generated
from different input images, demonstrating ARM’s ability to reconstruct a variety of objects with spatially-varying appearance. Please
refer to our supplementary video for results under dynamic view and lighting.

Abstract

Recent image-to-3D reconstruction models have
greatly advanced geometry generation, but they still strug-
gle to faithfully generate realistic appearance. To ad-
dress this, we introduce ARM, a novel method that recon-
structs high-quality 3D meshes and realistic appearance
from sparse-view images. The core of ARM lies in decou-
pling geometry from appearance, processing appearance
within the UV texture space. Unlike previous methods, ARM
improves texture quality by explicitly back-projecting mea-
surements onto the texture map and processing them in a UV
space module with a global receptive field. To resolve ambi-
guities between material and illumination in input images,
ARM introduces a material prior that encodes semantic ap-
pearance information, enhancing the robustness of appear-

∗ indicates equal contributions.

ance decomposition. Trained on just 8 H100 GPUs, ARM
outperforms existing methods both quantitatively and qual-
itatively.

1. Introduction

Obtaining high-quality 3D mesh models with realistic ap-
pearance from 2D images has become a critical task in
computer vision and computer graphics, with applications
spanning the metaverse, gaming, and e-commerce. Con-
ventionly, 3D models with appearance are hand-crafted
by skilled artists using specialized modeling software—a
highly time-consuming process that can take hours or
even days. Alternatively, 3D models can be reconstructed
from multi-view input images using optimization-based ap-
proaches [26, 44, 45, 72], typically requiring over a hun-
dred images from different viewpoints. Photometric devices
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are often needed to accurately capture high-quality appear-
ance [25, 42, 47, 52, 56].

Recent advances in 3D generation and reconstruction
models have brought new insights to the field, leading to
several dominant approaches. One line of research [9, 31,
36, 49, 60, 74] leverages priors from pretrained 2D diffu-
sion models to distill 3D shapes, typically by generating im-
ages from multiple viewpoints with a 2D generative model,
followed by per-scene optimization. However, this distilla-
tion process is time-consuming, limiting its practicality for
real-world applications. Another line [21, 65, 66, 77, 81]
trains a feed-forward neural network directly on large-
scale 3D datasets [12, 13] to learn 3D priors from single-
view or sparse-view input images, an approach our method
also adopts. This strategy can improve consistency across
multi-views and achieves faster inference compared to time-
intensive distillation techniques. However, existing meth-
ods in this area still struggle with several limitations: the
reconstructed textures often appear blurred and lack fine de-
tails, leading to overall low-quality results. Moreover, most
current methods represent object appearance only through
per-vertex colors, which is even simpler than Lambertian
shading and includes baked-in reflections, lighting, and
shadows. This simplified shading model fails to capture re-
alistic view-dependent and lighting-dependent effects, mak-
ing the generated assets unsuitable for downstream applica-
tions such as gaming or metaverse, where dynamic lighting
and viewpoint changes are essential for realism.

In this work, we introduce a framework called ARM for
reconstructing high-quality 3D meshes with fine-detailed
textures and realistic appearance. ARM builds on Large Re-
construction Models (LRMs) [21], using triplanes as its 3D
representation. While LRMs offer strong geometry capabil-
ities, we observed that reconstructed textures often appear
overly blurred due to the limited resolution of triplanes and
the relatively small decoding MLPs. ARM’s core innova-
tion lies in decoupling geometry generation from appear-
ance modeling by processing appearance directly within
the UV space. Unlike previous methods that decode color
from learned triplanes using MLPs, ARM enhances texture
quality by explicitly back-projecting multi-view measure-
ments onto the texture map and processing them with a
UV-space module featuring a global receptive field. The
UV texture space offers advantages over the triplane space
by directly representing color variations on the object sur-
face. ARM also introduces an approach to address the ma-
terial and illumination ambiguities present in sparse-view
input images—–a fundamentally ill-posed problem. Pre-
vious methods [61] often attempt to tackle this issue us-
ing a rendering loss; however, these inverse rendering ap-
proaches have been shown to struggle with sparse inputs
and may even fail with dense multi-view data. In contrast,
ARM incorporates a material prior that encodes semantic

appearance information and directly fits to ground-truth ma-
terials, enhancing the robustness of appearance decompo-
sition. Experimental results show that ARM outperforms
recent image-to-3D methods both qualitatively and quan-
titatively, demonstrating its capability to generate versatile
objects with realistic appearance.

