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Parametrized nucleon density distributions are widely employed for the calculation of the properties
of atomic nuclei and dense inhomogeneous matter in compact stars within the Thomas-Fermi method
and its extensions. We show that the use of insufficiently smooth parametrizations may deteriorate the
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1. Introduction

Thomas [1] and Fermi [2] suggested a statistical descrip-
tion of an atom with a large number of electrons. They
used the local electron number density to calculate the
potential energy and chemical potential of an electron in
the self-consistent field of other electrons and the nu-
cleus. Subsequently the Thomas-Fermi (TF) method
was refined by various corrections and applied for study-
ing a large variety of many-body systems and dense mat-
ter (see, e.g., Refs. [3–6], for reviews). We will focus on
the extended Thomas-Fermi (ETF) theory, characterized
by inclusion of the so called gradient corrections, which
are functions of density derivatives.

The first extension to the TF model was proposed by
von Weizsäcker [7] for the description of heavy atomic
nuclei. He introduced a gradient correction to the ki-
netic energy of a system of nucleons, in order to capture
the surface effect on the nuclear binding energy. Kom-
paneets and Pavlovskii [8] showed that the leading-order
quantum correction to the TF model actually equals 1/9
of the von Weizsäcker gradient correction. Kirzhnits [9]
introduced a regular perturbative method for the deriva-
tion of corrections in powers of gradient operator ∇ ap-
plied to an effective potential. Note that this approach
leads to appearance of quantum corrections for the en-
ergy E as well as for the number density n. Hodges [10]
represented the Kirzhnits method in a more straightfor-
ward way, derived, for the first time, the correct explicit
form of the corrections to power 4 in ∇, and showed that
the quantum corrections to the density can be excluded
from explicit consideration by writing the final expres-
sion for the energy in terms of the operator ∇ applied to
the particle number density (see also [11, 12]).

The gradient corrections can be derived from the
Wigner-Kirkwood expansion of the Bloch density ma-

trix around its value obtained in the TF approximation
in powers of the reduced Planck constant ~ (see, e.g.,
Refs. [4, 5]). The lowest order terms of the ETF model
reproduce the TF expressions, and the remaining expan-
sion includes only even powers of ~. The lowest-order
corrections (∝ ~

2) involve the terms with (∇n)2 and
∇2n. Going up to order ~

4 in the expansion, one ob-
tains the next correction, containing up to the fourth
derivatives of n.

Beside the gradient corrections, other refinements of
the TF model include shell corrections, exchange and
correlation effects [3, 5, 6], and a pairing interaction cor-
rection for the description of many-nucleon systems [13].
In this context, Brack et al. [12, 14] developed a theory,
named TEFT, which generalizes the ETF model to finite
temperatures T .

It is worth saying more about the description of many-
nucleon systems. Unlike plasma, consisting of electrons
and atomic nuclei, which under laboratory conditions
can be considered as point particles interacting accord-
ing to Coulomb law, in many-nucleon systems the main
role is played by strong interactions between nucleons
having finite sizes and consisting of quarks. In a plasma,
as a rule, the Born-Oppenheimer approximation is ap-
plicable, in which electron dynamics is calculated ne-
glecting motion of nuclei, whereas in the many-nucleon
systems, protons and neutrons act as two equal kinds
of particles. Moreover, in order to correctly describe
the properties of relatively light nuclei, it is necessary to
add a three-particle potential to the two-particle inter-
action potential determined from nucleon scattering ex-
periments [15–17]. For the theoretical description of the
properties of heavier atomic nuclei and dense matter, as
a rule, self-consistent field methods with phenomenolog-
ical effective potentials of two-particle nucleon-nucleon
interactions are used, designed in such a way as to sim-
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ulate many-particle effects as well (see Ref. [18] for re-
view). The effective potentials that make it possible to
reproduce the properties of atomic nuclei have a com-
plex form. A well-known class of such potentials is the
Skyrme potential [19] and its modifications (for exam-
ple, [20]). Hartree-Fock equations with Skyrme interac-
tions for spherical nuclei were first derived in Ref. [21].
They have the form of Schrödinger equations for single-
particle wave functions, which include effective masses
of nucleons M∗ and self-consistent potentials depending
on the particle number density, kinetic energy density,
and spin-orbital density.

The nucleons in a dense matter can form Cooper
pairs and become superfluid. The most accurate self-
consistent field method for such matter is the Hartree-
Fock-Bogoliubov (HFB) method (see reviews [4, 18] and
references therein). It can be used to describe heavy
atomic nuclei (including neutron-rich nuclei in the outer
crust of neutron stars). However, if nuclei, or rather nu-
cleon clusters, are embedded in highly degenerate neu-
tron matter (for instance, in the inner crust of neu-
tron stars), the HFB method becomes too expensive.
In this case, the HFB method can be fairly accurately
approximated using the computationally much faster
ETF method with consistent shell and pairing correc-
tions added perturbatively at the end of the ETF calcu-
lation [22–25] (see [26] for detailed comparisons with the
HFB method).

