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Abstract

Random walks and related spatial stochastic models have been used in a range of
application areas including animal and plant ecology, infectious disease epidemiology,
developmental biology, wound healing, and oncology. Classical random walk models as-
sume that all individuals in a population behave independently, ignoring local physical
and biological interactions. This assumption simplifies the mathematical description
of the population considerably, enabling continuum-limit descriptions to be derived
and used in model analysis and fitting. However, interactions between individuals can
have a crucial impact on population-level behaviour. In recent decades, research has
increasingly been directed towards models that include interactions, including physical
crowding effects and local biological processes such as adhesion, competition, disper-
sal, predation and adaptive directional bias. In this article, we review the progress
that has been made with models of interacting individuals. We aim to provide an
overview that is accessible to researchers in application areas, as well as to specialist
modellers. We focus particularly on derivation of asymptotically exact or approxi-
mate continuum-limit descriptions and simplified deterministic models of mean-field
behaviour and resulting spatial patterns. We provide worked examples and illustrative
results of selected models. We conclude with a discussion of current areas of focus and
future challenges.

Keywords: continuum-limit equation; agent-based model; lattice-based model; lattice-free
model; mean-field model; spatial structure.
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1 Introduction

Mathematical modelling is playing an increasingly pivotal role in many areas of the life
sciences. Models can make a range of contributions including: providing insight into the
biological mechanisms underlying observed patterns in empirical data; acting as surrogates
for experiments that would be too costly or unethical to conduct in practice; generating
hypotheses that can be tested experimentally; interpreting and predicting empirical data;
quantifying uncertainty in biological parameter estimates; and comparing the effects of al-
ternative interventions and control strategies, such as medical treatments or biodiversity
conservation programmes.

There is a broad class of models that represent the distribution of a population of agents
in space and time. The agents may represent cells, plants, animals or humans depending
on the application. The state of the population (i.e. the number of agents and their loca-
tions and other attributes) changes over time via processes such as migration, proliferation,
dispersal, and death. The population can be described by a stochastic agent-based model
(ABM), sometimes also known as an individual-based model, which explicitly tracks indi-
vidual agents over space and time. Alternatively, the population may be described by a
deterministic continuum-limit model, which typically represents the mean density of agents
as a continuous function of space and time. ABMs allow individual-level mechanisms and
characteristics to be easily specified and simulated. In contrast, deterministic continuum-
limit models are usually more computationally efficient and can offer greater mechanistic
insight into the effect of different parameter values and dynamic regimes, such as equilib-
rium or asymptotic behaviour and bifurcations. There are a variety of approaches for deriving
exact or approximate continuum-limit equations from an ABM.

In many biological application areas, modelling interactions among individual agents is im-
portant to accurately capture and provide insight into biological mechanisms and the role of
individual variability and fluctuations. One key area of application is ecology, and in partic-
ular plant ecology where the growth or death of individuals is influenced by local competition
(e.g. for space, nutrients or sunlight) and seed dispersal [1, 2]. These kinds of interactions
governing birth-death processes are important in other applications, such as modelling the
dynamics of populations of cells. A major difference between plant ecology and cell biology
is that biological cells are typically very motile, so interactions such as crowding effects [3]
and local attraction and repulsion cues [4] are important to account for in models. Models
used in animal movement ecology also need to account for interactions affecting movement,
such as group navigation [5] and predator-prey interactions [6].

The mathematical theory for populations of non-interacting agents independently undergoing
random or directed motility has been well studied [7–9]. When agents behave independently,
the system is linear and population-level quantities can be obtained simply by averaging over
independent realisations of a single-agent model. In contrast, when agents interact with one
another, this typically makes the system nonlinear, meaning that the whole is no longer just
the sum of the parts. In the terminology of Weaver [10], interactions among agents transform

2



the system from being a problem of disorganised complexity, amenable to the techniques of
statistical physics, to a problem of organised complexity. Understanding the behaviour of
such systems is a more recent and ongoing area of active research.

The derivation of deterministic continuum-limit equations that asymptotically or approxi-
mately describe how the average population density, or other quantities of interest, depend
on time and/or space is a key focus. Stochastic ABMs can be simulated computationally.
However, there are several advantages to having even an approximate continuum-limit model
for key quantities of interest in the ABM. Firstly, ABMs are often computationally expensive
and typically require a large number of realisations to produce reliable statistics. Secondly,
continuum-limit equations can reveal how microscopic individual-level mechanisms affect
(and in some case are affected by) macroscopic, population-level quantities. For example,
how do factors influencing the proliferation and death of individuals affect the total popula-
tion size? How are individual trajectories linked to the changing spatial distribution of the
population over time? How does micro-scale individual behaviour interact with macro-scale
spatial structure, such as the tendency of individuals to cluster together in space? Thirdly,
continuum-limit equations can deliver insights into the key parameter dependencies in the
model, which tend to be opaque to simulation-only approaches. Fourthly, computationally
efficient deterministic approximations are typically more amenable to methods for fitting
models to empirical data, parameter inference and uncertainty quantification.

Aims and structure of this review

In this review, we briefly summarise the classical theory of random walks of non-interacting
agents and then review some of the literature on models that include interactions of dif-
ferent types. We aim to provide an overview that is accessible to early-career researchers
and to researchers in relevant application areas in the life sciences. We therefore omit some
of the technical details, but provide references to the mathematical literature for the inter-
ested reader. Throughout, we point out the mathematical connections between the various
modelling approaches and their links to application areas. We do not attempt to give an
exhaustive literature review, but instead focus on some of the key advances and selected
examples that illustrate important concepts in the area.

In Section 2, we review the classical theory of random walks of non-interacting individu-
als and their associated continuum-limit equations. In Section 3, we show how the models
and techniques for deriving the continuum limit introduced in Section 2 can be generalised
to include crowding effects, where individuals compete for space. As we will see, includ-
ing interactions between individuals gives rise, in some cases, to nonlinear terms in the
continuum-limit equation. In Section 4, we cover other types of interactions between indi-
viduals, such as adhesion or repulsion, and some model extensions. In Section 5, we show
how individual behaviour affects and is affected by the spatial structure of the population.
This enables models to go beyond the spatial mean-field equations introduced in Sections
3–4 by accounting for spatial correlations between the locations of individuals within the
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population.

In Boxes 1–5, we provide optional worked examples illustrating the fundamental concepts
behind the ABMs and the techniques used to derive population-level continuum descrip-
tions. We also provide example results from stochastic ABM simulations and numerical
solutions of corresponding population-level models. Code to reproduce these results is avail-
able at https://github.com/michaelplanknz/interacting-random-walk-models. A list
of mathematical notation used throughout the paper is provided in Supplementary Table S1.

2 Random walks of non-interacting individuals

In this section, we begin by reviewing some of the fundamental theory of random walks and
their continuum-limit equations. This theory, which dates back to the work of Pearson [11]
and Rayleigh [12] in 1905, applies to collections of individuals that are assumed to be moving
independently of one another, and it plays a prominent role in statistical mechanics [13]. We
show how random and directed individual-level motility mechanisms give rise to diffusive and
advective processes, respectively, at the macroscopic scale. We also briefly highlight some of
the differences between lattice-based and lattice-free models, and position-jump and velocity-
jump processes. For generality, we present the theory in d spatial dimensions. However, most
applications and examples will be for the two-dimensional case. This preliminary section
lays the groundwork for the subsequent sections, which will cover models of interacting
individuals. In this more complicated situation, the movement, proliferation and/or death
rates for one agent can depend on the number and location of other agents in the population.

2.1 Random walk fundamentals

A position-jump random walk is a type of stochastic process that is a discrete-time Markov
chain for the location Xn of a random walker, known as an agent, after n steps. In the case
of an unrestricted random walk on an unbounded domain Ω ⊆ Rd, the process can be defined
by

X0 = x0, Xn = Xn−1 + Zn for n = 1, 2, . . . , (1)

where the Zn are independent, identically distributed (IID) random variables, sometimes
called jumps. We typically assume that each random walk step takes fixed duration τ , and
we sometimes denote the agent’s location by X(t) instead of Xn with t = nτ .

The random walk can be restricted to a bounded domain Ω ⊂ Rd via boundary conditions
that specify what happens in cases where Xn−1 + Zn /∈ Ω. Common examples include:
absorbing boundaries, where if the agent reaches the boundary of Ω it remains there for all
future time; reflecting boundaries, where the agent is reflected back into the interior of Ω;
and periodic boundaries, where the agent’s location is wrapped around to the opposite side
of the domain.
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2.2 Lattice-based random walks

An important subcategory of the process defined by Equation (1) is lattice-based random
walks, in which the agent’s location is restricted to a regular lattice of spacing δ. The most
common choice is a square lattice, although in two dimensions a hexagonal lattice can be
used [14, 15] and approaches have also been developed for unstructured meshes [16, 17]. On
a square lattice, the jumps must satisfy Zn/δ ∈ Zd. All examples of lattice-based random
walks considered here will be nearest-neighbour walks on a square lattice. This means that
the agent can only move to an adjacent lattice site, and so the jump distribution has support
on ±δêk, where êk is the unit vector in the kth Cartesian coordinate direction.

2.2.1 Unbiased lattice-based random walks

In an unbiased random walk, the expected value of the jump variable, ⟨Zn⟩, is zero so there
is no change in the expected agent location from one step to the next. The simplest example
is a nearest-neighbour lattice-based random walk where the agent has fixed probability Pm

of moving during each time step of duration τ and equal probabilities of moving to each
adjacent lattice site. For example, in the two-dimensional case, this implies that Zn takes
values (δ, 0), (−δ, 0), (0, δ), or (0,−δ) with probability Pm/4 each, and value (0, 0) with
probability 1 − Pm. As the time step τ and lattice spacing δ tend to zero, the probability
density function p1(x, t) for the location X(t) of the agent at time t = nτ satisfies the linear
diffusion equation (also known as the Fickian diffusion equation or the heat equation) [18]

∂p1
∂t

= D∇2p1, (2)

where D > 0 is the diffusivity (sometimes referred to as the diffusion coefficient) given by
D = limδ,τ→0 Pmδ

2/(2dτ), see [9] for more details. For this limit to exist and be non-zero
requires the ratio δ2/τ to be held constant as δ and τ jointly tend to zero. Equation (2) is
known as the continuum-limit equation for the random walk, because in the limiting case
δ, τ → 0 the variables x, t and p1 are treated as continuous as opposed to discrete variables.
Note that, for a given time t = nτ , taking the limit τ → 0 implies that n → ∞, and hence the
continuum-limit should be viewed as a valid approximation after a sufficiently large number
of random walk steps (and at a length-scale that is large relative to the step size δ).

In Equation (2) and most of the continuum-limit equations introduced later in this article,
the location variable x may belong to the unbounded d-dimensional domain Rd or to some
bounded domain R ⊂ Rd, depending on whether the random walk is unrestricted or restricted
in space. Suitable boundary conditions on p1 are needed and these can include absorbing,
reflecting (i.e. no-flux), or periodic boundary conditions. The time variable t satisfies t ≥ 0,
with an initial condition required for p1(x, 0).

The simplest interpretation of p1(x, t) in Equation (2) is as the probability density function
for the location of a single agent at time t. However, if there are N agents undergoing
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independent random walks then, because Equation (2) is linear, the sum of their probability
density functions p(x, t) =

∑N
k=1 pk(x, t) also satisfies Equation (2). This requires that the

movement probabilities of agent k do not depend on the locations of other agents. In this case,
p(x, t) can be interpreted as the expected agent density (i.e. mean number of agents per unit
volume, with dimensions (length)−d) at location x and time t, such that

∫
R
p(x, t) dx = N

for all values of t. From here on, we will mainly work with the expected agent density p(x, t)
in deriving continuum-limit equations, reflecting our focus on populations of agents.