2. Related work
2.1. 3D generation with 2D diffusion priors

The emergence of 2D diffusion models [20, 54, 55] has
driven significant advancements in 3D generation. Dream-
Fusion [49] was the first to use SDS [70] loss to iteratively
distill 3D representations from a 2D diffusion model, inspir-
ing numerous follow-up works [9, 31, 40, 41, 43, 57, 60,
63, 71, 78]. These methods typically convert multi-view
images generated by diffusion models into 3D representa-
tions such as NeRF [44], NeuS [72], and 3DGS [26], using
SDS-like losses and optimization-based techniques. Subse-
quent work has focused on enhancing cross-view consis-
tency and generalization. For example, Zero-1-to-3 [36]
leverages diffusion models to create consistent multi-view
images for 3D reconstruction, while other methods [8, 22,
32, 37, 38, 51, 59, 85] further improve consistency through
conditioning and distribution modeling. Wang et al. [74]
proposed Variational Score Distillation (VSD) to address
over-saturation in SDS and improve texture diversity. Re-
cently, Voleti et al. [68] introduced an image-to-video dif-
fusion model for enhanced generalization and multi-view
consistency in novel view synthesis. Despite these advance-
ments, per-shape optimization methods still face key limita-
tions, with long runtimes as the main bottleneck to broader
application. Issues with Janus inconsistencies and over-
saturation also remain.

2.2. 3D generation with 3D feed-forward models

With the availability of high-quality, large-scale annotated
3D datasets [12, 13], recent works have focused on generat-
ing 3D objects using feed-forward models [21, 24, 53, 80],
achieving significantly faster speeds than score-distillation
methods. For example, One-2-3-45 [34] uses the gener-
alizable NeRF method for 3D reconstruction, while One-
2-3-45++ [33] improves quality with a two-stage, coarse-
to-fine 3D diffusion model similar to LAS-Diffusion [94],
though high-quality textures remain a challenge. The LRM
model [21] and its extensions [29, 66, 73, 75, 77, 81, 83]
enhance generation quality through transformer-based ar-
chitectures and triplane representation [7]. While triplanes
provide an effective hybrid representation, other works [65,
84, 90, 95] explore 3DGS [26] for potentially faster gen-
eration. Recently, MeshFormer [35] replaced triplanes with
3D sparse voxels to represent fine-grained shapes explicitly.
Our method also adopts a feed-forward approach for effi-
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Figure 2. Overview of our pipeline. (left) Starting from sparse-view input images generated by a diffusion model [59], ARM separates
shape and appearance generation into two stages. In the geometry stage, ARM uses GeoRM to predict a 3D shape from the input images.
In the appearance stage, ARM employs InstantAlbedo and GlossyRM to reconstruct PBR maps, enabling realistic relighting under varied
lighting conditions. (right) Both GeoRM and GlossyRM share the same architecture, consisting of a triplane synthesizer and a decoding
MLP. GeoRM is trained to predict density and extracts an iso-surface from the density grid with DiffMC [76], while GlossyRM is trained
to predict roughness and metalness. GlossyRM is trained after GeoRM and initializes with the weights of GeoRM at the start of training.

cient generation. Using LRM as the backbone, we address
a key limitation: relying solely on triplanes restricts texture
detail due to resolution constraints, and scaling up the net-
work is impractical due to memory demands. Instead, we
directly learn textures in UV space, significantly enhancing
texture quality.

2.3. Material generation and decomposition

Estimating surface material properties remains a longstand-
ing challenge in 3D reconstruction and generation, as joint
optimization of unknown lighting and appearance makes
this problem inherently ill-posed. Recent advances in
multi-view reconstruction, including NeRF-based meth-
ods [2, 3, 15, 18, 46, 62, 87, 89, 92] and 3DGS-based
approaches [1, 17, 23, 30], show promise for material es-
timation but still require dense multi-view input. SDS-
based text-to-3D pipelines [9, 39, 82] offer a solution but
remain time-intensive due to SDS optimization. Make-it-
Real [16] uses LLMs to identify object semantics and re-
trieve materials from a library, while SF3D [4] adds UV
unwrapping with material prediction in LRM. Other meth-
ods [67, 86, 88, 93] apply diffusion models for appearance
generation on existing geometries with text prompts. Re-
cently, CLAY [91] and 3DTopia-XL [10] leverage Diffusion
Transformer models (DiT) [48] for 3D asset generation with
appearance. Our method differs by being the first to perform
material decomposition entirely in UV space, conditioned
directly on in-the-wild image input. Since our network in-
herently learns texture-level priors through back-projection
in the first step, it mitigates the inconsistent artifacts caused
by generating multi-view appearance parameters first and
then back-projecting them onto textures. Additionally, by
introducing a material prior in texture-level appearance de-
composition, our method more accurately disentangles il-

lumination from materials, achieving greater fidelity than
previous approaches.

3. Preliminaries
We model the spatially varying, view-dependent, and
lighting-dependent appearance of objects by an Spatially
Varying Bi-directional Reflectance Distribution Function
(SVBRDF), where each surface point’s reflectance is mod-
eled by a microfacet BRDF parameterized by its diffuse
albedo cd, roughness ρ, and metalness m. The BRDF fr
consists of a diffuse component and a glossy component:

fr(l,v) = (1−m)
cd
π

+
DFG

4(n · l)(n · v)
(1)

where l and v are the directions of the incoming light and
the view, n is the surface normal, and D, F , and G repre-
sent the microfacet normal distribution, Fresnel, and geom-
etry terms, respectively. These terms are determined by ρ,
m, and cd, with detailed expressions provided in the sup-
plementary material. In summary, ARM reconstructs spa-
tially varying diffuse, roughness, and metalness maps—also
known as Physically-Based Rendering (PBR) maps [5]—to
efficiently capture diverse material appearances.