A semi-phenomenological TF theory of atomic nu-
clei, which included a second-order gradient correction
with an empirically adjusted coefficient, was developed
by Bethe [27] (his paper gives also basic references to
preceding models). Brack et al. [28] found that the
fourth-order ETF theory does not need such empirical
adjustment to reproduce the nuclear binding energies to
within a few MeV, while the inaccuracy reached tens of
MeV if only the second-order corrections were included.
The modern ETF theory, which relies on accurately
calibrated effective nucleon-nucleon interactions and in-
cludes Strutinsky shell corrections [29, 30] and pairing
corrections [4, 13], allows one to reproduce all measured
masses of heavy nuclei with typical errors ∼ 0.7 MeV
(e.g., [31]; see Ref. [18] for review and references).

In the following, we will consider applications of the
ETF model to the exotic states of dense matter, where
the nucleon clusters are not necessarily quasi-spherical,
but may also take the shapes of cylinders (dubbed
“spaghetti”) and plates (“lasagna”) [32, 33]. In addi-
tion to these “pasta phases” with nucleon clusters im-
mersed in a more dilute background of free nucleons
(mainly neutrons) and electrons, there may exist “in-
verse” pasta phases with localized nucleon depletions in
the dense matter [34], called “anti-spaghetti” or “buca-
tini” (inverted cylinders) and “Swiss cheese” (inverted
spheres) [35–37]. The pasta phases may be in thermo-
dynamic equilibrium (the ground state) at mean nucleon
number densities n̄ ∼ 0.05 fm−3 − 0.08 fm−3. The nu-
clear pasta layers are called the mantle; they are located
between the solid crust and the liquid core of a neu-
tron star (see, e.g., [35, 36], and references therein). In
terms of its elastic properties, the mantle is close to liq-
uid crystals, as shown in Ref. [38] (see [39–41] for the
current state of the theory of mantle elasticity).

The densities in the mantle are only 2–3 times lower

than the nuclear saturation density nsat, which corre-
sponds to the zero pressure in the model of uniform sym-
metric nuclear matter and is close to the typical number
density of the nucleons in heavy atomic nuclei.1

The TF model and its refined versions are often
combined with the Wigner-Seitz (WS) approximation
[46, 47], which reduces the problem to consideration of a
single WS cell, replaced by an overall neutral sphere of
the same volume (see Ref. [48] for a discussion of limita-
tions of this approximation). Analogously for the phase
with cylindrical nuclei, one considers an overall neutral
cylinder. In the case of plate-like nuclei, the true WS
cell is a slab, so that a further geometrical simplification
is unnecessary.

The ground state of dense matter corresponds to the
minimum of energy E =

∫

V E dV for a given nucleon

number N ≡
∫

V (np + nn) dV in volume V under the

charge neutrality constraint
∫

V
(np − ne) dV = 0, where

ne, np, and nn are the local number densities of electrons,
protons, and neutrons, respectively, and E is the energy
density, which can be conventionally decomposed as

E = Enuc + Ee + ECoul + Ecor. (1)

Here, Enuc and Ee are contributions from the nucleons
and electrons, respectively, ECoul denotes energy density
due to Coulomb interactions (beyond those already ac-
counted in Enuc and Ee), and Ecor stands for various cor-
rections, which may appear in the refined theory, such as
shell and pairing corrections. The nuclear energy density
Enuc can be written in the nonrelativistic approximation
as (e.g., Ref. [49])

Enuc =
∑

q

~
2

2M∗
q

τq + V , (2)

where M∗
q is a density-dependent effective mass of a nu-

cleon of type q (q = n for neutrons and q = p for pro-
tons), τq is a normalized kinetic energy of a nucleon, gen-
erated by the momentum square operator in the Hamil-
tonian, and V stands for a sum of potential-energy terms.
In the ETF model, both terms in (2) depend on local
number densities nq(r), their gradients ∇nq(r), and spin
current densities Jq(r) with coefficients determined by
an employed realization of the Skyrme-type potential.
The gradient expansion enables one to express τq(r) and
Jq(r) (and therefore Enuc) as functions entirely of the
nucleon densities nq(r) and their derivatives [49].

The energy minimum can be found by solving the cor-
responding Euler-Lagrange (EL) equations. For exam-
ple, Barkat et al. [50] numerically solved the EL equa-
tions derived from the semi-phenomenological theory of
Bethe [27]. Later the EL equations were solved by dif-
ferent authors in the TF and ETF models for finite nu-
clei [51–53] and nuclear matter [51, 54, 55, 57] using the
so called imaginary time-step method [56]. However,
the fourth-order ETF theory, when used in conjunction
with Skyrme forces (see, e.g., Ref. [18] and references
therein). leads to complex, highly non-linear EL equa-
tions for the particle densities, which are difficult to solve

1Estimates of the saturation density vary from 0.14 fm−3 [4] to
0.17 fm−3 [42, 43]. The value nsat = 0.16 fm−3 is most often
quoted, based on the study by Tondeur et al. [44]. Recent exper-
imental results suggest nsat = 0.15± 0.01 fm−3 [45].
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exactly [53, 57]. To avoid these difficulties and speed up
computations, the ETF energy functional is most often
minimized explicitly within a family of parametrized nu-
cleon density profiles nn(r) and np(r) (examples will be
given below). This restricted variational method drasti-
cally simplifies and accelerates calculations. At the same
time, it can be very accurate, as was demonstrated by
Bartel et al. [57].

