
Timing-driven Approximate Logic Synthesis Based
on Double-chase Grey Wolf Optimizer

Xiangfei Hu1, Yuyang Ye2, Tinghuan Chen2,3, Hao Yan1, Bei Yu2
1Southeast University 2CUHK 3CUHK-Shenzhen

Abstract—With the shrinking technology nodes, timing opti-
mization becomes increasingly challenging. Approximate logic
synthesis (ALS) can perform local approximate changes (LACs)
on circuits to optimize timing with the cost of slight inaccuracy.
However, existing ALS methods that focus solely on critical path
depth reduction (depth-driven methods) or area minimization
(area-driven methods) are inefficient in achieving optimal timing
improvement. In this work, we propose an effective timing-driven
ALS framework, where we employ a double-chase grey wolf
optimizer to explore and apply LACs, simultaneously bringing
excellent critical path shortening and area reduction under error
constraints. Subsequently, it utilizes post-optimization under area
constraints to convert area reduction into further timing improve-
ment, thus achieving maximum critical path delay reduction.
According to experiments on open-source circuits with TSMC
28nm technology, compared to the SOTA method, our framework
can generate approximate circuits with greater critical path delay
reduction under different error and area constraints.

I. INTRODUCTION

Timing optimization is crucial in VLSI design. As the CMOS
technology nodes continue to shrink, timing improvements
caused by traditional methods, including gate sizing and logic
restructure, are limited [1], [2]. In recent years, error-tolerant
applications are becoming increasingly popular. Consequently,
approximate computing [2], which effectively balances accu-
racy and performance, has garnered great attention. It can
significantly reduce circuit delay, area, and power with the
cost of slight computational imprecision.

Recently, approximate logic synthesis (ALS) has been pro-
posed as an automated approximate computing paradigm. It
can optimize timing under a relaxed error bound by reducing
the depth of critical paths and enhancing the drive strength of
gates on critical paths [3]. Based on optimization approaches,
existing ALS methods can primarily be divided into two
categories: (1) depth-driven methods [4]–[6] and (2) area-
driven methods [7]–[10]. Depth-driven methods perform local
approximate changes (LACs) to simplify gates on critical
paths, providing direct timing improvement. As shown in
Fig. 1, LACs are applied to critical paths 1 and 2. By omitting
certain gates, both paths become shallower and faster with
the cost of a slight error. HEDALS [6] proposes a critical
error graph to accelerate critical path depth reduction and
strictly control the introduced errors. Area-driven methods
select LACs with the best area reduction potential to minimize
circuit area. SEALS [8] and VECBEE-SASIMI [9] combine
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Fig. 1 Optimizing circuit by wire-by-wire (substitute a wire
with another wire in circuits) and wire-by-constant (substitute
a wire with constant logic value ‘0’/‘1’) LACs. Area reduc-
tions are converted into drive strength enhancement of gates.

fast error estimation with greedy algorithms to iteratively
select such LACs, efficiently reducing circuit area. Fig. 1 also
illustrates that these area reductions can be converted into
the enhancement of gate drive strength by post-optimization,
leading to further timing improvement.

However, achieving ALS with the greatest potential for
timing optimization is challenging for previous methods.
Specifically, depth-driven methods inadequately reduce area,
leading to difficulties in maximizing the drive strength of gates
on critical paths. Area-driven methods simplify many gates on
non-critical paths to reduce area, which makes it difficult to
obtain the optimal critical path depth. Therefore, it is necessary
for timing-driven ALS to simultaneously optimize both critical
path depth and area. In this scenario, conventional gradient-
based optimizers, including greedy algorithm, genetic algo-
rithm, and traditional grey wolf optimizer (GWO) [11] using
a single-chase strategy, cannot finely partition the sampled
approximate solutions. Thus, solutions are dispersed in the
solution space. This dispersion causes an excessive number of
gradients for further optimization. It makes solutions easily
move along the gradient with the current fastest critical
path depth shortening or area reduction. Finally, traditional
optimizers fall into local optima [12], [13].

