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Abstract: We show how curing an anomaly of the twistor uplift of self-dual Yang-Mills

theory implies linear relations among one-loop, n-gluon, color-ordered subamplitudes in QCD,

when all n gluon helicities are positive, or when exactly one is negative. We compute the

number of linearly independent subamplitudes as determined by these relations, in terms of

unsigned Stirling numbers. Then we use a momentum-twistor parametrization to show that

there are no further linear dependencies.
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1 Introduction

The study of scattering amplitudes has seen great advances in recent years. On the more

applied side, computing higher-point and higher-loop amplitudes in the Standard Model has

allowed for more precise comparisons to data collected at particle colliders (see e.g. refs. [1, 2]

and references therein). On the more formal side, amplitudes are fascinating theoretical

objects in their own right. They provide insight into the behavior and symmetries of a

theory, as well as exhibiting previously unforeseen mathematical structures. Having explicit

analytic expressions for amplitudes is paramount for finding such structures, and for better

understanding aspects of quantum field theory.

One such structure of interest involves relations among subamplitudes. In gauge theo-

ries, subamplitudes are the gauge-invariant kinematic coefficients in a color decomposition of

amplitudes into a linear combination of “color factors” for a general gauge group. The color

factor is nothing more than a Lie algebra invariant that depends solely on the color charge of
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each external state, whereas the subamplitude depends only on the momentum and helicity

of each state.

Subamplitudes are “color-ordered”, that is they depend on the order of their arguments,

the numerical labels of the external particles. “Relations among subamplitudes” then refers

to how a given ordering of arguments is related to other orderings of the same arguments.

At both tree level and one-loop level, subamplitudes for n-gluon processes satisfy cyclic and

reflection symmetries of their arguments, which follow trivially from Bose symmetry, because

color factors obey the same symmetries in a particular basis. These relations imply that

the number of independent subamplitudes of an n-gluon process is no more than (n− 1)!/2.

Tree-level subamplitudes satisfy further, more non-trivial relations. From group-theory Ja-

cobi relations one can derive [3] the Kleiss-Kuijf relations [4]. A subset of these relations are

called photon-decoupling relations. The Kleiss-Kuijf relations only have constant (integer)

coefficients multiplying the subamplitudes. There are also linear relations among tree subam-

plitudes that contain momentum-dependent coefficients, the celebrated BCJ relations [5–9].

All together, there are (n− 3)! linearly independent n-gluon tree subamplitudes.

At the loop level, n-gluon amplitudes depend on the matter content of the gauge theory.

It is not known whether there are general non-trivial linear relations that hold for generic

helicity configurations, like in the tree-level case. Some relations have been discovered for

specific theories, specific helicity configurations, or parts of amplitudes. One example occurs

in N = 4 supersymmetric Yang-Mills theory, where the transcendental parts of the one- and

two-loop MHV amplitudes obey linear relations that go beyond group theory [10].

A particularly nice set of loop amplitudes to search for relations are the one-loop QCD

amplitudes where all n gluons have the same helicity (all-plus) and the ones where only one

gluon has an opposite helicity (one-minus). Because the tree amplitudes vanish for these

helicity configurations, the one loop amplitudes must be infrared and ultraviolet finite, and

they are rational functions of the kinematics; they contain no branch cuts or transcendental

functions. They are known analytically for all n [11–13]. The all-plus subamplitudes were

initially seen to exhibit a vanishing relation when three of the gluons were converted to

photons by summing over a particular set of permutations of the color-ordering [11]. More

intricate relations were discovered over a decade ago [14]. The one-minus subamplitudes also

obey non-trivial relations [14], including three-photon vanishing, although the explicit forms

of the most general such relations have not yet been given. There is also a general argument

for the vanishing of the rational part of three-photon (n− 3)-gluon amplitudes for arbitrary

helicities [15].

In this paper, we examine relations among the finite loop subamplitudes from the perspec-

tive of twistor theory. Self-dual Yang-Mills (sdYM) theory on twistor space is anomalous, and

removing this anomaly renders the S-matrix trivial [16–19]. The all-plus one-loop amplitudes

vanish in these anomaly-free theories, and we will derive relations among subamplitudes from

this fact. When the anomaly is cured by including fermionic matter in a special representation

of SU(N) [19], we will recover the relations conjectured to hold for all n in ref. [14]. We will

also see that the three-photon vanishing relations are a subset of more general double-trace

– 2 –



relations. Additionally, we will argue that the one-minus-helicity subamplitudes exhibit the

same double-trace relations.

The anomaly can also be cured by introducing a scalar with a fourth-order kinetic term –

nicknamed the “axion” – that couples to an operator that is bilinear in the gauge-field-strength

tensor. The axion anomaly cancellation method only works for gauge groups SU(2), SU(3),

and the exceptional Lie groups, because it requires that the quartic Casimir be dependent

on the quadratic Casimir group invariant. Obtaining relations on subamplitudes from this

description requires the use of a color decomposition into symmetrized traces and products

of strings of structure constants [20]. We will see that the relations obtained from this

anomaly cancellation method are equivalent to the ones obtained from the fermionic-matter

cancellation.

We will solve the relations implied by these cancellations, in order to determine the

number of unconstrained subamplitudes. These numbers will be compared to the linear span

of the explicit subamplitudes, as determined using a momentum-twistor parametrization [21,

22]. We will find that the two numbers agree, i.e. there are no further linear relations with

constant coefficients, for both all-plus and one-minus. Also, in both cases the number of

independent subamplitudes forms a known integer sequence involving the unsigned Stirling

numbers [14].

This paper is organized as follows. We define our notation and conventions in section 2.

In section 3, we review tree-level and one-loop color decompositions. Relations following from

the anomaly cancellation by including special fermionic matter are examined in section 4, and

the ones following from the inclusion of the axion are discussed in section 5. We conclude in

section 6. We include an appendix on momentum-twistor parametrizations and another on

standard factorizations of permutations of a given length.

2 Conventions and Notation

In this section, we define our conventions and notations. The SU(N) Lie algebra generators

in an arbitrary representation R are denoted by taR. The generators in the fundamental and

adjoint representations receive a special notation,

T a ≡ taF , F a ≡ taG. (2.1)

The adjoint representation matrices have components defined by

(F b)ac ≡ ifabc ≡ F abc, (2.2)

where the structure constants are real and normalized as

[taR, t
b
R] = ifabctcR. (2.3)

The Dynkin index TF of the fundamental representation is taken to be unity,

tr(T aT b) = TF δ
ab ≡ δab. (2.4)
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We write the trace of n generators in a representation R compactly as

trR(t
a1ta2 · · · tan) = trR(12 . . . n). (2.5)

If the R is omitted, then it is understood that the trace is taken over the fundamental

representation F ,

tr(12 . . . n) ≡ trF (12 . . . n). (2.6)

If I = (i1, . . . , il) is some list of length l of positive integers, then we set

trR(I) = trR(t
ai1 tai2 · · · tail ). (2.7)

We denote the set of all permutations (bijections) of a finite set X by S(X). The sym-

metric group on n letters is specifically Sn ≡ S({1, . . . , n}), i.e. we will differentiate between

the symmetric groups of two distinct sets even if they have the same size. For example, we

take Sn−1 and S({2, . . . , n}) to be distinct. A permutation σ ∈ Sn is thought of as a word

consisting of letters σ(i) for 1 ≤ i ≤ n,

σ = σ(1)σ(2) · · ·σ(n). (2.8)

The reverse order of the word σ is σT = σ(n)σ(n−1) · · ·σ(1). This means that we can further

shorten our notation for traces to

trR(σ) = trR(σ(1)σ(2) · · ·σ(n)) = trR(t
aσ(1)taσ(2) · · · taσ(n)), (2.9)

or, if σ ∈ Sn−1,

trR(σn) = trR(σ(1)σ(2) · · ·σ(n− 1)n) = trR(t
aσ(1)taσ(2) · · · taσ(n−1)tan), (2.10)

Finally, a string of contracted structure constants or, equivalently, a product of adjoint ma-

trices, is denoted by

Fw ≡ Fw1w2···wk = (Fw2Fw3 · · ·Fwk−1)w1wk , (2.11)

where w is some subword of a permutation σ ∈ Sn with k letters, for k ≥ 3. In the case that

w has length k = 2, this notation is used to mean

Fw = Fw1w2 = δw1w2 . (2.12)

3 Color bases for one-loop amplitudes

The vanishing of the one-loop all-plus amplitudes relies on the existence of relations between

one-loop color structures among different representations of SU(N). Therefore we need to

study the color decomposition of both tree and one-loop amplitudes. We first review the

well-known trace-basis and DDM basis [3]. We then describe a newer color basis based on

the decomposition of traces into symmetrized traces and structure constants [20].
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3.1 Trace basis

The trace basis for an n-point process refers to a decomposition of an amplitude whose color

factors are given by some product of traces in the fundamental representation of SU(N). The

tree-level decomposition is

A(0)
n = gn−2

∑
σ∈Sn−1

trF (σn)A
(0)
n (σ, n), (3.1)

where the A
(0)
n are the color-ordered subamplitudes. The one-loop n-gluon QCD amplitude

in the trace basis is [23]

A(1)
n = gn

[
N

∑
σ∈Sn−1

tr(σn)A[1]
n (σ, n)

+

⌊n/2⌋+1∑
c=2

∑
σ∈Sn/Sn;c

tr(σ(1 . . . (c− 1)))tr(σ(c . . . n))An;c(σ)

+ nf

∑
σ∈Sn−1

tr(σn)A[1/2]
n (σ, n)

]
,

(3.2)

where the An;c are the double-trace subamplitudes and nf is the the number of quark flavors.