The ETF method is subject to different kinds of diver-
gences. Being based on expansions in powers of ~ around
the classical values, the gradient corrections can only be
calculated inside the classically allowed region of parti-
cle motion. In the case of finite or semi-finite classical
orbits, the semiclassical expansions of the number den-
sity n(r) and kinetic energy density τ(r) are not defined
at the classical turning points and beyond, and they di-
verge near these points. However, this is not a problem,
because these divergences are integrable and allow one to
obtain non-diverging expressions of the gradient correc-
tions to τ as functions of n [11]. Thus the ETF number
densities can be understood as generalized distributions
with well-defined integrals and moments [4, 12]. It is
also of interest that a non-zero temperature in the TEFT
model removes the divergence of the ETF densities and
allows their extension to the classically forbidden regions
[14].

Other divergences are related to the asymptotic nature
of the gradient expansion. The sixth- and higher-order
gradient terms diverge for densities which fall exponen-
tially to zero as functions of r, and must therefore be left
out [12, 14], at least in calculations of the properties of
isolated atoms or nuclei. Thus only the terms up to the
fourth order constitute the converging part of the ETF
expansion.

However, this part can still diverge within the re-
stricted variational method, if the trial density distri-
butions nq(r) are not sufficiently smooth. The goal of
the present paper is to clarify the smoothness conditions
for the applicability of this method to the fourth-order
ETF theory in spherical, cylindrical, and plane-parallel
WS cells.

In Sec. 2 we recall the basic ETF expressions for the
kinetic energy of nucleons. In Sec. 3, we review the most
common parametrizations of the local density of nucle-
ons, which were employed in the variational calculations
of the atomic nuclei and non-uniform matter in the crust
and mantle of neutron stars. In Sec. 4 we discuss the
divergences of the ETF energy functionals for different
kinds of kinks of the parametrized density distribution.
In Sec. 5 we derive an associated accuracy limit for nu-
merical discrete-mesh ETF calculations. In Sec. 6, con-
clusions are summarized.

2. ETF energy density

The nuclear energy in volume V is given by the integral

Enuc =

∫

V

Enuc dV, (3)

where Enuc is given by Eq. (2). The kinetic energy con-
tribution in Eq. (3) can be written as

Tq =

∫

V

~
2

2M∗
q

τq dV, τq = τ (0)q + τ (2)q + τ (4)q , (4)

where τ
(0)
q is the TF contribution, while τ

(2)
q and τ

(4)
q

are the second and fourth order gradient corrections, re-
spectively.

For simplicity, let us neglect the difference of the effec-
tive mass M∗

q from the bare nucleon mass Mq and omit
the spin-orbit terms. Then in the zero temperature limit
[11, 28]

τ (0)q =
3

5

(

3π2
)2/3

n5/3
q , (5)

τ (2)q =
1

3
∇2nq +

1

36

(∇nq)
2

nq
, (6)

τ (4)q =
n
1/3
q

(3π2)2/3

{

1

180

∇4nq

nq
−

1

72

∇nq · ∇(∇2nq)

n2
q

−
7

1080

(∇2nq)
2

n2
q

−
7

2160

∇2(∇nq)
2

n2
q

+
7

324

(∇nq)
2∇2nq

n3
q

+
23

810

(∇nq · ∇)2 nq

n3
q

−
1

45

(∇nq)
4

n4
q

}

. (7)

The fourth and third derivatives of nq(r) can be elim-
inated from Enuc by partial integration with the use of
the Ostrogradsky-Gauss theorem [10, 12]. For example,
the second term in Eq. (7) can be transformed as follows:

∫

V

φ∇nq · ∇(∇2nq) dV =

∫

V

{

∇ ·
[(

φ∇2nq

)

∇nq

]

−
dφ

dnq
(∇nq)

2 ∇2nq − φ (∇2nq)
2
}

dV

=

∮

S

(

φ∇2nq

)

∇nq · n dS

−

∫

V

[

dφ

dnq
(∇nq)

2 ∇2nq + φ (∇2nq)
2

]

dV, (8)

where n is the outer normal to the surface S of
the considered domain V , and we have denoted φ ≡

−(1/72)(3π2)−2/3n
−5/3
q for brevity. This method gives

T (4)
q ≡

~
2

2Mq

∫

V

τ (4)q (r) dV = T (4)
q,v + T (4)

q,s , (9)

where T
(4)
q,v and T

(4)
q,s can be written as

T (4)
q,v ≡

~
2

2Mq

∫

V

τ (4)q,v (r) dV, T (4)
q,s ≡

~
2

2Mq

∮

S

τ (4)q,s (r) dS,

(10)

and τ
(4)
q,v (r) includes only first- and second-order deriva-

tives of number density. Its explicit form is [49]

