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Abstract. In the theory of dynamic programming, an optimal policy is a policy
whose lifetime value dominates that of all other policies at every point in the state
space. This raises a natural question: under what conditions does optimality at a
single state imply optimality at every state? We show that, in a general setting, the
irreducibility of the transition kernel under a feasible policy is a sufficient condition
for extending optimality from one state to all states. These results have important
implications for dynamic optimization algorithms based on gradient methods, which
are routinely applied in reinforcement learning and other large scale applications.

1. Introduction

Dynamic programming is a major branch of optimization theory, with applications
ranging from supply chain management and fleet maintenance to option pricing, DNA
sequencing, and air traffic management. Dynamic programs that include uncertainty
are often called Markov decision processes (MDPs) and the theory of such processes
has been extensively developed (see, e.g., Bäuerle and Rieder (2011), Hernández-
Lerma and Lasserre (2012), Bertsekas (2012), or Bertsekas (2022)). Much of the
recent surge in interest in MDPs has been fueled by artificial intelligence and rein-
forcement learning (see, e.g., Bertsekas (2021) or Kochenderfer et al. (2022)).

Let Σ be the set of all policies for a given MDP, each of which is a map σ from a state
space X into an action space A. Let vσ(x) represent the lifetime value of policy σ given
initial state x. A policy σ is called optimal when vσ ⩾ vs for all s ∈ Σ. Here functions
are ordered pointwise, so the statement vσ ⩾ vs means that vσ(x) ⩾ vs(x) for all
x ∈ X. One fundamental result of dynamic programming theory is that, for standard
MDPs, optimal policies always exist. Further theory provides characterizations of
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optimal policies—typically via the Bellman equation—and algorithms for computing
either exact or approximately optimal policies.

We consider the following question: under what conditions does optimality at a single
state imply optimality at all states? In other words, when does vσ(x) = maxs∈Σ vs(x)
at some x imply vσ(x) = maxs∈Σ vs(x) for all x? In this paper, we show that,
for standard MDPs on general state spaces, irreducibility of the Markov dynamics
generated by σ is sufficient for this property. Specifically, if a policy is optimal at a
single state and has an irreducible transition kernel, then this optimality propagates
throughout the entire state space, making the policy globally optimal. Similarly, if
irreducibility holds and there exists a distribution ρ such that

∫
vσ dρ ⩾

∫
vs dρ for

all s ∈ Σ, then σ is an optimal policy. Some extensions are provided, as well as a
sharper result for finite state MDPs.

Our results have particular significance for policy gradient methods, which have be-
come increasingly popular for solving large-scale MDPs (Sutton et al., 1999; Lan et al.,
2023; Kumar et al., 2023). Because this technique uses gradient ascent rather than
more standard dynamic programming algorithms, it can only maximize a real-valued
criterion such as vσ(x) for some fixed x or

∫
vσ dρ for some specified distribution

ρ, rather than maximizing vσ at all x simultaneously. Our results show that, un-
der irreducibility, maximizing one of these real-valued criteria is sufficient for global
optimality. In addition, our result in finite state setting show that, even when irre-
ducibility does not hold, optimality still holds for an accessible subset of the state
space.

Other papers have looked at theoretical properties of gradient policy methods, where
an expression such as

∫
vσ dρ is maximized over all σ ∈ Σ for some specified distri-

bution ρ. Examples include Khodadadian et al. (2021), Agarwal et al. (2021), and
Xiao (2022). However, in these papers, focus is on proving the convergence of

∫
vσ dρ

to the maximal value
∫

v∗ dρ, rather than proving global convergence from local con-
vergence. At the same time, these papers provide rates of convergence for specific
algorithms, which we do not discuss.

A related line of research focuses on average-optimal policies in finite-state MDPs by
leveraging specific state space structures under some policies. This includes exploring
unichain, multichain, communicating, and weakly communicating MDPs to study
algorithmic convergence (Bartlett and Tewari, 2009; Puterman, 2014). Our result
demonstrates that, in finite-state MDPs, optimality can extend from a single state to
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all accessible states. Our result is applicable to various classes of MDPs in this line
of research and supports the development of more efficient algorithms.

2. Main Result

In this section, we present our main result, characterizing the conditions under which
optimality at a single state implies optimality at all states.