The superscript [j] denotes the spin of the particle circulating in the loop. The single-trace

subamplitudes A
[j]
n are color-ordered. The pure Yang-Mills (YM) amplitude is simply given

by taking nf = 0. The set Sn;c denotes the set of all permutations that leave the double-trace

structure invariant.

The subleading double-trace subamplitudes An;c are obtained from the leading ones A
[1]
n

through the permutation sum [3, 23, 24]

An;c(α, β) = (−1)|β|
∑

σ∈α�βT

A[1]
n (σ), (3.3)

where α = [1, 2, . . . , c− 1] and β = [c, c+ 1, . . . , n] are cyclically ordered lists, and βT is the

reverse ordering. Square brackets are used (as opposed to parentheses) to serve as a reminder

that α and β are equivalence classes under cyclic permutations of its arguments, i.e.

α = [1, 2, . . . , c− 1] = {(1, 2, . . . , c− 1), (2, . . . , c− 1, 1), . . . , (c− 1, 1, . . . , c− 2)} (3.4)

βT = [c, c+ 1, . . . , n] = {(c, c+ 1, . . . , n), (c+ 1, . . . , n, c), . . . , (n, c, . . . , n− 1)}. (3.5)

The symbol α� βT denotes the cyclic shuffle product, which is the set of all permutations

up to cycles of {1, 2, . . . , n} that preserves the cyclic ordering of α and βT , while allowing

all possible relative orderings of the elements of α with respect to the elements of βT . For

example, letting α = [1, 2, 3] and β = [4, 5], there are 12 possible orders in

α� βT = {[1, 2, 3, 5, 4], [1, 2, 5, 3, 4], [1, 5, 2, 3, 4], [1, 2, 5, 4, 3] (3.6)

[1, 5, 2, 4, 3], [1, 5, 4, 2, 3], [1, 2, 3, 4, 5], [1, 2, 4, 3, 5] (3.7)

[1, 4, 2, 3, 5], [1, 2, 4, 5, 3], [1, 4, 2, 5, 3], [1, 4, 5, 2, 3]}. (3.8)
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Again, it is understood that the lists within this set are equivalence classes under cyclic

permutations of their arguments.

3.2 DDM basis

Another one-loop color decomposition exists for adjoint particles circulating in the loop; it is

given in terms of strings of structure constants or, equivalently, adjoint matrices. This choice

of color basis is often referred to as the DDM basis [3]. The tree-level amplitude in the DDM

basis is

A(0)
n = gn−2

∑
σ∈S({2,...,n−1})

F 1σnA(0)
n (1, σ, n), (3.9)

where the subamplitudes A
(0)
n are the same color-ordered ones as in eq. (3.1). The one-loop

QCD amplitude with n external gluons in this basis is

A(1)
n = gn

∑
σ∈Sn/RZn

[
trG(σ)A

[1]
n (σ) + 2nf tr(σ)A

[1/2]
n (σ)

]
, (3.10)

where the subamplitudes A
[1]
n and A

[1/2]
n are the same ones that appear in eq. (3.2). Note

that Sn/RZn means the permutations on n letters modulo those related by cycles (Zn) and

reflections (R).

In this basis, the commonly stated reflection identity for both tree and one-loop level

amplitudes

An(1, . . . , n) = (−1)nAn(n, . . . , 1) (3.11)

is now apparent. It follows from the reflection identity on strings of structure constants, or

traces in the fundamental representation,

trG(12 . . . n) =
∑
a

F a12...na = (−1)n
∑
a

F an...21a = (−1)ntrG(n . . . 21) (3.12)

trF̄ (12 . . . n) = (−1)ntrF (n . . . 21), (3.13)

and Bose symmetry. So, there are at most (n − 1)!/2 linearly independent one-loop subam-

plitudes, regardless of the helicity structure.

The equivalence of eqs. (3.2) and (3.10) can be seen through the SU(N) relation G⊕1 ∼=
F ⊗ F̄ in terms of traces

trG(1 . . . n) = trF⊗F̄ (1 . . . n) =
∑

I⊂(1,...,n)

trF (I)trF̄ (I
c)

= NtrF (1 . . . n) + (−1)nNtrF (n . . . 1) +
∑

∅≠I⊊(1,··· ,n)

(−1)|I
c|trF (I)trF

(
(Ic)T

)
,

(3.14)

where Ic is the complement of the sublist I, and we used eq. (3.13) in the last line. The

notation I ⊂ (1, . . . , n) means that I is a sublist of (1, . . . , n) with respect to which I is
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ordered. This relation has a nice diagrammatic representation in terms of color graphs using

the double-line notation, as seen in fig. 1. As a reminder on the double-line notation, the rule

is to sum all 2n ways of attaching the n external lines to either the inner or outer ring of the

annulus.

=

Figure 1. Graphical representation of the SU(N) identity G⊕ 1 ∼= F ⊗ F̄ . The diagram on the right

is evaluated by summing over all 2n ways to attach n external legs to either ring of the annulus.

The matter contribution to the color decomposition is more generic than in eqs. (3.2) and

(3.10). In fact, if the fermions live in some representation R of SU(N), the full amplitude

becomes

A1-loop
n,R = gn

∑
σ∈Sn/RZn

[
trG(σ)A

[1]
n (σ) + trR(σ)A

[1/2]
n (σ)

]
. (3.15)

This replacement is permitted for the following reason. Every Feynman diagram can

be written as the product of a color factor and a kinematic factor. The Jacobi identity

on the color factors can be used to remove color graphs with nontrivial trees attached to

the loop [3], and thereby rewrite the matter contribution as a sum of permutations of the

“ring” color diagram in fig. 2. Because the Jacobi identity is independent of the choice of

representation of the fermion loop, we arrive at the same sum over color diagrams, with

the same choice of fermion representation with which we began, without affecting the final

kinematic factors. That is to say, A
[j]
n depends solely on the spin of the particle propagating

in the loop, not the representation of the Lie algebra in which it resides.

R

Figure 2. The one-loop color diagram for matter in an arbitrary representation R of SU(N).
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3.3 Symmetrized trace basis (Casimir basis)

While the trace and DDM bases are rather familiar, there is a third type of color decomposition

that is quite useful for discussing the all-plus amplitude, which is based on symmetrized

traces [20]. We will see later that the all-plus amplitude is quite “diagonal” in this basis.

This fact is closely connected to a description of the independent all-plus amplitudes in

terms of a single totally symmetric quartic vertex and the remaining vertices cubic and

antisymmetric [14]. Finally, this representation aids the study of implications of the axion

cancellation mechanism in section 5.

Given a simple Lie algebra with generators taR in a representation R satisfying

[taR, t
b
R] = ifabctcR, trR(t

atb) = TR δab, (3.16)

the color-trace-decomposition problem involves expressing traces of products of generators

trR(t
a1 · · · tan) in terms of products of symmetrized traces, a.k.a. Casimirs,

da1...anR =
1

n!

∑
σ∈Sn

trR(t
aσ(1) · · · taσ(n)) (3.17)

and structure constants fabc or, equivalently, adjoint generators F a. The first three examples

are [20, 25]

trR(12) = d12R ,

trR(123) = d123R +
TR

2
F 123,

trR(1234) = d1234R +
TR

3
F 1234 − TR

6
F 1324

+
1

2
d34aR F 12a +

1

2
d24aR F 13a +

1

2
d14aR F 23a,

(3.18)

where we recall the definitions (2.11). Expressing traces in this manner has the advantage

of using Casimir group invariants for the color factors in Feynman diagrams, which allows

for efficient generalizations to arbitrary Lie groups/algebras and their representations [26].

This representation will help us compare the all-plus one-loop YM amplitudes to the all-plus

tree-level graphs with a single axion exchange in section 5.

A closed-form solution to this problem was given in ref. [20]:

trR(12 · · ·n) =
∑

σk···σ1=σ∈Sn−1

Cσk
· · ·Cσ1d

nbk...b1
R F σkbk · · ·F σ1b1 . (3.19)

Here, σ = σkσk−1 · · ·σ1 denotes the standard factorization of a permutation (or word) σ ∈
Sn−1 into subwords σ1, . . . , σk with the properties:

(1) The first letter of σi is greater than the first letter of σj whenever i > j.