τ (4)q,v =
n
1/3
q

(3π2)2/3

{

1

270

(

∇2nq

nq

)2

−
1

240

∇2nq

nq

(

∇nq

nq

)2

+
1

810

(

∇nq

nq

)4
}

, (11)

which is equivalent to Eq. (30) of Hodges [10]. Usually

one assumes T
(4)
q,s = 0, so that τ

(4)
q can be replaced by
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τ
(4)
q,v in Eq. (4). To this end, Hodges [10] and Brack

et al. [12] integrated over the whole space considering in
the context of an isolated atomic nucleus in vacuum that
nq(r) vanishes at r → ∞ together with its derivatives.
In the WS approximation, one can drop the surface term

T
(4)
q,s , for example, under the condition that the normal

density derivative to the WS cell surface S equals zero2:

n · ∇nq(r)
∣

∣

r∈S
= 0. (12)

An analogous boundary condition was used by Wigner
and Seitz [46] for electron wave functions. It naturally
follows from the symmetry and periodicity of nq(r) un-
der the assumption that ∇nq is continuous.

The continuity of ∇nq was previously shown for the
density distributions that provide the exact minimum
of Enuc within the fully variational Euler-Lagrange ap-
proach [50]. We will see that the same continuity may be
also required for parametrized nucleon density distribu-
tions within the restricted variational approach, in order
to ensure convergence of the volume integral in Eq. (3).

3. Parametrizations of nucleon

density distributions

When matter is strongly compressed so that the mean
nucleon number density n̄ ≡ N/V exceeds the neutron-
drip density ndrip ∼ (2−3)×10−4 fm−3, neutrons start to
drip out of nuclei. Such huge densities occur in the inner
crust of neutron stars, where the nuclei are immersed in a
“sea” of unbound neutrons. One of the most microscopic
and tractable methods of describing such a dense matter
so far is the ETF theory with the shell corrections for the
protons (which remain bound in the nuclei) and with the
pairing corrections.

We will consider spherical, cylindrical, and slab-like
WS cells and assume that nq is symmetric with respect
to the rotations around the center of the sphere or the
axis of the cylinder, or to the reflection with respect to
the central plane of the slab. It means that the den-
sity nq depends only on radial coordinate r or r⊥ in
the first and second cases, respectively, and only on |z|
in the third case, where z is the coordinate measured
in the normal direction from the central plane of the
cell. The phases with spherical, cylindrical, and plane-
parallel symmetry are often called three-, two-, and one-
dimensional (3D, 2D, and 1D) structures, respectively.
However, one should keep in mind that such notation
concerns only the type of the symmetry of the density
distribution, whereas motion of particles (electrons and
nucleons) remains three-dimensional. These “2D” and
“1D” structures should not be confused with the true 2D
and 1D systems, which were considered, e.g., in Ref. [6]
and which are described by the ETF equations that differ
from Eqs. (5)–(7) and (11).

It is convenient to write a symmetric parametrization
of the density distribution in a WS cell in the form

nq(ξ) = nout
q + nΛq f̂q(ξ), (13)

2For instance, Onsi et al. [49] stressed: “it should be noted that
the fourth-order expressions are valid only on integrating over the
whole of space, or more generally, over a region on the surface of
which the density gradients vanish.”

f̂q(ξ) ≡
fq(ξ)− fq(R)

fq(0)− fq(R)
, (14)

where ξ is the radial coordinate for a spherical or cylin-
drical cell of radius R, or the distance from the central
plane of a slab of half-size R (ξ = r, r⊥, or |z| for the
three respective cases). The function fq(ξ) describes the
shape of the density profile, which can depend on ad-

justable parameters, and f̂q(ξ) is the normalized density
profile, so that the parameter nout

q has the meaning of a
nucleon density outside the “nuclei” (the nucleonic clus-
ters), and more generally at the cell boundary. In the
bulk of the inner crust, free protons are absent and the
nucleons are clustered near the center of the WS cell;
in this case nout

p = 0. However, free protons may ap-
pear near the transition to the core of the star [58]. We
assume fq(0) > fq(R) ≥ 0, while nΛq can be positive
for the normal phases or negative for the inverse phases.
Accordingly, nΛq = ncen

q −nout
q is the central number den-

sity excess, ncen
q being the density at the center of the

cell. Hereafter we will mark different parametrizations
of fq(ξ) by abbreviations in superscripts.

Oyamatsu [59] studied nuclear shapes in the neutron
star mantle using the Bethe theory [27] and assuming
the shapes of neutron and proton number density distri-
butions in the form

fO
q (ξ) =

{

[

1− (ξ/rq)
tq
]3

for ξ < rq,

0 for ξ ≥ rq,
(15)

An analogous parametrization, but with tn = tp, rn =
rp, and with the power index 2 instead of 3, was previ-
ously used by Arponen [60]. Parameters tq control the
sharpness of the local density profiles, while rq determine
the neutron and proton radii of a nucleus (0 < rq < R).