In this work, we propose a timing-driven approximate logic
synthesis framework. As shown in Fig. 2, the framework
is composed of three steps, including circuit representation,
the double-chase grey wolf optimizer (DCGWO), and post-
optimization. Firstly, adjacency lists are constructed based
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Fig. 2 The overall flow of our timing-driven approximate logic synthesis framework based on double-chase grey wolf optimizer.

solely on gate fan-in relationships to enable fast circuit
structure storage and LACs application. Then, DCGWO ef-
ficiently optimizes both critical path depth and area under
error constraints. Subsequently, post-optimization under area
constraints converts the area reduction into further timing
optimization. Our contributions are summarized as follows:

• We propose a framework for deeply exploiting timing
improvement inherent in the reduction of critical path
depth and the enhancement of gate drive strength.

• We represent accurate and approximate circuits based on
gate fan-in adjacency lists to improve storage efficiency
and accelerate timing optimization.

• We present a DCGWO to effectively select approxi-
mate actions for reducing critical path depth and area.
Building upon traditional GWO, it divides the generated
approximate circuit population into finer hierarchies and
precisely formulates appropriate optimization gradients
for each hierarchy, improving the efficiency in finding
the global optimal approximate circuit.

• The experimental results demonstrate that our framework
achieves an average 27.13% and 38.54% critical path
delay reduction respectively, under a 5% error rate con-
straint and under a 2.44% normalized mean error distance
constraint, outperforming the state-of-the-art method.

II. PRELIMINARIES

A. Error Metrics
The error metrics used in our framework are error rate (ER)
and normalized mean error distance (NMED). ER can be
used to measure the error of random/control circuits, while
NMED can evaluate the error of arithmetic circuits.

For a circuit with m primary inputs and n primary outputs,
we assume the probability of input vector Ii occurring is pi,
where 1 ≤ i ≤ 2m. In this case, ER is the probability that
the approximate circuit output differs from the accurate circuit
output, calculated by Equation (1), where Oapp

i and Oori
i are

output vectors of the approximate circuit and accurate circuit
for input vector Ii.

ER =

2m∑
i=1

(Oapp
i ̸= Oori

i )× pi. (1)

Error distance is the difference between approximate circuit

output value V app
i and accurate circuit output value V ori

i under
input vector Ii. NMED is the mean error distance normalized
by the maximum output value, defined in Equation (2).

NMED =

2m∑
i=1

∣∣V ori
i − V app

i

∣∣
2n − 1

× pi. (2)

B. Problem Formulation
As introduced in Section I, optimizing both critical path
depth and area can effectively exploit the potential timing
improvement inherent in critical path depth reduction and the
enhancement of gate drive strength. Thus, the timing-driven
ALS problem can be formulated as follows:

Problem 1 (Timing-driven ALS). Given a post-synthesis
netlist of the accurate circuit with timing, area, and logic
information, use an approximate optimizer simultaneously
optimizing both critical path depth and area under error
constraints to generate the final approximate circuit with
maximum critical path delay reduction.

III. PROPOSED FRAMEWORK

The overall flow of our proposed framework is given in Fig. 2.
In step 1⃝, the accurate gate-level netlist is represented by
gate fan-in adjacency lists. In step 2⃝, double-chase grey
wolf optimizer (DCGWO) simultaneously optimizes critical
path depth and area under error constraints. It can efficiently
search for optimal approximate circuit through iterative circuit
optimization, evaluation and circuit population update. In step
3⃝, by performing dangling gates deletion and remaining

gates sizing under area constraint Areacon on the generated
optimal approximate circuit, the final approximate netlist with
maximum critical path delay reduction can be obtained.

A. Circuit Representation
We construct adjacency lists storing the circuit structure based
solely on fan-in relationships between gates. By discarding all
wire information, the LACs used in our framework, including
wire-by-wire [14] and wire-by-constant [15] replacements
(shown in Fig. 1), can be easily implemented by changing
the gate fan-in adjacency. This operation mode enables us to
efficiently assess the impact of LACs and generate correspond-
ing approximate netlist. To check for circuit loop violations,
we further label each gate with a unique integer ID. Fig. 3
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Fig. 3 Circuit representation based on gate fan-in adjacency.

shows an example of circuit representation, the circuit on the
left is stored as fan-in adjacency lists on the right.