To make these ideas more concrete we present some stochastic simulation results in Figure 1
on a 201×51 regular lattice with δ = 1. Each lattice site is indexed (i, j), for i = 1, 2, . . . , 201
and j = 1, 2 . . . , 51 and is associated with location (xi, yj), where xi = −100 + (i− 1)δ and
yj = (j − 1)δ. Simulations are initialised with one agent on each lattice site in the central
region −10 ≤ x ≤ 10 and all other sites empty. Reflecting boundary conditions are applied
at the left and right boundaries of the lattice and periodic boundary conditions are applied
at the top and bottom boundaries. The agents initially at (−10, 25), (0, 25) and (10, 25)
are tagged in blue, cyan and green, respectively. All remaining agents are coloured red. A
single realisation of the non-interacting unbiased random walk model with Pm = 1 leads to a
distribution that appears to be approximately symmetric about x = 0, and the three tagged
agents follow random trajectories with no apparent preferred direction (Figure 1b).

To quantify the outcome of the stochastic simulations in Figure 1b, we calculate the average
density of agents in each lattice column,

∑51
j=1 Ui,j/51, noting that, for the chosen initial

condition, the density is independent of y. Plotting this quantity as a function of horizontal
location x confirms that the density profile is approximately symmetric about x = 0 (Fig-
ure 2a, red). We compare this to solution of Equation (2), the linear diffusion equation,
which we solve in a one-dimensional Cartesian coordinate system since the expected density
p(x, y, t) is independent of y. The initial condition is p(x, 0) = 1 for |x| ≤ 10 and p(x, 0) = 0
for |x| > 10 to match the initial distribution of the column-averaged density of agents, and
no-flux boundary conditions are applied at x = ±100. With D = Pmδ

2/(4τ) = 1/4, we
solve Equation (2) numerically using the method of lines [19]. In brief, this involves using
a standard finite difference approximation for the spatial derivative to discretise the par-
tial differential equation (PDE) on the interval −100 ≤ x ≤ 100 using 401 equally-spaced
mesh points. This leads to a system of coupled ODEs that we solve numerically using the
DifferentialEquations.jl package in Julia.

Superimposing the numerical solution of Equation (2) (Figure 2a, black) onto the column-
averaged density from the ABM reveals a good match between the two density profiles. The
key difference is that the column-averaged density profile involves clearly visible fluctuations
whereas the solution of the continuum-limit equation does not. The magnitude of the fluc-
tuations decreases as the vertical height of the lattice increases, or if an ensemble average is
taken over multiple independent realisations of the stochastic process. Results in Figure 1c
and Figure 2b will be described in Section 2.2.2 when we discuss biased lattice-based random
walks.
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Figure 1: Comparison of lattice-based random walks models with and without interactions
between agents. Results in the left column correspond to a non-interacting random walk
(see inset in panel a – movement in each of the four orthogonal directions is always allowed
regardless of other agents); results in the right column correspond to an interacting exclusion
process (see inset in panel b – attempted moves onto lattice sites that are already occupied
are aborted as indicated by grey arrows). Simulations are on a regular lattice of dimensions
201× 51 with lattice spacing δ = 1 such that −100 ≤ x ≤ 100 and 0 ≤ y ≤ 50, as indicated.
The initial conditions (a,d) are identical and consist of a population in which one agent is
placed at each lattice site with −10 ≤ x ≤ 10 and all other lattice sites are empty. Three
agents initially at locations (−10, 25), (0, 25) and (10, 25), coloured blue, cyan and green,
respectively, are tagged and their trajectories shown. All remaining agents are coloured red
and only the final positions of the red agents are shown, not their trajectories. Snapshots in
the middle row (b,e) show the result of performing an unbiased random walk with Pm = 1
and ρx = 0 over 200 time steps. Simulation snapshots in the bottom row (c,f) show the
result of performing a biased random walk with Pm = 1 and ρx = 1/2 over 200 time steps.
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Figure 2: Comparison of column-averaged density data from a stochastic ABM (red) and
numerical solution of the corresponding continuum-limit equation (black) for a range of non-
interacting and interacting random walk models. All stochastic simulations are performed
on a regular 201× 51 lattice with δ = 1, initialised with one agent at each lattice site with
−10 ≤ x ≤ 10 and all other lattice sites empty. All model comparisons are made after 200
time steps of the ABM with Pm = 1. Results in (a,b) are for a non-interacting random walk.
Results in (c,d) are for an interacting exclusion process (i.e. at most one agent per lattice
site). Results in (a,c) are for an unbiased migration mechanism with Pm = 1 and results in
(b,d) are for a biased migration mechanism with Pm = 1 and ρx = 1/2. The continuum-limit
equation for: (a) is the linear diffusion equation, Equation (2), with D = 1/4; (b) is the
linear advection-diffusion equation, Equation (6), with D = 1/4 and vx = 1/4; (c) is the
linear diffusion equation with D = 1/4; and (d) is the nonlinear advection-diffusion equation,
Equation (15), with D = 1/4 and vx = 1/4. Results in (e,f) are for an interacting exclusion
process with an unbiased migration mechanism and an adhesion/repulsion mechanism with
parameter: (e) σ = 3/4 (adhesion); (f) σ = −3/4 (repulsion). The continuum-limit equation
for (e,f) is Equation (21) with D = 1/4.
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2.2.2 Biased lattice-based random walks

In a biased random walk, the probabilities of moving to each of the adjacent lattice sites are
not equal. This leads to an additional term, called an advection term or drift term, in the
continuum-limit equation for the mean agent density p(x, t):

∂p

∂t
= D∇2p︸ ︷︷ ︸

random motility

− v · ∇p,︸ ︷︷ ︸
directed motility

(3)

where v ∈ Rd is called the advection velocity or drift velocity. Even though movement is
now biased in a particular direction, there is still an element of randomness in individual
agent movements. This is reflected in the two terms in Equation (3): a diffusion term for the
random component of motility and an advection term for the directed component. Note that
if the advection velocity, v, is zero, the advection-diffusion equation, Equation (3), reduces
to the diffusion equation, Equation (2). Box 1 demonstrates how Equation (3) along with
expressions for D and v can be derived from a two-dimensional biased random walk, in the
special case where the bias acts only in the horizontal direction so that v = (vx, vy) with
vy = 0. Note that, although the bias could be thought of as an interaction between the
agents and a specified potential field, this is distinct from the agent-agent interactions we
will consider in later sections of this article because the agents are still moving independently
of each other.

Box 1: Lattice-based biased random walk model and continuum-limit PDE

Suppose we have N agents on a two-dimensional square lattice with lattice spacing δ,
so that lattice sites have locations (x, y) = (iδ, jδ), where i, j ∈ Z are standard lattice
indices. In any single realisation of the stochastic ABM, we define Ui,j as the number
of agents at site (i, j), which is a non-negative, integer-valued random variable.

Suppose that, during each time step of duration τ , each agent moves with probability
Pm ∈ [0, 1], independent of other agents. When an agent at site (i, j) moves, suppose
that sites (i, j± 1) are chosen with equal probability 1/4 and sites (i± 1, j) are chosen
with potentially unequal probability (1 ± ρx)/4, where ρx ∈ [−1, 1] is a parameter
controlling the bias in the x direction.

To think about the continuum limit, we use uij to denote the expected number of
agents ⟨Ui,j⟩(t) at site (i, j) at time t. We can think of this as the average across an
ensemble of M independent, identically-prepared simulations in the limit where M is
large:

uij = lim
M→∞

1

M

M∑
l=1

U
(l)
i,j (t), (4)

where U
(l)
i,j (t) is the number of agents at lattice site (i, j) at time t in the lth realisation.
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Under these conditions we can write down a conservation statement describing the
change in average number of agents as site (i, j) during the time interval from time t
to time t+ τ , namely

∆ui,j =
Pm

4

[
(1 + ρx)ui−1,j + (1− ρx)ui+1,j + ui,j−1 + ui,j+1

]
︸ ︷︷ ︸

migration onto site (i, j)

− Pmui,j.︸ ︷︷ ︸
migration out of site (i, j)

(5)
To proceed to the continuum limit, we identify ui,j(t)/δ

2 (i.e. the average density of
agents per unit area) with a smooth function p(x, y, t) and expand all terms in Equa-
tion (5) in a Taylor series about (x, y) = (iδ, jδ). Dividing the resulting expressions by
τ and taking the limit as δ → 0 and τ → 0 with the ratio δ2/τ held constant, terms
of O(δ3) and smaller can be neglected and we are left with

∂p

∂t
= D

[
∂2p

∂x2
+

∂2p

∂y2

]
︸ ︷︷ ︸

random motility

− vx
∂p

∂x
,︸ ︷︷ ︸

directed motility

(6)

where

D = lim
δ→0
τ→0

(
Pmδ

2

4τ

)
, vx = lim

δ→0
τ→0

(
Pmρxδ

2τ

)
. (7)

The expressions in Equation (7) relate the parameters in the ABM, δ, τ , Pm and ρx,
to parameters in the continuum model, D and vx. Note that to obtain a well-defined
continuum limit where both D and vx are O(1), we have the additional constraint that
ρx = O(δ). In other words, the difference in the probabilities of moving right and left
must reduce in proportion to the lattice spacing δ. More generally, there can be bias
in the vertical as well as the horizontal direction, leading to Equation (3).

Equations (2) and (3) are examples of the more general transport equation

∂p

∂t
= −∇ · J, (8)

where J(x, t) ∈ Rd is the flux of p at x ∈ R ⊆ Rd. In Equation (3), the flux is given by
J(x, t) = −D∇p + vp, which is the sum of the Fickian diffusive flux (−D∇p) arising from
random motility and the advective flux (vp) arising from the directional bias. Note that the
diffusive flux is directed down the gradient of agent density ∇p, while the advective flux is in
the direction of the fixed advection velocity v. A related type of flux term is a chemotactic
flux pχ(c)∇c, where c(x, t) is the chemoattractant concentration and χ(c) is the chemotactic
sensitivity [20]. This type of flux term arises from biased migration up or down the gradient
of some chemical species of concentration c(x, t), the evolution of which may be governed by
its own PDE (see [21] for more details).
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More generally, the probability of movement, Pm, may be different for each coordinate di-
rection, such that the probability of moving in the kth coordinate direction is Pm,k. This
leads to a diagonal d× d diffusivity matrix D where Dkk = limδ,τ→0 Pm,kδ

2/(2dτ), and hence
anisotropic diffusion. Finally, all the random walk movement parameters can depend on lo-
cation x (in this case the jumps Zn in Equation (1) are no longer IID but depend on Xn−1).
In this more general case, a similar procedure to that outlined in Box 1 leads to the following
PDE for p(x, t) [9, 22]

∂p

∂t
= ∇ · (D(x)∇p))︸ ︷︷ ︸

random motility

− ∇ · (v(x)p)︸ ︷︷ ︸
directed motility

, (9)

where D(x) is the diffusivity matrix and v(x) ∈ Rd is the advection velocity at location x.
Note that Equation (9) is equivalent to Equation (8) with flux J(x) = −D(x)∇p+ v(x)p.

Illustrative stochastic simulation results in Figure 1c show a single realisation of a biased
non-interacting random walk on the same regular lattice with the same initial condition
used to explore the unbiased non-interacting random walk. This simulation, with Pm = 1
and ρx = 1/2, shows that the population of agents moves in the positive x-direction, and
that the distribution of agents appears to be symmetric about the mean x coordinate of the
population, as expected. The trajectories of the three tagged agents show a clear bias in the
positive x-direction, which is very different to the trajectories for the corresponding unbiased
simulation (Figure 1b).