4. Overview
We propose ARM, a framework for simultaneously recon-
structing high-quality 3D meshes and PBR texture maps,
as illustred in Fig. 2. Starting from sparse-view images
generated from a single view using a diffusion model [59],
ARM separates shape and appearance generation into two
stages. In the geometry stage, ARM employs GeoRM
(Sec. 5.1) to predict a 3D shape from input images, which
is then unwrapped into atlas charts for latter processing in
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the UV texture space. In the appearance stage, ARM intro-
duces two specialized models: InstantAlbedo (Sec. 5.2) and
GlossyRM (Sec. 5.1). Both models take input as aforemen-
tioned sparse-view input images and the predicted 3D shape
from GeoRM. GlossyRM outputs per-vertex roughness ρ
and metalness m, capturing the glossy component of the
appearance. InstantAlbedo, in contrast, operates in the UV
texture space, producing two color maps: one with baked-
in lighting and another with diffuse albedo, representing the
diffuse component of appearance. To enhance the accuracy
and robustness of albedo decomposition, ARM also incor-
porates a material prior (Sec. 5.3) into InstantAlbedo to en-
code semantic appearance information from the multi-view
images. The final material is stored as PBR texture maps,
enabling realistic relighting under novel lighting.

5. Method
In this section, we present the design of ARM and outline
the key insights and motivations behind our approach.

5.1. Decoupling shape and appearance

To produce high-quality 3D meshes with high-fidelity re-
flective properties, ARM introduces two distinct LRM-
based models: GeoRM and GlossyRM. Both models share
the same architecture, including a transformer-based tri-
plane synthesizer and a decoding MLP. The triplane, as an
internal 3D representation, is generated by the synthesizer
from sparse-view input images. Any queried 3D point is
then projected onto the triplane to retrieve its correspond-
ing feature, which is decoded by the MLP to produce the
desired output. By decoupling shape and appearance, ARM
designs the two models to serve different purposes, each
trained with its own objective function.

GeoRM is trained to predict the density, with the iso-
surface extracted from a 2563 density grid using differ-
entiable marching cubes [76]. Optimized solely with
geometry-related losses (mask, depth, and normal supervi-
sion), GeoRM’s purpose is exclusively to generate geome-
try, and its weights are frozen once trained.

GlossyRM, trained after GeoRM, uses the 3D mesh gen-
erated by GeoRM to query its own learned triplane and de-
code per-vertex roughness ρ and metalness m. Its training
is focused solely on losses related to these parameters.

The core idea here is to decouple geometry from ap-
pearance, enabling (1) efficient processing in texture space,
since unwrapping geometry into texture space is time-
consuming and impractical during training, and (2) in-
creased network capacity for both GeoRM and GlossyRM,
with each model focused on a specific, smaller task. A
naive approach would be to train a single LRM to pre-
dict all desired outputs—density, vertex color, and material
parameters—but our pilot study showed that as the num-
ber of prediction targets increases, output quality degrades

significantly, with results becoming blurred. This issue is
particularly pronounced with material predictions, as these
parameters are more challenging to infer than colors di-
rectly visible in the input images, thereby increasing learn-
ing complexity.

Furthermore, we observe that the triplane resolution is
directly correlated with shape quality and the presence of
voxel artifacts, which can be mitigated by increasing the
resolution. To address this, we introduce a super-resolution
module that raises triplane resolution to 256 × 256, sig-
nificantly enhancing shape reconstruction quality. By de-
coupling geometry and appearance, the memory footprint
of both models is reduced, making this resolution increase
feasible. Further details on the architecture of GeoRM and
GlossyRM can be found in our supplementary material.

5.2. Appearance decomposition in texture space

The key insight of ARM is to reconstruct fine-detailed tex-
tures in UV texture space, which directly aligns with the
spatial variations on the object surface, rather than rely-
ing on the triplane representation used in previous LRMs.
There are two main reasons for moving away from tri-
planes: First, texture details are limited by the triplane res-
olution, which is constrained by memory usage of large
transformer. Increasing triplane resolution to capture finer
details quadratically increases the transformer complexity,
reducing practicality for high-detail reconstructions. Sec-
ond, triplanes function similarly to volumetric representa-
tions, where querying with decoding MLPs often results in
blurriness. This is because triplanes store 3D information
across three planes, but the spatial variation in these planes
does not directly correspond to the texture variation on the
object surface, leading to interpolation mismatches and de-
graded texture quality.

To overcome these limitations, ARM employs InstantA-
lbedo, a network specifically designed to operate in UV tex-
ture space, as illustrated in Fig. 3. By working directly in
texture space, InstantAlbedo captures fine surface details
without the resolution and memory constraints associated
with triplanes.

