
Variational Bayesian Bow tie Neural Networks with Shrinkage

Alisa Sheinkman∗ and Sara Wade†

November 20, 2024

Abstract
Despite the dominant role of deep models in machine learning, limitations persist, including overcon-

fident predictions, susceptibility to adversarial attacks, and underestimation of variability in predictions.
The Bayesian paradigm provides a natural framework to overcome such issues and has become the gold
standard for uncertainty estimation with deep models, also providing improved accuracy and a frame-
work for tuning critical hyperparameters. However, exact Bayesian inference is challenging, typically
involving variational algorithms that impose strong independence and distributional assumptions. More-
over, existing methods are sensitive to the architectural choice of the network. We address these issues
by constructing a relaxed version of the standard feed-forward rectified neural network, and employing
Polya-Gamma data augmentation tricks to render a conditionally linear and Gaussian model. Addition-
ally, we use sparsity-promoting priors on the weights of the neural network for data-driven architectural
design. To approximate the posterior, we derive a variational inference algorithm that avoids distribu-
tional assumptions and independence across layers and is a faster alternative to the usual Markov Chain
Monte Carlo schemes.

Keywords: Bayesian neural networks, variational inference, uncertainty quantification, shrinkage priors.

1 Introduction
Neural networks (NNs) are effective deep models that play a dominant role in machine learning and have
achieved remarkable success across various domains including medicine and biological sciences Jumper et al.
(2021); Yu et al. (2021), natural language processing Mikolov et al. (2013); Touvron et al. (2023), computer
vision and image analysis Dosovitskiy et al. (2020), data privacy and security Yang et al. (2019) and beyond.
However, modern machine learning applications often lack reliable, if not any, uncertainty estimates Guo
et al. (2017); Gal (2016); Ashukha et al. (2020). Classical deep models are easily fooled and are susceptible
to adversarial attacks Szegedy et al. (2014); Nguyen et al. (2015); Zong et al. (2024), and even when the
adversarial attacks fail, the saliency interpretations of deep neural networks (DNNs) are rather brittle Car-
bone et al. (2022). When data variations leading to out-of-distribution (OOD) shifts occur neural networks
often fail to generalize well Hein et al. (2019); Zhang et al. (2024); Ashukha et al. (2020). Moreover, stan-
dard neural networks usually lack intuitive interpretation and explainability and so are regarded as black
boxes Lipton (2018). To address these challenges, Bayesian neural networks (BNNs) have emerged as a
compelling extension of conventional neural networks (for a review, see e.g. Jospin et al. (2022); Arbel et al.
(2023)). While finite (non-Bayesian) deep ensembles of independent neural networks have been shown to
improve prediction and uncertainty estimates Lakshminarayanan et al. (2017), the Bayesian approach creates
infinite ensembles of deep neural networks. The advantage of this approach is that it controls the model
complexity and builds regularization into the model by marginalizing out the parameters. Indeed, Bayesian
neural networks have become the gold standard for uncertainty estimation in the context of data-driven
decision-making and in safety-critical applications, where robustness and calibration are crucial McAllister
et al. (2017); Carbone et al. (2020); Gruver et al. (2023); Yang et al. (2024); Klarner et al. (2023).

A core problem of Bayesian machine learning lies in performing the inference; in practice, the posterior
distribution of the model’s parameters given observations is not available in the closed form and direct sam-
pling from the posterior is computationally expensive, meaning one has to employ approximate Bayesian
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inference. Markov chain Monte Carlo (MCMC) is a gold standard solution since it produces draws, which
are asymptotically exact samples from the posterior but for large data sets or complex models with multi-
modal posteriors it can be prohibitively slow. Variational inference Hinton and van Camp (1993); Jordan
et al. (1999) (VI) instead utilizes optimization rather than sampling making it a more computationally
effective method suitable for high-dimensional problems. VI approximates the posterior with the closest
(most commonly, in terms of the Kullback–Leibler divergence) member of some tractable variational fam-
ily of distributions taken as close as possible to the true posterior Blei et al. (2017). Recently, several
variational algorithms and methods have been proposed and proven to achieve desirable consistency and
predictive performance Bai et al. (2020); Zhang et al. (2018); Castillo and Egels (2024); Yang et al. (2020);
Chérief-Abdellatif (2020).

In this paper, we follow the setup of Smith et al. (2021) and introduce a bow tie neural network, where
a stochastic relaxation of the rectified linear unit (ReLU) activation function leads to a model amendable
to the Polya-Gamma (PG) data augmentation trick Polson et al. (2013) and results in conditionally linear
and Gaussian stochastic activations. Additionally, on the weights of the network, we place sparsity-inducing
priors, which are known for their ability to provide improvement in the predictive performance of Bayesian
deep models; not only do sparse models ease the storage and computational burden, they also improve the
calibration and may recover the potential sparse structure of the target function Polson and Ročková (2018);
Bai et al. (2020); Griffin and Brown (2021); Law and Zankin (2022); Ray and Szabó (2022). Specifically,
we consider sparsity-inducing global-local normal-generalized inverse Gaussians (N-GIG) priors Polson and
Scott (2012). Section 2 describes the bow tie model with shrinkage priors and implementation of PG data
augmentation. Having constructed the bow tie neural network, we propose a (block) structured mean-field
family for the approximate variational posterior which is flexible enough and doesn’t require assumptions on
the distributional form of each component as well as on independence across layers. For the chosen family,
coordinate ascent variation inference (CAVI) Bishop (2016) can be performed, with all variational updates
available in the closed form. Whilst continuous shrinkage priors result in more tractable computations,
they do not incur exact zeros on the neural network’s weights. We address this issue by implementing a
simple post-process node selection algorithm controlled by the empirical Bayesian false discovery rate (FDR).
Finally, we derive the predictive distribution and propose improving the accuracy and uncertainty estimation
by considering ensembles of variational approximations obtained by running several parallel variational
algorithms with different random starting points. In this way, our approach accounts for the multimodality
of the posterior distributions arising in Bayesian deep models. Section 3 derives the inference algorithm,
variable selection procedure and predictive distribution. We evaluate our method on a range of classical
regression tasks as well as synthetic regression tasks and demonstrate its competitiveness compared to
alternative well-known Bayesian algorithms in Section 4 1.

2 Bayesian Augmented Bow Tie Neural Network with Shrinkage

2.1 Bow tie neural networks
We begin by describing the class of recently proposed bow tie networks Smith et al. (2021), which are deep
generative models that generalize feed-forward rectified linear neural networks with stochastic activations.
Let xn ∈ RD0 be the inputs, yn ∈ RDL+1 be the outputs and an = {an,l}Ll=1 with an,l ∈ RDl be the latent
activations at each of the L intermediate layers. For notational purposes, assume an,0 = xn. The model
assumes:

yn | an,xn,θ ∼ N (yn|zn,L+1,ΣL+1) for n = 1, . . . , N,

where

an,l|zn,l,θ ∼ N (f(zn,l),Σl) , with zn,l = Wlan,l−1 + bl for l = 1, . . . , L+ 1. (1)

Here f(z) is a nonlinear activation function applied elementwise and the parameters θ = (Wl,bl,Σl)
L+1
l=1

consist of the weights Wl ∈ RDl×Dl−1 , biases bl ∈ RDl and covariance matrices Σl ∈ RDl×Dl .
1We provide a Python implementation of our model at https://github.com/sheinkmana/V_bowtie_NN.
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Figure 1: Conditional distribution of a given the input z for various settings of the temperature T and
noise η, with the conditional mean in Equation (3) (solid line), conditional variance in Equation (4) (shaded
region) and samples from the conditional distribution in Equation (2) (points).