To accommodate this circuit representation method, we
update the related definitions of above two LACs: the gate to
be changed is called target gate, while the gate used for change
(constant ‘0/1’ are also treated as gates) is called switch gate.

B. Double-chase Grey Wolf Optimizer
In DCGWO, we first generate the initial approximate circuits
population P0: {∀ci ∈ P0} by performing LACs on randomly
selected target gates of the accurate circuit. Each approximate
circuit in P0 is evaluated for fitness (defined in section III-B
as function Fit), which is composed of critical path depth and
area. Circuits with higher fitness values indicate better quality.

Circuit Optimization. As shown in Fig. 2, in each iteration,
we perform the double-chase strategy to optimize approximate
circuits in the population. The preliminary work for double-
chase involves the population division shown in Fig. 4. It
divides the population into leader circuit cl, elite circuits
Ge, and ω circuits group Gω based on their fitness values.
Specifically, the leader circuit cl is the approximate circuit with
the highest fitness. It guides the elite circuits with fitness ranks
2, 3, and 4 in Chase 1. The elite circuits guide ω circuits group
in Chase 2. For Chase 1 and 2, we design two approximate
actions: circuit searching and circuit reproduction. They are
used alternately to generate new approximate circuits along
suitable optimization gradients.

The circuit searching essentially uses wire-by-wire and
wire-by-constant to shorten critical paths. Specifically, we first
use PrimeTime [16] to obtain the critical paths with maximum
propagation time from primary input (PI) to primary output
(PO). Then, for each critical path, all gates on it are stored
in the targets set Tc and undergo uniform (0,1) distribution
sampling. All fan-ins of sampled gates with a probability
greater than 0.5 are also stored in Tc. The target gate is
randomly selected from Tc. To limit introduced error, switch
gate is selected based on similarities, i.e., the percentage of
cycles when output of target gate holds the same value with
output of each gate in its transitive fan-in (TFI) or the constant
logic value ‘0’, ‘1’. The gate or constant logic value with the
highest similarity is selected to substitute the target gate.

Fig. 5 shows circuit searching examples. For obtaining cs1

cl
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leader
cl

Elite circuits
（Quantity is 3）

 e

ω circuits group
（Contains a quantity of N-4 ω circuits）

 e
Fit(ci) rank 1

Remaining circuits

 ω
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＋

Chase 1
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 ω
(W ≤ Sω)

(W > Sω)

Searching

Reproduction
or

Fig. 4 Population division. Population is divided into leader
cl, elite circuits Ge, and ω circuits group Gω based on fitness,
with each hierarchy engaging in distinct chase operations.

from cp1 through wire-by-constant searching, Path1 is the
critical path. Thus we select ID8 gate (outputs: 14 cycles of
‘0’ and 2 cycles of ‘1’) as the target gate, and constant logic
value ‘0’ with the highest similarity 0.875 as the switch gate.
In this case, the fan-in adjacency of the ID11 gate is changed
from (5, 8) to (5, con0), greatly decreasing the Path1 depth.
Similarly, for obtaining cs2 from cp2, the fan-in adjacency of
ID15 PO is changed from 12 to 10, decreasing the Path3 depth.

Inspired by a crossover in genetic algorithm [17], circuit
reproduction is designed to aggregate well-optimized path sets
with low errors from two selected approximate circuits, gen-
erating a reproduced circuit with better quality. Specifically,
we first divide each selected circuit according to the POs and
corresponding TFI. Then, for each PO, we use its maximum
arrival time Ta and the error generated on it Error to form the
PO-TFI pair evaluation function Level in Equation (3), where
wt and we are the weights of Ta and Error respectively.