2.1. Markov Decision Process. Let X and A be metric spaces, let bX be the set
of bounded Borel measurable functions from X to R, and let bcX be the continuous
functions in bX. Both bX and bcX are paired with the supremum norm ∥ · ∥ and
the pointwise partial order ⩽. For example, f ⩽ g indicates that f(x) ⩽ g(x) for
all x ∈ X. Absolute values are applied pointwise, so that |f | ∈ bX is the function
x 7→ |f(x)|. In all of what follows, D(X) is the set of Borel probability measures on
X. For simplicity, elements of D(X) are referred to as distributions. For ρ ∈ D(X)
and f ∈ bX we set

⟨f, ρ⟩ :=
∫

f dρ.

A linear subspace I of bX is called an ideal in bX when f ∈ I and |g| ⩽ |f | implies
g ∈ I. An ideal I is said to be invariant for a linear operator M if MI ⊂ I. A linear
operator M from bX to itself is called positive when Mf ⩾ 0 for all f ⩾ 0. A positive
linear operator M is called irreducible if the only invariant ideals under M are the
trivial subspace {0} and the whole space bX (see, e.g., Zaanen (2012)).

We consider an MDP (r, Γ, β, P ) with state space X and action space A. Here r is the
reward function, Γ is a feasible correspondence, β is a discount factor and P (x, a, dx′)
is a distribution over next period states given current state x and action a. Let G be
the graph of Γ; that is, G := {(x, a) ∈ X × A : a ∈ Γ(x)}. We assume that

(a) β ∈ (0, 1),
(b) Γ is a nonempty, continuous and compact-valued,
(c) r is bounded and continuous on G, and
(d) the map (x, a) 7→

∫
v(x′)P (x, a, dx′) is continuous on G whenever v ∈ bcX.

Let Σ denote the set of feasible policies, by which we mean all Borel measurable
functions σ mapping X to A with σ(x) ∈ Γ(x) for all x ∈ X. For each σ ∈ Σ and
x ∈ X, we set

rσ(x) := r(x, σ(x)) and Pσ(x, dx′) := P (x, σ(x), dx′).
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Thus, rσ(x) is rewards at x under policy σ and Pσ is the Markov dynamics associated
with σ. We can view Pσ as a linear operator f 7→ Pσf on bX, where (Pσf)(x) :=∫

f(x′)Pσ(x, dx′) is the expectation of f(Xt+1) given policy σ and current state Xt =
x. Using this operator, the lifetime value of a policy σ, denoted by vσ, can be expressed
as

vσ :=
∞∑

t=0
(βPσ)trσ = (I − βPσ)−1rσ. (1)

(See, e.g., Puterman (2014), Theorem 6.1.1.) The value function is denoted v∗ and
defined at each x ∈ X by v∗(x) := supσ∈Σ vσ(x). A policy σ is called optimal if
vσ(x) = v∗(x) for all x ∈ X.

Theorem 2.1. Let σ be a feasible policy and suppose that Pσ is irreducible. In this
setting, the following statements are equivalent.

(a) there exists an x ∈ X such that vs(x) ⩽ vσ(x) for all s ∈ Σ,
(b) there exists a ρ ∈ D(X) such that ⟨vs, ρ⟩ ⩽ ⟨vσ, ρ⟩ for all s ∈ Σ,
(c) σ is an optimal policy.

For example, Theorem 2.1 tells us that, under the stated conditions, we can obtain
an optimal policy by fixing an arbitrary initial state x ∈ X and maximizing s 7→ vs(x)
over Σ. Alternatively, we can fix any distribution ρ and maximize s 7→ ⟨vs, ρ⟩. The
proof of Theorem 2.1 is given in Section 2.2.

2.2. Proof of Theorem 2.1. We denote the positive cone of bX by bX+ , the set of all
v ∈ bX with v ⩾ 0. We take bX′

+ to be the set of all positive linear functionals on bX,
the set of all µ ∈ bX′

+ with ⟨µ, f⟩ ⩾ 0 for all f ∈ bX+. Let bX′ = bX′
+ − bX′

+ and bX′ is
the order dual of bX. Proposition 5.5 of Schaefer (1974) implies bX′ is the topological
dual of bX, the set of all bounded linear functionals on bX. Also, Proposition 8.3 (c)
of Schaefer (1974) states the following for a positive linear operator K mapping bX
into itself:

Proposition 2.2. K is irreducible if and only if, for each nonzero f ∈ bX+ and each
nonzero µ ∈ bX′

+, there exists an m ∈ N with ⟨µ, Kmf⟩ > 0.