Note that Equation (1) is a stochastic relaxation of the standard feed-forward NN, which is recovered in
the limiting case when Σl → 0 for l = 1, . . . , L. Instead of relying on local gradient-based algorithms, Smith
et al. (2021) introduces another relaxation of the model and employs a Polya-Gamma data augmentation
trick Polson et al. (2013) to render the model conditionally linear with Gaussian activations. Specifically,
consider the ReLU activation function f(z) = max(0, z). It can alternatively be written as a product of z
and a binary function γ, i.e. f(z) = γz where γ = 1(z > 0). In this way, γ determines whether the node is
activated (γ = 1) or not (γ = 0). In a similar fashion, the additional stochastic relaxation replaces f(zn,l)
with γn,l ⊙ zn,l:

an,l|zn,l,γn,l,θ ∼ N (γn,l ⊙ zn,l,Σl) ,

γn,l,d
ind∼ Bern (σ (zn,l,d/T)) ,

where T ≥ 0 is the temperature parameter, σ(x) = exp(x)/(1 + exp(x)) is the logistic function and ⊙
represents the elementwise product. Thus, the nodes are turned off or on stochastically depending on their
input. Note that after marginalizing over the binary activations, the latent variables an are distributed as a
mixture of two normals:

an,l,d|zn,l,d, θ ∼ σ(zn,l,d/T)N
(
zn,l,d, η

2
l,d

)
+ (1− σ(zn,l,d/T))N

(
0, η2l,d

)
, (2)

where the variance η2l,d is the (d, d)th element of Σl, and

E[an,l,d|zn,l,d, θ] = E[E[an,l,d|zn,l,d, γn,l,d, θ]] = E[γn,l,dzn,l,d]
= σ(zn,l,d/T)zn,l,d, (3)

V(an,l,d|zn,l,d, θ) = E[V(an,l,d|zn,l,d, γn,l,d, θ)] + V(E[an,l,d|zn,l,d, γn,l,d, θ])
= E[η2l,d] + V(γn,l,dzn,l,d)
= η2l,d + z2n,l,dσ(zn,l,d/T) (1− σ(zn,l,d/T)) . (4)

We display the conditional distribution of an,l,d in Figure 1, for different combinations of the temperature
parameter T and variance η2l,d. The ReLU activation is recoverd in the case of T = 0 and η2l,d = 0, while
other choices of T and η2l,d generalize the ReLU. The density resembles a bow tie, hence the name of the
model.

2.2 Shrinkage Priors
Prior elicitation in Bayesian neural networks is challenging, as understanding how the high-dimensional
weights map to the functions implemented by the network is not trivial. Standard Gaussian priors are often
a default choice, also due to their link with ℓ2 regularization in maximum a posteriori (MAP) inference;
indeed, such priors were used in Smith et al. (2021). For an overview and discusson on priors in Bayesian
neural networks, see Fortuin (2022).
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We take an alternative approach to the Gaussian priors of Smith et al. (2021) in order to sparsify our
model. Sparsity-inducing priors ease the problem of storage and computational costs, have been shown to
provide improvement in the predictive performance of deep models, and can provide a data-driven approach
to selecting the width and depth, easing the difficult task of specifying the network architecture. For these
reasons, such priors have been considered in a large number of works to produce sparse BNNs. For classical
proposals on the two-group discrete mixture priors with a point mass at zero (referred to as spike-and-
slab priors) in high-dimensional regression, see George and McCulloch (1993); Mitchell and Beauchamp
(1988). More recently, many consider spike-and-slab priors on the neural network weights and provide
both theoretical guarantees and demonstrate empirical improvements Blundell et al. (2015); Polson and
Ročková (2018); Bai et al. (2020); Sun et al. (2022); Lee and Lee (2022). As an alternative to spike-and-
slab priors, shrinkage priors employ a single distribution to approximate the spike-and-slab shape, yet are
more computationally attractive, as they avoid exploring the space of all possible models (corresponding
to selecting subsets of inputs/nodes). Moreover, (nearly) optimal theoretical guarantees of spike-and-slab
priors can still be obtained with shrinkage priors in the linear regression setting Song and Liang (2023).
A popular choice of shrinkage prior is the horseshoe Carvalho et al. (2009); Piironen and Vehtari (2017),
and imposing regularized horseshoe priors on the BNN weights combined with a structured variational
approximation provides competitive empirical results Ghosh et al. (2018). Another example arising in neural
networks is a Gaussian scale mixture prior with automatic relevance determination, which when combined
with suitable approximate Bayesian inference is equivalent to introducing dropout regularization in NN
Nalisnick et al. (2019). Recently, Castillo and Egels (2024) shows that a suitably rescaled heavy-tailed prior
on the neural network weights achieves automatic adaptation, simultaneously to both the intrinsic dimension
and smoothness of the underlying function, and near-optimal minimax contraction rates of the fractional
posterior distribution and its mean-field variational approximation.

In this work, we focus on a class of continuous shrinkage priors, namely, global-local normal scale-mixtures
with generalized inverse Gaussian shrinkage priors on the scale parameters, referred to as global-local normal-
generalized inverse Gaussian priors Griffin and Brown (2021). Global-local scale-mixtures aim to shrink less
important weights whilst leaving large ones, which is achieved through a global parameter controlling the
overall shrinkage, with the local parameters allowing deviations at the level of individual nodes Polson and
Scott (2012); Bhadra et al. (2019). This choice of priors is also motivated by the theoretical guarantees for
high-dimensional regression Song and Liang (2023); Griffin and Brown (2010); Polson et al. (2013), for a
survey on global-local shrinkage methods we refer to Griffin and Brown (2021).

The N-GIG priors on the weights have the following hierarchical structure:

P(Wl|ψl, τl) =
Dl∏
d=1

Dl−1∏
d′=1

N (Wl,d,d′ |0, τlψl,d,d′) , (5)

P(ψl) =
Dl∏
d=1

Dl−1∏
d′=1

GIG (ψl,d,d′ | νloc,l, δloc,l, λloc,l) , (6)

P(τl) = GIG (τl | νglob, δglob, λglob) , (7)

where τl is the global shrinkage parameter for layer l and ψl,d,d′ is the local shrinkage parameter for each
weight. The generalized inverse Gaussian (GIG) prior is given by:

GIG (ψ | ν, δ, λ) ∝ ψν−1 exp

(
−1

2
(δ2/ψ + λ2ψ)

)
,

with parameters ν, δ, and λ; for a proper prior, ν > 0 if δ = 0 or ν < 0 if λ = 0. In Equation (6), we
allow the GIG parameters for the local scale parameters ψl,d,d′ to vary across layers to adjust local shrinkage
for wider layers. Furthermore, to encourage more shrinkage for larger depth and width, we scale the global
parameters τl with respect to L and the local parameters ψl,d,d′ with respect to Dl (details of our approach
are provided Appendix C.1).