Level(POi) = wt ×
1

Ta(POi)
+ we ×

1

Error(POi)
. (3)

Subsequently, we choose PO-TFI pairs with higher Level
from two selected circuits to form the reproduced circuit.
Some gates are shared by different PO-TFI pairs. Thus, gates
in the reproduced circuit only accept adjacency information
from the first write-in. Taking circuits cp1 and cp2 in Fig. 5
as an example, by comparing their Level, we select PO2-
TFI, PO3-TFI pairs from cp1, and PO1-TFI pair from cp2, to
form circuit cr1. Since gates with IDs 8, 10 and 12 are not
in any PO-TFI pair, to ensure the completeness of cr1, their
information is selected from cp1 and cp2 to write in cr1.

Fig. 4 illustrates that approximate circuits at different hierar-
chies consult their adjacent higher-hierarchy circuits for circuit
searching and reproduction. Therefore, we design the fitness
distance D, decision parameter W and decision threshold
S for both elite circuits Ge and ω circuits group Gω . D is
calculated by Equation (4), where rc is defined as a random
value between [0, 2]. Since Ge reference the leader circuit cl
for Chase 1, D for elite circuits in Ge include the fitness of
leader circuit Fit(cl). Similarly, Gω reference Ge for Chase
2. Thus, D for ω circuits in Gω include the average fitness of
elite circuits in Ge. W provides a dynamic correction to D by

3
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Fig. 5 Illustrations of the circuit searching, circuit reproduction, and optimization gradients guided by them in double-chase.

adding the encircling coefficient A.

D(ci) =

{
rc × Fit(cl)− Fit(ci) ∀ci ∈ Ge

rc
3

∑
cj∈Ge

Fit (cj)− Fit(ci) ∀ci ∈ Gω

, (4)

W (ci) = A×D(ci), (5)

where A is calculated based on the scaling factor a as:

A = (2× r1 − 1)× a, (6)

where r1 is a random value between [0, 1]. The scaling
factor a balances the global search and local convergence
of the population during the iterative process. As shown in
Equation (7), a decreases with the increase of iteration iter
until iter reaches the upper limit of iteration Imax.

a = 2− 2× iter

Imax
. (7)

As shown in Fig. 4, the approximate actions are decided by
the relationship between decision parameter W and decision
thresholds S. Decision thresholds used for Ge and Gω are Se

and Sω , respectively. For circuit ci in Ge, if W (ci) > Se, it
executes circuit reproduction with another circuit of superior
fitness to generate a reproduced circuit. Otherwise, it uses
circuit searching to reduce its critical path depth and area.
Meanwhile, for circuit ci in Gω , if W (ci) > Sω , it performs
both circuit searching and reproduction. Otherwise, it ran-
domly selects either circuit searching or reproduction. When
the double-chase is completed, the leader cl conducts circuit
searching to ensure its variability. Then, approximate circuits
before and after double-chase are stored in the candidates’
group Gcand for further evaluation and update.

The lower right corner of Fig. 5 demonstrates that the
double-chase strategy can effectively guide the entire popula-
tion to move along the appropriate gradient with simultaneous
critical path depth and area reductions.

Circuit Fitness Evaluation. The fitness function is composed
of two optimization objectives: critical path depth and area.
The depth-related information, including the maximum critical
path depth of each approximate circuit Depthapp and the depth
of the longest path in corresponding accurate circuit Depthori,
are obtained through static timing analysis using PrimeTime
[16]. Since circuit searching and reproduction change the
connection relationship between gates, some gates become
dangling due to their inability to connect to any PO. Therefore,
the area of each approximate circuit Areaapp is the area of
accurate circuit Areaori minus the area of these dangling gates.

The fitness function Fit of approximate circuit ci is defined
in Equation (8), where wd and wa = 1 − wd respectively
denote the weights assigned to the critical path depth and area.
Circuits with higher fitness values indicate better quality.