The process begins by converting all necessary data
to UV texture space. Given the 3D mesh generated by
GeoRM, we unwrap it into atlas charts in the UV texture,
where each texel corresponds to a specific surface point.
Since unwrapping is time-consuming and impractical to
perform during training, we synthesize a pre-unwrapped
training dataset offline, which we detail later. Next, with
multi-view input images generated at 6 known camera
poses, we directly back-project these multi-view images
onto the UV texture. Along with the images, we also back-
project auxiliary data, including masks M , positions p, tex-
ture coordinates u, view directions v, and surface normals
n. These inputs provide valid contextual information for
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Figure 3. Overview of InstantAlbedo. InstantAlbedo operates in the texture UV space. This process begins by converting all necessary
data to UV texture space. Given the unwrapped mesh from GeoRM, we back-project images, material encodings, and auxiliary data into
UV texture space, resulting in six sets of inputs corresponding to the six input views. InstantAlbedo then processes these maps using a
U-Net and an inpainting-specific FFC-Net to predict both the lighting-baked color and the decomposed diffuse albedo UV textures.

material decomposition according to Eq. 1, effectively re-
ducing the learning complexity for the network. The back-
projection process generates six sets of input maps in UV
texture space, corresponding to the six views.

InstantAlbedo takes above six sets of maps as input and
outputs two color maps: one with baked-in lighting and an-
other with the decomposed diffuse albedo. In the first step,
a U-Net is employed to extract per-view features from each
set, yielding six feature maps. Since each view captures
only a partial region of the object’s surface, it is necessary
to fuse information from multiple views to form a complete
texture. Inspired by PointNet [50], we use max-pooling to
aggregate information across the six feature maps. How-
ever, with only six views, some regions of the object sur-
face remain unobserved. To address this, we incorporate
a FFCNet [11, 64] with a global receptive field to extract
information from other areas in the texture, inpaint unseen
regions, and refine the fused result. As shown in Fig. 6,
this design significantly improves the completeness of the
reconstructed texture. Please note that InstantAlbedo fo-
cuses solely on albedo decomposition rather than predict-
ing the entire material (including roughness and metalness)
in a unified manner, as we found that this approach led to
inaccuracies in decomposed roughness and metalness. Ad-
ditional details are provided in the supplementary material.

5.3. Appearance encoding with a material prior

ARM tackles the inherent ambiguity between material and
illumination in sparse-view input, another challenging and
inherently ill-posed problem. With fewer than ten input
images, attempting to use inverse rendering with a simple
rendering loss often results in flawed decompositions for
glossy materials, where lighting effects may bake into the
diffuse albedo to perfectly match the input images. To ad-
dress this, ARM directly fits to ground-truth material in-
stead of relying on a rendering loss to separate material

and lighting. However, this approach is still challenging
because any lighting in the input images can be hard for the
network to ignore, often leaving traces of illumination in the
final albedo output.

To improve robustness, ARM incorporates a material
prior—–a material-aware image encoder—–into the back-
projection process of InstantAlbedo, as illustrated in Fig. 3.
By transforming multi-view input images into semantic,
material-aware feature maps, InstantAlbedo back-projects
these encoded features onto the UV texture. Combined with
other auxiliary inputs, these features allow InstantAlbedo to
produce a more accurate, decomposed result.

The image encoder, based on DINO’s ViT 8 × 8 configu-
ration [6], combines intermediate features at multiple scales
into a unified feature map through upscaling convolutional
networks, similar to the cascade architecture in [58]. We
initialize the encoder with weights trained on a dataset with
semantic material maps, making it suitable for recognizing
materials. Integrated into the InstantAlbedo pipeline, the
encoder is fine-tuned jointly with the rest of the model. As
shown in Fig. 6, This design significantly enhances the ac-
curacy of albedo decomposition, even when strong lighting
and materials are tightly coupled in the input.

6. Training

To train GeoRM, GlossyRM, and InstantAlbedo, we
synthesize two separate datasets: one for GeoRM and
GlossyRM, and another for InstantAlbedo.
GeoRM and GlossyRM are trained on a 150K subset of the
Objaverse dataset [12]. For each object, we render it from
32 random views, generating measurements, depth, nor-
mal, diffuse albedo, roughness, metalness, and mask maps
for supervision. We start by training GeoRM, with a two-
stage strategy similar to [81] (see supplementary material
for more details). GeoRM is trained based on differentiable
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rendering, exclusively with geometry-related losses:

Lgeo =
1

N

∑
i

λz|zgti − ẑi|+ λMLmse(M
gt
i , M̂i)

+ λnLlpips(n
gt
i , n̂i), (2)

where zgti , Mgt
i , and ngt

i are the ground-truth depth, mask,
and surface normal for the i-th view, and ẑi, M̂i, and n̂i

are their counterparts rendered from predicted mesh. We
randomly select N views from the dataset, with 6 used as
input. Next, we train GlossyRM with GeoRM fixed to pro-
vide a proxy shape, using the following loss:

Lglossy =
1

N

∑
i

L0(ρ
gt
i , ρ̂i) + L0(m

gt
i , m̂i), (3)

L0(x, y) = λ1Lmse(x, y) + λ2Llpips(x, y) + λ3Lssim(x, y).