When the global shrinkage parameter τl is fixed, examples of the marginal distribution for wl,d,d′ include
Laplace Park and Casella (2008), Student-t (ST) Tipping (2001), Normal-Gamma (NG) Caron and Doucet
(2008); Griffin and Brown (2010), Normal inverse Gaussian (NIG) Caron and Doucet (2008). Each example
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has a different tail behavior, inducing different forms of shrinkage (see Table 1 for a overview and Figure 2
(a) for a visualization). Note that if the prior is polynomial-tailed, then for large signals the amount of
shrinkage is mitigated even given small τl Polson and Scott (2012). The global shrinkage parameter τl leads

Table 1: Examples with the class of N-GIG priors.

Marginal for wl,d,d′ when τl is fixed
Student-T Laplace NG NIG

Mixing
distribution

IG Gamma Gamma IGauss

Parameters ν < 0, δ > 0, λ = 0 ν = 1, δ = 0, λ ν, δ = 0, λ ν = 1
2 , δ, λ

Tail
behavior

polynomial-tailed exponential-tailed exponential-tailed exponential-tailed

to a non-separable penalty for the weights within the same layer, i.e. after integrating out τl, the weights
within the same layer are dependent. This is illustrated in Figure 2 (b), which provides contour plots for
the joint marginal distribution of two weights, within the same layer (dependence, left column) and across
different layers (independence, right column), for the two choice of IG and Gamma mixing priors. Figure 2
(b) also highlights how the variance depends on the width of the layer, with more hidden units and smaller
variance for the second layer compared to the first.

(a) Marginal prior for the weights. (b) Joint prior for the weights.

Figure 2: Illustration of the prior on the weights. (a) the marginal density of the weights for different choices
within the GIG family. (b) the joint prior on two weights within the same layer (left) and across layers
(right) for the two choices of IG (top) and Gamma (bottom) mixing priors.

The opposite effects of varying width and depth in deep neural networks are studied in Vladimirova
et al. (2021); while depth accentuates a model’s non-Gaussianity, the width makes models increasingly
Gaussian. Indeed, infinitely wide BNNs are closely related to Gaussian processes (GPs), typically relying
on appropriately scaled i.i.d. Gaussian weights Neal (2012); Lee et al. (2018); Matthews et al. (2018) and
relaxing these assumptions, e.g. through ordering, constraints, heavy tails, or bottlenecks, results in non-
Gaussian limits, such as stable processes Peluchetti et al. (2020), deep GPs Agrawal et al. (2020) or more
exotic processes Sell and Singh (2023); Chada et al. (2022). The sparsity promoting priors in Equations (5)
to (7) provide a framework for the data to inform on the width and depth of the network.

2.3 Polya-Gamma Data Augmentation
As in Smith et al. (2021), we employ Polya-Gamma data augmentation Polson et al. (2013) to render the
model conditionally linear and Gaussian. First, recall the definition of the Polya-Gamma distribution with
parameters b > 0 and c ∈ R, denoted PG(b, c). The random variable X ∼ PG(b, c) if

X
D
=

1

2π2

∞∑
k=1

gk
(k − 1/2)2 + c2/4π2

, where gk
iid∼ Gam(b, 1).
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The key identity that we use is:

exp(z)a

(1 + exp(z))b
= 2−b exp(κz)

∫ ∞

0

exp(−ωz
2

2
)p(ω)dω, (8)

where κ = a− b/2 and p(ω) = PG(ω|b, 0). The integral is a Gaussian kernel, thus if z = wTx, conditioned
on the latent variable ω, w has a Gaussian distribution and conditioned on w, ω has a PG distribution.
While to sample from the PG distribution, one can use the alternating series method of Devroye (2006),
all finite moments of the PG random variables are available in closed form and that becomes useful for
expectation-maximization or variational Bayes algorithms. Specifically, for c > 0

E[ω] =
b

2c

exp(c)− 1

1 + exp(c)
. (9)

Moreover, the PG distribution is closed under convolution with the same scale parameter; if ω1 ∼ PG(b1, c)
and ω2 ∼ PG(b2, c), then ω1 + ω2 ∼ PG(b1 + b2, c).

2.4 Augmented Model
The model described in Section 2.1 augmented with stochastic activations a = (an,l) and binary activations
γ = (γn,l) is:

p(y,a,γ|θ) =
N∏
n=1

N (yn | zn,L+1,ΣL+1)

N∏
n=1

L∏
l=1

N (an,l | γn,l ⊙ zn,l,Σl)

×
Dl∏
d=1

exp(zn,l,d/T )
γn,l,d

1 + exp(zn,l,d/T )
.

Then using the Equation (8), the last term can be written as:

exp(zn,l,d/T )
γn,l,d

1 + exp(zn,l,d/T )
= 2−1 exp

(κn,l,dzn,l,d
T

)∫ ∞

0

exp

(
−
ωn,l,dz

2
n,l,d

2T 2

)
p(ωn,l,d)dωn,l,d,

where ωn,l,d ∼ PG(1, 0) and κn,l,d = γn,l,d − 1/2. Thus, introducing the additional augmented variables
ω = (ωn,l,d), we arrive at the augmented model:

p(y,a,γ,ω|θ) ∝
N∏
n=1

N (yn | zn,L+1,ΣL+1)

N∏
n=1

L∏
l=1

N (an,l | γn,l ⊙ zn,l,Σl)

×
Dl∏
d=1

exp
(κn,l,dzn,l,d

T

)
exp

(
−
ωn,l,dz

2
n,l,d

2T 2

)
p(ωn,l,d).

To ease computations, the covariance matrices are assumed to be diagonal Σl = diag(η2l,1, . . . η
2
l,Dl

), and
the variances are denoted by ηl = (η2l,1, . . . η

2
l,Dl

). Additionally, we assume conjugate priors for the variances

η2l,d
iid∼ IG(αh0 , β

h
0 ) for l = 1, . . . , L and η2L+1,d

iid∼ IG(α0, β0) and for the biases bl,d
iid∼ N(0, s20). Here, we

consider different prior parameters αh0 , βh0 for the variance terms associated to the hidden layers in comparison
to the prior parameters α0, β0 for the final layer. In particular, α0, β0 are chosen to reflect uncertainty in
noise, while αh0 , βh0 are chosen so that prior concentrates on small values and realizations of the stochastic
activation function are more similar to the ReLU.

A graphical model of the bow tie BNN with stochastic relaxation and shrinkage priors is displayed in
Figure 3, and the posterior distribution over both the model parameters and latent variables is:

p(a,γ,ω,W,b,η,ψ, τ ) ∝
N∏
n=1

N (yn | zn,L+1,ΣL+1)

N∏
n=1

L∏
l=1

N (an,l | γn,l ⊙ zn,l,Σl)
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Figure 3: Directed Acyclic Graph of the model.