Fit(ci) = wd ×
Depthori(ci)

Depthapp(ci)
+ wa ×

Areaori(ci)

Areaapp(ci)
. (8)

Circuit Population Update. To select high-quality ap-
proximate circuits under error constraints, we perform non-
dominated sorting [18] on the evaluated candidates’ group
Gcand. It is achieved based on Pareto dominance between
circuits determined by two functions: depth function fd =
Depthori
Depthapp

and area function fa = Areaori
Areaapp

. Firstly, we remove
circuits exceeding the specified error constraint from Gcand.
Then, we maintain the dominated list Ld for each remaining
circuit. For approximate circuits ci and cj , if ci is not inferior
to cj in two functions, and is superior in at least one of them,
then ci dominates cj and is added to Ld of cj . Circuits with
empty Ld are considered Pareto-optimal circuits. We place
them into the 0-ranked Pareto set while removing them from
Gcand and the Ld of other circuits. Subsequently, new Pareto-
optimal circuits with empty Ld emerge, forming the 1-ranked
Pareto set, and undergo the same removal process. This will
repeat until Gcand is empty.
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We further calculate the crowding distance Dist of approxi-
mate circuits in each Pareto set. With higher Dist, circuits are
less likely to overlap in the objective function space, resulting
in better optimization efficiency. In the k-ranked Pareto set,
approximate circuits are sorted separately based on fd and fa.
The Dist of the circuits at the beginning and end of these two
sorted lists are set to +∞. For approximate circuit ci, circuits
adjacent to ci in each sorted list are ci−1 and ci+1. In this
case, Dist is calculated by Equation (9).

Dist(ci) =
∑

x=d,a

fx(ci−1)− fx(ci+1)

maxk(fx)−mink(fx)
. (9)

Based on Pareto set partition and crowding distance calcu-
lation, we sort the approximate circuits within each Pareto set
in descending order of their Dist. Subsequently, starting from
the 0-ranked Pareto set, we sequentially select N approximate
circuits to form a new population for the next iteration.

After the non-dominated circuits sorting, the asymptotic
error constraint relaxation is employed. We design a quadratic
function scheme (i.e., Erroritercons. = b × iter2 + Error0cons.)
to gradually increase the error constraint Erroritercons. as the
iteration iter rises, ultimately relaxing it to the user-specified
maximum error constraint by setting appropriate empirical
parameter b. This operation prevents the population from
quickly moving to the maximum error constraint boundary
and getting trapped in local optima.

C. Post-Optimization
Post-optimization is performed on the optimal approximate
circuit generated by DCGWO. It can further convert the
area reductions into timing performance improvements by
enhancing the drive strength of gates.

We first delete dangling gates produced by circuit searching
and reproduction from the optimal approximate circuit. In this
process, we traverse the entire circuit, identifying and remov-
ing gates with empty transitive fan-out (TFO). For each fan-in
of the removed gates, we similarly perform identification and
removal operations until no gates with empty TFO remain.
Subsequently, for the processed optimal approximate circuit,
we use Design Compiler [19] to resize its remaining gates
without adjusting any circuit structure under area constraints
Areacon. Consequently, the final approximate circuits with
minimum critical path delay CPDfac are obtained.

IV. EXPERIMENTAL RESULTS

Our proposed framework is implemented in Python. We set
up the experimental environment on the Linux machine with
32 cores and 4 NVIDIA Tesla V100 GPUs in parallel with
128GB memory. The benchmarks listed in TABLE I are from
ISCAS’85 [20] and EPFL [21]. Each circuit is synthesized into
gate-level netlist by Design Compiler [19] under TSMC 28nm
technology. Among these benchmarks, random/control circuits
are optimized under ER constraints, while arithmetic circuits
are optimized under NMED constraints. For the generated
approximate circuits, their timing-related information is ob-
tained through static timing analysis performed by PrimeTime
[16]. The circuit error and the similarities between outputs

TABLE I The benchmark statistics. CPDori (ps) and Areaori
(µm2) respectively represents the critical path delay and area
of accurate circuit.