Here, ρgti and mgt
i represent the ground-truth roughness and

metalness for the i-th view, and ρ̂i and m̂i are the predicted
roughness and metalness rendered from the predicted mesh.
InstantAlbedo is also trained after GeoRM, but indepen-
dently from GlossyRM, allowing both models to be trained
in parallel. Once GeoRM is trained, we use it to generate
55K shapes from the 150K subset mentioned above, each
pre-unwrapped into atlas charts. During training, InstantA-
lbedo takes the unwrapped mesh and corresponding input
images as input, and is trained to predict both the lighting-
baked color and the decomposed diffuse albedo. The overall
loss is defined as:

Lalbedo =
1

N

∑
i

L0(c
gt
i , ĉi) + L0(cd

gt
i , ĉdi), (4)

where cgti and cd
gt
i denote the ground-truth lighting-baked

color and decomposed diffuse albedo for the i-th view, and
ĉi and ĉdi are their predicted counterparts.

7. Experiments
7.1. Experimental settings

We trained ARM on 8 H100 GPUs with a batch size of 1
per GPU over approximately 5 days: two days for GeoRM,
two for GlossyRM, and one for InstantAlbedo. We used the
Adam optimizer with a learning rate of 4×10−5 for GeoRM
and GlossyRM, and 4× 10−4 for InstantAlbedo. The loss-
balancing coefficients were set as λz = 0.5, λM = 1.0,
λn = 0.2, λ1 = 0.7, λ2 = 0.3, and λ3 = 0.1. We set
N = 10 when selecting views.

7.2. Evaluation settings

We assess the methods on three datasets: GSO [14], Om-
niObject3D [79], and a custom dataset specifically for re-
lightable appearance evaluation. All datasets consist of 3D

objects that were unseen during training. For the GSO
dataset, we evaluate using all 1,030 available 3D shapes.
From the OmniObject3D dataset, we randomly sample up
to five shapes from each category, totaling 1,038 shapes for
evaluation. The third dataset, introduced for relightable ap-
pearance evaluation, includes 100 objects with PBR materi-
als, similar to [88]. For each object, we generate 144 images
under varied lighting conditions by rendering 24 random
views across six different environmental lightings. To eval-
uate 3D reconstruction quality, we use both F-score (with
a threshold of 0.1) and Chamfer Distance (CD), comparing
the predicted meshes to ground truth meshes. For 2D ap-
pearance evaluation, we compute PSNR, SSIM, and LPIPS
on rendered images. Since coordinate frames may differ
across methods, we align each method’s predicted mesh to
the ground truth before calculating metrics. Further align-
ment details are provided in the supplementary materials.

7.3. Comparisons

We first compare our method quantitatively to LGM [65],
CRM [75], InstantMesh [81], MeshFormer [35], and
SF3D [4] in Tab. 1. For a fair comparison, all methods are
evaluated in a unified single-view to 3D setup. We use the
first thumbnail image as input for the GSO dataset, while
for the OmniObject3D dataset, we use a rendered image
from a random view. For InstantMesh, MeshFormer, and
our method, we employ the same Zero123++ [59] model
to generate multi-view images from the single-view input.
Since most methods only produce appearance with baked-
in lighting, we compare based on lighting-baked color. For
SF3D, which lacks lighting-baked vertex color, we render
it under even environmental lighting. Our method outper-
forms others in both geometry and appearance accuracy.

In Fig. 4, we provide qualitative examples to visually
demonstrate ARM’s superior performance over existing
methods. For full results including CRM and LGM, please
see our supplementary material. The reconstructed textures
from ARM contain significantly richer details, owing to our
design in UV texture space. While other methods suffer
from blurriness, ARM accurately reconstructs complex and
sharp patterns. Some methods, such as SF3D, struggle to
generate plausible shape and texture in unseen areas due to
training on single-view inputs.

In Fig. 5, we compare our reconstructed PBR maps and
their relighted images under novel lighting conditions to
those produced by SF3D [4], which also reconstructs PBR
from single-view input. Our method outperforms SF3D in
two key areas: First, when multiple materials are present in
the input image, our method reconstructs spatially-varying
roughness and metalness, while SF3D generates only con-
stant values, resulting in a homogeneous appearance. Sec-
ond, SF3D struggles with separating illumination from ma-
terial properties in the input, leading to baked-in lighting
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Figure 4. Qualitative comparison. We present examples of single-image 3D generation across different methods. While other methods
exhibit blurriness, ARM reconstructs complex patterns with sharp details. Please zoom in to examine the texture quality. Full results,
including comparisons with LGM [65] and CRM [75], are provided in the supplementary material.