×
N∏
n=1

L∏
l=1

Dl∏
d=1

exp
(κn,l,dzn,l,d

T

)
exp

(
−
ωn,l,dz

2
n,l,d

2T 2

)
p(ωn,l,d)

×
N∏
n=1

L∏
l=1

Dl∏
d=1

Bern
(
γn,l,d | σ

(zn,l,d
T

))

×
DL+1∏
d=1

IG(η2L+1,d | α0, β0)×
L∏
l=1

Dl∏
d=1

IG(η2l,d | αh0 , βh0 )

×
L∏
l=1

 Dl∏
d=1

N(bl,d | 0, s20)×
Dl−1∏
d′=1

N (Wl,d,d′ |0, τlψl,d,d′)


×

L∏
l=1

GIG (τl | νglob, δglob, λglob)

Dl∏
d=1

Dl−1∏
d′=1

GIG (ψl,d,d′ | νloc,l, δloc,l, λloc,l)

 .

3 Inference

3.1 Variational Bayes
While Markov chain Monte Carlo is considered the gold-standard tool for approximating posterior distribu-
tions in Bayesian modelling due its asymptotic guarantees, MCMC algorithms can be prohibitively slow when
the model dimension and sample size are large. An alternative fast approximate Bayesian inference method
known as variational inference has gained popularity in the literature Ormerod and Wand (2010); Zhang
et al. (2018), due to both the explosion in the amount of data collected and use of highly parametrized models
for increased flexibility. VI has been shown to yield reasonably accurate approximations in several problems
as well as desirable frequentist properties. Namely, consistency and asymptotic normality of VI are studied
in Wang and Blei (2019), theoretical guarantees for optimal contraction rates of variational posteriors under
certain assumptions appear in several recent works Zhang and Gao (2020); Alquier and Ridgway (2020);
Bhattacharya et al. (2023); Yang et al. (2020) and contraction rates as well as model selection consistency
in mixtures are considered in Chérief-Abdellatif (2020).

Several works focus on properties of VI approximation in sparse models: oracle contraction rates of a
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mean-field VI in the case of high-dimensional regression are established in Ray and Szabó (2022) and in the
case of the neural networks with spike-and-slab priors, contraction rates of variational posteriors are studied
in Bai et al. (2020). More recently, near-optimal contraction rates of the mean-field VI approximations are
obtained in the context of neural networks with heavy-tailed priors on the weights Castillo and Egels (2024).
We refer readers interested in the caveats of VI to Yao et al. (2018).

Consider fitting a model parameterized by θ to the observed data D. In variational inference, the true
posterior p(θ | D) is approximated by a density q(θ) taken from a family of distributions F that minimizes
the Kullback-Leibler divergence between the approximate and true posterior, or equivalently maximizes the
evidence lower bound (ELBO)

ELBO = Eq(θ)
[
log

(
p(θ,D)

q(θ)

)]
. (10)

A common choice for F is the mean-field family on a partition {θ1, . . . ,θJ} of θ, assuming that the
variational posterior factorizes over (blocks) of latent variables: q(θ) =

∏J
j=1 qj(θj), where J ≤ dim(θ).

Without any further parametric assumptions, it has been shown Hinton and van Camp (1993); MacKay
(1995); Jordan et al. (1999) that the optimal choice for each product component qj is

qj(θj) ∝ exp
[
E−θj log (p(θ,D))

]
, (11)

where the above expectation is taken with respect to
∏
j′ ̸=j qj′(θj′). The process of sweeping through the

components of the partition and updating one at a time via Equation (11) is known as coordinate ascent
variational inference (CAVI). Wand et al. (2011) studies CAVI’s performance and improvement techniques
in the case of elaborate distributions. Limitations of the mean-field assumption can be found in Wand et al.
(2011); Neville et al. (2014); Coker et al. (2022).

We specify the mean-field family for the approximate variational posterior:

q(a,γ,ω,W,b,η,ψ, τ ) = q(a)q(γ)q(ω)q(W,b)q(η)q(ψ)q(τ ).

Note that the assumption on the family above could be referred to as the strucutred mean-field assumtion.
Importantly, unlike existing variational algorithms for BNNs, we do not make any assumptions on indepen-
dence of parameters between layers. The calculation of each component of the variational posterior is given
in the Appendix A, where using Equation (11) we obtain the following update steps.

Global shrinkage parameters: the parameters τ are independent across layers (and can be updated in
parallel) with a GIG variational posterior:

q(τ ) =

L+1∏
l

GIG
(
τl | ν̂glob,l, δ̂glob,l, λglob

)
,

where for l = 1, . . . , L+ 1,

ν̂glob,l = νglob − DlDl−1

2
and δ̂glob,l =

√√√√δ2glob +

Dl∑
d

Dl−1∑
d′

E
[

1

ψl,d,d′

]
E
[
W 2
l,d,d′

]
.

Local shrinkage parameters: the parameters ψ are independent across and within layers (and can be
updated in parallel) with a GIG variational posterior:

q(ψ) =

L+1∏
l

Dl∏
d

Dl−1∏
d′

GIG
(
ψl,d,d′ | ν̂loc,l,d,d′ , δ̂loc,l,d,d′ , λloc,l

)
,

where for l = 1, . . . , L+ 1, d = 1, . . . , Dl, d
′ = 1, . . . , Dl−1,

ν̂loc,l,d,d′ = νloc,l −
1

2
and δ̂loc,l,d,d′ =

√
E
[
1

τl

]
E
[
W 2
l,d,d′

]
+ δ2loc,l.
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Covariance matrix: the diagonal elements of the covariance matrix ηl are independent across and within
layers (and can be updated in parallel) with an inverse-Gamma variational posterior:

q(η) =

L+1∏
l

Dl∏
d

IG(η2l,d | αl,d, βl,d),

where for the hidden layers l = 1, . . . , L, the updated variational parameters for d = 1, . . . , Dl are given by

αl,d = αh0 +
N

2
,

βl,d = βh0 +
1

2

N∑
n

(
E [an,l,d]− E [γn,l,d]E

[
W̃l,d

]
E [ãn,l−1]

)2
+ E

[
a2n,l,d

]
− E [an,l,d]

2

+
1

2

N∑
n

E [γn,l,d] Tr
(
E
[
W̃T

l,dW̃l,d

]
E
[
ãn,l−1ã

T
n,l−1

])
− E [γn,l,d]

2
Tr
(
E
[
W̃T

l,d

]
E
[
W̃l,d

]
E [ãn,l−1]E

[
ãTn,l−1

])
.

And for the final layer, the updated variational parameters for d = 1, . . . , DL+1 are given by

αL+1,d = α0 +
N

2
,

βL+1,d = β0 +
1

2

N∑
n

(
yn,d − E

[
W̃L+1,d

]
E[ãn,L]

)2
+

1

2

N∑
n

Tr
(
E
[
W̃T

L+1,dW̃L+1,d

]
E
[
ãn,Lã

T
n,L

])
− Tr

(
E[W̃L+1,d]

TE[W̃L+1,d]E[ãn,L]E[ãTn,L]
)
.