(2) The first letter of σi is the minimum letter appearing in σi.
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This factorization is unique, and σ is viewed as the concatenation of these subwords. Examples

include

3241 = (3)(24)(1), 54321 = (5)(4)(3)(2)(1), 597634218 = (5976)(34)(2)(18), 1τ = (1τ),

(3.20)

where τ is any word in S({2, . . . , n}). The coefficients Cw are rational numbers given by

Cw =
(−1)dw

|w|
(|w|−1

dw

) (3.21)

for any finite word w, whose letters wi are distinct positive integers up to n, where |w| denotes
the length of w, and dw is the descent number of w defined by

dw = #{1 ≤ i ≤ |w| − 1 | wi > wi+1}. (3.22)

The descent numbers of the first three examples in eq. (3.20) are

d3241 = 2, d54321 = 4, d597634218 = 5. (3.23)

It turns out that the terms in the decomposition (3.19) cannot be linearly related to each

other via the Jacobi identity. Recall that the set of linearly independent permutations of a

string of structure constants Fw is

{Fw1wσ(2)···wσ(n−1)wn | σ ∈ S({2, 3, . . . , n− 1})}. (3.24)

Acting with the Jacobi identity on such strings always takes one out of the space of structures

in eq. (3.19). There is another set of relations from the fact that the dR’s are invariant tensors,

but such relations all generate one term containing an Fn··· which is also outside the space

of structures. In other words, the decomposition (3.19) gives a basis of color factors. Thus,

we can use this decomposition to write n-point amplitudes of any gauge theory that have a

color-decomposition of the form ∑
σ∈Sn−1

trR(σ, n)An(σ, n), (3.25)

with An being color-ordered, in the color basis

{dnbk...b1R F σkbk · · ·F σ1b1 | σk · · ·σ1 = σ ∈ Sn−1}. (3.26)

Tree-level and one-loop-level amplitudes of SU(N) gauge theory have a single-trace form

when written in the trace basis and the DDM basis, respectively. So they can all be rewritten

in the basis (3.26).

Even though the set (3.26) consists of color factors that are not related by the Jacobi

identity, it well known that higher-order Casimirs can be related to lower-order ones. For

example, in SU(N), the Casimirs of order less than or equal to N are independent, but the
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ones of order greater than N depend on the independent ones. However, the set (3.26) is still

a color basis. Writing an m-th order Casimir as a unique sum over products of independent

Casimirs still results in a distinct element of the set (3.26). As an example, consider tr(Xm)

in SU(3), for m > 3. This Casimir can be written in terms of the two independent Casimirs

tr(X2) and tr(X3) as

tr(Xm) =
∑

p,q∈Z≥0
2p+3q=m

apqtr(X
2)ptr(X3)q (3.27)

for some numbers apq, with at least one being non-zero. Since no other Casimir (i.e. tr(Xm′
)

for m′ ̸= m) can have the same decomposition, the elements of (3.26) remain independent.

It is possible to have a Lie algebra and/or one of its representations in which certain

Casimirs vanish. The adjoint representation of SU(N) and any representation of SU(2), for

example, have vanishing Casimirs of odd order. Clearly, in these cases, not all elements of

(3.26) are independent. However, those that do not vanish remain independent from each

other in the sense of the previous paragraph. We will still refer to (3.26) as a color basis,

nonetheless.

In this color basis, the single-trace terms of an amplitude becomes∑
σ∈Sn−1

trR(σ, n)An(σ, n) =
∑

σk···σ1=σ∈Sn−1

dnbk...b1R F σkbk · · ·F σ1b1AdFF
n (σ), (3.28)

where AdFF
n are the subamplitudes in the new basis. They are given by

AdFF
n (σ = σk · · ·σ1) =

∑
τ∈Sn−1

Cτ−1(σ1) · · ·Cτ−1(σk)An(τ, n). (3.29)

Unlike the color-ordered subamplitudes An, the AdFF
n are no longer permutations of the

arguments of a single subamplitude. The AdFF
n are best viewed as functions from Sn−1 to

the Q-vector space generated by the color-ordered subamplitudes An(τ, n).

4 Relations from anomaly cancellation via matter

This section recapitulates section 3.2 of ref. [27], and it is included for a self-contained exposi-

tion. It does, however, include more details on the double-trace relations previously omitted

from that work.

According to ref. [19], including Weyl fermions in the representation

R0 = 8F ⊕ 8F̄ ⊕ ∧2F ⊕ ∧2F̄ (4.1)

will nullify the one-loop all-plus gluon amplitude. Here, ∧2F denotes the antisymmetric tensor

representation. This choice of representation satisfies the anomaly cancellation requirement

that the quartic Casimir of a representation R be equal to that of the adjoint representation

trR(X
4) = trG(X

4). (4.2)
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=
1

2
− 1

2

Figure 3. Color diagram for the trace over the representation ∧2F in terms of traces over the

fundamental F .

An obvious choice for this would be R = G, but then the cancellation follows trivially from

the supersymmetry Ward identity (SWI)

A[1/2]
n (1, 2, . . . , n) = −A[1]

n (1, 2, . . . , n), (4.3)

which holds for both the all-plus-helicity and one-minus-helicity configurations.

We will see that the choice R = R0 implies nontrivial vanishing via linear relations among

the all-plus subamplitudes. The reason R = R0 obeys eq. (4.2) is the Casimir relation

tr∧2F (X
4) = (N − 8)trF (X

4) + 3
[
trF (X

2)
]2

, (4.4)

as can be seen using fig. 3; the “−8” comes from (−1/2)× 24 contributions from the second

“exchange” term on the right-hand side of fig. 3. In eq. (4.2), after including also the ∧2F̄

contributions, the leading-N and the double-trace terms in eq. (4.4) match corresponding

terms from trG(X
4), while the 8F contribution cancels the “−8”.

8 + 8 + +

Figure 4. The one-loop color diagram for matter in the representation R0 = 8F ⊕ F̄ ⊕ ∧2F ⊕ ∧2F̄ .

In order to find closed-form expressions for these relations, we need to decompose the

trace over generators in eq. (4.1) as traces over the fundamental representation. Decomposing

the direct sums appearing in eq. (4.1) gives the trace over R0 as

trR0(t
a1 · · · tan) = 8trF (1 · · ·n) + 8(−1)ntrF (n · · · 1) + tr∧2F (1 · · ·n) + tr∧2F̄ (1 · · ·n), (4.5)

where we used eq. (3.13). The color diagram corresponding to trR0 is shown in fig. 4. The rect-

angle covering the lines appearing in the diagrams denotes anti-symmetrization of those lines,
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=
1

2

(
−

)

Figure 5. Graphical representation of the anti-symmetric tensor product of the fundamental repre-

sentation in terms of two fundamental lines.

as depicted in fig. 5. The trace over the anti-symmetric tensor representation decomposes as

traces over the fundamental by

tr∧2F (1 · · ·n) =
1

2

∑
I⊂(1,...,n)

[tr(I)tr(Ic)− tr(I · Ic)]

= Ntr(1 · · ·n) + 1

2

∑
∅≠I⊊(1,...,n)

tr(I)tr(Ic)− 1

2

∑
I⊂(1,...,n)

tr(I · Ic),
(4.6)

where I · Ic means to concatenate the lists. This can be understood diagramatically with the

double-line notation as depicted in fig. 3.

Plugging the decomposition (3.14) of the adjoint pure-gluon contribution with the R0

matter contribution (4.5) and (4.6) into the DDM color decomposition (3.15) yields

trG(1 · · ·n)A[1]
n (1, . . . , n) + trR(1 · · ·n)A[1/2]

n (1, . . . , n)

= − 8tr(1 · · ·n)A[1]
n (1, . . . , n)− 8tr(n · · · 1)A[1]

n (n, . . . , 1)

+
1

2

∑
I⊂(1,...,n)

tr(I · Ic)A[1]
n (1, . . . , n) + tr((I · Ic)T )A[1]

n (n, . . . , 1)

+
1

2

∑
∅̸=I⊊(1,...,n)

[
2tr(I)tr((Ic)T )− tr(I)tr(Ic)− tr(IT )tr((Ic)T )

]
A[1]

n (1, . . . , n),

(4.7)

where we have used the SWI (4.3) and the reflection identity (3.11) obeyed by the subampli-

tude. The full amplitude is then given by the sum over all permutations on n letters modulo

permutations related by cycles and reflections.

We define the subamplitude AR0
n (1, . . . , n) to be the kinematic factor multiplying the

single-trace color factor tr(1, . . . , n) after performing the sum of eq. (4.7) over the appropriate

permutations. It is given by

AR0
n (1, . . . , n) = −8A[1]

n (1, . . . , n) +
n∑

k=1

∑
σ ∈αk�βk

A[1]
n (1, σ), (4.8)

where αk = (2, . . . , k) and βk = (k+1, . . . , n). The first term comes from the trace over eight

copies of the fundamental. The remaining terms come from the exchange term in the trace

over the antisymmetric tensor representation,

1

2
trF⊗F (1 · · ·nP ) =

1

2

∑
I⊂(1,...,n)

tr(I · Ic), (4.9)
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where P is the permutation operator that exchanges the two F representations. In particular,

the sum over k appears since the list (1, . . . , k) = (1, αk) appears in the sum in eq. (4.9) for all

1 ≤ k ≤ n. See ref. [27] for a proof that the subamplitude AR0
n (1, . . . , n) is given by eq. (4.8).