Type Circuit #gate #PI/PO CPDori Areaori Description
Cavlc 573 10/11 186.35 450.31 Coding Cavlc
c880 322 60/26 185.34 177.67 8-bit ALU

Random/ c1908 366 33/25 235.14 223.34 16-bit SEC/DED circuit
Control c2670 922 233/140 218.40 288.71 12-bit ALU and controller

c3540 667 50/22 293.09 459.42 8-bit ALU
c5315 2595 178/123 122.25 1129.55 9-bit ALU
c7552 1576 207/108 282.13 939.33 32-bit adder/comparator

Arithmetic

Int2float 198 11/7 127.02 194.63 int to float converter
Adder16 269 32/17 58.92 288.41 16-bit adder
Max16 154 32/16 131.78 91.43 16-bit 2-1 max unit
c6288 1641 32/32 847.79 687.08 16×16 multiplier
Adder 1639 256/129 1394.7 495.78 128-bit adder
Max 2940 512/120 2799.8 954.03 128-bit 4-1 max unit
Sin 10962 24/25 701.03 4367.27 24-bit sine unit
Sqrt 13542 128/64 67929.3 6262.10 128-bit square root unit
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Fig. 6 Average critical path delay ratios Ratiocpd generated
by our framework using different depth weight wd under the
tightest and loosest ER and NMED constraints.

of gates are obtained using VECBEE based on Monte Carlo
simulation [9]. By setting the number of sampled input vectors
to 1× 105, this method can achieve fast error and similarities
evaluation with nearly no deviation.

A. Parameter Setting
The parameters of our framework are set as follows. The
population size N is 30 and the upper limit of iterations
Imax is 20. For PO-TFI pair evaluation function Level, wt
is 0.9 × CPDori under both error constraints, while we is
respectively 0.1 and 0.2 under ER and NMED constraints.
For circuit fitness Fit, we determine the optimal weights based
on critical path delay ratios of the final approximate circuits
over the accurate circuits (i.e., Ratiocpd =

CPDfac

CPDori
). Fig. 6

illustrates that the minimum Ratiocpd are achieved under both
the tightest and loosest error constraints when wd is 0.8 and
wa = 1− wd is 0.2. Therefore, we follow this setting.

B. Optimization Performance
Since our framework focuses on timing optimization, we com-
pare the performance of our framework, including final critical
path delay ratios Ratiocpd =

CPDfac

CPDori
and runtime, with:

(1) area-driven methods: VECBEE-SASIMI [9]; (2) depth-
driven methods: VaACS [5], HEDALS [6]; (3) traditional
GWO (single-chase). Approximate circuits generated by these
works experience post-optimization (in Section III-C) under
area constraints Areacon to convert area reduction into further
critical path delay reduction by Design Compiler [19].
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TABLE II Comparison of performance between our framework and others under 5% ER constraints. All final generated circuits
experience post-optimization under area constraints Areacon to convert area reduction into further critical path delay reduction.

Circuit Areacon VECBEE-S [9] VaACS [5] HEDALS [6] GWO (single-chase) Ours
(µm2) Ratiocpd runtime(s) Ratiocpd runtime(s) Ratiocpd runtime(s) Ratiocpd runtime(s) Ratiocpd runtime(s)

Cavlc 450.00 0.9219 60.03 0.8745 356.89 0.9071 194.43 0.8963 407.25 0.8602 310.42
c880 177.00 0.9026 43.11 0.9221 227.13 0.8913 104.00 0.9183 201.51 0.8399 193.86
c1908 223.00 0.8679 65.32 0.5166 235.68 0.3372 310.42 0.5021 307.56 0.3865 202.79
c2670 288.00 0.6708 308.16 0.8101 477.92 0.7589 250.28 0.7703 313.99 0.6314 339.63
c3540 459.00 0.9670 391.42 0.9729 435.26 0.9203 373.26 0.9224 479.88 0.8732 324.59
c5315 1129.00 0.9113 1857.32 0.8599 1963.55 0.8270 1662.08 0.8165 1655.07 0.8034 1449.37
c7552 939.00 0.9262 1726.27 0.9133 1336.64 0.7391 1315.85 0.8877 1420.32 0.7063 1279.18
Average 523.57 0.8811 635.94 0.8385 719.01 0.7687 601.47 0.8162 683.65 0.7287 585.69

TABLE III Comparison of performance between our framework and others under 2.44% NMED constraints. All final generated
circuits experience post-optimization under Areacon to convert area reduction into further critical path delay reduction.