Column-averaged density data in Figure 2b confirms that the population density moves in the
positive x-direction and that the distribution of agent density is approximately symmetric
about x = 50. To compare this to the continuum limit, we solve the linear advection-diffusion
equation, Equation (6), numerically in a one-dimensional Cartesian coordinate system, with
D = Pmδ

2/(4τ) = 1/4 and vx = Pmρxδ/(2τ) = 1/4, and the same initial and boundary
conditions as for the unbiased case. Superimposing the numerical solution onto the column-
averaged density data from the ABM reveals a good match between the two density profiles.
We note that the main difference between the results in Figure 2a and those in 2b is the
impact of the advection term, which leads to the translation of the population so that the
centre of mass of the population (i.e. the mean agent location) moves at velocity vx. Results
in Figure 1d–f and Figure2c–f will be described later in Sections 3 and 4 where we discuss
interacting models.

2.3 Lattice-free random walks

ABMs can be implemented as either lattice-based or lattice-free random walks, both of
which are encompassed by the definition in Equation (1). The lattice-based approach has
the advantage that simulating movement on a lattice is computationally straightforward
and enables easy derivation of the continuum-limit equation (see e.g. Box 1). However, in
biological applications, individuals move in continuous space and are not restricted to an
artificial lattice with movement parallel to arbitrary coordinate axes.
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In lattice-free models, agent locations, Xn, may be any point in R ⊆ Rd and their direction
of movement can be any angle, corresponding to a point on the unit sphere Sd−1. In the two-
dimensional case (i.e. d = 2), the direction of movement is specified by an angle θ ∈ [0, 2π),
which may be drawn from a suitable circular distribution [23].

If the direction of movement at time t is independent of previous movements, the random
walk is referred to as uncorrelated (see also Section 2.5). As with lattice-based models, it
is useful to derive a continuum-limit equation for the expected agent density as a function
of space and time. The continuum-limit equation for an unbiased, uncorrelated lattice-free
random walk where the mean squared displacement per step, denoted σ2 = ⟨|Z|2⟩, is finite is
the linear diffusion equation with diffusivity D = limσ,τ→0 σ

2/(2dτ). This is the same as the
lattice-based case (see Section 2.1). However, for a biased uncorrelated lattice-free random
walk, the continuum-limit equation in general depends on how the bias is modelled at the
individual level (i.e. the shape of the distribution of Zn ∈ Rd) and may include anisotropic
diffusion terms [24, 25].

2.4 Individual-level and population-level behaviour

Analytical solutions of the linear advection-diffusion equation, Equation (7), are available
for certain initial and boundary conditions (see e.g. [9, 22, 26, 27]). Where these are not
available, the relevant continuum-limit PDE is usually readily solvable numerically. We do
not focus on analytical solutions of Equation (7) in great depth here, as these are typically
not applicable in more complex models involving interactions, but we briefly cover some of
the general insights that analytical PDE solutions can provide.

In general, the action of diffusive terms in PDEs is to even out agent density via a net
movement of agents from regions of high to low density and corresponding dissipation of
density gradients over time (see Figures 1a-b and 2a). This is analogous to the way heat
transfer from hot to cold regions tends to dissipate temperature gradients. The higher
the diffusivity, D, the faster this process takes place. At the individual-level, a higher D
corresponds to a higher probability of movement, Pm, larger average step length, δ, or shorter
time step, τ .

Individual-level measures of movement include the mean location ⟨X(t)⟩ and mean squared
displacement ⟨|X(t)−X(0)|2⟩ at time t. For an unbiased random walk, the mean location is
always equal to the starting locationX(0) = x0 and, provided the mean squared displacement
per step σ2 is finite, the mean squared displacement at time t is ⟨|X(t)−X(0)|2⟩ = 2dDt [7].
Equivalently, ⟨|Xn −X0|2⟩ = nσ2 in terms of the individual-level variables.

The fact that the mean of the squared distance from the starting location is linear in t is
a fundamental property of random undirected motility and the diffusive process to which
it converges in the continuum limit. Intuitively, this occurs because agents undergoing an
unbiased random walk do not take a series of steps in the same direction (which would lead
to the mean squared displacement increasing with t2) but typically take a tortuous path with
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frequent backtracking. For random walks where ⟨|Zn|2⟩ is infinite, the step length distribu-
tion is referred to as heavy-tailed, and the mean squared displacement scales asymptotically
as tν with 1 < ν < 2, which is a type of anomalous diffusion [28]. This is true of power-law
distributions for Zn with power α < 3, which lead to Lévy walks (see e.g. [29]). We do not
consider these further here and refer the reader to [30] for more details.

Advection terms act to translate the density profile p(x, t) through space, with a direction
and speed determined by the advection velocity v = (vx, vy), without changing its shape
(compare Figures 2a and b). At the individual-level, a stronger directional bias (i.e. a
bigger difference between the probabilities of moving in opposing directions) leads to a faster
advection speed. For the biased random walk described by Equation (3), the mean location is
⟨X(t)⟩ = x0+vt and the mean squared displacement is ⟨|X(t)−X(0)|2⟩ = |v|2t2+2dDt [9].
The quadratic term in t here indicates that the population is moving ballistically rather
than purely diffusively, reflecting the effect of the bias. However, the variance in agent
location, which measures dispersal about the mean location, increases linearly with t, as
for the unbiased case [9]. Hence, a biased lattice-based random walk can be viewed as an
isotropic diffusive process taking place in a moving reference frame.

Both diffusion and advection terms preserve total population size
∫
R
p(x, t) dx. If there is

proliferation or death, this introduces a reaction term into the continuum-limit PDE, which
causes the total population size to change over time (see Section 3.1).

2.5 Position-jump and velocity-jump processes

Sections 2.1–2.4 concern random walks that are Markov processes with respect to the agent’s
location Xn. These are known as position-jump processes because agent positions change
over time via a series of discrete jumps. Another type of random walk is a velocity-jump
process, which is a Markov process with respect to the agent’s velocity V. The agent’s
location changes according to dX/dt = V, while the velocity changes via a series of discrete
jumps, which can occur at fixed or variable time steps [31–33]. Velocity-jump processes are
closely related to a class of models called active-particle models in the physics literature,
which consist of systems of coupled nonlinear Langevin equations [34]. This subsection gives
a very brief outline of velocity-jump processes, but for the remainder of the article we focus
mainly on position-jump processes.

Velocity-jump processes generally describe correlated random walks, meaning that the ve-
locity after n jumps is correlated with the velocity after n − 1 jumps. They are useful to
model agents that have a tendency to continue moving in the same or similar direction, a
feature known as persistence [35]. Velocity-jump processes have applications in a host of
areas, including swimming micro-organisms [36], bacterial chemotaxis [7, 37, 38], angiogen-
esis [39, 40], animal movement [31, 41, 42] and navigation [5, 24].

The natural setting for velocity-jump processes where agent velocities with arbitrary di-
rections are allowed is a lattice-free model (see Section 2.3). The general continuum-limit
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for velocity-jump processes is the linear transport equation, which is a PDE for the density
p(x,v, t) of agents that have location x and velocity v at time t [32]. When applied to
particles undergoing Brownian motion, this gives rise to the Klein-Kramers equation [43].
The simplest example of a velocity-jump process is the one-dimensional case where agents
have fixed speed s > 0 and can either be moving right (v = s) or left (v = −s). In this case,
it is possible to derive a continuum-limit for p(x, t) called the telegraph equation [44, 45].
The telegraph equation can be generalised to higher dimensions, however this requires that
agent velocities at any given time are aligned with one of the coordinate axes.

One limitation of the advection-diffusion equations introduced in Section 2.2 that arise from
position-jump processes is that they have an infinite propagation speed [22]. For example,
the solution p(x, t) to Equation (3) is strictly positive for all locations x at any t > 0 [9]. This
implies that an agent has non-zero probability of being arbitrarily far away from its starting
location at arbitrarily small times. This is a consequence of the fact that the continuum limit
requires holding δ2/τ constant as δ, τ → 0 which, in turn, implies that the movement speed
is unbounded because δ/τ → ∞ as δ, τ → 0. In reality, agents can only move at finite speeds
and so advection-diffusion PDEs such as Equation (3) should be viewed as an approximation
that is valid after a sufficiently large number of random walk steps. Velocity-jump processes
overcome this limitation by assigning agents a finite velocity. Transport equations derived
from velocity-jump processes typically tend asymptotically to advection-diffusion equations
as t → ∞, because the short-term correlations in agent velocities become negligible at large
times [32, 33]. For example, reaction-diffusion equations for chemotactic movement can
be derived as the diffusive, long-time limit of a velocity-jump process [46, 47]. Similarly,
velocity-jump processes can be asymptotically analysed under different scalings to arrive at
different forms of the PDE model [32, 33, 43].

3 Including interactions: crowding effects

All the models described in Section 2 assume that agents behave completely independently
of one another. In reality, the behaviour of individual agents may be influenced by other
agents in various ways. One important example is that no two agents can occupy the same
physical space, which we refer to as volume exclusion. A related example is that agents may
be in competition for resources, meaning that the presence of nearby agents may reduce an
agent’s proliferation rate or increase its death rate. Collectively, we refer to these types of
interactions as crowding effects. There are various ways of incorporating crowding effects into
models, and the choice of model will be influenced by the underlying biology. For example,
can agents be approximated as hard, rigid objects of a fixed size, or can they deform or be
compressed by the presence of neighbouring agents? Is the direction of movement always
random or do agents preferentially move towards or away from neighbouring agents?

In Section 3.1, we consider models that include agent proliferation and death. Including
density-dependence in proliferation or death rates is one way to account for local competition,
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but does not enforce volume exclusion if motility is still independent of other agents. In
Section 3.2, we show how volume exclusion can be incorporated into lattice-based models by
disallowing movement to a lattice site that is already occupied. In Section 3.3, we generalise
this to include populations with proliferation. Sections 3.4–3.5 extends these ideas to lattice-
free models. As in Section 2, we focus on the derivation of continuum-limit approximations
of discrete ABMs where possible. We will highlight that care needs to be taken to ensure
the interactions between agents are correctly captured within the limiting process. We
will also point out situations where the continuum-limit approximation breaks down and
an alternative approach is needed. There are alternative approaches to obtain continuous
models for particle density departing from discrete individual-based descriptions, for example
methods based on the Doi-Peliti formalism [48–50], but we do not consider these further
here.

3.1 Proliferation and death

In the models considered in Section 2, the population always had a fixed number of agents,
N . In many applications, agents can proliferate and/or die during the time period of interest.
This can be incorporated into ABMs by assigning each agent a probability of proliferating
or dying in each time step, along with rules specifying how the locations of daughter agents
are determined relative to the parent. In general, this leads to an additional term in the
continuum-limit PDE for mean agent density p(x, t). For example, when the motility terms
are written in the form of a general transport equation with flux J, as in Equation (8), the
PDE becomes

∂p

∂t
= −∇ · J+ F (p). (10)

The term F (p) is called a reaction term, also known as a source term, and represents the
local net rate of change in expected agent density due to proliferation and death.

The expected total population size N(t) =
∫
R
p(x, t) dx is now not fixed but time-dependent.