Now we turn to the double-trace terms in eq. (4.7). The subamplitudes AR0
n;c accompa-

nying the double-trace terms trF (1 · · · (c− 1))trF (c · · ·n) in eq. (4.7) are given simply by

AR0
n;c(α, β) = An;c(α, β)− (−1)|β|An;c(α, β

T )

= An;c(α, β)− (−1)|α|An;c(α
T , β)

, (4.10)

where α = [1, 2, . . . , c− 1] and β = [c, c+ 1, . . . , n], and the subamplitudes An;c are given by

eq. (3.3). This follows from the standard arguments for reversing the order of double-trace

terms like those appearing in eq. (4.7) [3, 24]. Note that the double-trace terms coming from

the conjugate of the antisymmetric tensor representation naturally appear in AR0
n;c, but they

are related to the non-conjugated one via

(−1)|α|+|β|
∑

σ∈αT
�βT

A[1]
n (σ) =

∑
σ∈αT

�βT

A[1]
n (σT ) =

∑
σ∈α�β

A[1]
n (σ), (4.11)

where the first equality uses the reflection identity (3.11). The second line of eq. (4.10) follows

from applying the reflection identity (3.11) on the first line.

Since the full all-plus amplitude vanishes for the fermion representation R0 and since the

traces over the generators are linearly independent in SU(N) (up to dihedral symmetries),

the right-hand sides of eqs. (4.8) and (4.10) must also vanish. Thus, we have the all-plus

single- and double-trace relations,

0 = −8A[1]
n (1, . . . , n) +

n∑
k=1

∑
σ∈αk�βk

A[1]
n (1, σ), (4.12)

0 = An;c(α, β)− (−1)|α|An;c(α
T , β) for all 2 ≤ c ≤ n. (4.13)

Remarkably, the first set of relations are exactly the same1 all-plus relations conjectured in

ref. [14]. Ref. [14] based their formula on a decomposition of the all-plus subamplitudes into

kinematic diagrams containing a single totally symmetric quartic vertex with the remaining

vertices being all cubic and totally antisymmetric. As we will see, this approach is closely

related to the symmetrized-trace decomposition in eq. (3.28).

The all-plus n-point one-loop color-ordered subamplitude is [11, 12]

A[1]
n (1, 2, . . . , n) = − i

48π2

1

⟨1 2⟩ ⟨2 3⟩ · · · ⟨n 1⟩
∑

1≤i1<i2<i3<i4≤n

⟨i1 i2⟩ [i2 i3] ⟨i3 i4⟩ [i4 i1] . (4.14)

For general n, the number of terms appearing in the sum over k in eq. (4.12) is

n∑
k=1

(
n− 1

k − 1

)
= 2n−1, (4.15)

1The boundary terms k = 1 and k = n each just give A
[1]
n (1, . . . , n). Removing them from the sum over k

converts the “8” to a “6” and puts eq. (4.12) into the form in ref. [14].
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counting multiplicities.

For n = 4, it is easy to verify eq. (4.12), because all 23 = 8 terms in the sum over k are

equal, thanks to the total symmetry of the four-point subamplitude,

A
[1]
4 (1, 2, 3, 4) = − i

48π2

[2 3] [4 1]

⟨2 3⟩ ⟨4 1⟩
, (4.16)

which follows from momentum conservation and the Schouten identity. They cancel the

remaining term. Notice that if we take the relations as given, then we recover the fact that

A
[1]
4 (1, 2, 3, 4) is totally symmetric in its arguments.

For n > 4, eq. (4.12) is not so easily verified from the explicit formula (4.14). We have

checked that it holds for n ≤ 11 by replacing all spinor brackets with 3n − 10 independent

momentum invariants, using a momentum-twistor parametrization [21, 22], which we describe

in appendix A.

The double-trace relations (4.13) contain both previously known and unknown ones. The

case c = 2 is trivial because An;2 = 0 by photon decoupling for an adjoint in the loop. For

c = 3 and n arbitrary, the sets α� βT and α� β are in one-to-one correspondence via the

map σ 7→ σT , and the fact that α is equivalent to αT for |α| = 2; that is, cyclic ordering

is meaningless for a two-element set. The relation then follows from the reflection identity

(3.11).

For c = 4, eq. (4.13) are equivalent to the three-photon-vanishing relations first observed

in ref. [11]. To see this, note that converting three gluons into photons amounts to summing

over all possible insertions of the three gluons, while An;3(α, β) only contains half of these

permutations, where the three elements of α are in a particular cyclic order. The other half

is given by reversing the cyclic order of α, i.e. by An;3(α
T , β). The sum is the three-photon

amplitude and it vanishes by eq. (4.13).

For c ≥ 5, the relations are novel. For example, the c = 5 relations are distinct from

four-photon vanishing (which follows from three-photon vanishing) because they sum over

far fewer permutations (only two out of six) and with the opposite sign. They are not so

readily verified. We have checked that they hold for n ≤ 11 by using the momentum-twistor

parametrization (A.4).

Solving these relations determines the number of linearly independent subamplitudes for

small values of n. That is, for a given n, we solve all non-trivial permutations of eqs. (4.12) and

(4.13) to determine the number of unconstrained subamplitudes implied by these relations.

We can compare these numbers to the true number of linearly independent subamplitudes

over the rational numbers Q, which can be determined analytically using a momentum-twistor

parametrization. To get the true number, we consider the linear combination

0 =
∑

σ∈Sn/RZn

cσA
[1]
n (σ) (4.17)

where cσ are arbitrary rational coefficients. The momentum-twistor parametrization expresses

the subamplitudes as ratios of polynomials in the 3n − 10 independent momentum-twistor
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n 4 5 6 7 8

#Sn/RZn 3 12 60 360 2520

c = 4 3 12 59 345 2344

c = 5 3 12 60 360 2429

single-trace 1 6 35 225 1624

LI 1 6 35 225 1624

c(n− 1, 3) 1 6 35 225 1624

Table 1. The number of all-plus YM n-point subamplitudes A
[1]
n (1, 2, . . . , n) that are linearly indepen-

dent after applying various constraints. The first line uses cyclic invariance and the reflection identity

to get to (n− 1)!/2 independent subamplitudes. Imposing the c = 4 part of the double-trace relations

(4.13) only has an impact for n ≥ 6. Similarly, imposing only the c = 5 part has even less impact, and

starts at n = 8. Also, at n = 8, the c = 5 constraints are strictly weaker than the c = 4 constraints.

In contrast, the set of single-trace relations (4.12) alone reduce the number of linearly independent

subamplitudes to that given on the fourth line. “LI” refers to the number of true linearly independent

subamplitudes, as determined analytically using a momentum-twistor representation. It agrees with

the previous line and with the unsigned Stirling number of the first kind, c(n− 1, 3).

variables xi. Since the monomials generated by the xi form a basis, eq. (4.17) gives linear

constraints on the cσ, once the sum is written as a single ratio of polynomials, where all the cσ
appear in one polynomial factor in the numerator. The true number of linearly independent

subamplitudes is then the number of cσ that are left unconstrained, after solving eq. (4.17)

for each monomial in the xi.

We find that the single-trace relations (4.12) by themselves give the true number of

linearly independent subamplitudes, whereas the double-trace relations eq. (4.13) are not as

constraining. The various numbers of the unconstrained subamplitudes determined by these

relations are given in table 1. In section 5.3 we will argue that the total number of linearly

independent n-point subamplitudes is given by an unsigned Stirling number of the first kind,

c(n− 1, 3). The value of c(m, k) is the number of ways to partition a set of m elements into k

distinct, cyclicly ordered sublists. For example, given the set 1, 2, 3, 4, the elements are placed

into three sublists in the following six ways

(12)(3)(4), (13)(2)(4), (14)(2)(3), (1)(23)(4), (1)(24)(3), (1)(2)(34), (4.18)

which means that c(4, 3) = 6. For the reader familiar with cycle notation for permutations,

c(m, k) is the number of permutations on m letters with k disjoint cycles. We provide some

more background on the unsigned Stirling numbers in appendix B.

