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Abstract

Let T be a rooted tree in which a set M of vertices are marked. The lowest common ancestor
(LCA) of M is the unique vertex ℓ with the following property: after failing (i.e., deleting) any
single vertex x from T , the root remains connected to ℓ if and only if it remains connected to
some marked vertex. In this note, we introduce a generalized notion called f -fault-equivalent
LCAs (f -FLCA), obtained by adapting the above view to f failures for arbitrary f ≥ 1. We
show that there is a unique vertex set M∗ = FLCA(M, f) of minimal size such after the failure
of any f vertices (or less), the root remains connected to some v ∈ M iff it remains connected
to some u ∈ M∗. Computing M∗ takes linear time. A bound of |M∗| ≤ 2f−1 always holds,
regardless of |M |, and holds with equality for some choice of T and M .

1 Introduction and Results

Consider the following motivating problem. There is an n-vertex tree T , rooted at a source s. In
this tree, a nonempty and possibly large vertex subset of interest M ⊆ V (T ) is marked. We are
preparing for the future failures (or faults) of at most f currently unknown vertices, which will be
deleted from the tree. (A faulty vertex may or may not be marked.) After the failures F ⊆ V (T )
occur, we will be interested to understand whether they cause s to disconnect from all the marked
vertices. Namely, we will want to answer the following question: Is there some marked vertex
v ∈M that remains reachable from s in T − F?

However, we would like to save on memory costs, and avoid storing the entire set M . Instead,
we want to preprocesses M to find and store a smaller “representative” set of vertices M∗ ⊆ V (T ),
which is equivalent to M in terms of the above question. Namely, for every fault-set F ⊆ V (T )
with |F | ≤ f , all vertices in M∗ are disconnected from s in T − F if and only if this is true for the
original marked set M .

We now introduce some definitions to formalize the above. First, we define the covering relation.

Definition 1. For two vertex sets A,B ⊆ V (T ), we say that A covers B, and denote A < B, if for
every b ∈ B there exists a ∈ A which is an ancestor of b in T .

Note that the failure of F ⊆ V (T ) disconnects s from all of M iff F < M . Our requirement
from the representative set M∗ is that this should happen iff F < M∗, whenever |F | ≤ f . We
therefore define the f -fault equivalence relation.

Definition 2. For f ≥ 1, we say that two vertex sets M,N ⊆ V (T ) are f -fault-equivalent, and
denote M ∼f N , if for any F ⊆ V (T ) with |F | ≤ f , it holds that F < M iff F < N .
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Our motivating problem can now be succinctly stated as follows:

Problem 1. Given the tree T , the marked set ∅ 6= M ⊆ V (T ) and a fault parameter f ≥ 1, find a
set M∗ ⊆ V (T ) of minimal size such that M∗ ∼f M .

Relation to Lowest Common Ancestors. When preparing for a single vertex failure, i.e.,
when f = 1, a moment’s reflection will show that one can always choose M∗ having only one
vertex: the lowest common ancestor (LCA) of all marked vertices, denoted LCA(M). Indeed, a
single failed vertex v disconnects all of M from s iff {v} < M , namely iff v is a common ancestor
of all marked vertices, which happens iff v is an ancestor of LCA(M), i.e., iff {v} < {LCA(M)}. In
fact, LCA(M) is the only single vertex satisfying this property. This means that LCA(M) could
be equivalently defined by the unique optimal solution to Problem 1 with f = 1.

Thus, letting f increase beyond 1 yields a generalized notion of LCA given by the optimal
solution to Problem 1. Also, as we will show, the optimal solution M∗ is always unique, and
consists of LCAs of subsets of M . For these reasons, we call M∗ the f -fault LCA of M , and denote
it by FLCA(M,f). (So, by the above discussion, FLCA(M, 1) = {LCA(M)}.)

Results. In this note, we give a simple algorithm to compute FLCA(M,f), the optimal solution
for Problem 1, and answer a natural question of interest (given our ”memory savings” motivation):
how small can FLCA(M,f) be? When f = 1, we saw it has size 1, regardless of how large M is.
This extends to a bound of 2f−1 on the size of FLCA(M,f), which is worst-case optimal (i.e., for
some choice of T,M , |FLCA(M,f)| = 2f−1). Thus, when the fault parameter f is constant, we
can represent any marked vertex set M (in the sense of f -fault equivalence) using only a constant
number of representative vertices. Our results are summarized in the following theorem.