In this case f̂O
q (ξ) = fO

q (ξ). With increasing density n̄,
the profiles become smoother, approaching the limit of
uniform matter; therefore, the parameters tq decrease.

The parametrization (15) was widely used in TF and
second-order ETF calculations [61–64]. However, real
local density distributions of neutrons and protons in a
neutron star crust are not cut off at a certain distance
from the center of a WS cell. Therefore, rn and rp can be
treated only as convenient fit parameters. Near the bot-
tom of the crust, the local density distribution is rather
smooth, and the boundary between the free and bound
neutrons becomes rather uncertain. More importantly,
this parametrization leads to divergences for the fourth-
order ETF energy.

In a number of applications of the ETF methods to
finite nuclei (with nout

q = 0; e.g., [65]) and neutron-
star mantles (e.g., [49, 66]), the simple Fermi-function
form (also known as the Woods-Saxon shape [61, 67])
was adopted, which can be written as

fF
q (ξ) =

1

1 + exp
(

ξ−rq
aq

) , (16)

where rq is the half-height nuclear radius and aq ac-
counts for the diffuseness of the nuclear surface. This
parametrization was criticized on the grounds that it
cannot capture the asymmetry of nucleon density pro-
files at the surface of a nucleus [54]. To overcome the
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symmetry constraint, a modification of Eq. (16) was used
in a number of ETF calculations [68–71],

fMF
q (ξ) =

1
[

1 + exp
(

ξ−rq
aq

)]νq , (17)

where the power index νq is an additional fit parame-
ter. Still more general modification, which allows for
an additional enhancement or depression of the nucleon
density at the center of the WS cell, was considered in
Refs. [12, 72], but the minimized energy was found to be
insensitive to the latter degree of freedom. Meanwhile,
an increase of the power index νq from 1 to 3 decreases
the calculated energy in a heavy nucleus by ∼ 8 MeV [72],
although it does not substantially change the results for
the inner crust and mantle of a neutron star [71].

It is easy to see that neither fF
q nor fMF

q can pro-
vide trial functions nq(r) satisfying condition (12). Be-
low we will consider other modifications of the Fermi-like
parametrization (16), which can be written in the generic
form

fq(ξ) =
1

1 + h(ξ; rq, aq) exp
(

ξ−rq
aq

) . (18)

The first example of such parametrization with

hDF(ξ; rq, aq) = exp

[

(rq −R

ξ −R

)2

− 1

]

(19)

was introduced by Onsi et al. [22]. The resulting
“damped Fermi parametrization” fDF

q (ξ), which has all
derivatives vanishing at ξ = R, was consistently used for
trial density profiles in the calculations of the properties
of neutron-star inner crust and mantle by the Brussels-
Montreal group (e.g., Ref. [73], and references therein).

Density profiles nq(r) parametrized with the shape
forms fF

q (ξ), fMF
q (ξ), and fDF

q (ξ) do not have well de-
fined gradients at the centers of the WS cells. This
fact is often neglected by considering only the interval
ξ ∈ (0, R] without inclusion the origin. The gradient
corrections can be defined in the entire WS cell, if nq(r)
is treated as a generalized distribution or is meant to be
locally smoothed in a negligibly small neighborhood of
the center [74]. Nevertheless such parametrizations can
cause potential problems, discussed in the next sections.
Besides, in the case of the “lasagna” phase the non-zero
derivative of nq(z) at z → 0 hampers the aforementioned

replacement of τ
(4)
q by τ

(4)
q,v in Eq. (4), because T

(4)
q,s does

not vanish at the surface z = 0.
In the latter (“lasagna”) case, there was also a symme-

try argument disfavoring parametrization (19). Unlike
the distinction between the normal quasi-spherical nu-
clei and “Swiss cheese” or between “spaghetti” and “anti-
spaghetti” phases, there is no physical distinction be-
tween “lasagna” and “anti-lasagna”: a configuration with
a maximum at the center of the WS cell can be trans-
formed into a configuration with a minimum at the cen-
ter by simple translation of the coordinate system. In
practice, distinct lasagna and anti-lasagna parametriza-
tions can give very close energy minima producing a spu-
rious instability of a numerical minimization procedure.
To avoid it, both lasagna and anti-lasagna should be de-
scribed equally well by the chosen parametrization. This

means that for any profile nq(ξ), determined by a param-
eter set χ, there should exist a set of parameters χ′ such
that the inverted profile nq(R−ξ) obtained from a space
inversion followed by a translation is also allowed [75]3:

∀χ ∃χ′ : nq(ξ,χ) = nq(R− ξ,χ′) . (20)

If nq(ξ,χ) satisfies condition (12) for any χ, then condi-
tion (20) ensures that dnq/dξ → 0 at ξ → 0, so that the
gradient of the trial density distribution does exist and
equals zero at the WS cell center.