4.1 One-minus relations

Equations (4.8) and (4.10) hold for both of the one-loop amplitudes we consider in this paper,

all-plus and one-minus. In the all-plus case, AR0
n vanishes. As we will see in a second, AR0

n

is non-vanishing in the one-minus case. In both cases, the double-trace coefficients AR0
n;c(α, β)

will vanish.
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The one-loop amplitude with a single negative helicity in a theory with matter in the

representation R0 was also computed in ref. [19], and it is given by

AR0
n (1−, 2+, . . . , n+) =

i

48π2
× 6

⟨1 2⟩ ⟨2 3⟩ · · · ⟨n 1⟩
×

∑
2≤i<j≤n

[i j]

⟨i j⟩
⟨1 i⟩2⟨1 j⟩2 , (4.19)

AR0
n,c(α, β) = 0. (4.20)

Unlike the all-plus amplitude, the one-minus amplitude for the representation R0 is non-

vanishing, but it has a nice property: according to eq. (4.20), it only has single-trace contri-

butions in the trace basis. In other words, all double-trace terms vanish, so eq. (4.13) also

holds in the one-minus case. The vanishing of the double-trace structure follows from the re-

cursive construction used in ref. [19], and its absence for the two- and three-point correlators

since tr(ta) = 0 in SU(N). The double-trace vanishing is also consistent with the fact that the

last factor in eq. (4.19) is independent of the ordering of legs 2, 3, . . . , n. So the dependence

of AR0
n (1−, σ) on the ordering σ is equivalent to that of the MHV tree (Parke-Taylor [28, 29])

amplitude. Hence AR0
n obeys all the Kleiss-Kuijf relations [4] that n-gluon tree amplitudes

obey, which leads to eq. (4.20). This fact also means that there are only (n − 2)! linearly

independent permutations of AR0
n .

It was previously conjectured in ref. [14] that relations among the one-minus subam-

plitudes existed. They observed the following for low-multiplicity amplitudes: amplitude

relations which are valid for both tree-level amplitudes and all-plus one-loop amplitudes are

automatically also satisfied for the one-minus one-loop amplitudes. We can see this property

explicitly from the fact that the dependence of the “inhomogeneous term”AR0
n (1−, 2+, . . . , n+)

in eq. (4.8) on the ordering of (2, 3, . . . , n) is equivalent to that of an MHV tree amplitude, so

it vanishes after applying any tree-level (Kleiss-Kuijf) sum over permutations, returning us to

the “homogeneous” all-plus types of relations. This principle enabled the authors to predict

the correct number of linearly independent ones, since this number would have to be the sum

of the number of linearly independent tree-level amplitudes, (n − 2)!, and all-plus one-loop

amplitudes, c(n−1, 3). This principle also allowed them to determine that three-photon van-

ishing must hold as well for the one-minus amplitudes. However, the explicit relations (4.8),

and (4.13) for c > 4, were not known at the time.

The one-minus amplitude in QCD was computed first by Mahlon [12]. We use the form

given in ref. [13]:

A[1]
n (1−, 2+, 3+, . . . , n+) =

i

48π2

T1 + T2

⟨1 2⟩ ⟨2 3⟩ · · · ⟨n 1⟩
, (4.21)
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where

T1 =
n−1∑
l=2

⟨1 l⟩ ⟨1, l + 1⟩ ⟨1| /K l,l+1 /K(l+1)···n |1⟩
⟨l, l + 1⟩

, (4.22)

T2 =
n−2∑
l=3

n−1∑
p=l+1

⟨l − 1, l⟩
⟨1| /K(p+1)···n /K l···p |l − 1⟩ ⟨1| /K(p+1)···n /K l···p |l⟩

× ⟨p, p+ 1⟩
⟨1| /K2···(l−1) /K l···p |p⟩ ⟨1| /K2···(l−1) /K l···p |p+ 1⟩

×⟨1| /K l···p /K(p+1)···n |1⟩
3

×
⟨1| /K2···(l−1)[F(l, p)]2 /K(p+1)···n |1⟩

sl···p
, (4.23)

Here sl···p = (kl + kl+1 + · · ·+ kp)
2 is a multi-particle Lorentz invariant, /KA ≡ σµ

∑
a∈A kµa is

a sum of consecutive momenta written as a spinor matrix, so that

⟨i| /KA /KB |j⟩ =
∑
a∈A

∑
b∈B

⟨i a⟩ [a b] ⟨b j⟩ , (4.24)

and

F(l, p) =

p−1∑
i=l

p∑
m=i+1

/ki/km . (4.25)

Let us verify that the single-trace kinematic factor is given by eq. (4.19) for n = 4. That

is, we will check that the linear combination in eq. (4.8) reduces to eq. (4.19) when eq. (4.21)

is used for n = 4. After using momentum conservation on the expression (4.21), the 4-point

one-minus subamplitude reduces to

A
[1]
4 (1−, 2+, 3+, 4+) = −ρ−

u2

st
, (4.26)

where

ρ− =
i

48π2

⟨1 2⟩ ⟨1 4⟩ [2 4]
⟨2 3⟩ ⟨3 4⟩ ⟨2 4⟩

(4.27)

is a helicity-dependent overall phase that is totally symmetric in the arguments 2, 3, and 4.

The kinematic variables s, t, and u are the standard 4-point Mandelstam variables. After

applying cyclic and reflection identities, the single-trace kinematic factor (4.8) reduces to

AR0
4 (1, 2, 3, 4) = −4A

[1]
4 (1, 2, 3, 4) + 2A

[1]
4 (1, 3, 2, 4) + 2A

[1]
4 (1, 2, 4, 3). (4.28)

Inserting eq. (4.26) into the right-hand side of eq. (4.28) gives

AR0
4 (1−, 2+, 3+, 4+) = 2ρ−

(
2u2

st
− s2

ut
− t2

su

)
= 6ρ−

s2 + st+ t2

st
. (4.29)
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n = 4 5 6 7 8

#Sn/RZn 3 12 60 360 2520

c = 4 3 12 59 345 2344

c = 5 3 12 60 360 2429

LI 3 12 59 345 2344

c(n− 1, 3) + (n− 2)! 3 12 59 345 2344

Table 2. The number of linearly independent one-minus YM n-point subamplitudes after applying

various constraints. The constraints imposed are the same as in the all-plus case in table 1. The main

difference is that the inhomogeneous term AR0
n in eq. (4.8) is nonvanishing, and there are (n−2)! such

terms. Therefore the entries in the last two lines are larger than in table 1 by (n− 2)!.

The last equality follows after substituting u = −s − t and simplifying the expression. The

prediction (4.19) in terms of ρ− and the Mandelstam variables is

AR0
4 (1−, 2+, 3+, 4+) = 6ρ−

(
− u

t
− 1− u

s

)
, (4.30)

where the first, second, and third terms within parentheses correspond to the terms in the sum

appearing in eq. (4.19) with (i, j) = (2, 3), (2, 4), and (3, 4), respectively. Using u = −s − t,

the two results agree.

Beyond n = 4, we have checked that the relations (4.19) and (4.20) hold up to n =

11, by using the above expressions for the one-minus amplitude and the momentum-twistor

parametrization (A.4).

We have performed the same analysis on the one-minus amplitudes as we did for the

all-plus ones, in order to determine the number of linearly independent subamplitudes. The

results are shown in table 2. Notice that the double-trace relations of eq. (4.13) completely

determine all linear independent one-minus subamplitudes. Moreover, it is specifically the

three-photon vanishing relations (when c = 4 in the double-trace term) that appear to be the

most constraining of the double-trace relations.

5 Amplitudes with axion-exchange

The first mechanism discussed for cancelling the sdYM anomaly in twistor space was to

introduce a fourth-order “axion”, i.e. a scalar with a fourth-order kinetic term that couples

to gluons via a three-point interaction and exhibits shift symmetry [16–18]. The anomaly

cancellation resembles the Green-Schwarz mechanism in superstring theory [30]. The tree-

level n-gluon amplitudes with a single internal axion propagator exactly cancel the one-loop

pure-sdYM amplitudes for specific gauge groups that lack an independent quartic Casimir. If

there is an independent quartic Casimir, then a combination of the axion and Weyl fermions

in specific representations R can also be used to annihilate the all-plus amplitude [17–19].
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The space-time action describing the axion is given by2∫
d4x

[
−1

2
(□ρ)2 +

λG,Rg
2

4π
√
3
ρ tr(F ∧ F )

]
, (5.1)

where □ ≡ ∂µ∂
µ, ρ is the axion field and F is the YM field strength 2-form, which is given

in components by

Fµν = ∂µAν − ∂νAµ − i
g√
2
[Aµ, Aν ] . (5.2)

When using a combination of the axion and Weyl fermions to cancel the anomaly, the Weyl

fermions need to cancel the single-trace part of the anomaly. Then the difference between

the quartic Casimir in the adjoint and the one in the matter representation is proportional

to the square of the fundamental quadratic Casimir, and the coupling constant λG,R required

is determined by the constant of proportionality,

trG(X
4)− trR(X

4) = λ2
G,R

[
trF (X

2)
]2

. (5.3)

For SU(N) gauge theory, a combined axion-fermion solution for arbitrary N is to include

nf = N flavors of fermions in the fundamental representation (quarks), i.e. R = N (F ⊕ F̄ ).

The constant takes the value λ2
G,R = 6 in this case.

If we wanted to only include the axion, and have no fermions, then the anomaly-cancellation

condition becomes

trG(X
4) = λ2

GtrF (X
2)2. (5.4)

Now the relation holds for gauge groups SU(2), SU(3), and the exceptional ones. The

proportionality constant is given by [31]

λ2
G =

10(h∨)2

dimG+ 2
, (5.5)

where h∨ is the dual Coxeter number, equal to N for SU(N). The exact value of λ2
G will

not play a role in our analysis, except that we restrict ourselves to SU(N) gauge theory with

N = 2, 3.