Theorem 1. Let T be an n-vertex tree rooted at vertex s, M ⊆ V (T ) be a non-empty set of marked
vertices, and f ≥ 1. The following hold:

1. There is a unique set FLCA(M,f) having minimal size among all the f -fault-equivalent sets
to M , namely among {N ⊆ V (T ) | N ∼f M}.

2. It holds that |FLCA(M,f)| ≤ 2f−1, and this bound is tight. That is, for some choice of T
and M , this holds with equality.

3. There is an O(n) time algorithm to compute FLCA(M,f) given T , M and f . Further, after
O(n) time for preprocessing T , one can compute FLCA(M,f) within O(|M |) time.

Edge Faults. We remark that considering failures of edges instead of vertices, or even allowing a
mixture of failing vertices and edges, does not change our results regarding FLCA(M,f). To state
this explicitly: FLCA(M,f) is the unique vertex set M∗ ⊆ V (T ) having minimal size such that for
every F ⊆ V (T ) ∪ E(T ) of size |F | ≤ f , in T − F it holds that the root s is connected to some
v ∈M iff it is connected to some u ∈M∗. This is due to the fact that, in terms of connectivity to
the root, the failure of an edge in a tree has the same effect as the failure of its lower endpoint.

Aggregation. It is easy to prove that the function ϕ(·) = FLCA(·, f) admits the following nice
aggregation property: ϕ(A ∪ B) = ϕ(A ∪ ϕ(B)). Such aggregation properties are often exploited
for efficient computations. As a “toy example”, suppose the marked set M is revealed to us over
time in batches M1,M2,M3, . . . . Then we can save on memory in the time between batches t and
t+ 1, only (at most 2f−1) vertices in M∗

t = FLCA(M1 ∪ · · · ∪Mt, f). When Mt+1 arrives, we can
use the aggregation property and compute M∗

t+1 as FLCA(M∗
t ∪Mt+1, f).
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Potential Applications. The notions and results presented in this note were developed during
research on fault-tolerant graph data structures, but eventually did not make their way into the
final solutions. Still, the author believes they could be of potential use in the field of fault-tolerant
graph structures and algorithms, and hopes such applications would be found in the future.

2 Proof of Theorem 1

The proof is by analyzing the following algorithm for computing FLCA(M,f). The notation Tv

stands for the subtree of T rooted at vertex v.

Algorithm 1 Algorithm A for computing FLCA(M,f)

Input: Rooted tree T , non-empty vertex set M ⊆ V (T ), integer f ≥ 1
Output: Vertex set A(T,M, f) ⊆ V (T )

1: ℓ← LCA(M)
2: if ℓ ∈M then return {ℓ}

3: u1, . . . , ud ← the children of ℓ with M ∩ V (Tui
) 6= ∅ ⊲ Note: d ≥ 2 as LCA(M) = ℓ /∈M

4: if d > f then return {ℓ}

5: M1, . . . ,Md ←M ∩ V (Tu1
), . . . ,M ∩ V (Tuk

)

6: return
⋃d

i=1A(T,Mi, f − d+ 1) ⊲ Note: 1 ≤ f − d+ 1 ≤ f − 1

We divide the proof into several claims regarding algorithm A. All of them are proved by strong
induction on f . We denote the output as M∗ = A(T,M, f), and in case Line 6 is executed, we also
denote M∗

i = A(T,Mi, f − d+ 1).
Throughout, we will use extensively the following easy-to-observe properties of the covering

relation < from Definition 1, without explicitly stating them. The notation T [u, v] stands for the
(unique) tree path between vertices u and v.

Observation 2. The covering relation < from Definition 1 has the following properties:

1. It is reflexive and transitive. (Namely, < is a preorder.)

2. A < B ⇐⇒ B ⊆
⋃

a∈A V (Ta) ⇐⇒ ∀b ∈ B, A ∩ T [s, b] 6= ∅.