Parametrizations of the form (18) are symmetric with
respect to lasagna and anti-lasagna configurations pro-
vided

h(ξ; rq , aq) =
1

h(R− ξ;R− rq , aq)
. (21)

The constraint (20) is then satisfied with n′
Λq = −nΛq,

nout
q

′
= nout

q + nΛq, a
′
q = aq, and r′q = R− rq.

The particular form hDF(ξ; rq , aq) in Eq. (19) does not
satisfy the condition (21). A straightforward generaliza-
tion to fulfill this condition reads

h2DF(ξ; rq , aq) = exp

[

(rq −R

ξ −R

)2

−
(rq
ξ

)2
]

. (22)

In particular, it ensures that all derivatives of nq(r) van-
ish not only at the boundary, but also at the center of
the WS cell. However, a comparison of the ETF cal-
culations with different density profile parametrizations
[75] indicates that even the one-sided “strong damping”
defined by Eq. (19), let alone the two-sided damping in
Eq. (22), is too restrictive, because a noticeably lower
minimum of E can be obtained with a weaker (“soft”)
damping, defined by

hWDF(ξ; rq , aq) =

(

rq −R

rq

)2 (
ξ

ξ −R

)2

. (23)

The corresponding density profile not only satisfies con-
dition (12), but also has zero gradient at the center of the
WS cell. Meanwhile, higher-order density derivatives do
not vanish at the WS cell center or boundary. In the next
section we will show that the parametrizations, which do
not have the zero gradient at ξ = 0, lead to a divergence
of the ETF energy functional E in the cylindrical and
plane-parallel symmetries.

4. Divergences of non-smooth
parametrizations

4.1. Symmetric parametrizations in
pasta phases

Let us assume that fq(ξ) is finite and differentiable at
ξ > 0. Then we can write

nq(r) = nq0 + n′
q0 ξ +O(ξ2), (24)

where nq0 = nout
q + nΛq and

n′
q0 = nΛq

df̂q(ξ)

dξ

∣

∣

∣

∣

ξ→+0

.

3Alternatively, one can avoid the lasagna-anti-lasagna distinction
by imposing the condition nΛq > 0.
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If n′
q0 6= 0, then the distribution nq has a kink at the

center of the cell, and ∇nq is not well defined at this
point.

Let us evaluate a contribution to the integral (4) from
the first term on the right-hand side of Eq. (11),

τ (4a)q =
~
2

2Mq

n
1/3
q

(3π2)2/3
1

270

(

∇2nq

nq

)2

∝ n1/3
q

(

∇2nq

nq

)2

,

(25)
in a small neighborhood ξ < ε of the center of the cell. In
the case of cylindrical or plane-parallel symmetry, we will
consider WS cells of finite volume V , respectively cylin-
ders of unit length and slabs of unit area. The volume of
the ε-neighborhood of their center will be denoted by Vε.
For the plane-parallel, cylindrical, or spherical symme-
try, ∇2nq = ξ1−D (∂/∂ξ)(ξD−1∂nq/∂ξ), where D = 1,
2, or 3, respectively.

In the case of the spherical symmetry, Eq. (24) gives

∫

Vε

n1/3
q

(

∇2nq

nq

)2

dV = 4π

∫ ε

0

n−5/3
q

(

∇2nq

)2
r2 dr

= 16π n
−5/3
q0 (n′

q0)
2 ε+O(ε2). (26)

Here, the right-hand side tends to zero at ε → 0. There-
fore the kink at r = 0 can be safely isolated by removing
a sphere of sufficiently small radius ε around the center
without an appreciable effect on the integral (4).

In the case of cylindrical symmetry,

∫

Vε

n1/3
q

(

∇2nq

nq

)2

dV = 2π

∫ ε

0

n−5/3
q

(

∇2nq

)2
r⊥ dr⊥

= 2πn
−5/3
q0 (n′

q0)
2

∫ ε

0

dr⊥
r⊥

+O(ε). (27)

The last integral diverges. Therefore, the contribution
of this gradient correction to Enuc is infinite, unless
n′
q0 = 0. This result shows that the energy of a cylindri-

cal WS cell (per unit length of the cylinder), calculated
according to the ETF theory, can be made finite only by
such a density distribution nq(r⊥) that

lim
r⊥→0

dnq

dr⊥
= 0. (28)

For the plane-parallel WS cells, we have ξ = |z|. Tak-
ing into account that d |z|/dz = 2θ(z) − 1, where θ(z)
is the Heaviside step function, and dθ(z)/dz = δ(z),
where δ(z) is the Dirac delta function, we obtain ∇2nq =
2n′

q0 δ(z) +O(1). Now

∫

Vε

n1/3
q

(

∇2nq

nq

)2

dV =
(2n′

q0)
2

n
5/3
q0

∫ ε

−ε

[δ(z)]2 dz +O(1).