Method GSO [14] OmniObject3D [79]
F-Score ↑ CD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ F-Score ↑ CD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

LGM [65] 0.784 0.132 18.173 0.848 0.207 0.801 0.127 17.979 0.843 0.229
CRM [75] 0.893 0.091 19.390 0.857 0.180 0.845 0.110 19.083 0.852 0.200

InstantMesh [81] 0.938 0.065 19.744 0.858 0.146 0.877 0.094 19.193 0.840 0.187
SF3D [4] 0.888 0.089 18.540 0.848 0.175 0.857 0.105 18.529 0.839 0.195

MeshFormer [35] 0.966 0.052 20.500 0.867 0.141 0.927 0.072 19.402 0.839 0.183
Ours 0.968 0.049 21.692 0.880 0.137 0.936 0.067 20.874 0.850 0.165

Table 1. Quantitative results of single image to 3D. We evaluate on the GSO [14] (1,030 shapes) and OmniObject3D [79] (1,038 shapes)
datasets, reporting results across various metrics. CD denotes Chamfer Distance.

effects. In the cup and ball example, lighting artifacts are
embedded in SF3D’s reconstructed diffuse albedo, result-
ing in inaccurate relighting under novel conditions. In con-
trast, our method successfully decomposes illumination and
material, yielding realistic results.

Finally, we present a quantitative comparison of our

method and SF3D on the synthetic relighting dataset in
Tab. 2. Our method surpasses SF3D in relit rendering,
demonstrating superior accuracy and robustness.
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Setting PSNR-A ↑ LPIPS-A ↓
SF3D 18.592 0.200
Ours 21.750 0.171

Table 2. Quantitative results of re-
lighted appearance. We evaluate re-
lighted renderings under novel lighting
conditions. -A denotes appearance.

Setting PSNR-A ↑ LPIPS-A ↓ PSNR-D ↑ LPIPS-D ↓
wo/ Measurements 24.780 0.104 23.398 0.114
wo/ Material Prior 24.471 0.108 22.687 0.121

wo/ FFC-Net 24.612 0.110 23.360 0.123
Baseline 25.074 0.096 24.116 0.098

Table 3. Ablation study. We evaluate three alternative setups against our full method. -A
indicates relighted appearance under novel lighting, and -D denotes predicted diffuse albedo.

G.T. Unseen Area w/o FFC-Net w/ FFC-Net

Input Image G.T. Diffuse w/o Mat. Prior w/ Mat. Prior

Figure 6. Ablation results for FFC-Net and material prior.
FFC-Net aids in inpainting unseen regions (top), while the ma-
terial prior improves the diffuse decomposition (bottom), both for
the InstantAlbedo stage.

7.4. Ablations

We perform both visual and quantitative ablation experi-
ments on the synthetic dataset to evaluate the impact of
components in our method. To exclude the effect of multi-
view diffusion model, we use ground-truth multi-view im-
ages as input. The setups are as follows:
w/o measurements Back-projecting measurements directly
visible in the input image provides crucial information

for reconstructing textures. In this setup, we omit back-
projected image measurements on texture maps.
w/o material prior Incorporating material-aware image en-
coding adds semantic appearance information, helping to
disentangle illumination from materials and improve the ac-
curacy and robustness of appearance decomposition. In this
setup, we exclude material features from back-projection.
w/o FFC-Net Since the multi-view images do not cover the
full object surface, it is essential to inpaint unseen regions
by extracting information from other regions. In this setup,
we replace the FFC-Net with a U-Net that has a local recep-
tive field, in contrast to the global scope of the FFC-Net.

As shown in Tab. 3, both modifications degrade quality.
Removing the material prior leads to a significant drop in
the metrics for decomposed diffuse albedo, while removing
the FFC-Net introduces artifacts in unseen areas, reducing
perceptual quality notably. Fig. 6 further illustrates the vi-
sual impact of removing the material prior and FFC-Net,
underscoring that the material prior and FFC-Net play cru-
cial roles in disentangling illumination and material, as well
as in inpainting, respectively.

8. Conclusion and limitation
We present ARM, a novel method for reconstructing high-
quality 3D meshes and PBR maps from sparse-view images,
leveraging the advantages of operating in UV space. ARM
generates detailed meshes with high-quality textures and

8



spatially-varying materials, outperforming existing meth-
ods both qualitatively and quantitatively. However, chal-
lenges remain, primarily due to inconsistencies in multi-
view images generated by upstream models, which can in-
troduce artifacts in the reconstructed textures. Develop-
ing strategies to resolve conflicts across inconsistent views,
such as weighting input views based on user specification,
is a valuable direction for future exploration.
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Fredo Durand, and Valentin Deschaintre. Materialistic: Se-
lecting similar materials in images. ACM Trans. Graph., 42
(4), 2023. 5, 15

[59] Ruoxi Shi, Hansheng Chen, Zhuoyang Zhang, Minghua Liu,
Chao Xu, Xinyue Wei, Linghao Chen, Chong Zeng, and Hao
Su. Zero123++: a single image to consistent multi-view dif-
fusion base model. arXiv preprint arXiv:2310.15110, 2023.
2, 3, 6

[60] Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li,
and Xiao Yang. Mvdream: Multi-view diffusion for 3d gen-
eration. arXiv preprint arXiv:2308.16512, 2023. 2

[61] Yawar Siddiqui, Tom Monnier, Filippos Kokkinos, Mahen-
dra Kariya, Yanir Kleiman, Emilien Garreau, Oran Gafni,
Natalia Neverova, Andrea Vedaldi, Roman Shapovalov, et al.
Meta 3d assetgen: Text-to-mesh generation with high-
quality geometry, texture, and pbr materials. arXiv preprint
arXiv:2407.02445, 2024. 2