3. If A < B, then for every B′ ⊆ B it holds that A < B′ and {LCA(A)} < {LCA(B′)}.

4. If Ai < Bi for all i, then
⋃

iAi <
⋃

iBi.

5. Assume A < B and B ⊆ V (Tv). Let A
′ be any subset of A obtained by removing some vertices

lying outside of Tv ∪ T [s, v]. Then A′ < B.

We start with an auxiliary lemma, stating that the output M∗ must lie between ℓ = LCA(M)
and M in terms of covering.

Lemma 3. {ℓ} < M∗ < M .

Proof. If M∗ = {ℓ} this is trivial. Otherwise, the algorithm must have executed Line 6. By the
induction hypothesis, {LCA(Mi)} < M∗

i < Mi for all i = 1, . . . , d. As {ℓ} < {LCA(Mi)}, we
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deduce that

{ℓ} <
d⋃

i=1

M∗
i = M∗

<

d⋃

i=1

Mi = M

as required.

We now turn to prove the first item of Theorem 1, by the following Claim 4 and Claim 5.

Claim 4 (f -Fault Equivalence). M∗ ∼f M .

Proof. Let F ⊆ V (T ) with |F | ≤ f . We should prove that F < M∗ ⇐⇒ F < M .

(=⇒) Follows immediately from Lemma 3.

(⇐=) If F < {ℓ} then F < M∗ by Lemma 3 and we are done. Assume now that F 6< {ℓ}, i.e.
F ∩ T [s, ℓ] = ∅. As F < M , it follows that ℓ /∈ M . Hence, the condition of Line 2 is not
satisfied, and Line 3 must have been executed. Each subtree Tui

must intersect F , since
otherwise, the subset Mi of M could not have been covered by F (because F ∩ T [s, ℓ] = ∅).
Because Tu1

, . . . , Tud
are disjoint, we see that d ≤ |F | ≤ f . This means that the condition of

Line 4 is not satisfied, hence Line 6 must have been executed.

Let Fi = F ∩ V (Tui
). Note that Fi < Mi, because F < Mi and all vertices in F − Fi lie

outside of Tui
∪T [s, ui]. Also, each of the d− 1 disjoint subtrees {Tuj

}j 6=i contains one vertex
from F − Fi, and thus |Fi| ≤ |F | − (d − 1) ≤ f − d + 1. Since Mi ∼f−d+1 M∗

i holds by the
induction hypothesis, we obtain that Fi < M∗

i . We conclude that

F <

d⋃

i=1

Fi <

d⋃

i=1

M∗
i = M∗.

Claim 5 (Minimality and Uniqueness). If N ⊆ V (T ) and N ∼f M , then |N | ≥ |M∗|, and equality
holds iff N = M∗.

Proof. Consider first the case where M∗ = {ℓ}. Then, as M is non-empty, N also cannot be empty,
i.e. |N | ≥ 1 = |M∗|. If equality holds, then N contains a single vertex v. Trivially, {v} < N . Since
N ∼f M (and f ≥ 1) we obtain {v} < M . Thus, v is a common ancestor of all vertices in M , so
it must be an ancestor of ℓ = LCA(M). However, it cannot be a strict ancestor of ℓ, as then we
would have {ℓ} < M and {ℓ} 6< {v} = N , contradicting the assumption that N ∼f M . Thus v = ℓ,
so N = M∗.

It remains to consider the case where M∗ 6= {ℓ}. Then the algorithm must have executed
Line 6, and the conditions of Line 2 and Line 4 were not satisfied. Hence, U = {u1, . . . , ud} < M
and d ≤ f . Since N ∼f M we get that U < N . Therefore, letting Ni = N ∩ V (Tui

), we have

N =
⊎d

i=1Ni (where ⊎ denotes disjoint union).
We now observe that, for any F ′ ⊆ V (T ) with |F ′| ≤ f − d+ 1, it holds that

F ′
< Mi ⇐⇒ F ′ ∪ (U − {ui}) < M ⇐⇒ F ′ ∪ (U − {ui}) < N ⇐⇒ F ′

< Ni
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where the middle ‘⇐⇒’ holds as |F ′∪(U−{ui})| ≤ f and N ∼f M . This means that Ni ∼f−d+1 Mi.
The induction hypothesis thus yields that |Ni| ≥ |M

∗
i |, and equality holds iff Ni = M∗

i . We deduce
that

|N | =
d∑

i=1

|Ni| ≥
d∑

i=1

|M∗
i |. (1)

Now, as Mi ⊆ V (Tui
), it follows (by Lemma 3 for M∗

i = A(T,Mi, f − d + 1)) that M∗
i ⊆ V (Tui

).