5.1 The n-point axion-exchange amplitude

The tree-level axion-exchange amplitudes, denoted Aax
n , are constructed fairly easily. The

axion propagator splits any color-ordered amplitude into two tree-level color-ordered axion-to-

gluon amplitudes, where the axion is off-shell. The color-ordered amplitude is then recovered

as the product of these two off-shell axion-to-gluon amplitudes divided by the fourth-power

of the momentum flowing through the axion propagator. Since the axion is colorless, the

associated color factor is simply given by the product of the color factors associated to the

two axion-to-gluon amplitudes, and hence it is purely double-trace.

2The difference in the normalization of the coefficient of the coupling term from that used in refs. [16, 18]

arises from our choice of the normalization of the one-loop amplitude in eq. (4.14).
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The color factors associated to the partial amplitude Aax
n;c(α, β) for the contribution shown

in Fig. 6 are given as the product of two color factors associated to Aρ
c−1(α) and Aρ

n−c+1(β),

where c signifies that the axion splits the first c − 1 gluons from the last n − c + 1 gluons,

and in the standard ordering α = [1, 2, . . . , c− 1] and β = [c, c+1, . . . , n]. In the DDM basis,

the color factors are given by strings of SU(N) structure constants Fα and F β, respectively,

or by traces over the fundamental tr(α) and tr(β), respectively, in the trace basis. The full

amplitude is then given by

Aax
n = gnλ2

G,R

⌊n/2⌋+1∑
c=2

∑
σ∈Sn/SFF

n;c

F σ(1...(c−1))F σ(c...n)Aax
n;c(σ) (5.6)

in the DDM basis, or by

Aax
n = gnλ2

G,R

⌊n/2⌋+1∑
c=2

∑
σ∈Sn/Sn;c

tr(σ(1 · · · (c− 1)))tr(σ(c · · ·n))Aax
n;c(σ) (5.7)

in the trace basis. The set SFF
n;c contains all permutations that leave the double-comb structure

invariant, and Sn;c is the set of permutations that leave the double-trace structure invariant,

as before. The two color representations are equivalent because the axion-to-gluon tree am-

plitudes obey Kleiss-Kuijf relations.

1 c− 1

n c

2 c− 2

n− 1 c+ 1

. . .

. . .

K4
1,c−1

Figure 6. The double-comb color diagram F 1...(c−1)F c...n associated to the color-ordered amplitude

Aax
n;c(α, β). The dotted line represents the colorless scalar connecting the two associated kinematic

factors.

The color-ordered axion-exchange subamplitude multiplying the double-trace color factor

is given by

Aax
n;c(α, β) = Aρ

c−1(α)
−i

K2
1,c−1K

2
c,n

Aρ
n−c+1(β) . (5.8)

The momentum flowing through the axion propagator is K1,c−1 = −Kc,n, where Ki,j =∑j
m=i km and km is the momentum of external gluon m. We have used momentum conser-

vation to write K4
1,c−1 = K4

c,n = K2
1,c−1K

2
c,n, which allows for the symmetric form shown in

eq. (5.8). The Aρ
n are the color-ordered axion-to-gluon amplitudes mentioned above; they

were originally computed [32, 33] as the amplitudes coming from an effective action that
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couples the Higgs boson (and a pseudoscalar partner) to two gluons after integrating out the

top quark. With the normalization convention here, they are given by

Aρ
n(1, . . . , n) =

i

4π
√
3

K4
1,n

⟨1 2⟩ ⟨2 3⟩ · · · ⟨n 1⟩
. (5.9)

So, eq. (5.8) is explicitly

Aax
n;c(1, . . . , n) =

i

48π2

K2
1,c−1

⟨1 2⟩ · · · ⟨c− 1, 1⟩
K2

c,n

⟨c, c+ 1⟩ · · · ⟨n c⟩
. (5.10)

For n = 4 and c = 3, eq. (5.10) is

Aax
4;3(1, 2, 3, 4) =

i

48π2

⟨1 2⟩ [2 1]
⟨1 2⟩ ⟨2 1⟩

⟨3 4⟩ [4 3]
⟨3 4⟩ ⟨4 3⟩

=
i

48π2

[1 2] [3 4]

⟨1 2⟩ ⟨3 4⟩
, (5.11)

which is equal and opposite to the four-point all-plus amplitude (4.16), after permuting the ar-

guments of this totally symmetric subamplitude. Actually Aax
4;3(1, 2, 3, 4) should be compared

not with A
[1]
4 but with A4;3 which is 6 times larger, according to eq. (3.3):

A4;3(1, 2, 3, 4) = − i

48π2
× 6× [1 2] [3 4]

⟨1 2⟩ ⟨3 4⟩
, (5.12)

The factor of 6 is accounted for, in the mixed axion-plus-(nf = N) case, by the factor of

λ2
G,R = 6 in eq. (5.7).

Similarly, one can compute the five-point double-trace contribution A5;3 from eq. (4.14)

and the permutation sum (3.3):

A5;3(1
+, 2+; 3+, 4+, 5+) = − i

48π2
× 6× s12

⟨1 2⟩ ⟨2 1⟩
s12

⟨3 4⟩ ⟨4 5⟩ ⟨5 3⟩
, (5.13)

which again cancels against eq. (5.8) after taking into account λ2
G,R = 6.

A comment should be made about the fact that the axion propagator comes with the

opposite sign to that of a scalar propagator with a standard kinetic term. This minus sign

follows directly from the minus sign in the kinetic term of the action (5.1). It is needed so that

Aax
4;3 comes with the opposite sign of the four-point all-plus subamplitude A

[1]
4 , while keeping

the Lagrangian real-valued. The correct choice of sign to give the kinetic term seems arbitrary

without the knowledge that the axion-exchange amplitude needs to cancel the all-plus one-

loop one, but it is consistent with the fact that the propagator is the Green’s function for the

differential operator □2:

□2
x

∫
d4p

(2π)4
−i

p4
eip·(x−y) = −iδ(x− y), (5.14)

Compare this to a standard kinetic term −1
2ρ□ρ, where the differential operator □ satisfies

□x

∫
d4p

(2π)4
i

p2
eip·(x−y) = −iδ(x− y). (5.15)

– 21 –



5.2 Axion and matter cancellation

Adding both the axion and Weyl fermions renders the amplitudes of sdYM null, so long as

the fermions live in a representation that satisfies eq. (5.3) [17–19]. We will focus on SU(N)

gauge theory with R = N (F ⊕ F̄ ), for which λ2
G,R = 6.

For this theory, the matter contribution eliminates the single-trace terms in the trace-basis

color-decomposition in eq. (3.2), due to the supersymmetry Ward identity A[1/2] = −A[1]. On

the other hand, the axion contribution cancels the double-trace terms, leading to the relation

An;c(α, β) = −6Aax
n;c(α, β), (5.16)

which valid for all values of c. We saw above how this relation is satisfied for n = 4 and n = 5

and c = 3.

This relation simply tells us that the linear combination (3.3) describing the double-trace

subamplitudes An;c simplifies to the axion-exchange subamplitudes Aax
n;c given in eq. (5.10).

We will, however, leverage eq. (5.16) to help with revealing relations from cancelling the

anomaly with only the axion.

5.3 Relations from anomaly cancellation via the axion

According to refs. [16–18], the tree-level axion-exchange amplitude of eq. (5.6) cancels the

all-plus one-loop pure YM amplitude A(1)
n for gauge groups SU(2) and SU(3). In symbols,

A(1)
n +Aax

n = 0. (5.17)

In order to relate the single-trace structure of A(1)
n to the double-trace structure of Aax

n , one

needs to use the relation (5.4) between the quartic Casimir in the adjoint representation and

the quadratic Casimir in the fundamental. In terms of traces of the generators, this relation

is

trG(F
(aF bF cF d)) = λ2

G tr(T (aT b)tr(T cT d)) = λ2
G δ(abδcd). (5.18)

Since we need to apply a relation that involves symmetrized traces over the adjoint representa-

tion, we convert the all-plus one-loop amplitude from the DDM basis to the symmetrized-trace

(Casimir) basis using eqs. (3.28) and (3.29):

gn
∑

σ∈Sn−1

trG(σ, n)A
[1]
n (σ, n) = gn

∑
σk···σ1=σ∈Sn−1

dnbk...b1G F σkbk · · ·F σ1b1AdFF
n (σ). (5.19)

The reflection identity trG(12 · · ·n) = (−1)ntrG(n · · · 21) implies that d1...nG vanishes whenever

n is odd. So, the nontrivial contributions come from permutations with standard factoriza-

tions of odd length.