(29)
Since the squared delta function is not integrable, the
integral is finite only if n′

q0 = 0, that is

lim
z→0

dnq

dz
= 0. (30)

4.2. Continuity across a surface

Condition (30) can be generalized. Let us consider a
continuous distribution nq(r) which has a kink (i.e.,

a discontinuous first derivative) at the plane z = 0:
nq(r) = nq0(x, y) + n′

+(x, y) z + O(z2) at z > 0 and
nq(r) = nq0(x, y) + n′

−(x, y) z + O(z2) at z < 0. It can
be written as

nq(r) = nq0(x, y) +
n′
+(x, y) + n′

−(x, y)

2
z

+
n′
+(x, y)− n′

−(x, y)

2
|z|+O(z2). (31)

By analogy with Eq. (29), a contribution of the term con-

taining |z| to the integral of τ
(4a)
q over an ε-neighborhood

Vε = ∆S ⊗ [−ε, ε] of any finite element ∆S of the plane
z = 0 (for example, parallelepiped Vε = {x, y, z : |x| <
∆x, |y| < ∆y, |z| < ε}) is proportional to

∫

Vε

n1/3
q

(

∇2nq

nq

)2

dV = A∆S

∫ ε

−ε

[δ(z)]2 dz +O(1),

(32)
where

A∆S =

∫

∆S

[n′
+(x, y)− n′

−(x, y)]
2

n
5/3
q0 (x, y)

dS. (33)

If A∆S 6= 0, the integral (32) diverges. Since the sur-
face element ∆S is arbitrary, the divergence can be ex-
cluded only if n′

+(x, y) ≡ n′
−(x, y), except possibly a

zero-measure submanifold of points (x, y). This means
the absence of a kink across the plane.

If nq(r) has a kink at a smooth surface, which is
not plane, one can approximate a sufficiently small area
around an arbitrary point on this surface by the tan-
gent plane and apply the above considerations to prove
the divergence. Thus we conclude that nq(r) should not
have a kink on a smooth surface. As a particular case,
it should not have a kink on the WS cell boundary, if
instead of spheres and cylinders one considers the true
polyhedral WS cells filling the space and minimizes E
in two or more adjacent cells together. Assuming that
nq(r) is symmetric and periodic, this leads to Eq. (12).

Although we have considered only one term in
Eq. (11), obtained with the use of the Ostrogradsky-
Gauss theorem, the drawn conclusions are general and
do not assume fulfillment of condition (12) in advance.
Indeed, we can isolate a kink location by a surface, across
which nq(r) is smooth, and apply this theorem only to
the contribution into the integral (9) from the domain
surrounded by this surface. Then the volume integral

of τ
(4)
q,v over the considered domain contains the above-

discussed divergence, whereas the corresponding surface
integral is finite and cannot cancel it. Besides, the third
term in the original expression (7), being proportional

to τ
(4a)
q (25), contains the same divergence.

5. Accuracy limit for non-smooth

parametrizations

One can try to circumvent the smoothness conditions,
such as Eq. (28) or Eq. (30), by introducing a local
modification of nq(r) in a small neighborhood Vε around
the origin so that the modified trial density distribution



ON VARIATIONAL TRIAL FUNCTIONS IN THE EXTENDED THOMAS-FERMI METHOD 7

ñq(r) coincides with nq(r) outside Vε and has a continu-
ous gradient everywhere. Since ε is small and ñq is sym-
metric and differentiable, we have ñq|ξ≤ε = nq0 + O(ε)
and ∇ñq|ξ=ε · nε = n′

q0 + O(ε), where nε is the outer
normal to the surface of Vε, which we denote Sε. Then
the average of ∇2ñq in Vε equals

〈

∇2ñq

〉

≡
1

||Vε||

∫

Vε

∇2ñq dV =

∮

Sε

∇ñq|ξ=ε · nε
dS

||Vε||

=
[

n′
q0 +O(ε)

] ||Sε||

||Vε||
=

n′
q0D

ε
+O(1), (34)

where ||Vε|| = ||Sε|| ε/D = πD/2 εD/Γ(D/2 + 1) and
the angle brackets denote the averaging. Assuming that
nq0 6= 0 and using the inequality 〈x2〉 ≥ 〈x〉2, we obtain

∫

Vε

(

∇2ñq

)2

ñ
5/3
q

dV ≈
||Vε||

n
5/3
q0

〈

(

∇2ñq

)2
〉

≥
||Vε||

n
5/3
q0

〈

∇2ñq

〉2
≈

D2||Vε||

ε2n
5/3
q0

|n′
q0|

2, (35)

where the approximate equality implies an accuracy up
to the factor of 1 + O(ε). Thus, in the limit of small ε,

the leading contribution of the integral of τ
(4)
q over Vε to

the kinetic energy correction T
(4)
q can be bounded from

below as

T (4a)
q,ε ≡

∫

V ε

τ (4a)q dV &
~
2

540Mq

D2||Vε||

(3π2)2/3
|n′

q0|
2

ε2n
5/3
q0

. (36)

When considering a WS cell fragment in the lasagna
phase (D = 1), Eq. (36) leads to the following inequality
for the contribution of the kink to the kinetic energy per
one nucleon:

T
(4a)
q,ε

N
&

~
2

540Mq

1

(3π2)2/3
n
1/3
q0

n̄R

(

n′
q0

nq0

)2

ε−1. (37)

The right-hand side of Eq. (37) tends to infinity at ε → 0,
unless n′

q0 = 0. Thus, an accuracy of a discrete-mesh
calculation of the fourth-order ETF energy has a fun-
damental limit for non-smooth trial functions, because
the mesh cannot be arbitrarily refined: the smaller the
interval (−ε, ε), over which the smoothing is performed,
the larger its contribution.