For each x ∈ X, the point evaluation functional on bX is the map δx that sends each
w ∈ bX into w(x) (i.e., ⟨w, δx⟩ = w(x) for every w ∈ bX).

Lemma 2.3. Every point evaluation functional on bX is a nonzero element of bX′
+.
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Proof. Fix x ∈ X. Linearity of δx is obvious: given a, b ∈ R and v, w ∈ bX, we have

⟨av + bw, δx⟩ = (av + bw)(x) = av(x) + bw(x) = a ⟨v, δx⟩ + b ⟨w, δx⟩ .

Regarding continuity, if wn → w in bX, then wn → w pointwise on X, so ⟨wn, δx⟩ =
wn(x) → w(x) = ⟨w, δx⟩. Regarding positivity, it suffices to show that ⟨w, δx⟩ ⩾ 0
whenever w ⩾ 0. This clearly holds, since w ⩾ 0 implies w(x) = ⟨w, δx⟩ ⩾ 0. Finally,
δx is not the zero element of bX′ because we can always take a w = 1 ∈ bX with
⟨w, δx⟩ = w(x) = 1 ̸= 0. □

By the Neumann series lemma, the lifetime value vσ defined in (1) is the unique fixed
point in bX of the policy operator Tσ v = rσ + βPσ v. More explicitly,

(Tσ v)(x) = r(x, σ(x)) + β
∫

v(x′)P (x, σ(x), dx′) (v ∈ bX, x ∈ X).

We define the Bellman operator by

(Tv)(x) = max
a∈Γ(x)

{
r(x, a) + β

∫
v(x′)P (x, a, dx′)

}
(v ∈ bX, x ∈ X). (2)

In the current setting,

• the value function v∗ is the unique fixed point of the Bellman operator in bX
• the value function v∗ is well-defined and contained in bcX and
• at least one optimal policy exists.

See, for example, Hernández-Lerma and Lasserre (2012) or Bäuerle and Rieder (2011).

To prove Theorem 2.1 we first show that (a)–(b) are equivalent. To show (a) implies
(b), assume (a) and fix x ∈ X with vσ(x) ⩾ vs(x) for all s ∈ Σ. Then δx ∈ D(X) and
⟨vσ, δx⟩ = vσ(x) ⩾ vs(x) = ⟨vs, δx⟩ for all s ∈ Σ, so (b) holds. To show (b) implies
(a), fix ρ ∈ D(X) with ⟨vσ, ρ⟩ ⩾ ⟨vs, ρ⟩ for all s ∈ Σ. Suppose to the contrary that for
each x ∈ X, we can find a τ ∈ Σ such that vτ (x) > vσ(x). Since v∗(x) ⩾ vs(x) for all
s ∈ Σ and x ∈ X, we have v∗(x) > vσ(x) for all x ∈ X and so ⟨v∗, ρ⟩ > ⟨vσ, ρ⟩. This
contradiction proves (a).

To complete the proof of Theorem 2.1, it suffices to show that (a) and (c) are equiva-
lent. That (c) implies (a) is immediate from the definition of optimal policies. Hence
we need only show that (a) implies (c). To this end, fix x̄ ∈ X and σ ∈ Σ such that
vs(x) ⩽ vσ(x) for all s ∈ Σ. Then vσ(x) = v∗(x). For all n ∈ N we have

vσ = T n
σ vσ ⩽ T n

σ v∗ ⩽ T n v∗ = v∗.
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The first inequality is due to the fact Tσ is order preserving. Since Tσ v ⩽ T v for all
v, T 2

σ v∗ ⩽ TσT v∗ ⩽ T 2 v∗ and so T 2
σ v∗ ⩽ T 2 v∗. By induction, the second inequality

holds. Since at x̄ we have vσ(x̄) = v∗(x̄), it follows that (T n
σ vσ)(x̄) = (T n

σ v∗)(x̄) for
all n ∈ N. Expanding this expression out by Tσv = rσ + βPσv and canceling rσ and
β gives (P n

σ vσ)(x̄) = (P n
σ v∗)(x̄) for all n ∈ N and so∫

(v∗(x′) − vσ(x′))P n
σ (x̄, dx′) = 0 for all n ∈ N. (3)

Let w := v∗ − vσ and note that 0 ⩽ w. We claim that w = 0. To see this, suppose
to the contrary that w is nonzero. In this case, by irreducibility and Proposition 2.2,
for each nonzero µ in the positive cone of bX′ we can find an m ∈ N such that
⟨µ, P m

σ w⟩ > 0. Because δx̄ is a nonzero element of the positive cone of bX′, we can
set µ = δx̄ to obtain an m ∈ N with (P m

σ w)(x̄) > 0. This contradicts (3), so w = 0
holds. In other words, vσ(x) = v∗(x) for all x ∈ X, as was to be shown.