Note that in the above, Wl,d represents the d-th row of the weight matrix Wl. Additionally, for l =

1, . . . , L+1 we introduce the notation W̃l,d = (bl,d,Wl,d) and W̃ = (b,W), and let the vector ãn,l represent
the stochastic activation augmented with an entry of one, i.e. ãn,l = (1,aTn,l)

T .

Weights and biases: the weights and biases are independent across layers and within layer, independent
across the Dl regression problems, with a Gaussian variational posterior:

q(b,W) =

L+1∏
l

Dl∏
d

N
(
W̃l,d | ml,d,Bl,d

)
,

where for the hidden layers l = 1, . . . , L, the updated variational parameters for d = 1, . . . , Dl are given by

B−1
l,d = D−1

l,d +

N∑
n

(
1

T 2
E [ωn,l,d] + E

[
(ηl,d)

−2
]
E [γn,l,d]

)
E
[
ãn,l−1ã

T
n,l−1

]
,

mT
l,d = Bl,d

(
N∑
n

E
[
(ηl,d)

−2
]
E [γn,l,d]E [an,l,dãn,l−1] +

1

T
E [ãn,l−1]

(
E [γn,l,d]−

1

2

))
,

and for the final layer, the updated variational parameters for d = 1, . . . , DL+1 are given by

B−1
L+1,d = D−1

L+1,d + E
[
(ηL+1,d)

−2
] N∑

n

E
[
ãn,L+1ã

T
n,L+1

]
,

mT
L+1,d = BL+1,dE

[
(ηL+1,d)

−2
]( N∑

n

ynE [ãn,L+1]

)
,

where for l = 1, . . . , L+ 1 and d = 1, . . . , Dl,

D−1
l,d = diag

(
s−2
0 ,E

[
τ−1
l

]
E
[
ψ−1
l,d,1

]
, . . . ,E

[
τ−1
l

]
E
[
ψ−1
l,d,Dl−1

])
.
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Polya-Gamma augmented variables: ω are independent across observations n = 1, . . . , N , layers l =
1, . . . , L, and width d = 1, . . . , Dl, with a Polya-Gamma variational posterior:

q(ω) =

N∏
n

L∏
l

Dl∏
d

PG(ωn,l,d | 1, An,l,d), (12)

with updated variational parameters:

An,l,d =
1

T

√(
Tr
(
E
[
W̃T

l,dW̃l,d

]
E
[
ãn,l−1ãTn,l−1

]))
.

Note that simulating from or evaluating the density of the PG is not necessary, and the CAVI updates of
the other parameters only require computing the expectation of ω with respect to the variational posterior
in Equation (12), which is straightforward to compute (Equation (9)).

Binary activations: γ are independent across observations n = 1, . . . , N , layers l = 1, . . . , L, and width
d = 1, . . . , Dl, with a Bernoulli variational posterior:

q(γ) =

N∏
n

L∏
l

Dl∏
d

Bern (γn,l,d | ρn,l,d) , (13)

with

ρn,l,d =σ

−
E
[
η−2
l,d

]
2

Tr
(
E
[
W̃T

l,dW̃l,d

]
E
[
ãn,l−1ã

T
n,l−1

])
+ E

[
η−2
l,d

]
E
[
W̃l,d

]
E [ãn,l−1an,l,d] +

1

T
E
[
W̃l,d

]
E [ãn,l−1]

 .

We illustrate the variational posterior of γ for the toy example of Section 4.1 in Figure 4.

Stochastic activations: a are independent across observations n = 1, . . . , N and conditionally Gaussian
given the previous layer with variational posterior:

q(a) =

N∏
n=1

L∏
l=1

N (an,l | tn,l +Mn,lan,l−1,Sn,l) , (14)

where denote an,0 := xn,Sn,L := SL and the updated variational parameters for n = 1, . . . , N and l =
1, . . . , L− 1 are

S−1
n,l = Σ̂−1

l −MT
n,l+1S

−1
n,l+1Mn,l+1 +

Dl+1∑
d=1

(
E

[
1

η2l+1,d

]
E [γn,l+1,d] +

1

T 2
E [ωn,l+1,d]

)
E
[
WT

l+1,dWl+1,d

]
,

tn,l = Sn,l

MT
n,l+1S

−1
n,l+1tn,l+1 + Σ̂−1

l E [γn,l]⊙ E [bl] +
1

T

Dl+1∑
d=1

E
[
WT

l+1,d

](
E [γn,l+1,d]−

1

2

)
−

−
Dl+1∑
d=1

(
E

[
1

η2l+1,d

]
E [γn,l+1,d] +

1

T 2
E [ωn,l+1,d]

)
E [Wl+1,dbl+1,d]

 ,

Mn,l = Sn,lΣ̂
−1
l E [γn,l]1

T
Dl−1

⊙ E [Wl] ,

Σ̂−1
l = diag

(
E
[
η−2
l,1

]
, . . . ,E

[
η−2
l,Dl

])
.

And for the final layer with n = 1, . . . , N and l = L,

S−1
L = Σ̂−1

L +

DL+1∑
d=1

E

[
1

η2L+1,d

]
E
[
WT

L+1,dWL+1,d

]
,
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Figure 4: Variational posterior for ρn,1,d (on the left) and an,1,d (in the middle), joint distribution of
(an,1,d, an,2,d′) (on the right) in the case of the toy example of Section 4 and particular values of d, d′.

tn,L = SL

Dl+1∑
d=1

E

[
1

η2L+1,d

] (
−E

[
WT

L+1,dbL+1,d

]
+ E

[
WT

L+1,d

]
yn,d

)+ Σ̂−1
L E [γn,L]⊙ E [bL]

 ,

Mn,L = SLΣ̂
−1
L E [γn,L]1

T
DL−1

⊙ E [WL] ,

Σ̂−1
L = diag

(
E
[
η−2
L,1

]
, . . . ,E

[
η−2
L,DL

])
.

Figure 4 illustrates on the toy example of Section 4.1 how the variational posterior of the stochastic activations
(middle) resembles a smoothed, noisy ReLU. Due the independence assumption between the stochastic and
binary activations, the potentially bimodal bow tie distribution (Equation (2)) is approximated with a
unimodal Gaussian in the variational framework, which may better approximate the true posterior when the
temperature is not too large relative to the noise (see Figure 1). In addition, the proposed approximation
has the advantage of avoiding explicit assumptions of independence between layers, allowing to capture the
dependence between the stochastic activations of across layers visualized for the toy example in Figure 4
(right).

The corresponding optimization objective, i.e. the ELBO in Equation (10), is available in the closed form
and provided in the Appendix B.