A differential equation for N(t) may be obtained by integrating Equation (10) over the
domain R and applying the divergence theorem:

dN

dt
= −

∫
∂R

J · dn̂+

∫
R

F (p(x, t)) dx. (11)

The first integral on the right-hand side of Equation (11) represents the net flux J of agents
out of the domain (i.e. total outward flux minus total inward flux) across the boundary ∂R,
whose unit outward normal vector is denoted n̂. This will be determined by the boundary
conditions on Equation (10) and it will be zero in the case of periodic or no-flux boundary
conditions. The second term in Equation (11) represents the net aggregate population growth
rate due to proliferation and death.

The simplest example is where each agent has fixed probabilities of proliferation Pp and death
Pd in each time step τ , and daughter agents are initially placed on the same lattice site as their

15



parent. This is referred to as density-independent proliferation and death, and this model
does not include any interactions among agents. The reaction term is F (p) = (b − µ)p,
where b = limτ→0 Pp/τ and µ = limτ→0 Pd/τ are, respectively, the proliferation rate and
death rate per unit time. In this case, Equation (10) with a diffusive flux J = −D∇p is
known as Skellam’s equation [51]. The net difference r = b − µ between the proliferation
rate and the death rate is referred to as the intrinsic population growth rate. It follows from
Equation (11) that, if there is no net flux of agents across the domain boundary, the total
population size N(t) grows exponentially if r > 0 and decays exponentially if r < 0. Note
that for the proliferation and death rates to be finite in the continuum limit requires that
the probabilities Pp and Pd in the ABM are O(τ) as τ → 0.

One way to generalise this simple example to include crowding effects is to allow the proba-
bility of death, Pd, to depend on the number of agents Ui,j occupying the lattice site. This
model does not include volume exclusion as multiple agents per lattice site are still allowed,
but does include the effect of local competition. Suppose we set Pd = C1+C2Ui,j/δ

2, so that
the probability of death increases with local agent density Ui,j/δ

2. Then the reaction term
becomes F (p) = (b − µ1)p − µ2p

2, where µ1 = limτ→0C1/τ and µ2 = limτ→0C2/τ are the
rates of density-independent and density-dependent death, respectively. This is known as
the logistic growth function and, in this case, Equation (10) with a diffusive flux J = −D∇p
is known as the Fisher-KPP equation, more commonly written as

∂p

∂t
= D∇2p︸ ︷︷ ︸

random motility

+ rp
(
1− p

K

)
︸ ︷︷ ︸
net proliferation

, (12)

where r = b−µ1 is the intrinsic population growth rate and K = (b−µ1)/µ2 is the carrying
capacity density. Note that the density-dependence in the death rate leads to a nonlinear
term in the continuum limit, Equation (12). The combination of random undirected motility
and density-dependent growth in Equation (12) leads to travelling wave behaviour for certain
initial conditions [21]. The diffusion term causes the population spread out in space, allowing
the wavefront to advance into previously unoccupied areas, while the reaction term causes the
density behind the wavefront to grow asymptotically towards the carrying capacity density
K.

The Fisher-KPP equation and related nonlinear reaction-diffusion equations can used to
model motile populations with density-dependent proliferation and death. However, they do
not take account of the effects of agent interactions on motility, which is still assumed to be
independent of other agents. In Section 3.2, we show how the effects of crowding on motility
can be incorporated via volume exclusion.

3.2 Lattice-based models with volume exclusion

One of the simplest ways to incorporate crowding effects into lattice-based models is to
assume that each lattice site is the size of a single agent and that it can contain at most
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one agent. An ABM where agents undergo random walks with volume exclusion is referred
to as an exclusion process, which is closely related to a class of models known as contact
processes and voter process (see [52, 53]), although we do not discuss these further here.
In an exclusion process, if an agent attempts to move onto a lattice site that is already
occupied, the move is aborted. In deriving a corresponding continuum-limit PDE, we need
to take into account the fact that the probability of an agent moving from its current site to
an adjacent site depends on whether or not the target site is occupied.

In Box 2, we show how an approximate continuum-limit equation for agent density can be
derived for a two-dimensional, lattice-based exclusion process with bias in the horizontal
direction [54]. This takes the form of a nonlinear advection-diffusion PDE. In the more
general d-dimensional case with bias vector v ∈ Rd, this PDE may be written

∂u

∂t
= D∇2u︸ ︷︷ ︸

random motility

−v · ∇ (u(1− u))︸ ︷︷ ︸
directed motility

, (13)

where u is the dimensionless agent density, which is equivalent to the density relative to that
of a fully occupied lattice where u = 1. Unlike in the non-interacting case in Section 2.2,
when a lattice is used to model volume exclusion, the lattice spacing δ must correspond
approximately to the size of an agent. It may seem contradictory then that Equation (13) is
used to model agents of a fixed size δ > 0, yet is derived by taking the limit δ → 0. However,
as for the non-interacting case, Equation (13) should be interpreted as an approximation to
the discrete ABM with fixed δ > 0, which is valid after a sufficiently large number of steps.
The size of agents, δ, enters into Equation (13) indirectly because the agent density per unit
volume, p, is related to u via p = u/δd, and so under volume exclusion the maximum value
of p is 1/δd.

Box 2: Lattice-based biased random walk and continuum-limit PDE with exclusion

Suppose we have the same lattice as in Box 1, except now in any realisation of the
ABM the occupancy status Ui,j of lattice site (i, j) is a binary random variable with
Ui,j = 1 if the site is occupied (by at most a single agent) and Ui,j = 0 if the site
is vacant. Unlike in the non-interacting random walk, the order in which agents
attempt to move matters because when one agent moves, it changes which sites are
available/occupied for other agents. To deal with this we use a random sequential
update method: during each time step τ , N agents are selected uniformly at random,
one at a time with replacement. When an agent at site (i, j) is selected, it attempts to
move with probability Pm, and chooses target sites (i, j±1) with equal probability 1/4
and sites (i± 1, j) with potentially unequal probability (1± ρx)/4 where ρx ∈ [−1, 1],
as in Box 1. If an agent attempts to move to a target site that is already occupied,
the move is aborted.

Considering an ensemble of M identically prepared realisations, we can write down
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an approximate conservation statement describing the change in expected occupancy
ui,j = ⟨Ui,j⟩ of site (i, j) during a time step τ , namely

∆ui,j =
Pm

4
(1− ui,j) [(1 + ρx)ui−1,j + (1− ρx)ui+1,j + ui,j−1 + ui,j+1]︸ ︷︷ ︸

migration onto site (i, j)

(14)

− Pm

4
ui,j [(1 + ρx) (1− ui+1,j) + (1− ρx) (1− ui−1,j) + (1− ui,j−1) + (1− ui,j+1)]︸ ︷︷ ︸

migration out of site (i, j)

,

where we see the factors (1−u) appearing in the transition probabilities, which approx-
imately ensures that motility events require the target site to be vacant. Whilst the
corresponding continuum-limit equation for the non-interacting case, Equation (5), is
exact, Equation (14) is approximate as it assumes the random variables representing
the occupancy status of adjacent sites are independent. This allows expressions of the
form ⟨Ui,jUi±1,j⟩ to be approximated as ui,jui±1,j.

We identify ui,j with a smooth function u(x, y, t) and expand all terms in Equation (14)
as Taylor series about (x, y) = (iδ, jδ). Dividing the resulting expressions by τ and
taking the limit as δ → 0 and τ → 0 with the ratio δ2/τ held constant gives

∂u

∂t
= D

[
∂2u

∂x2
+

∂2u

∂y2

]
︸ ︷︷ ︸

random motility

− vx
∂

∂x
[u(1− u)] ,︸ ︷︷ ︸

directed motility

(15)

where

D = lim
δ→0
τ→0

(
Pmδ

2

4τ

)
, vx = lim

δ→0
τ→0

(
Pmρxδ

2τ

)
. (16)

Note that there can be bias in the vertical as well as the horizontal direction, leading
to the more general nonlinear advection-diffusion equation stated in Equation (13).

The derivation of Equation (13) requires an assumption that the random variables repre-
senting the occupancy status of any two adjacent lattice sites are independent [54]. This is
known as the mean-field assumption and allows the probability that two neighbouring sites
are occupied to be approximated as the product of the two single-site occupancy probabili-
ties. This assumption is reasonable in the absence of mechanisms, such as rapid proliferation
or neighbour-dependent death, that generate significant spatial correlations between agent
locations. However, in case where the population does have strong spatial structure, the
approximation breaks down and an alternative approach is required (see Section 5.1). The
mean-field approximation tends to break down particularly readily in one spatial dimension,
and a range of analytical results have been derived for one-dimensional exclusion processes,
sometimes referred to as single-file diffusion models [55–58]. However, in this review we
focus primarily on two- and three-dimensional models as they are more relevant to a broader
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class of experimental observations.

Interestingly, in the absence of bias in agent movements, v = 0 and the continuum-limit
PDE for the exclusion process in Equation (13) is simply the linear diffusion equation, as is
the case for non-interacting agents. This means that at the population-level it is impossible
to distinguish whether crowding interactions are taking place between agents or not. On
the other-hand, when individual agent movements are biased, Equation (13) differs from the
continuum-limit equation for a population of non-interacting agents, Equation (3), because
the advection term is nonlinear. For a population of non-interacting agents, the advective
flux is vu whilst for the exclusion process it is vu(1−u). At low densities, the predictions of
the two different models will be similar as u(1−u) ≈ u for u ≪ 1. This makes sense because
it is relatively rare for two agents to occupy adjacent lattice sites when the density is low.

Intuitively, the reason volume exclusion does not affect the continuum limit for random
undirected motility is that attempted movements in one direction that are aborted due to
the target site being occupied occur with the same frequency as aborted movements in the
opposite direction. Thus, although there are fewer movements overall in the exclusion process
than in the non-interacting random walk, the net effect of volume exclusion on the diffusive
flux at any location x is zero. In contrast, when migration is biased, attempted movements
in one direction are more likely than in the opposite direction. This means that a reduction
in movement due to crowding translates into a reduction in the net advective flux in the
continuum-limit equation. Thus, crowding does not affect diffusion, but slows advection in
regions of high agent density.

Figure 1e,f shows example simulations of lattice-based random walks with exclusion, with the
same lattice and initial condition as previously. A single realisation of the unbiased exclusion
process with Pm = 1 and ρx = 0 (Figure 1e) leads to a population-level distribution that is
difficult to distinguish from the unbiased non-interacting simulation (Figure 1b). However,
the trajectories of the tagged agents appear very different from the non-interacting case.
The agent initially at the left-most leading edge drifts in the negative x-direction, the agent
initially at the right-most leading edge drifts in the positive x-direction, and the agent
initially in the centre of the population hardly moves at all during the simulation. This shows
that crowding affects the movements of individual agents, by making movement less likely
in some or all directions, but that it does not affect the population-level distribution [59].

The biased exclusion process simulation with Pm = 1 and ρx = 0.5 (Figure 1f) shares some
similarities with the biased non-interacting simulation (Figure 1c) since the population of
agents drifts in the positive x-direction. Again, we see differences in the trajectories of
tagged agents since the agent initially at the right-most leading edge drifts in the positive
x-direction, whereas the agents in the centre and at the left-most leading edge barely move
at all during the simulation. This is very different to the biased non-interacting model where
all three tagged agents exhibit a clear drift in the positive x-direction over time.