3. Special Case: Discrete States

We now move to MDPs with finite state spaces, so that |X| < ∞. We say that x in
X is P -accessible from x̄ ∈ X when there exists an m ∈ N such that P m(x̄, x) > 0.
The following result provides additional information in the finite state case.

Theorem 3.1. If vσ(x̄) = v∗(x̄) and x is Pσ-accessible from x̄, then vσ(x) = v∗(x)

Proof. Let vσ(x̄) = v∗(x̄) and x is Pσ-accessible from x̄. Then there exists an n ∈ N
such that P n(x̄, x) > 0. Moreover, using (3) from the proof of Theorem 2.1 (which
does not require the irreducibility condition in the theorem), we have∑

x′∈X

(v∗(x′) − vσ(x′))P n
σ (x̄, x′) = 0. (4)

Since v∗(x′)−vσ(x′) ⩾ 0 for all x′ ∈ X and P n
σ (x̄, x) > 0 we must have v∗(x)−vσ(x) =

0. As a result, vσ(x) = v∗(x). □

3.1. Three-State Example. The following example shows that the accessibility as-
sumption in Theorem 3.1 cannot be dropped. The example involves a simple infi-
nite horizon job search model (McCall, 1970), where the job seeker faces wage offer
w ∈ W = {1, 2, 3}. The job seeker accepts or rejects at each offer, so her action space
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A can be represented by {0, 1}. Her task is to choose a policy σ mapping W to A that
maximizes her income. The Bellman equation is given by

(Tv)(w) = max

 w

1 − β
, c + β

∑
w′∈W

v(w′)P (w, w′)

 (w ∈ W), (5)

where c is the unemployment compensation satisfying 0 < c < min W and P (w, w′)
is the transition probability from wage offer w to offer w′ (see, e.g., Ch.4 of Sargent
and Stachurski (2025)). Consider the transition matrix

P =


1 0 0
0 0.5 0.5
0 0.5 0.5

 .

Note that states 2 and 3 are not accessible from state 1. Let β = 0.9 and c = 0.5.
Using value function iteration we obtain the value function v∗ = (10, 25.4545, 30)
and an optimal policy σ = (1, 0, 1). Consider an alternative policy π = (1, 1, 0). By
computing the fixed point of the policy operator Tπ, which is given by

(Tπv)(w) = π(w) w

1 − β
+ (1 − π(w))

c + β
∑

w′∈W
v(w′)P (w, w′)

 (w ∈ W),

we obtain the lifetime value function vπ for π:

vπ = (10, 20, 17.2727) ⩽ (10, 25.4545, 30) = v∗.

We see that optimality at the point w = 1 does not guarantee global optimality when
irreducibility fails.

4. Extensions and Future Work

Using MDP optimality results from Bäuerle and Rieder (2011), it is possible to extend
our results to the case of unbounded rewards by defining a weight function b on
X that is continuous and Borel measurable, with b(x) ⩾ 1 for all x ∈ X. The
weighted supremum norm is given by ∥v∥b = supx∈X |v(x)|/b(x). The weight function
is chosen so that ∥r∥b is finite. After replacing the supremum with the weighted
supremum norm, both the space of bounded measurable functions and the space
of continuous bounded functions remain complete. Our main results hold without
significant modification.

So far our results have focused on standard MDPs with constant discount factors.
One useful variation of this model is MDPs with state-dependent discount factors,
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so that β becomes a map from X to R+. We define an operator K = β ◦ P and the
corresponding Kσ = βσ ◦ Pσ. The same result goes through under certain stability
assumptions, provided that Kσ is irreducible.

It seems likely that results similar Theorem 2.1 will be valid for standard continuous
time MDPs, as well as some of the nonstandard dynamic programs discussed in
Bertsekas (2022) and Sargent and Stachurski (2025). We leave these topics for future
research.
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