3.2 VI with EM
The hyperparameters can play a crucial role in Bayesian neural networks. When dealing with the sparsity-
inducing priors setting an excessively large scale parameter weakens the shrinkage effects, whilst choosing a
scale parameter that is too small may wipe out the effects of the important hidden nodes. Manually picking
suitable values is challenging, and instead, we seek a more efficient strategy, utilizing the similarity between
the variational and expectation-maximization (EM) algorithms. Specifically, we investigate the hybrid scheme
combining VI with an EM step Osborne et al. (2022) so that the steps of the CAVI algorithm proceed with
the EM update to set the hyperparameter for global shrinkage variable τ . Due to weak identifiability, we
do not jointly update global and local hyperparameters. Let hglob represent δglob or λglob and consider the
ELBO treated as a function of hglob, then the optimal values as approximate MAP estimates are:

hglob = argmaxEglob[ELBO],

where

Eglob[ELBO] = E

[
L+1∑
l=1

log(GIG(τl | νglob, δglob, λglob)

]
= (L+ 1)

(
νglob (log(λglob)− log(δglob))− log

(
2Kνglob(λglobδglob)

))
+

L+1∑
l=1

(νglob − 1)E [log τl]−
1

2

(
δ2globE

[
1

τl

]
+ λ2globE [τl]

)
.
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In the case of the IG priors, one’s aim is to set optimal δglob, in the case of the Gamma and IGauss
priors, the parameters of interest are λglob. We provide specific examples of the shrinkage parameters and
the corresponding optimal values in Appendix D.2. The result of combining CAVI and the EM algorithm is
described in Algorithm 1.

Algorithm 1 VI with EM
Require: Initialize hyperparameters

while ELBO has not converged do
for l = 1, . . . , L do

update νglob,l and δglob,l {parameters of τl}
update νloc,l,d,d′ and δloc,l,d,d′ {parameters of ψl,d,d′ for d = 1 . . . Dl, d

′ = 1 . . . Dl−1}
update αl,d and βl,d {parameters of ηl,d for d = 1 . . . Dl}
update An,l,d {parameter of ωn,l,d for d = 1 . . . Dl, n = 1 . . . N}

end for
update νglob,L+1 and δglob,L+1 {parameters of τL+1}
update νloc,L+1,d,d′ and δloc,L+1,d,d′ {parameters of ψL+1,d,d′ for d = 1 . . . Dy, d

′ = 1 . . . DL}
update αL+1,d and βL+1,d for d = 1 . . . Dy

for l = 1, . . . , L do
update Sn,l, Mn,l and tn,l {parameters of an,l for n = 1 . . . N }

end for
for l = 1, . . . , L do

update Bl,d and ml,d {parameters of (bl,d,Wl,d) for d = 1 . . . Dl}
update ρn,l,d {parameter of γn,l,d for d = 1 . . . Dl, n = 1 . . . N}

end for
update BL+1,d and mL+1,d {parameters of (bL+1,d,WL+1,d) for d = 1 . . . Dy}
update hglob {EM for global hyperparameter}

end while

3.3 Inferring the Network Structure
The choice of the network architecture has significant practical implications on the generalization of the
model, and so sparsity-promoting priors for the network weights have emerged as promising approach to
allow for a data-driven choice of architecture. Instead of the classical two-group discrete mixture priors,
in this article, we focus on a class of continuous shrinkage priors. While this results in more tractable
computations, it also implies non-zero posterior means and draws and doesn’t lead to automatic network
architecture selection. Several post-processing methods have been proposed to yield a sparse solution (see
e.g.Piironen et al. (2020); Li and Pati (2017); Griffin (2024) ). The method known as decoupling shrinkage
and selection (DSS) Hahn and Carvalho (2015) obtains sparse estimates of the weights by minimizing the
sum of the predictive loss function with a parsimony-inducing penalty. An alternative approach is the the
penalized credible regions (PenCR) method Zhang et al. (2021), which identifies the "sparsest" solution in
posterior credible regions corresponding to different levels; it is shown to perform well in the case of global-
local shrinkage priors and under certain assumptions, PenCR produces the same results as DSS. Similarly,
we propose to make use of credible intervals to select nodes. Following Li and Lin (2010), we implement
an automatic credible interval criterion which selects a node as long as its credible interval doesn’t cover
zero. Specifically, recall that the variational posterior of the weights is Wl,d,d′ ∼ N(mW

l,d,d′ , B
W
l,d,d′) for

l = 1, . . . , L, d = 1, . . . , Dl, d
′ = 1, . . . , Dl−1, where mW

l,d and BW
l,d denote the subsets of the mean ml,d and

covariance matrix Bl,d corresponding to the weights. Then, we obtain sparse weights Ŵl,d,d′ with sparse
variational distribution q̂(bl,d,Ŵl,d) for some l ∈ L ⊆ {1, . . . , L + 1}, d ∈ Dl ⊆ {1, . . . , Dl}, d′ ∈ Dl−1 ⊆
{1, . . . , Dl−1}, defined by setting:

Ŵl,d,d′ ∼

{
N
(
mW
l,d,d′ ,

(
BWl,d

)
d′d′

)
if max (Q(Wl,d,d′ > 0), Q(Wl,d,d′ < 0)) ≥ κ,

δ0 otherwise,
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where Q(Wl,d,d′ < 0) = 1−Q(Wl,d,d′ > 0) = Φ(−mW
l,d,d′/

√
(BWl,d)d′d′).

The threshold κ is chosen to control the Bayesian false discovery rate, which is calculated as

F̂DR(κ) =

∑
l,d,d′(1−Ql,d.d′)1(Ql,d.d′ > κ)∑

l,d,d′ 1(Ql,d.d′ > κ)
,

with Ql,d.d′ = max (Q(Wl,d,d′ > 0), Q(Wl,d,d′ < 0)). Specifically, for a specified error rate α, κ is set to satisfy
F̂DR(κ) < α. Algorithm 2 describes the node selection procedure which begins with ordering Ql,d.d′ in the
descending order and going down through the thresholds to assign κ to the smallest Ql,d.d′ such that its false
discovery rate doesn’t exceed α.

Algorithm 2 Node selection algorithm

Require: I = {Ql,d.d′ | l = 1 . . . L, d = 1 . . . Dl+1, d
′ = 1 . . . Dl}.

κ̂ = max(I)
I = I \ κ̂
if F̂DR(max(I)) < α then
κ̂ = max(I)
I = I \ κ̂

else
break

end if
for l = 1 . . . L, d = 1 . . . Dl+1, d

′ = 1 . . . Dl do
if Ql,d,d′ ≥ κ̂ then
Ŵl,d,d′ ∼ N

(
mW
l,d,d′ ,

(
BWl,d

)
d′d′

)
else
Ŵl,d,d′ = 0 a.s.

end if
end for
for l = L+ 1, . . . 2, d = 1, . . . Dl, do

if Ŵl,d = 0 a.s. then
Ŵl−1,d′,d = 0 a.s. ∀ d′ = 1, . . . , Dl−1

else
if Ŵl−1,d′,d = 0 a.s. ∀ d′ = 1, . . . , Dl−1 then
Ŵl,d = 0 a.s.

end if
end if

end for
Ensure: q̂(bl,d,Ŵl,d), l ∈ L, d ∈ Dl, d′ ∈ Dl−1.

Once we sweep through Ql,d.d′ , we do a backwards pass to remove the nodes with no connections. If the
node has no outgoing connections then all the incoming connections need to be removed, and conversely, if
the node has no incoming connections, then all the outgoing connections can be removed. An example of
the network resulting after applying the Algorithm 2 is illustrated by the Figure 7.