Column-averaged density data from the exclusion process simulations show a good match
with numerical solutions of the continuum-limit PDE, Equation (15). The continuum-limit
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equation for the unbiased exclusion process model (Figure 2c) is identical to that for the
unbiased non-interacting model (Figure 2a). The continuum-limit equation for the biased
exclusion process model (Figure 2d) involves a nonlinear advection term, leading to a solution
that is qualitatively different to the biased non-interacting model (Figure 2b). The density
profile for the biased exclusion process is asymmetric and the aggregate net drift in the
positive x direction is significantly less than in the non-interacting case. This is because
the crowding effects have little impact on the right-hand leading edge of the population,
where there is a relatively low probability of movement being impeded, but have a strong
effect both in the centre and at the left-hand leading edge of the population, where there
is a high probability of being impeded and consequent reduction in advection. Together,
the suite of continuum–discrete comparisons in Figure 2a-d confirms that population-level
density information for unbiased motility is insensitive to whether the model includes volume
exclusion or not, whereas population-level density information for biased motion is strongly
impacted by crowding effects.

One way to distinguish between models with and without volume exclusion is to con-
sider how the mean displacement and mean squared displacement of individual agents
on the two-dimensional lattice evolve over time. In the non-interacting case, the mean
displacement satisfies d⟨X(t)⟩/dt = v in the continuum limit, i.e. agents are simply ad-
vected with constant velocity v (as seen in Section 2.4). In the exclusion process we have
d⟨X(t)⟩/dt = −2D∇u + v(1 − u), which shows that agents both move down gradients in
local density u and are advected at a rate proportional to 1 − u, which is the fraction of
unoccupied space. Similarly, in the unbiased non-interacting case, the mean squared dis-
placement satisfies d⟨|X(t)|2⟩/dt = 4D, whilst in the unbiased exclusion process we have
d⟨|X(t)|2⟩/dt = 4D (1− u− ⟨X(t)⟩ · ∇u). The rate of increase of mean squared displace-
ment with time is sometimes referred to as the self-diffusivity of an individual agent. As
we have seen, the collective diffusivity, as measured by the diffusion coefficient D in the
continuum-limit equation, is the same for the non-interacting random walk and the exclu-
sion process. However, the expressions above for d⟨|X(t)|2⟩/dt show that crowding effects
reduce the self-diffusivity of an individual agent as the local density u increases, at least for
agents that are not on a steep gradient in u. These differences can be clearly seen in the
tagged agent trajectories depicted in Figure 1.

3.3 Lattice-based models with volume exclusion, proliferation and
death

It is simple to generalise the derivation in Box 2 to include agent proliferation. Suppose that,
in addition to attempting to move with probability Pm per time step of duration τ , agents die
with probability Pd and attempt to proliferate with probability Pp, with the daughter agent
placed on a randomly selected adjacent lattice site. If the selected site is already occupied,
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the proliferation attempt is aborted. This results in the continuum-limit PDE

∂u

∂t
= D∇2u︸ ︷︷ ︸

random motility

−v · ∇ (u(1− u))︸ ︷︷ ︸
directed motility

+ ru
(
1− u

K

)
︸ ︷︷ ︸

proliferation & death

, (17)

where r = limτ→0((Pp − Pd)/τ) and K = 1 − Pd/Pp. Note that this is equivalent to the
Fisher-KPP equation, Equation (12), with an additional nonlinear advection term. In the
case where there is no death (i.e. Pd = 0), the carrying capacity density K equals 1,
corresponding to a fully occupied lattice. If Pd > 0 then the carrying capacity density K is
less than 1.

Comparisons between stochastic simulations of the ABM and the solution of Equation (17)
confirm that Equation (17) provides a good approximation of the dynamics of the ABM pro-
vided that proliferation events occur infrequently relative to movement events (i.e. Pp/Pm ≪
1) [60]. If Pp/Pm is too large, daughter agents tend to remain close to their ancestors for
some time in the ABM, which leads to the formation of clusters of agents [61]. This violates
the mean-field assumption and an alternative approach is required (see Section 5.1).

3.4 Lattice-free models with volume exclusion

As shown in Section 3.2, a lattice-based model that allows at most one agent per lattice site
imposes a maximum density on the population that is determined by the lattice spacing.
However, this maximum density can only be realised if neighbouring agents are perfectly
aligned on a regular lattice. This is not usually biologically realistic as, in reality, there is
nothing that confines agents to a lattice and as a result agents tend to be positioned more
irregularly. For example, experimental imaging of in vitro cell populations (see e.g. [62])
reveals that, even as populations grow to a limiting density (i.e. carrying capacity), there
are typically gaps between cells and they are not able to efficiently fill space. Thus, whilst
lattice-based models may be a reasonable approximation for populations at relatively low
density, for populations with high or growing density they make unrealistic assumptions
about how neighbouring agents are aligned. This may result in inaccurate predictions of
the movement of high-density populations, and overestimate the maximum density that a
proliferative population can grow to.

Initially, most biological applications of lattice-free models ignored interactions between
agents [33, 63, 64] or were primarily simulation-based [5, 39, 40]. However, increasingly,
efforts have been made to derive approximate descriptions of agent density in lattice-free
models that include agent-agent interactions such as crowding effects.

Dyson et al. [65] derived a nonlinear diffusion equation for the random motility of agents in a
one-dimensional lattice-free model. They showed that volume exclusion leads to a nonlinear
diffusion equation

∂u

∂t
= ∇ · (D(u)∇u) , (18)
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with density-dependent collective diffusivity D(u). This contrasts with the lattice-based
case, where random motility leads to linear diffusion (i.e. constant diffusivity, D) as seen in
Equation (15). In the lattice-free model, D(u) is an increasing function of density when the
step size is small relative to the agent radius, because volume exclusion means more move-
ments occur in the direction of unoccupied space. Conversely, if the step size is sufficiently
large relative to agent radius, D(u) decreases with u because a large proportion of attempted
moves are aborted [65]. This approach was later extended to higher dimensions [66]. In the
limit where the step size is small and the population size is large, the collective diffusivity is
given by D(u) = D0 (1 + 4(d− 1)u) when expressed in terms of the density u ∈ [0, 1], where
D0 is the diffusivity at low density and d ∈ {2, 3} is the number of spatial dimensions.

Bruna and Chapman [67] also considered the diffusive movement of agents with volume
exclusion. Identifying the agent radius relative to the domain size as a small parameter ϵ,
they used matched asymptotic expansions to derive a continuum approximation for the mean
density of agents at location x and time t to leading order in ϵ. As in [66], the resulting
PDE is a nonlinear diffusion equation with collective diffusivity D(u) = D0 (1 + 4(d− 1)u)
in the limit of a large population size. The same methodology was also applied to similar
models with multiple species of agents [68] and agents moving in confined geometries [69].
This approach has the advantage of accounting for correlations in agent locations (see also
Section 5). However, it is only valid for sufficiently small ϵ, meaning that the total volume
occupied by all agents combined is small relative to the size of the domain.

In contrast to position-jump processes such as those described above, velocity-jump processes
have primarily been used in cases where the agents are assumed not to interact. This means
that agents can be arbitrarily close to one another and their movements are independent of
the locations of other agents [35, 44]. More recent work has explored the consequences of
including volume exclusion in a one-dimensional setting [70], where it is possible to introduce
different types of crowding effects. These different mechanisms have subtly different outcomes
in terms of the resulting continuum-limit equation. Although some approximate results have
been derived in the active matter context (see [71] and references therein), deriving mean-
field equations for velocity-jump processes with crowding effects in higher dimensions is
relatively under-explored in comparison to the position-jump case.

3.5 Lattice-free models with volume exclusion and proliferation

The examples in Section 3.4 relate to lattice-free models of populations with volume exclu-
sion but without proliferation. In a volume exclusion model where agents can proliferate,
derivation of a continuum-limit approximation needs to account for the fact that proliferation
requires sufficient space for the daughter agent. This is more complex in lattice-free models
than lattice-based models because the space required for proliferation has a non-trivial ge-
ometry and depends on the direction of dispersal of the daughter agent. Furthermore, unlike
non-proliferative models, proliferation leads to the possibility that agent density can in-
crease to high levels over time, making crowding effects stronger. For lattice-based exclusion
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models, including proliferation is relatively straightforward as the probability of successful
proliferation can be expressed in terms of the probability of occupancy of adjacent lattice
sites (see Sections 3.2–3.3). However, for lattice-free models this simplification is not avail-
able and the task of deriving an approximation for the growth function F (u) in terms of
local agent density u is more complicated.

Plank and Simpson [72] derived an approximation for the growth function F (u) that gives
a better match with simulations of a spatially uniform lattice-free ABM than the standard
logistic growth function. As with the continuum-limit equation for a lattice-based model
of a proliferative population in Equation (17), this approximation requires the probability
of proliferation to be low relative to the probability of movement so that clusters of agents
do not develop (see Section 5.2). Plank and Simpson showed that the modified growth
equation led to a different interpretation of experimental data and a different prediction for
the long-term agent density in a growth-to-confluence experiment [73]. This approach was
subsequently extended to derive an approximate PDE for agent density in a non-uniform,
invading population [74], and a population with directionally biased movement [75]. The
low-density behaviour at the travelling wavefront was accurately captured by both the ap-
proximate PDE derived from the lattice-free model and the Fisher-KPP equation (which is
the continuum-limit of an equivalent lattice-based model). However, only the lattice-free ap-
proach captured the high-density behaviour behind the wavefront, where agent interactions
become more important.

4 Other types of interactions and model extensions

In Section 3, we considered models of crowding effects where agents interact by competing
locally for space. In this section, we consider other types of agent-agent interaction that can
arise, together with associated extensions to the basic modelling framework.

4.1 Lattice-based models of local adhesion and repulsion

In addition to considering a lattice-based exclusion process to describe biased or unbiased
motion, we can also introduce additional interactions such as adhesion (attraction) or repul-
sion between neighbouring agents on the lattice [4, 15, 76–78]. These kinds of mechanisms
can be motivated by considering experimental images of the spreading of cancer cells which
appear to clump together, thereby motivating the introduction of an adhesive mechanism.

Box 3 illustrates how local adhesion or repulsion between neighbouring agents can be included
in a lattice-based exclusion process model. In this model, isolated agents undergo an unbiased
random walk, but agents that have a neighbouring agent at an adjacent lattice site have a
movement probability that is modified via an additional parameter σ ∈ [−1, 1]. Setting
σ > 0 models adhesion by reducing the probability of moving away from a neighbouring
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agent, while σ < 0 models repulsion by increasing the probability of moving away from a
neighbouring agent [4, 77].

Box 3: Lattice-based random walk model and continuum-limit PDE with exclusion
and adhesion/repulsion

To model adhesion/repulsion between neighbouring agents, suppose that the proba-
bility that an agent moves from site (i, j) to site (i+ 1, j) is defined by

P(i,j)→(i+1,j) =
Pm

4
Ui,j(1− σUi−1,j)(1− Ui+1,j), (19)

with similar formulations for the probability of movement to (i − 1, j) and (i, j ± 1).
The factor of (1− Ui+1,j) in Equation (19) models volume exclusion in the same way
as in Box 2. The factor of (1 − σUi−1,j) in Equation (19) is a simple model of adhe-
sion/repulsion with the parameter σ ∈ [−1, 1] controlling the strength and nature of
the effect. Setting σ > 0 decreases the probability of moving away from a neighbouring
agent, modelling adhesion, whereas setting σ < 0 increases this probability, modelling
repulsion.