For example, the pasta phases were studied in Ref. [74]
using the BSk24 nuclear energy-density functional with
the damped Fermi (DF) parametrization, defined by
Eqs. (18) and (19). The lasagna phase was found to
exist in the density range n̄ ∼ (0.07 − 0.08) fm−3. In
this range, the optimal variational parameters were, re-
spectively, R ≈ (13.7 − 13.0) fm, rp ≈ (4.7 − 6.6) fm,
rn − rp ∼ 0.5 fm, an,p ≈ (1.0 − 1.3) fm, nΛn ≈
(0.028 − 0.019) fm−3, nout

n ≈ (0.058 − 0.065) fm−3,
and nΛp ≈ (0.007 − 0.005) fm−3. Then Eqs. (13),

(14), (18), (19), and (37) give (T
(4a)
n,ε + T

(4a)
p,ε )/N &

(0.034−0.007) eV fm/ε. In the considered density range,
energies of different pasta phases differ typically by a few
hundreds of eV per nucleon. Therefore the accuracy lim-
itation would be essential when performing numerical in-
tegration of the ETF equations with steps ε . 10−3 fm.

In fact, a much coarser mesh was used in Ref. [74], which
provided the practical imperceptibility of the results of
that study to the accuracy limit (37).

6. Conclusions

We considered the smoothness conditions on trial den-
sity distribution nq(r) for the applicability of the fourth-
order ETF theory in the approximations of spherical,
cylindrical, and plane-parallel WS cells. We have shown
that a gradient discontinuity (a kink) of a trial density
distribution at any smooth surface (which can be a WS
cell surface) or at the center of a cylindrical or plane-
parallel WS cell makes the fourth-order ETF gradient
correction divergent. On the other hand, a kink of nq(r)
at the center of a spherical WS cell does not result in a
divergence. In the latter case, the second and fourth or-
der gradient corrections can be treated as distributions
and remain integrable.

In previous discrete-mesh calculations, a kink of nq(r)
was sometimes understood (e.g., Ref. [74]) as an approx-
imation to a sufficiently smooth function ñq(r), which
was not explicitly defined but was meant to coincide with
the employed trial function nq(r) at the mesh nodes. In
Sec. 5 we demonstrated a fundamental limitation of the
accuracy inherent to this approach.

This accuracy limitation, however, does not invalidate
the previously reported results [73, 74], because it lies
well below their actual accuracy. According to these
calculations, in order to correctly determine the struc-
tural phase transitions between the nuclear pasta phases,
it is sufficient to calculate energy per nucleon with an
accuracy of . 0.1 keV. Meanwhile, the minimal con-
tribution of the smoothed-out central kink in the DF
parametrization (19), evaluated according to Eq. (37),
does not exceed 0.1 keV per nucleon in the lasagna phase,
if ε & 10−3 fm. As mentioned in Ref. [74], the integrals
calculated with a mesh size of 0.1 fm correspond to the
kink having been smoothed out locally over the region
ξ . 0.01 fm, which is sufficient for the required accuracy.

We should emphasize that the above numerical ex-
ample pertains to the concrete implementation of the
ETF theory, based on the BSk24 energy density func-
tional [74]. Besides, we have used the approximation
M∗

q = Mq, which means that our numerical estimates
are only valid by order of magnitude, but not exact. The
limit on the step in ξ can be different with another nu-
clear interaction model. The result can also depend on
the interval of the scanned parameters in the minimiza-
tion procedure. For instance, because of the divergences,
a numerical minimization can sometimes result in unre-
alistic values of parameters with much bigger error on
the energy in comparison with optimal parameters.

Anyway, the implicit smoothing-out of the divergences
entails a risk of spoiling the results through the depen-
dence on the rather arbitrary smoothing function. For
example, a numerical integration of the kinetic energy
density with an automated choice of an integration step
might occasionally “feel” the contribution from the kink,
which would result in unlimited refinement of the mesh
to ever smaller step sizes ε near the kink points, thus
leading to the divergence evaluated in Sec. 5. Thus we
conclude that using trial functions with continuous first
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derivatives everywhere, including the center of a WS
cell, should be recommended for solving the fourth order
ETF equations by the restricted variational method.
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Fonds de la Recherche Scientifique (Belgium) under
the Excellence of Science (EOS) programme (project
No. 40007501). The work of N.C. received funding from
the Fonds de la Recherche Scientifique (Belgium) under
Grant No. IISN 4.4502.19.
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