The case of most interest is when permutations have standard factorizations of length

3, as this corresponds to a symmetrized trace on four generators to which we can apply the

identity (5.18). These terms become

dnb1b2b3G F σ1b1F σ2b2F σ3b3

= −
λ2
G

3

(
(−1)|σ3|F σ1nF σ2σT

3 + (−1)|σ1|F σ2nF σ3σT
1 + (−1)|σ2|F σ3nF σ1σT

2

)
. (5.20)
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From here, we can reorder the strings of F matrices so that the smallest integer appears first

and the largest appears last. Doing so converts the one-loop amplitude to the form

A(1)
n = gn

∑
σk···σ1=σ∈Sn−1

k ̸=3

dnbk...b1G F σkbk · · ·F σ1b1AdFF
n (σ)

+ gnλ2
G

⌊n/2⌋+1∑
c=2

∑
σ∈Sn/SFF

n;c

F σ(1)...σ(c−1)F σ(c)...σ(n)AFF
n;c (σ),

(5.21)

where AFF
n;c is given by

AFF
n;c (α, β) =

1

6

∑
(σ,τ)∈Sc−1/Zc−1×S(c,...,n)/Zn−c+1

Cσ−1αCτ−1βAn;c(σ, τ). (5.22)

The one-loop amplitude is now in a form of independent color-factors from which the

relations implied by A(1)
n +Aax

n = 0 are manifest. They are

0 = AFF
n;c +Aax

n;c(1, . . . , n), (5.23)

0 = AdFF
n (σ) for all σk · · ·σ1 = σ ∈ Sn−1 with k odd and k ̸= 3. (5.24)

The first equation relates the one-loop pure YM subamplitudes to the tree-level axion-

exchange subamplitudes. However, from eq. (5.16), we know that the axion subamplitudes

are just the simplification of the all-plus double-trace terms. So, eq. (5.23) can be written as

AFF
n;c =

1

6
An;c(α, β). (5.25)

The second equation (5.24) also gives relations among the one-loop YM subamplitudes them-

selves. We have verified that both of these relations hold for n ≤ 8 using the momentum-

twistor parametrization (A.4). Interestingly though, eq. (5.24) holds for even values of k too.

However, this cannot be deduced from the decomposition (5.21), since the Casimirs dnbk...b1G

vanish for even values of k, by the reflection identity (3.12).

If we start with the amplitude in the trace basis (3.2) and convert the single-trace terms

to the Casimir basis, using eq. (3.28) for R = F , then we get

A(1)
n = gnN

∑
σk···σ1=σ∈Sn−1

dnbk...b1F F σkbk · · ·F σ1b1AdFF
n (σ)

+ gn
⌊n/2⌋+1∑

c=2

∑
σ∈Sn/Sn;c

tr(σ(1 . . . (c− 1)))tr(σ(c . . . n))An;c(σ).

(5.26)

For SU(2) and SU(3), the quartic Casimir in the fundamental is proportional to the quadratic

one with a factor of 1/2, i.e. trF (X
4) = 1

2 [trF (X
2)]2. When we use this identity to move the
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k = 3 terms from the first line to the second line, we get

A(1)
n = gnN

∑
σk···σ1=σ∈Sn−1

k ̸=3

dnbk...b1F F σkbk · · ·F σ1b1AdFF
n (σ)

+ gn
⌊n/2⌋+1∑

c=2

∑
σ∈Sn/Sn;c

tr(σ(1 . . . (c− 1)))tr(σ(c . . . n))

(
An;c(σ) +NAFF

n;c

)
.

(5.27)

Note that the AFF
n;c term comes with a factor of 1/2 from converting the quartic Casimir to

the quadratic one, but this gets cancelled by a factor of 2 coming from converting the double-

comb structure to a double-trace structure. By use of eqs. (5.23) and (5.16), the double-trace

term of eq. (5.27) becomes

(−6−N)Aax
n;c = −λ2

GA
ax
n;c , (5.28)

where we used the fact that λ2
G = N + 6 for SU(2) and SU(3). Adding the axion-exchange

amplitude in the trace basis exactly cancels the double-trace term of eq. (5.21), as expected.

Thus, what remains must vanish

0 = A(1)
n +Aax

n = gnN
∑

σk···σ1=σ∈Sn−1
k ̸=3

dnbk...b1F F σkbk · · ·F σ1b1AdFF
n (σ). (5.29)

In the fundamental representation of SU(3), the Casimirs are generically non-vanishing, and,

in particular, the odd-order ones do not vanish, unlike in the fundamental representation of

SU(2) or the adjoint representation of SU(N). Thus, we can finally conclude that

0 = AdFF
n (σ) for all σk · · ·σ1 = σ ∈ Sn−1 for k ̸= 3, (5.30)

for k even as well. Recall that the AdFF
n are expressed in terms of the single-trace coefficients

An in eq. (3.29).

Solving the constraints given by eq. (5.30) simultaneously, we find that the total number of

linearly independent subamplitudes is c(n− 1, 3) for 4 ≤ n ≤ 8. Surprisingly, this is exactly

the same number found from the single-trace relations (4.12) coming from the R0 matter

anomaly cancellation, even though the explicit forms of the relations are distinctly different.

Moreover, the number c(n− 1, 3) is the true number of linearly independent subamplitudes.

From the Casimir color basis, we can actually understand why eq. (5.30) gives the un-

signed Stirling number of the first kind c(n− 1, 3) as the number of unconstrained subampli-

tudes. It turns out that number of permutations on n− 1 letters with standard factorization

lengths k is exactly equal to c(n − 1, k) (see Appendix B). Of course the total number of

permutations on n−1 letters is (n−1)!. This means that the number of equations appearing

in eq. (5.30) is
n−1∑
k=1
k ̸=3

c(n− 1, k) = (n− 1)!− c(n− 1, 3). (5.31)
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n = 4 5 6 7 8

#Sn/RZn 3 12 60 360 2520

c = 3 3 12 59 345 2344

c = 4 3 12 59 345 2344

c = 5 3 12 60 360 2383

AdFF
n (σ) 1 6 35 225 1624

LI 1 6 35 225 1624

c(n− 1, 3) 1 6 35 225 1624

Table 3. The number of unconstrained all-plus YM n-point partial amplitudes after applying the

constraints (5.25) and (5.30). The variable c refers to the value of c in the double-trace relations (5.25),

while AdFF
n (σ) refers to imposing eqs. (5.30).

Since the AdFF
n (σ) are linearly independent as formal linear combinations in the subampli-

tudes A
[1]
n , a consequence of the fact that the color factors dnbk...b1F F σkbk · · ·F σ1b1 are also

linearly independent for all values of k in SU(N ≥ 3), and since the A
[1]
n appear in AdFF

n with

non-zero coefficients, the number of unconstrained subamplitudes remaining after applying

eq. (5.30) is c(n− 1, 3).

The reason that the single-trace relations (4.12) obtained from the R0 matter cancellation

should give the same number of unconstrained subamplitudes as the relations (5.30) can be

understood in the following way. If we take SU(3) as our gauge group, then it turns out that

the antisymmetric-tensor representation is isomorphic to the fundamental representation. So,

the representation R0 reduces to

RN=3
0 = 9 (F ⊕ F̄ ). (5.32)

In SU(3), there is no independent m-th order Casimir for m ≥ 3. In particular, the quar-

tic Casimir in the fundamental representation is related to the quadratic one as tr(X4) =
1
2 [tr(X

2)]2, as stated earlier. Therefore cancelling the anomaly by including matter in RN=3
0

is equivalent to cancelling the anomaly by including the axion. As a consistency check, the

Casimir relation

λ2
G

[
tr(X2)

]2
= trG(X

4) = trRN=3
0

(X4) = 18 tr(X4) (5.33)

gives λ2
G = 9, which agrees with eq. (5.5).

Solving the relations (5.25), we find that they are more constraining than the double-

trace relations (4.13), for each value of c except for c = 4. Table 3 summarizes the results

for c = 3, 4, 5 and 4 ≤ n ≤ 8. The corresponding results for relations (4.13) were reported

in Table 1. For c = 3 and n ≥ 6, the relations (5.25) are non-trivial, and they appear to

be equivalent to the c = 4 case of (4.13). Moreover, the cases c = 3, 4 for (5.25) leave the

same number of unconstrained amplitudes as the three-photon-vanishing relations (4.13) with

c = 4. At n = 8, the c = 5 case of (5.25) is also more constraining than the c = 5 case of

eq. (4.13), but it is not as constraining as the c = 3, 4 cases. However, no choice of c is as
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constraining as simultaneously solving the relations (4.12) or (5.30), which, again, give the

true number of linearly independent subamplitudes.

6 Conclusions

In this paper, we explored the consequences of curing anomalies that appear in the twistor

uplift of self-dual Yang-Mills theory. In particular, we find that the vanishing of the one-loop

all-plus amplitude in these anomaly-free theories leads to various linear relations among the

YM all-plus subamplitudes. The one-minus amplitudes do not vanish in these theories, but

they are quite simple, and they provide a set of powerful constraints in this case as well.

The inclusion of fermionic matter in the R0 representation (4.1) gives both single-trace

relations (4.12) and double-trace relations (4.13) for the all-plus amplitude. We have shown

that the single-trace relations are exactly the same as the ones conjectured to hold in ref. [14].

The double-trace relations appear here for the first time, and they include the previously-

known three-photon-vanishing relations [11, 15]. We also argued that the same double-trace

relations hold for the one-minus amplitude.