[62] Pratul P Srinivasan, Boyang Deng, Xiuming Zhang,
Matthew Tancik, Ben Mildenhall, and Jonathan T Barron.
Nerv: Neural reflectance and visibility fields for relight-
ing and view synthesis. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 7495–7504, 2021. 3

[63] Jingxiang Sun, Bo Zhang, Ruizhi Shao, Lizhen Wang, Wen
Liu, Zhenda Xie, and Yebin Liu. Dreamcraft3d: Hierarchi-
cal 3d generation with bootstrapped diffusion prior. arXiv
preprint arXiv:2310.16818, 2023. 2

[64] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin,
Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov,
Naejin Kong, Harshith Goka, Kiwoong Park, and Victor
Lempitsky. Resolution-robust large mask inpainting with
fourier convolutions. In Proceedings of the IEEE/CVF
winter conference on applications of computer vision, pages
2149–2159, 2022. 5

[65] Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang,
Gang Zeng, and Ziwei Liu. Lgm: Large multi-view gaussian
model for high-resolution 3d content creation. arXiv preprint
arXiv:2402.05054, 2024. 2, 6, 7

[66] Dmitry Tochilkin, David Pankratz, Zexiang Liu, Zixuan
Huang, Adam Letts, Yangguang Li, Ding Liang, Christian
Laforte, Varun Jampani, and Yan-Pei Cao. Triposr: Fast 3d
object reconstruction from a single image. arXiv preprint
arXiv:2403.02151, 2024. 2

[67] Shimon Vainer, Mark Boss, Mathias Parger, Konstantin
Kutsy, Dante De Nigris, Ciara Rowles, Nicolas Perony,
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ARM: Appearance Reconstruction Model for Relightable 3D Generation

Supplementary Material

9. Detailed explanation of Eq. 1
ARM models the appearance of object by a spatially vary-
ing BRDF described in Eq. 1. For the microfacet nor-
mal distribution term D, we use isotropic GGX distribu-
tion [69]:

D(n,h, α) =
α2

π((n · h)(α2 − 1) + 1)2
, α = ρ2,

where n is the half-way vector. The Geometry function G
is based on the Schlick-GGX Geometry function:

G(n, l,v, k) = Gsub(n, l, k)Gsub(n,v, k),

where

Gsub(n,v, k) =
n · v

(n · v)(1− k) + k
.

Here, k = (ρ2 + 1)2/8. Last, the Fresnel term F is

F (v,h) = F0 + (1− F0)(1− (h · v))5,

where
F0 = mcd + (1−m)0.04.

10. Details on GeoRM and GlossyRM
GeoRM and GlossyRM are built on the LRM frame-
work, with a super-resolution upsampler added
to the triplane synthesizer, as shown in Fig. 7.
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Figure 7. Architecture of tri-
plane synthesizer.

A pretrained ViT image
encoder [6] converts multi-
view input images into im-
age tokens. To make the
network aware of camera
pose, we add AdaLN cam-
era pose modulation lay-
ers to the ViT encoder, fol-
lowing Instant3D [29], en-
abling pose-aware output
tokens. The image encoder
is jointly fine-tuned during

training. The super-resolution upsampler is based on SR-
ResNet [28], using four Residual-in-Residual Dense Blocks
with a filter size of 512. After these blocks, the upsampling
steps consist of three convolutional layers, raising the tri-
plane resolution to 256. Details of the remaining model
components, including the encoder and transformer, are
provided in Tab. 4.

While GeoRM and GlossyRM share the same architec-
ture, they are trained as two distinct models. For GeoRM,

Input Views 6
Encoder Dim. 768
Transformer Dim. 1024
Transformer Layers 16
Transformer Heads 16
Triplane Resolution (Coarse) 32
Triplane Resolution (Fine) 256
MLP Hidden Layers 4
MLP Hidden Dim. 32

Table 4. Specifications of GeoRM and GlossyRM. Parameters
for each component of the large reconstruction models used in our
approach are listed.

In
pu

t
In

st
an

tA
lb

ed
o
ρ

G
lo

ss
yR

M
ρ

In
st

an
tA

lb
ed

o
m

G
lo

ss
yR

M
m

Figure 8. Comparison with unified material prediction. ARM
separates the prediction of roughness and metalness by using
GlossyRM, rather than predicting all material parameters within
InstantAlbedo. We compare the differences between two ap-
proaches. InstantAlbedo tends to predict only intermediate values
for roughness and metalness, making it difficult to produce ex-
treme values close to 0 or 1, particularly for non-metallic objects.
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Method PSNR-D ↑ SSIM-D ↑ LPIPS-D ↓ PSNR-ρ ↑ SSIM-ρ ↑ LPIPS-ρ ↓ PSNR-m ↑ SSIM-m ↑ LPIPS-m ↓
SF3D [4] 16.937 0.834 0.205 18.012 0.873 0.202 20.433 0.862 0.153

Ours 21.108 0.844 0.178 19.565 0.883 0.165 21.866 0.883 0.145

Table 5. Quantitative Results of Reconstructed PBR Maps. We report metrics comparing the predicted PBR maps with ground truth.
Due to the high ambiguity in appearance decomposition, where multiple valid decompositions can explain the same shaded image, we
only provide indicative scores in the supplementary material. Here, -D represents diffuse albedo, -ρ denotes roughness, and -m denotes
metalness.

we adopt a two-stage training strategy similar to [81]. In the
first stage, we load pretrained weights for all components
except the newly introduced super-resolution module and
train using a volume rendering loss. In the second stage, we
employ differentiable marching cubes to extract iso-surface
from the queried density grid, followed by rendering with a
differentiable rasterizer [27].