Making the assumption that the occupancy of adjacent lattice sites is independent,
the change in the average occupancy ui,j of site (i, j) during a time step τ may be
approximated as:

∆ui,j =
Pm

4
(1− ui,j) [ui−1,j(1− σui−2,j) + ui+1,j(1− σui+2,j)]︸ ︷︷ ︸

migration onto site (i, j)

(20)

+
Pm

4
(1− ui,j) [ui,j−1(1− σui,j−2) + ui,j+1(1− σui,j+2)]︸ ︷︷ ︸

migration onto site (i, j)

− Pm

4
ui,j [(1− σui−1,j)(1− ui+1,j) + (1− σui+1,j)(1− ui−1,j)]︸ ︷︷ ︸

migration out of site (i, j)

− Pm

4
ui,j [(1− σui,j−1)(1− ui,j+1) + (1− σui,j+1)(1− ui,j−1)]︸ ︷︷ ︸

migration out of site (i, j)

.

Again, we identify ui,j with a smooth function u(x, y, t) and expand all terms in Equa-
tion (20) as Taylor series about (x, y) = (iδ, jδ). Dividing the resulting expressions by
τ and taking the limit as δ → 0 and τ → 0 with δ2/τ held constant gives

∂u

∂t
=

∂

∂x

[
D(u)

∂u

∂x

]
+

∂

∂y

[
D(u)

∂u

∂y

]
, (21)

where

D(u) = D0 (1− σu(4− 3u)) , D0 = lim
δ→0
τ→0

(
Pmδ

2

4τ

)
. (22)
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In this model the continuum-limit equation is a nonlinear diffusion equation, Equation (21),
with density-dependent diffusivity, D(u), given by Equation (22). If σ = 0 the diffusivity
relaxes to D(u) = D0 and we recover the linear diffusion equation. If σ > 0 we have
D(u) < D0, which means spreading of the population is slower than in the σ = 0 case, and
vice versa if σ < 0. The magnitude of the effect on the diffusivity is strongest in high-density
regions (u ≈ 1), where agent interactions occur frequently, and minimal in low-density
regions (u ≪ 1), where agent interactions are rare.

To illustrate the behaviour of this model, we consider an ensemble of simulations with same
lattice and initial condition as previously, and σ = 3/4 or σ = −3/4 (Figure 2e–f). Com-
paring results for different choices of σ confirms that setting σ > 0 to model adhesion slows
the outward spread of the initially-confined population (Figure 2e) relative to the case with
σ = 0, which represents an unbiased exclusion process with no adhesion/repulsion (Fig-
ure 2c). Setting σ < 0 to model repulsion increases the outward spread of the population
(Figure 2f). For this choice of parameters the numerical solution of the nonlinear diffusion
equation accurately predicts the average behaviour of the stochastic simulations. Similar
ideas have been used to model migration on a lattice with bias, adhesion and volume exclu-
sion [79], and have been applied in the lattice-free setting [80].

One point to note is that by rewriting the diffusivity in Equation (22) as D(u) = D0[3σ(u−
2/3)2 + 1 − 4σ/3], we see that setting 3/4 < σ < 1 leads to a situation where D(u) < 0
for a range of values of u centered around u = 2/3 [4]. In this case of strong adhesion,
stochastic simulation results can lead to visually obvious clustering of agents [81]. While it
is possible to numerically solve the continuum-limit PDE model when D(u) < 0 for a range
of u, giving rise to shock-fronted solutions, these solutions may no longer provide a good
match to averaged data from the ABM in these extreme cases [4, 77].

4.2 Multi-type models

Inspired by different types of biological observations and experiments, there have been many
extensions of lattice-based and lattice-free ABMs. All of the models discussed so far in-
volve simulating the random motion of a populations of agents that all behave in the same
way and this is appropriate for modelling a population of functionally identical individuals.
However, many biological experiments and ecological observations include individuals from
multiple populations (e.g. cancer cells moving within a population of skin cells, or predators
interacting with prey). These kinds of scenarios have also been modelled using lattice-based
approaches, for example such models have been used to describe donor-host transplant cell
biology experiments [54], where agents can be of different types to reflect the different species
in the system.

A related model extension is to subdivide a population of agents according to some important
biological characteristic. For example, models have been used to simulate the progression of
cells in a population through the cell cycle, as revealed by fluorescent cell-cycle labels [82, 83].
Similar ideas have been used to model other kinds of life histories, such as explicitly modelling
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adult and juvenile sub-populations, differentiation of stem cells [84], or tracking the age or
size of individual agents [85].

This framework enables various types of interactions to be included in lattice-based mod-
els, such as transition of agents from one type to another [83], predation [86], interspecific
competition [87, 88], Allee effects [89], disease transmission [90, 91], or the action of an
anti-mitotic drug [92]. Taking the continuum limit of a multi-type ABM typically leads to a
system of PDEs for the density of each type of agent, which are coupled via reaction terms
representing transitions or interactions between agents of different types [54, 68].

4.3 Modelling domain growth

Another important generalisation of lattice-based ABMs arises in the field of developmental
biology, where the random motion of molecules and cells during embryonic development
can be influenced by the growth of those tissues. These processes have been modelled
using both non-interacting lattice-based models [93–95] and lattice-based exclusion process
models [96]. A key challenge in lattice-based models of random motility on a growing domain
is to determine how changes in domain length, which is typically simulated via random
insertion or deletion of lattice sites [97], affects the distribution of agents on the lattice.
Taking the continuum limit of lattice-based models that include domain growth typically
leads to additional advection terms that describe how growth affects the spatiotemporal
distribution of agent density [93, 98].

5 Accounting for spatial structure: going beyond the

mean-field

In most of the approaches to modelling agent interactions discussed in Sections 3 and 4, the
continuum-limit approximation uses the mean-field assumption, which is that the probability
of an agent being at location x is unaffected by the presence of an agent at another location
x′. This simplifies the analysis, but ignores short-range spatial correlations that may arise
as a result of crowding effects, dispersal and other biophysical processes. As we shall see in
this section, such correlations can also impact the dynamics at the population-level, because
the extent to which agents are clustered together or spaced apart affects the frequency and
strength of agent interactions.

A patchy distribution of agents can arise from a number of different mechanisms, for exam-
ple, through environmental heterogeneity or other external factors, or solely through interac-
tions among agents. Although these different mechanisms may be difficult to distinguish by
looking at the distribution of agents in a single model realisation, they will generally be dis-
tinguishable given data from multiple realisations. Environmental heterogeneity and other
external factors will typically drive the formation of patches in the same spatial locations,
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whereas patterns of agent density generated solely from agent-agent interactions will have
predictable statistics but the locations of individual patches will differ from one realisation
to the next. In this section, we are primarily concerned with this latter case, although the
two are not mutually exclusive and can operate in combination.

One way to account for correlations in agent locations is to use a spatial moments approach,
which tracks not only the mean agent density (i.e. the first spatial moment), but also the
mean density of pairs of agents (i.e. the second spatial moment). This approach has its
origins in statistical physics [99] but has increasingly found applications in biology – see,
for example, [2, 100–102]. A drawback of this approach is that a closure approximation is
usually needed to obtain a tractable system [103, 104]. This typically involves approximating
the third moment in terms of the first and second moments and the choice of approximation
is not unique [105, 106]. However, it is important to recognise that mean-field models
implicitly close the system at the level of the first moment, and that by closing at the level
of the second moment some information about the effects of spatial structure is retained. In
Sections 5.1–5.3, we describe how the spatial moments approach has been used for different
types of ABM.

5.1 Lattice-based models

In deriving the mean-field limit for lattice-based exclusion processes in Section 3, for example
in Box 2, we assumed that the random variables representing the occupancy status of two
different lattice sites Ui,j and Uk,l were independent, which implies that ⟨Ui,jUk,l⟩ = ui,juk,l.
As a consequence of this mean-field assumption, expressions appearing in the conservation
statement in Equation (14) can be simplified. For example, the probability that there is an
agent at (i, j) and that agent moves to (i± 1, j) is

P(i,j)→(i±1,j) =
Pm

4
⟨Ui,j(1− Ui±1,j)⟩. (23)

Applying the mean-field assumption and using linearity of expectations, this may be approx-
imated as (Pm/4)ui,j(1− ui±1,j), where ui,j denotes ⟨Ui,j⟩ as previously.

Including correlations in the agent locations recognises that occupancy statuses of different
lattice sites are not generally independent, at least when the distance between sites is rela-
tively small. Box 4 provides a worked example for the lattice-based exclusion process model
with proliferation considered in Section 3.3.

Box 4. Effect of pair correlations in a lattice-based model

Consider a two-dimensional lattice-based model where, during each time step τ , agents
attempt to move with probability Pm and attempt to proliferate with probability Pp.
Suppose that the target site for all attempted movement and proliferation events is
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randomly selected from the four nearest-neighbour sites (i.e. movement is unbiased)
and any event where the target site is occupied is aborted.

To incorporate the joint dependence on the occupancy status of the starting site
and the target site into the expression for P(i,j)→(i±1,j) in Equation (23), we use
u2(1(i, j), 0(i ± 1, j)) to denote the joint probability that site (i, j) is occupied by
an agent and site (i ± 1, j) is empty. Using this notation, Equation (23) may be
written

P(i,j)→(i±1,j) =
Pm

4
u2(1(i, j), 0(i± 1, j)). (24)

Then, the change in the average occupancy ui,j of site (i, j) during a time step τ is

∆ui,j =
Pm

4
[u2(0(i, j), 1(i− 1, j) + u2(0(i, j), 1(i+ 1, j)]︸ ︷︷ ︸

migration onto site (i, j)

(25)

+
Pm

4
[u2(0(i, j), 1(i, j − 1) + u2(0(i, j), 1(i, j + 1)]︸ ︷︷ ︸

migration onto site (i, j)

− Pm

4
[u2(1(i, j), 0(i− 1, j) + u2(1(i, j), 0(i+ 1, j)]︸ ︷︷ ︸

migration out of site (i, j)

− Pm

4
[u2(1(i, j), 0(i, j − 1) + u2(1(i, j), 0(i, j + 1)]︸ ︷︷ ︸

migration out of site (i, j)

+
Pp

4
[u2(0(i, j), 1(i− 1, j) + u2(0(i, j), 1(i+ 1, j)]︸ ︷︷ ︸

proliferation onto site (i, j)

+
Pp

4
[u2(0(i, j), 1(i, j − 1) + u2(0(i, j), 1(i, j + 1)]︸ ︷︷ ︸

proliferation onto site (i, j)

.

To make progress in deriving a continuum-limit equation we define the correlation in
occupancy probability between two neighbouring lattice sites, F , via

u2(1(i, j), 1(i± 1, j ± 1) = ui,jui±1,j±1F ((i, j), (i± 1, j ± 1)). (26)

Using conservation of total probability we can simplify some terms in Equation (25)
by noting, for example, that

u2(1(i, j), 1(i± 1, j ± 1) + u2(1(i, j), 0(i± 1, j ± 1) = ui,j. (27)
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These ideas enable us to simplify Equation (25) to give

∆ui,j =
Pm

4
(1− ui,j) [ui−1,j + ui+1,j + ui,j−1 + ui,j+1]︸ ︷︷ ︸

migration onto site (i, j)

(28)

− Pm

4
ui,j [(1− ui+1,j) + (1− ui−1,j) + (1− ui,j−1) + (1− ui,j+1)]︸ ︷︷ ︸

migration out of site (i, j)

+
Pp

4
ui−1,j(1− F ((i, j), (i− 1, j))ui,j) + ui+1,j(1− F ((i, j)(i+ 1, j))ui,j)︸ ︷︷ ︸

proliferation onto site (i, j)

+
Pp

4
ui,j−1(1− F ((i, j), (i, j − 1)ui,j) + ui,j+1(1− F ((i, j)(i, j + 1)ui,j)︸ ︷︷ ︸

proliferation onto site (i, j)

.