Hence, the union returned in Line 6 is disjoint, i.e. M∗ =
⊎d

i=1M
∗
i . Thus, the right-hand-side

of Eqn. (1) is equal to |M∗|, so we have shown that |N | ≥ |M∗|. Furthermore, in light of Eqn. (1),
|N | = |M∗| can hold only if for all i = 1, . . . , d we have |Ni| = |M∗

i |, and thus also Ni = M∗
i . So in

this case,

N =
d⊎

i=1

Ni =
d⊎

i=1

M∗
i = M∗

as required.

Next, we prove the second item of Theorem 1.

Claim 6 (Size Bound). |M∗| ≤ 2f−1. Further, for some choice of T and M , equality holds.

Proof. If M∗ = {ℓ} then the inequality is trivial. Otherwise, Line 6 must have been executed, so
M∗ =

⋃d
i=1M

∗
i . Using the induction hypothesis, we obtain

|M∗| ≤
d∑

i=1

|M∗
i | ≤ d · 2(f−d+1)−1 =

d

2d−1
· 2f−1 ≤ 2f−1.

For a case where equality holds, consider T being a full binary of height at least f − 1, with all
of its leaves marked as M . Then it is easy to verify that M∗ = A(T,M, f) is the set of all 2f−1

vertices with depth f − 1.

Finally, we prove the third and last item of Theorem 1.

Claim 7 (Implementation). The tree T can be preprocessed in O(n) time so that queries (M,f)
can be answered with FLCA(M,f) within O(|M |) time.

Proof. Algorithm A can be implemented in O(n) time by dynamic programming on the tree T . As
an improvement, we show after O(n) time for preprocessing T , one can answer queries (M,f) by
computing FLCA(M,f) within O(|M |) time. To this end, We build two classical data structures
for (pairwise) LCA and level ancestor queries:

lca(u, v) : returns the lowest common ancestor of vertices u and v

anc(u, l) : returns the ancestor v of u such that depth(v) = l (or undefined if depth(u) < l)

This requires O(n) time, and queries can be answered in O(1) time [BF00, BF04]. Additionally,
we create a lookup table D for vertices, where D[v] stores a “switch bit” initialized to zero, and
a pointer initialized to a null value. This concludes the preprocessing, taking O(n) time. Given
a query (M,f) with M = {v1, . . . , v|M |}, we now explain the implementation details for executing
A(T,M, f) in O(|M |) time.

Computing ℓ takes O(|M |) time by initializing ℓ ← lca(v1, v2) and updating ℓ ← lca(ℓ, vi)
for i = 3, . . . , |M |. Computing u1, . . . , ud and M1, . . .Md is most of the work. We aim to store
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u1, . . . , ud in a linked list L, and to store each Mi in a linked list pointed to from D[ui]. We
sequentially process each vi ∈ M as follows. First, we compute u ← anc(vi,depth(ℓ) + 1). Next,
we do a lookup to D[u]. If the switch bit is 0, we (i) change it to 1, (ii) change the pointer of D[u]
to the head of a new linked list of length 1 that stores vi, and (iii) add u to the linked list L. If the
switch bit is 1, we just add v to the linked list pointed by D[u] (that was created when the switch
was turned on). Overall, this takes O(|M |) time.

To invoke the recursive calls, We scan the linked list L containing u1, . . . , ud (where this is their
order in L). When processing ui, we “clean up” the lookup table entry D[ui] by copying the pointer
to the linked list containing Mi, then reverting D[ui] to its original state (switch bit 0 and null
pointer). We can now execute the recursive calls A(T,Mi, f − d+1). This ensures that the lookup
table D returns to its cleaned state after the current query (M,f) is answered, allowing us to treat
any future query (M ′, f ′) in the same manner.
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