Circuit Areacon VECBEE-S [9] VaACS [5] HEDALS [6] GWO (single-chase) Ours
(µm2) Ratiocpd runtime(s) Ratiocpd runtime(s) Ratiocpd runtime(s) Ratiocpd runtime(s) Ratiocpd runtime(s)

Int2float 194.00 0.9331 71.23 0.5047 151.73 0.7649 32.68 0.6010 178.30 0.4496 132.12
Adder16 288.00 0.9973 67.20 0.5295 173.85 0.4513 47.30 0.5216 189.01 0.4275 167.03
Max16 91.00 0.7087 93.17 0.4209 189.73 0.4470 105.97 0.3928 277.38 0.3708 208.55
c6288 687.00 0.9663 4410.29 0.8696 3279.62 0.6368 2563.41 0.9079 2991.00 0.8313 2103.88
Adder 495.00 0.7814 1697.37 0.8133 2083.15 0.7110 1362.70 0.8008 1550.03 0.6917 1193.71
Max 954.00 0.8809 2600.78 0.8933 3397.50 0.8355 2992.08 0.7517 3121.44 0.6799 2035.62
Sin 4367.00 0.9187 5391.68 0.8326 3872.31 0.7945 3380.52 0.8722 4392.77 0.7603 3176.46
Sqrt 6262.00 0.7993 33117.12 0.8011 20160.76 0.7437 11242.29 0.7803 17894.50 0.7058 9950.11
Average 1667.25 0.8732 5931.11 0.7081 4163.58 0.6731 2715.87 0.7035 3824.30 0.6146 2370.94
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Fig. 7 Average critical path delay ratios Ratiocpd generated
by our framework, HEDALS [6] and traditional GWO under
different ER and NMED constraints.

For random/control circuits, the performance comparison of
all works under the loosest 5% ER constraint is detailed in
TABLE II. According to the comparison results, by setting the
same area constraints, our framework maximizes the average
critical path delay reduction to 27.13% with shorter runtime
under the 5% ER constraint. Similarly, for arithmetic circuits,
the performance comparison of all works under the loosest
2.44% NMED constraint is detailed in TABLE III. The
comparison results indicate that our framework maximizes the
average critical path delay reduction to 38.54% with shorter
runtime under the 2.44% NMED constraint.

We further compare the average Ratiocpd achieved by our
work with HEDALS [6] and traditional GWO under 5 different
ER constraints (1%, 2%, 3%, 4%, 5%) and 5 different
NMED constraints (0.48%, 0.98%, 1.47%, 1.96%, 2.44%).
According to results in Fig. 7, as the ER or NMED con-
straint tightens, our framework consistently achieves greater
critical path delay reductions than others. Fig. 8 illustrates
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(b) 2.44% NMED Constraint

Fig. 8 Average critical path delay ratios Ratiocpd generated
by our framework, HEDALS [6] and traditional GWO under
different area constraints (Ratio × Areacon).

how the average Ratiocpd varies with different area constraints
(0.8× ∼ 1.2× Areacon) under the loosest ER and NMED
constraints. The results indicate that our framework outper-
forms other works in timing optimization across all area con-
straints. These achievements demonstrate that our framework
can generate approximate circuits with superior performance
while meeting diverse accuracy and area requirements.

In summary, by leveraging carefully designed approximate
actions and the powerful search capabilities of DCGWO, our
framework can better exploit the timing improvement inherent
in critical path shortening and the enhancement of gate drive
strength. Additionally, compared to traditional GWO, using
the double-chase strategy to further formulate the optimization
gradients indeed helps the optimizer find better solutions.
Benefiting from the fast implementation of LACs and the
inherent parallelism of GWO, our framework maintains low
time consumption despite using PrimeTime [16] for accurate
timing analysis.
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V. CONCLUSION

In this work, we propose a timing-driven approximate logic
synthesis framework based on DCGWO to effectively optimize
circuit timing under ER or NMED constraints. Its main idea
involves using DCGWO to optimize both critical path depth
and area to achieve precise and efficient optimal approximate
circuit generation and utilizing post-optimization under area
constraints to convert area reduction into further timing im-
provement. According to the experimental results on open-
source designs, under the same error and area constraints, our
framework can achieve more critical path delay reduction than
existing methods within an acceptable time consumption.
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