After training GeoRM, we proceed to train GlossyRM
while keeping GeoRM fixed. Specifically, we first use
GeoRM to generate the 3D shape from the multi-view in-
put. Then, for each vertex on this generated shape, we
retrieve features from GlossyRM’s triplane and feed them
into the decoding MLP to predict roughness and metalness.
These per-vertex properties are then used to render multi-
view images, with a loss computed against ground-truth im-
ages to guide GlossyRM’s training. For faster convergence,
GlossyRM is initialized with GeoRM’s weights at the start
of training.

11. Unified material prediction

ARM separates PBR parameter prediction into two net-
works: InstantAlbedo for diffuse albedo and GlossyRM for
roughness and metalness. Although predicting all material
properties within InstantAlbedo might seem more straight-
forward, our experiments indicate that this approach re-
sults in inaccurate material decomposition, as shown in
Fig. 8. InstantAlbedo tends to predict only intermediate
values for roughness and metalness, making it difficult to
produce extreme values close to 0 or 1, particularly for non-
metallic objects. Notably, for SVBRDF, human perception
is generally more sensitive to spatial variations (subtle pixel
changes within textures) than to angular variations (sub-
tle changes of lighting and view direction in BRDF). By
leveraging GlossyRM, which has ample network capacity,
our method effectively produces realistic appearances, with
InstantAlbedo capturing the fine-grained details in diffuse
albedo.

12. Details on InstantAlbedo

The InstantAlbedo framework comprises three main net-
works: a material-aware image encoder, a U-Net, and
an FFC-Net. The material-aware image encoder is based
on [58], excluding the user reference injection and cross-

attention layers. For the FFC-Net, we use a ResNet-like
architecture [19] with 3 downsampling blocks, 4 residual
blocks, and 3 upsampling blocks. In our model, the residual
blocks utilize FFC with a filter size of 512.

13. Dataset selection
GeoRM and GlossyRM are trained on a 150K subset of
the Objaverse dataset [12]. This subset is carefully curated
based on the following criteria to ensure high-quality train-
ing data:
1. Each selected object must include a roughness map

or a metalness map. This requirement ensures that
the objects have sufficient material data for training
GlossyRM.

2. The object must not be a point cloud, nor a sparse or
small object with low occupancy (fewer than 10 pixels
per rendered view).

3. Low-quality objects, such as scanned indoor data or
large scenes with multiple objects, are excluded.

14. Shape alignment
During evaluation, we align each method’s predicted
meshes to the ground truth meshes before calculating met-
rics, as coordinate frames may differ across methods. Fol-
lowing MeshFormer [35], we use a two-step alignment
based on the evaluation metric. First, we normalize both
ground truth and predicted meshes to fit within a bounding
box in the range [−1, 1]3. Then, we uniformly sample rota-
tions in [0, 2π) and scales in [0.7, 1.4] for initialization, re-
fining the alignment using the Iterative Closest Point (ICP)
algorithm. We select the alignment with the highest evalua-
tion score.

Once aligned, we compute metrics for each method. For
3D metrics, we sample 100,000 points on both the ground
truth and predicted meshes to calculate the F-score and
Chamfer Distance, setting a threshold of 0.1 for the F-score.
To evaluate texture quality, we compute PSNR, SSIM, and
LPIPS between images rendered from the reconstructed
mesh and ground truth. We sample 32 camera poses in a full
360-degree view around the object, rendering RGB images
at a resolution of 320×320. Since we use the VGG model
for LPIPS loss during training, we use the Alex model for
LPIPS evaluation.
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Figure 9. Qualitative comparison. We present examples of single-image 3D generation across different methods. While other methods
exhibit blurriness, ARM reconstructs complex patterns with sharp details. Please zoom in to examine the texture quality.

15. Additional results

In Tab. 5, We report quantitative metrics comparing the pre-
dicted PBR maps with ground truth, using SF3D and our
method. Due to the high ambiguity in appearance decom-
position, where multiple valid decompositions can explain
the same shaded image, we only provide indicative scores
in the supplementary material.

Fig. 9 presents complete qualitative examples, including

comparisons with LGM and CRM. In Fig. 10, we provide
further examples along with additional relighting results.
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Figure 10. PBR comparison. We compare reconstructed PBR maps and relit images under novel lighting to SF3D [4]. While SF3D
produces constant roughness and material with lighting baked into the diffuse color (highlighted in the figure), our method generates
spatially-varying appearance, with well-separated illumination and materials.
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