The one-loop amplitude also vanishes in a theory when the axion, described by eq. (5.1),

is included. This requires the gauge group to lack an independent fourth-order Casimir as

in eqs. (5.4) and (5.18), which is the case for SU(2) and SU(3). In this theory, the all-plus

amplitude is cancelled by the tree-level gluon amplitude with a single internal axion exchange.

These axion amplitudes naturally have a double-trace structure, or equivalently a double-comb

structure. So the Casimir identity (5.18) must be used to relate the all-plus amplitude in the

DDM basis to the double-comb color structure of the axion amplitude (5.6). We utilized the

symmetrized-trace (Casimir) decomposition of ref. [20] to do this, which converts a trace of

Lie algebra generators to a sum on products of symmetrized traces contracted with strings

of structure constants. In doing so, we are able to find explicit relations (5.24) and (5.25) for

the all-plus subamplitudes.

The relations serve to constrain the subamplitudes, giving proposed sizes of the set

of linearly independent subamplitudes. We found that the most constraining relations are

eqs. (4.12) and (5.24). For n-point processes, they both give the unsigned Stirling number

c(n−1, 3) as the number of unconstrained subamplitudes. This number happens to agree with

the true number of linearly independent subamplitudes, as determined from a momentum-

twistor parametrization. It is at first surprising that eqs. (4.12) and (5.24) agree with each

other, but the agreement can be understood from the following two facts about SU(3): (1)

the representation R0 reduces to eq. (5.32), and (2) the quartic Casimir in the fundamental

representation is proportional to the square of the quadratic one. So, curing the anomaly

with matter or curing it with the axion is equivalent in SU(3), and, therefore, the relations

stemming from these two methods should be equivalent.

It would be interesting to know to what extent the double-trace relations (4.13) hold

for more general helicity configurations. Unlike the all-plus and one-minus one-loop QCD

amplitudes, the NkMHV amplitudes are both infrared (IR) and ultraviolet (UV) divergent,
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and they generically contain transcendental functions, like polylogarithms. However, they also

contain rational terms in their finite remainder, which are the closest analogues to the finite

and rational QCD amplitudes. (The divergent terms can be separated from the finite ones

by use of the Catani formula [34], which predicts the IR divergent terms of UV-renormalized

one-loop amplitudes.) Furthermore, the rational parts of general-helicity n-gluon amplitudes

are known to obey three-photon vanishing identities [15], which are a subset of the relations

obeyed by the all-plus and one-minus amplitudes. Perhaps a larger subset of these relations

also holds. There may be other relations that include suitable simpler inhomogeneous terms,

as in eq. (4.8) for the one-minus case.

Another interesting avenue is to understand how relations among one-loop subamplitudes

affect the analytic structure at two loops. For example, the vanishing of the one-loop all-plus

amplitude for the R0 theory suggests that the two-loop all-plus amplitude should be finite

and rational, when one considers the possible four-dimensional unitarity cuts. Indeed, this

is what is found for any number of identical-helicity gluons by using the celestial chiral al-

gebra bootstrap [19]. However, the two-loop all-plus four-point amplitude in the R0 theory

is neither IR finite nor rational, when dimensional regularization is used as the IR regula-

tor [27]. That is because the four-point case of eq. (4.12) only holds at O(ϵ0) in dimensional

regularization and it fails at higher orders in ϵ. Consequently, the IR structure of the dimen-

sionally regulated two-loop result, as predicted by the Catani formula [34], gives 1/ϵ poles and

transcendental functions. To remedy this, one can compare the rational results of ref. [19]

to the IR-subtracted finite remainder, and they do agree for n = 4 [27]. Another way to

obtain agreement for n = 4 is to employ a particular mass regulator instead of dimensional

regularization.

Armed with this understanding of IR divergences, it should be possible to utilize relations

of the kind discussed in this paper, in order to simplify the computations of new contributions

to two-loop all-plus amplitudes for n > 4. We look forward to further developments in this

direction.
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A Momentum Twistor Parametrization

We briefly summarize momentum-twistor parametrizations of the type given in ref. [22].
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Analytic computations of scattering amplitudes often involve complicated functions of

spinor products ⟨i j⟩ and [i j]. These quantities are not independent due to non-linear kine-

matic and algebraic constraints such as momentum conservation and the Schouten identity.

Using momentum twistors [21] makes these constraints manifest, allowing for more straight-

forward simplifications and verifications of identities.

The momentum twistor

Zi ≡

(
λi

µi

)
(A.1)

is assigned to particle i, where λi is the usual holomorphic spinor, and the anti-holomorphic

spinor λ̃i is given by

λ̃i =
⟨i, i+ 1⟩µi−1 + ⟨i+ 1, i− 1⟩µi + ⟨i− 1, i⟩µi+1

⟨i, i+ 1⟩ ⟨i− 1, i⟩
. (A.2)

The momentum twistors transform under the Poincaré group, and each particle has a

U(1) symmetry: λi → eiθiλi and µi → eiθiµi. We can deduce the number of independent

kinematic variables from these symmetries. For n particles, there are 4n momentum twistor

components. The 10 generators of the Poincaré group and the U(1) symmetry for each particle

reduces the number of independent variables to 4n− 10− n = 3n− 10.

At four points, the three kinematic variables are the Mandelstams s, t, and u, which

satisfy s+ t+ u = 0, giving two independent ones. One parametrization for the momentum

twistors is

Z =


1 0 1

s
1
s +

1
t

0 1 1 1

0 0 1 0

0 0 0 1

 . (A.3)

For n ≥ 5, a useful parametrization is

Z =


1 0 y1 y2 y3 y4 . . . yn−3 yn−2

0 1 1 1 1 1 . . . 1 1

0 0 0 xn−1

x2
xn xn+2 . . . x3n−12 1

0 0 1 1 xn+1 xn+3 . . . x3n−11 1− x3n−10

xn−1

 , (A.4)

where the xi are the 3n− 10 independent kinematic variables and yi ≡
∑i

j=1

∏j
k=1 x

−1
k .

B A mathematical aside on the standard factorization length

Let c(n, k) be an unsigned Stirling number of the first kind, and let ℓ(n, k) denote the number

of permutations with a standard-factorization length of k, i.e.

ℓ(n, k) ≡ #{σ ∈ Sn|σ = σk · · ·σ1}. (B.1)
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We will show that c(n, k) = ℓ(n, k), by showing that they satisfy the same recurrence relations

ℓ(n+ 1, k + 1) = n · ℓ(n, k + 1) + ℓ(n, k) (B.2)

with ℓ(0, 0) = 1 and ℓ(n, 0) = ℓ(0, n) = 0 for n > 0.

Recall that σ = σkσk−1 · · ·σ1 denotes the standard factorization of a permutation (or

word) σ ∈ Sn into subwords σ1, . . . , σk with the properties:

(1) The first letter of σi is greater than the first letter of σj whenever i > j.

(2) The first letter of σi is the minimum letter appearing in σi.

This factorization is unique, and σ is viewed as the concatenation of these subwords.

Consider ℓ(n + 1, k + 1). Every permutation of Sn+1 can be built from a permutation

σ ∈ Sn by placing n+ 1 either before or after an element in σ. Consider placing n+ 1 after

σ(i) for 1 ≤ i ≤ n like so

(σ(1), . . . , σ(i), n+ 1, σ(i+ 1), . . . , σ(n)) ∈ Sn+1, (B.3)

where it is understood that nothing appears after n+ 1 if i = n. Since 1 ≤ σ(i) ≤ n < n+ 1

for all 1 ≤ i ≤ n, the placement of n+1 does not affect the factorization length. The number

of such permutations with length k + 1 is then n · ℓ(n, k + 1). Placing n + 1 at the front

of σ, i.e. before σ(1), will always increase the factorization length, since n + 1 > σ(1). So,

the number of these types of permutations in Sn+1 with length k + 1 is ℓ(n, k). The initial

conditions are trivially satisfied.

Next, we show that the unsigned Stirling numbers satisfy the same relation. Recall that

c(n, k) is the number of ways to partition a set of n elements into k distinct, cyclicly ordered

sublists, or, in terms of cycle notation, the number of permutations in Sn that can be written

as the product of k disjoint cycles. From these definitions, the initial conditions c(0, 0) = 1

and c(n, 0) = c(0, n) = 0 are trivially satisfied.

Consider c(n+1, k+1), and distinguish n+1 as before. Starting with k+1 cycles built

from the set {1, 2, . . . , n}, we can place n + 1 after the element i within the same cycle as

i. There are n ways to do this. So, the number of partitions of {1, . . . , n, n + 1} with n + 1

sharing a cycle with another element is n · c(n, k+1). The only other option for placing n+1

is to place it into a cycle by itself, increasing the number of cycles by one. There are c(n, k)

such partitions. Thus,

c(n+ 1, k + 1) = n · c(n, k + 1) + c(n, k). (B.4)

A generating function for the unsigned Stirling numbers is:

x(x+ 1) · · · (x+ n− 1) =
n∑

k=0

c(n, k)xk , (B.5)

which leads to the recursion relation (B.4), as well as to the correct boundary conditions.
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