As in the mean-field case, we identify ui,j with a smooth function u(x, y, t) and ex-
pand all terms in Equation (28) as Taylor series about (x, y) = (iδ, jδ). Dividing the
resulting expressions by τ and taking the limit as δ → 0 and τ → 0 with δ2/τ held
constant gives

∂u

∂t
= D

[
∂2u

∂x2
+

∂2u

∂y2

]
︸ ︷︷ ︸

random motility

+ ru(1− f(x, y, t)u),︸ ︷︷ ︸
proliferation

(29)

where

D = lim
δ→0
τ→0

(
Pmδ

2

4τ

)
, r = lim

τ→0

(
Pp

τ

)
. (30)

We interpret f(x, y, t) a function that accounts for the influence of local density cor-
relations upon the proliferation rate at time t.

The continuum-limit equation for mean agent density, Equation (29), contains a linear dif-
fusion term and a proliferation term containing a function f that quantifies the impact of
local correlations on population growth. The mean-field model assumes that f(x, y, t) ≡ 1,
which gives rise to the Fisher-KPP equation describing the growth and spread of the pop-
ulation. However, in reality f(x, y, t) ≥ 1 for this proliferation and migration model, which
means that local correlations (arising through the proliferation-driven build up of clusters of
agents on the lattice) suppress the growth rate of the population. Typically, larger values of
Pp/Pm entail larger values for f(x, y, t) [61]. Equation (29) also highlights that for unbiased
motility and no proliferation, the mean-field assumption is exact: all terms containing the
correlations cancel [107]. This is not the case, however, when movement is biased.

To make progress in deriving an expression for f(x, y, t) we need to derive equations for the
rate of change of the correlation functions F ((i, j), (i ± 1, j ± 1)) in Equation (28). These
equations will depend on both the correlation in occupancy probabilities of sites that are
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“next nearest neighbours” as well as on the joint occupancy probabilities of triples of lattice
sites [61]. Closing this system of “correlation equations” requires deriving the system of
equations for the evolution of all of the pairwise correlation functions F ((i, j), (k, l)), for all
pairs of sites (i, j) and (k, l) on the lattice, and then closing this system by using a closure
approximation for the triplet occupancy probability terms [99, 100, 105]. In general, the
method is unwieldy, but it can produce significantly improved predictions of the evolution
of agent density over time, in particular in two and three spatial dimensions [61].

As with mean-field models, different types of behaviours and interactions can be included. In
the cell biology literature, it is typical to include cell death at a constant rate µ, independent
of local cell density. This results in an additional term of the form −µu in Equation (29).
In this case, the death terms tend to reduce local correlations whilst the proliferation terms
increase them. The framework has been extended to include multiple species [108, 109],
multi-scale interactions [110], domain growth [111, 112], more general types of ecological
interactions [113], and coexistence of competing species [88].

5.2 Lattice-free models

Spatial correlations can be also incorporated into lattice-free models, using analogous meth-
ods to the lattice-based approach in Section 5.1. The locations of a population of agents in
continuous space at a given time define a spatial point process, which may be described by
its spatial moments (also known as product densities) [114, 115]. The kth spatial moment
p(k) is defined such that p(k)(x1, . . . ,xk)dV1 . . . dVk is the probability that there is an agent in
each of the k infinitesimal volumes dV1, . . . , dVk around locations x1, . . . ,xk. Thus, the first
moment p(1)(x) is just the mean agent density at location x. The second moment p(2)(x,x′)
is the density of pairs of agents at locations x and x′ and so on. Note that p(2)(x,x′) is
analogous to the pairwise lattice site occupancy probability in Equation (26).

When the population size and/or locations of agents changes over time, the spatial moments
are time-dependent. The dynamics of the spatial point process may be represented by a
set of equations for the rate of change of each spatial moment. The simplest case is where
there are no interactions between agents, which means that the dynamics of the kth moment
do not depend on higher-order moments, so the system is closed at the level of the first
(or any higher-order) moment. Here, movement and/or dispersal processes may be defined
by kernels representing the probability density function (usually in two spatial dimensions)
for the movement vector or for the dispersal vector of the daughter agent from the parent.
This naturally gives rise to an integro-differential equation (or integro-difference equation in
discrete time), in which the change in mean density at x is calculated by integrating over
the density at neighbouring locations [1, 116]. For example, if the probability of an agent
at location x moving to location x′ during a small time step τ is λkm(x,x

′)τ and all agents
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move independently, then the dynamics of mean agent density are described by

∂p(1)(x)

∂t
= −λp(1)(x)︸ ︷︷ ︸

migration away from x

+λ

∫
p(1)(x′)km(x

′,x) dx′︸ ︷︷ ︸
migration to x

. (31)

The first term in Equation (31) represents agents moving away from location x. The second
term represents agents moving to location x by integrating the density over all possible
starting locations x′, weighted by the probability km(x

′,x) of moving from x′ to x. It is
common for the movement kernel km to depend only on the relative displacement, ξ = x−x′,
and so to be independent of the starting location x, which simplifies Equation (31). In
this case and when movement is unbiased, it is worth noting that in the limit where the
variance σ2 of the movement kernel km(ξ) tends to zero such that λσ2 is held constant,
Equation (31) reduces to the linear diffusion equation with diffusivity D = limλ,δ→0(λδ

2/4).
This is equivalent to the diffusivity in Equation (7) for a lattice-based random walk as λ is
equivalent to the probability of movement per unit time, Pm/τ .

Interactions between neighbouring agents that lead to local density-dependence in the rates of
proliferation, death, or movement may also be described by kernel functions k(ξ) representing
the relative contribution of a neighbour located at x+ξ to the probability of a specific event
for an agent located at x. Pairwise interactions of this kind generally induce a dependence
of the rate of change of the kth moment on the (k+1)th moment, and this leads to an infinite
hierarchy of equations for ∂p(k)/∂t (k = 1, 2, . . .). To obtain a closed system, one approach
is to approximate the (k + 1)th moment in terms of lower-order moments using a moment
closure approximation [105].

An important special case is where the point process is spatially stationary, meaning that
the first moment is independent of location x and the second moment depends only on
the relative locations of the agents in the pair, ξ = x′ − x [114]. In this case, the ratio
g(ξ) = p(2)(ξ)/[p(1)]2, referred to as the pair correlation function, provides information about
the type of spatial structure [114], analogous to the lattice-based correlation function F in
Equation (28). If g(ξ) = 1, there are no pairwise correlations in agent locations and the
spatial structure (up to the level of second moment) is completely random, as for a Poisson
point process. If g(ξ) < 1 for |ξ| < l, then a neighbourhood of radius l around an agent is
likely to contain fewer agents than in a Poisson point process. This is referred to as regular
spatial structure. If g(ξ) > 1 for |ξ| < l, the neighbourhood is likely to contain more agents
than in a Poisson point process. This is referred to as clustered spatial structure. Box 5
provides a worked example for the spatial logistic model [2, 117], a lattice-free version of the
lattice-based logistic model [100, 110].

Box 5. The spatial logistic model

Consider a population of agents undergoing proliferation and death with no movement
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where xi denotes the location of agent i. Suppose that the proliferation rate b is
independent of the local density and daughters of agent i are dispersed to a location
xi + ξ with probability density function kb(ξ). Suppose also that the death rate has
both a density-independent component, µ1, and a component that depends on the
density in the local neighbourhood, µ2

∑
j kd(xj − xi). This represents the effects of

local competition among neighbours.

In this example, we assume that the system is translationally invariant, i.e. the point
process representing the agent locations is spatially stationary. This means that the
first spatial moment is independent of x and the second spatial moment depends only
on the displacement ξ between the agents in the pair [2, 118]. The rate of change of
the first moment is equal to expected proliferation minus expected deaths:

dp(1)

dt
= (b− µ1)p

(1)︸ ︷︷ ︸
density-independent proliferation-death

−µ2

∫
kd(ξ)p

(2)(ξ) dξ.︸ ︷︷ ︸
neighbour-dependent death

(32)

The integral term in Equation (32) represents the expected density of pairs of agents
p(2)(ξ) separated by displacement vector ξ, weighted by the influence kd(ξ) that a
neighbour at displacement ξ has on the death rate. The rate of change of the second
moment is given by the balance between processes that create or destroy a pair of
agents separated by displacement ξ:

∂p(2)(ξ)

∂t
= bkb(−ξ)p(1)︸ ︷︷ ︸

a

+ b

∫
kb(−ξ′)p(2)(ξ − ξ′) dξ′︸ ︷︷ ︸

b

(33)

−µ1p
(2)(ξ)︸ ︷︷ ︸
c

−µ2kd(ξ)p
(2)(ξ)︸ ︷︷ ︸

d

−µ2

∫
kd(ξ

′)p(3)(ξ, ξ′) dξ′︸ ︷︷ ︸
e

.

Figure 3 illustrates the events that are represented by terms a-e: each term represents
a type of event that creates or removes the agent at location 1 in Figure 3. For
simplicity, symmetric terms for the creation or removal of the agent at location 2 are
omitted, see [119].

If we make the mean-field assumption that the mean pair density is equal to the square
of the mean agent density (i.e. p(2)(ξ) = [p(1)]2) then, since kd(ξ) is a probability density
function, Equation (32) reduces to the logistic growth ODE:

dp(1)

dt
= (b− µ1)p

(1) − µ2[p
(1)]2. (34)

Thus, models that use a logistic growth term to represent proliferation with local
dispersal and local competition among neighbours implicitly make a moment closure
assumption at the level of the first moment.
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Figure 3: Spatial logistic model: illustration of the types of events that create or destroy a
pair of agents separated by displacement vector ξ (see Box 5). (a) proliferation of a single
agent and dispersal of the daughter by −ξ; (b) proliferation of an agent in a pair with a
passive neighbour at ξ − ξ′ and dispersal of the daughter by −ξ′; (c) density-independent
death of an agent in a pair with a passive neighbour at ξ; (d) neighbour-dependent death
of an agent caused by the other agent in the pair at ξ; (e) neighbour-dependent death of an
agent in a pair with a passive neighbour at ξ caused by a competitor at ξ′. The expressions
above the diagrams show the rate at which each event type occurs.

Some information about the spatial structure in the ABM is retained by working with Equa-
tion (33) and closing the system at the level of the second moment via a closure approximation
for p(3)(ξ, ξ′) [105]. This extra information not only enables quantification of spatial patterns
in the population, it can crucially affect the dynamics of mean agent density via the second
term in Equation (32). Closing the system at level of the second moment (k = 2) has been
found to provide a reasonable approximation to the underlying ABM in many cases where
the mean-field approximation breaks down.

For example, Figure 4 shows example simulations of the spatial logistic model for different
values of the parameters representing the length scale over which agents compete with their
neighbours and the length scale for dispersal of daughter agents. Note that, in this example,
the model is isotropic, meaning that the kernels k(ξ) and the second spatial moment p(2)(ξ, t)
at any given time t depend only on |ξ| and not on the direction of ξ. Short-range competition
leads to a regular spatial structure. This reduces the overall death rate (because the average
density in the neighbourhood of an agent is lower than the average density overall) and
thus allows the population to reach a higher density than the mean-field model predicts
(Figure 4a,c,f). Conversely, short-range dispersal leads to a clustered spatial structure, which
elevates the overall death rate and reduces the average density below that predicted by the
mean-field model (Figure 4a,d,g) [117]). Similar results have been found in a comparable
lattice-based model [110].