3.4 Predictions
For a new x∗, the predictive distribution of y∗ given the data is approximated as:

p(y∗ | x∗,D) =

∫
p(y∗ | x∗,θ,D)p(θ | D,x∗) dθ

=

∫
p(y∗ | a∗,W,b,η)p(a∗,W,b,η | D,x∗) da∗ dW db dη
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≈
∫
p(y∗ | a∗,W,b,η)q(a∗)q(W,b)q(η) da∗ dW db dη

=

∫
N (y∗ | WL+1a∗,L + bL+1,ΣL+1) q(a∗,L)q(WL+1,bL+1)q(ηL+1) da∗,L dWL+1 dbL+1 dηL+1. (15)

Equation (15) requires first computing the approximate variational predictive distributions q(a∗), q(γ∗) and
q(ω∗), which are updated in a similar way to Section 3.1.

Specifically, the stochastic activations are conditionally Gaussian given the previous layer with variational
predictive distribution:

q(a∗) =

L∏
l=1

N (a∗,l | t∗,l +M∗,la∗,l−1,S∗,l) ,

where a∗,0 = x∗. For the final layer, we have:

S−1
∗,L = Σ̂−1

L ; t∗,L = E [γ∗,L]⊙ E [bL] ; M∗,L = E [γ∗,L]1
T
DL−1

⊙ E [WL] .

For all other layers l = 1, . . . , L− 1, we have:

S−1
∗,l =Σ̂−1

l −MT
∗,l+1S

−1
∗,l+1M∗,l+1 +

Dl+1∑
d=1

(
E

[
1

η2l+1,d

]
E [γ∗,l,d] +

1

T 2
E [ω∗,l+1,d]

)
E
[
WT

l+1,dWl+1,d

]
,

t∗,l =S∗,l

MT
∗,l+1S

−1
∗,l+1t∗,l+1 + Σ̂−1

l E [γ∗,l]⊙ E [bl]−
Dl+1∑
d=1

E

[
1

η2l+1,d

]
E [γ∗,l,d]E

[
WT

l+1,dbl+1,d

]

+
1

T

Dl+1∑
d=1

E
[
WT

l+1,d

](
E [γ∗,l+1,d]−

1

2

)
− 1

T 2

Dl+1∑
d=1

E [ω∗,l+1,d]E [Wl+1,dbl+1,d]

 ,

M∗,l =S∗,lΣ̂
−1
l E [γ∗,l]1

T
Dl−1

⊙ E [Wl] .

The binary activations are independent across layers l = 1, . . . , L and width d = 1, . . . , Dl, with a
Bernoulli variational predictive distribution:

q(γ∗) =

L∏
l

Dl∏
d

Bern (γ∗,l,d | ρ∗,l,d) , (16)

with

ρ∗,l,d =σ

−
E
[
η−2
l,d

]
2

Tr
(
E
[
W̃T

l,dW̃l,d

]
E
[
ã∗,l−1ã

T
∗,l−1

])
+ E

[
η−2
l,d

]
E
[
W̃l,d

]
E [ã∗,l−1a∗,l,d] +

1

T
E
[
W̃l,d

]
E [ã∗,l−1]

 .

Finally, the Polya-Gamma augmented variables are independent across layers l = 1, . . . , L and width
d = 1, . . . , Dl, with a Polya-Gamma variational predictive distribution:

q(ω∗) =

L∏
l

Dl∏
d

PG(ω∗,l,d | 1, A∗,l,d), (17)

with updated variational parameters:

A∗,l,d =
1

T

√(
Tr
(
E
[
W̃T

l,dW̃l,d

]
E
[
ã∗,l−1ãT∗,l−1

]))
.

Thus, before computing predictions, we first iterate to update the variational predictive distributions of
a∗, γ∗, and ω∗. The corresponding ELBO (dervived in the Appendix B.2) is monitored for convergence.
While a closed-form expression for the integral in Equation (15) is unavailable, generating samples from the
variational predictive is straightforward;

y
(j)
∗ ∼ N

(
y∗ | W(j)

L+1a
(j)
∗,L + b

(j)
L+1,Σ

(j)
L+1

)
, (18)
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for j = 1, . . . J , where (W
(j)
L+1,b

(j)
L+1) ∼ q(WL+1,bL+1), η

(j)
L+1 ∼ q(ηL+1), and a

(j)
∗,l | a

(j)
∗,l−1 ∼ q(a∗,l|a∗,l−1)

for l = 1, . . . , L, are iid draws from the variational posterior. These samples can be used to obtain a Monte
Carlo approximation to investigate potential non-normality in the predictive distribution in Equation (15)
and to compute credible intervals based on the highest posterior density region.

We can also compute the expectation and variance of y∗ in closed-form. Specifically, the expectation of
y∗ under the variational predictive distribution is:

E[y∗ | x∗,D] ≈ EqL+1
[WL+1]Eq∗,L [a∗,L] + EqL+1

[bL+1], (19)

where recursively

Eq∗,L [a∗,L] = Eq∗,L−1

[
Eq(a∗,L|a∗,L−1)[a∗,L]

]
= t∗,L +M∗,LEq∗,L−1

[a∗,L−1].

Similarly, the variational variance of y∗ is

Var [y∗,d | x∗,D] ≈ VarqL+1
[WL+1,da∗,L + bL+1,d] + EqL+1

[
η2
L+1,d

]
,

where the first term represents the signal variance and is computed as

VarqL+1 [WL+1,da∗,L + bL+1,d] = EqL+1

[
(WL+1,da∗,L + bL+1,d)

2]− (EqL+1 [WL+1,d]EqL [a∗,L] + EqL+1 [bL+1,d]
)2

= Tr
(
EqL+1

[
WT

L+1,dWL+1,d

]
EqL

[
a∗,La

T
∗,L

]
− EqL+1 [WL+1,d]

T EqL+1 [WL+1,d]EqL [a∗,L]EqL [a∗,L]
T
)

+VarqL+1(bL+1,d) + 2CovqL+1(WL+1,d,bL+1,d)EqL [a∗,L] ,

which requires the recursive computation:

EqL
[
a∗,La

T
∗,L
]
= S∗,L + t∗,Lt

T
∗,L + 2M∗,LEqL−1

[a∗,L−1] t
T
∗,L +M∗,LEqL−1

[
a∗,L−1a

T
∗,L−1

]
MT

∗,L.

Sparse prediction. To save on both computation and storage, the variational predictive distribution can
be computed based on the sparse variational posterior (Section 3.3). For a new data point x∗, we obtain
expectation and variance of y∗ by first computing the sparse versions of variational predictive distributions
q̂(a∗), q̂(γ∗) and q̂(ω∗) as in Equations (14), (16) and (17) by plugging q̂(bl,d,Ŵl,d) instead of the q(bl,d,Wl,d),
which only requires updates for the subset of nodes with nonzero weights.