More generally, short-range dispersal, adhesion or attraction between agents will tend to gen-
erate clustered structure. Short-range competition or crowding effects will tend to generate
regular structure. Random motility and neighbour-independent death will tend to weaken
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Figure 4: Spatial logistic model. (a) Population size as a function of time for long-range
competition and dispersal (blue), short-range competition and long-range dispersal (red) and
long-range competition and short-range dispersal (yellow). Noisy, coloured curves show a
single simulation of the ABM; smooth, coloured curves show the numerical solution of the
spatial moment dynamics model closed at the level of the second moment via Equation (33)
with a 4-1-1 power-2 closure; dashed black curve shows the solution of the mean-field model,
Equation (34). (b)–(d) show agent locations at t = 100. (e)–(g) show the pair correlation
function g(ξ) calculated from the ABM simulation (blue) and the spatial moment dynamics
model (red). In (b) and (e) the spatial structure is approximately Poisson (i.e. g(ξ) ≈ 1)
and population size is close to that predicted by the mean-field model. In (c) and (f) the
spatial structure is regular (i.e. g(ξ) < 1 for small |ξ|) and the population size is higher than
predicted by the mean-field model. In (d) and (g) the spatial structure is clustered (i.e. g(ξ) >
1 for small |ξ|) and the population size is lower than that predicted by the mean-field model.
Competition and dispersal kernels kd and kb are Gaussian functions with standard deviation
σd and σb, respectively. The model was initialised with 20 agents uniformly distributed in
the domain [0, 1] × [0, 1] with periodic boundary conditions. Other parameter values are
b = 0.4, µ1 = 0.2, µ2 = 0.001. See Box 5 and [117, 120] for details.
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any spatial structure. These processes can operate at different spatial scales and can impact
the population-level dynamics, as well as the fine-scale distribution of agents.

The accuracy of the spatial moment dynamics approximation can depend on the choice of
closure, as well as the region of parameter space under consideration [105, 106, 121]. In some
situations, the configuration of triples of agents may impact population-level behaviour in
ways that are not captured by the pair density. In such cases, a more accurate approximation
may be obtained by closing at the level of the third moment [122].

A derivation of the dynamics of the kth moment for a general, multi-type ABM was given
by Plank et al. [119]. This includes situations where the rates of motility, proliferation and
death, and transitions between types, are enhanced or inhibited by homotypic or heterotypic
neighbours via arbitrary interaction, movement and dispersal kernels. The derivation relies
on an assumption that the effects of neighbours are additive and does not apply to situations
where rates are nonlinear functions of the contributions from neighbours, e.g. [123].

5.3 Applications of non-mean-field models

The framework accounting for correlations between neighbouring lattice sites outlined in
Section 5.1 has also been applied on more general network topologies [124]. In both a
regular lattice-based model and a network model, each node is in one of a set of possible
states at any given time. However, in a lattice-based model in d dimensions, the set of
nodes adjacent to node k simply consists of the 2d nearest lattice sites along each of the d
orthogonal coordinate directions (sometimes called the von Neumann neighbourhood). In a
network model, the neighbourhood of node k is the set of nodes that are connected to node
k by an edge. In general, the neighbourhood will depend on the network architecture and
can be of arbitrary size.

In the exclusion process model described in Section 5.1, the state space for each node is either
empty (represented by Ui,j = 0) or occupied (represented by Ui,j = 1). An empty node may
transition to the occupied state at a rate that depends on the number of neighbouring nodes
that are occupied (either via a movement or a proliferation event). Other processes can be
modelled in an analogous way using different state spaces. For example, models of infectious-
disease dynamics canonically categorise individuals as either susceptible (S), infectious (I)
or recovered (R) [125]. A susceptible node may transition to the infectious state at a rate
that depends on the number of infectious neighbours. Thus, the rate of new infections is
determined by the number of pairs [SI] of adjacent nodes where one node is susceptible and
the other is infectious.

The mean-field assumption is that [SI] is equal to the product of the number of susceptible
nodes [S] and the number of infectious nodes [I], which leads to a classical SIR model [126].
An alternative approach is to express the dynamics of [SI] in terms of the number of con-
nected triples [SSI] and [ISI], and then use a moment closure to approximate these triples
in terms of pairs and singles [91, 127]. This approach retains some information about the
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network architecture via correlations in the disease status of adjacent individuals. There
is an extensive literature on moment closure approximations for network epidemic models
(e.g. [128–132]) but we do not describe this further here.

Early lattice-free applications of spatial moment dynamics were mainly in plant ecology,
where the spatial logistic model has been used to describe the effects of local competition
and dispersal of seedlings [2, 118, 120]. The second spatial moment has the appealing
property that it captures the local agent density from an individual “plant’s-eye view”,
which can be quite different from the large-scale average density when there is significant
spatial structure [133, 134]. In a clustered population, the average individual experiences a
higher local density than the large-scale average density, and vice versa in a population with
regular structure.

The basic lattice-free spatial moments framework has been extended to include density-
dependent proliferation [135], multi-species plant communities [103, 136], and size-structured
populations [85, 137]. The framework can also be extended to situations where agents can
switch types [119], which has been used to model infectious diseases whspatial moments
frameworkere agents may transition from susceptible to infectious and subsequently recovered
states [138, 139]. It has also been used to model mutations, by allowing daughter agents to
be a different type to their parent [140, 141].

Because it relies an assumption that probabilities of events depend continuously on distances
between agent centres and are additive across neighbours, the lattice-free spatial moments
framework does not lend itself to modelling strict volume exclusion or hard sphere type
interactions. Nevertheless, by adding motility, the approach has also been applied to animal
ecology, including environmental interactions [142], predator-prey interactions [6, 143–145],
chase-escape interactions [146], and herding behaviour [147]. Binny et al. [148] incorporated
a neighbour-dependent directional bias mechanism and used this to model crowding effects in
experimental cell populations [149]. Browning et al. [150, 151] used data from experimental
cell populations to estimate the strength of neighbour-dependent effects on motility and
proliferation.

The majority of work on spatial point process models has focused on the spatially stationary
case. Some studies have extended the framework to the non-stationary case [102, 152, 153],
where the mean agent density varies with location. This is necessary for considering appli-
cations such as biological invasions [154], species range shifts [155], wound healing [156] and
embryogenesis [157]. However, outside special cases and simulation-based studies, theory
for the effects of local spatial structure in non-stationary populations is relatively under-
developed. There are other approaches to accounting for spatial correlations that avoid
the need for a closure approximation. These include working directly with the stochastic
process [158] and using a perturbation expansion in a small parameter ϵ representing, for
example, the inverse of the spatial scale of interactions [159, 160] or the excluded volume of
hard spheres [67, 68] (see Section 3.4).
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6 Discussion and future challenges

In this review we have described a range of mathematical and computational models for the
spatiotemporal dynamics of populations of individual agents, with different mechanisms gov-
erning individual-level processes, including neighbour-independent and neighbour-dependent
motility, proliferation and death. A particular emphasis has been to explore how continuum-
limit equations approximating the macroscopic, population-level behaviour can be derived
from different classes of ABM.

We have seen how including agent-agent interactions in an ABM can give rise to different
terms in the continuum-limit equation. For example, including volume exclusion in a lattice-
based ABM does not affect the linear diffusion term for random motility, but introduces a
nonlinearity into the advection term for directed motility (Section 3.2). Including other in-
teractions, such as agent-agent adhesion or repulsion, can lead to a nonlinear diffusion term
(Section 4.1). Proliferation in a lattice-based ABM with volume exclusion can be described
by a logistic growth term in the mean-field limit (Section 3.3). In contrast, in a lattice-free
model, volume exclusion introduces a nonlinearity into the diffusion term (Section 3.4) and
proliferation is generally slower than under the logistic model when density is high due to
the irregular spacing of agents (Section 3.5). Going beyond the mean-field by accounting for
pairwise spatial correlations in agent locations can increase or decrease the net population
growth rate relative to the mean-field model, depending on the nature and spatial scale of
the interactions (Section 5). These insights are valuable because they reveal general rela-
tionships between individual-level mechanisms and population-level behaviour and highlight
situations where population-level data may be insufficient to distinguish between alternative
mechanistic hypotheses.

Designing mechanistic mathematical models generally involves trade-offs between including
sufficient complexity to answer the research questions of interest, and not over-complicating
the model with irrelevant detail that obscures key mechanisms. Having a systematic frame-
work for approximating the dynamics of stochastic ABMs with dynamical equations helps
modellers and practitioners navigate these trade-offs. For example, it helps understand how,
and under what circumstances, a particular individual-level mechanism will significantly im-
pact population-level, observable behaviour, which assumptions and parameters are likely to
sensitively affect model outputs, and when and why model approximations may break down.

While this review attempts to cover key concepts relating to interacting random walk models
and developments in this field, there are many ongoing challenges. For example, questions
relating to fitting interacting random walk models with empirical data has become an im-
portant focus of research in recent years. This includes the development and application
of methods for parameter identifiability and fitting and uncertainty quantification. Tools
from both Bayesian (e.g. Markov chain Monte Carlo and approximate Bayesian computa-
tion) [161–163] and frequentist (e.g. maximum likelihood and profile likelihood) [164–166]
statistical inference may be applicable. Understanding how to implement these tools effi-
ciently is important because stochastic ABMs typically involve a higher computational cost
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than deterministic continuum-limit models. Practical parameter identifiability and exper-
imental design can also support establishment of data collection protocols to ensure that
appropriate summary statistics are collected to inform robust parameter estimates.

Another active research area relates to model design and model selection. The development
and implementation of suitable statistical tools in conjunction with population-level empir-
ical data to robustly distinguish between putative individual-level mechanisms is an active
avenue of research. This has the potential to enhance understanding of biological mecha-
nisms, or understand when available data is insufficient to distinguish alternative biological
hypotheses. Practical questions, such as whether to use a lattice-based or lattice-free model,
or what kinds of individual-level mechanisms should be explicitly incorporated, are ongoing
challenges in the field. As we have illustrated in this work, it is possible to work with differ-
ent stochastic models that have the same continuum-limit mean-field description, indicating
that care is needed when identifying parameters and mechanisms from population-level data.
Combining population-level and individual-level data may help distinguish between different
individual-level mechanisms [167].

Computational challenges, especially related to parameter identifiability and parameter es-
timation, have motivated the development of surrogate models that enable computationally
efficient simulation [168]. This facilitates parameter estimation for complicated models
that have high-dimensional parameter spaces. A related area of current research is the de-
velopment of accurate moment closure methods that go beyond the mean-field and enable
pairwise interactions to be included in models. Further, the development of equation-learning
methods [169] that enable the learning of accurate and interpretable ABMs and their coarse-
grained approximations directly from data [170, 171] is an exciting area for future develop-
ment. Constructing such models from noisy data, including single-agent tracking data and
phenotypic heterogeneity is a key challenge [172].

Another challenge in the field is for modellers working in different application areas to learn
from parallel developments in their respective areas. In some ecological contexts, the relative
infrequency of interactions owing to relatively low population densities means that quantify-
ing and understanding interactions can be difficult. In contrast, high-density environments
are common in in vitro cell biology, which means that methodologies in cell biology ap-
plications may be able to inform parallel developments in ecology. Similarly, applications
in ecology may often involve modelling environmental heterogeneities (e.g. different land
use patterns). These features are typically not encountered in in vitro cell biology applica-
tions, yet they are clearly important for in vivo applications. Therefore, these two seemingly
disparate application areas have much to learn from each other.

Data availability

Code to reproduce the results in this paper is publicly available in the repository at https://
github.com/michaelplanknz/interacting-random-walk-models and permanently archived
at https://doi.org/10.5281/zenodo.14037905.
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[35] Patlak CS. Random walk with persistence and external bias. Bulletin of Mathematical
Biophysics. 1953;15:311-38.
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