3.5 Ensembles of Variational Approximations
While the variational algorithm described in Section 3.1 increases the ELBO at each epoch, the ELBO is a
non-convex function of the variational parameters and only convergence to a local optimum is guaranteed.
Due to identifiability issues, the posterior distribution of a Bayesian neural network is highly multimodal,
and exploring this posterior is notoriously challenging Papamarkou et al. (2022). A single variational approx-
imation tends to concentrate around one mode and can understate posterior uncertainty. Several approaches
have been proposed to overcome such issues. Recently, Ohn and Lin (2024) introduce adaptive variational
inference which achieves optimal posterior contraction rate and model selection consistency by considering
several variational approximations obtained in different models. Yao et al. (2022) introduce an approach
which uses parallel runs of inference algorithms to cover as many modes of the posterior distribution as
possible and then combines these using Bayesian stacking.

In a similar but simpler fashion to the above proposal, we consider an ensemble of variational approxima-
tions, obtained by running in parallel the variational algorithm multiple times with different random starting
points. In this case, letting k = 1, . . . ,K index the different variational approximations, we compute the
weight wk associated with each approximation in accordance with the optimization objective, the ELBO:

wk ∝ exp (ELBOk) .

We can interpret this as a Bayesian model averaging across the K different models/approximations.
While in an ideal setting, the weights would be proportional to the marginal likelihood for each model, the
use of the ELBO is motivated as it provides a lower bound to the marginal likelihood and can be computed
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in closed form. Next, we compute predictions by taking a weighted average of the predictive distributions
of each model (given in Equation (19)), that is

E[y∗ | x∗,D] ≈
K∑
k=1

wkEqk [y∗ | x∗,D],

where each expectation is taken with respect to qk (the kth variational approximation). Similarly, we can
compute the variance as

Var(y∗ | x∗,D) ≈
K∑
k=1

wk Varqk(y∗ | x∗,D) +

K∑
k=1

wk (Eqk [y∗ | x∗,D])
2 −

(
K∑
k=1

wkEqk [y∗ | x∗.D]

)2

.

The following approach has the potential to improve both predictive accuracy and uncertainty quantification.
Once again, we can investigate the variational predictive distribution (beyond the mean and variance) by
first sampling a model with probability (w1, . . . , wK) and then given that selected model k, generating a
sample y∗ from the kth variational predictive distribution (as described in Equation (18)).

4 Experiments
We evaluate the variational bow tie neural network (VBNN) on several datasets. First, we consider a simple
nonlinear synthetic example to compare with a ground truth. We then validate VBNN on the diabetes dataset,
first considered in Efron et al. (2004) to demonstrate the least angle regression (LARS) algorithm for variable
selection, and subsequently, used in different proposals for sparsity-promoting priors and algorithms (e.g.
Park and Casella (2008); Li and Lin (2010)). Lastly, we consider a range of popular regression datasets from
the UCI Machine Learning Repository M. et al. (2007).

The importance of suitable initialization choice in NNs is well known Wenzel et al. (2020); Daniely
et al. (2016); He et al. (2015), and we design two possible random initialization schemes of the VBNN,
which are described in Appendix C.1 and used in all experiments. Convergence of the ELBO is monitored
during the training and prediction stages, where if three consecutive measurements of ELBO for training
differ by less than the specified threshold, the phase is stopped and the model moves to the prediction
stage, where we proceed similarly. In most experiments, the thresholds during the training and prediction
stages are set, respectively, to 1e − 5 and 1e − 4. We compare the performance of VBNN to two popular
variational frameworks under the mean-field assumption: the stochastic variational inference approximation
(SVI) implemented in Numpyro Phan et al. (2019), and Bayes by Backprop (BBB) Blundell et al. (2015)
implemented with Pytorch. For all the datasets, we evaluate the performance over 10 random splits, where
we use 90% of the data for the training and 10% for testing the model. We normalize the input but do not
re-scale the output, we record the root mean squared error (RMSE), the predictive negative log-likelihood of
the test data (NLL) and the empirical coverage, see Appendix C for additional implementation details and
the definition of each metric.

4.1 Simulated example
We construct a synthetic dataset generated by first uniformly sampling a two-dimensional input vector
xn = (xn,1, xn,2), with xn,d ∼ Unif([−2, 2]), and assume only the first feature influences the output: yn =
f(xn,1) + ϵn = 0.1x2n,1 + 10 sin(xn,1) + ϵn, where ϵn ∼ N(0, 0.5). Then, the dataset consisting of N = 300
observations is used to investigate the performance of VBNN compared to the SVI and BBB baselines as
we increase the number of hidden layers, setting L = 1, 2 or 5, whilst keeping the number of hidden units in
each layer fixed to DH = 20.

In general, for this simple non-linear example, the performance tends to deteriorate with increasing
architecture complexity (larger depth), and the VBNN is the most robust to this choice (see Figure 5, which
compares the performance of three of the models as a function of depth). In addition, as the number of
hidden layers increases, SVI and BBB provide overly wide credible intervals while VBNN more closely aligns
with the desired coverage (see Figure 6, which illustrates the empirical coverages for the observations).
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Figure 5: Performance on the simulated dataset as the depth increases. VBNN is more robust to the choice
of depth and overparameterization.

Figure 6: Empirical coverage for the observations for the simulated dataset for three different settings of
network’s depth.

For each depth, Figure 7 illustrates the predictive means and uncertainties computed for the observations
as well as DAGs of networks’ structures obtained after the post-process node selection algorithm described
in Section 3.3, where the Bayesian false discovery rate is constrained by setting the error rate to α = 0.01.
The sparsity-promoting prior combined with the node selection algorithm can effectively prune the over-
parametrized neural networks; for example, the sparse one-layer neural network contains only 11 hidden
nodes with 30 total edges/weights from the initial DH = 20 with 60 total edges/weights. Moreover, the
estimated regression function and credible intervals both from the variational predictive and the sparse
variation predictive distribution, recover the true function well. In this way, VBNN provides an effective
tool to reduce predictive computational complexity and storage as well as ease interpretation. Note that the
predictions show no relation with the coordinate x2 (Figure 7d), recovering the true function, but some of
the connections from x2 are still present in the sparse network, due to identifiability issues, although with
overall low weight (Figure 7e).

4.2 Diabetes example
The diabetes data consists of n = 442 entries obtained for p = 10 input variables, the response is a quantitative
measurement of disease progression. The predictors are age, sex, body mass index, average blood pressure
and six blood serum measurements and the goal is to determine which of these are relevant for forecasting
diabetes progression.

We fit a neural network with one hidden layer L = 1 and DH = 20 and perform the node selection
algorithm with the FDR bounded by α = 0.01. Figure 8 illustrates the shrinkage and node selection and
compares the coefficients of the Lasso linear model with cross-validation (LassoCV) to the original and the
sparsified weights of our model. Predictors with considerable effect obtained by both models coincide, whilst
some of the variables the Lasso model excludes (e.g. age) are still present in the VBNN’s estimates. Compared
with Lasso, VBNN has the advtange of learning potential nonlinear relationships between disease progression
and the predictors, which is explored in Figure 9, illustrating the predictive means and uncertainty of the
observations of VBNN for four of the predictors (with all other predictors are fixed to their mean) compared to
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(a) L = 1 (b) L = 2 (c) L = 5

(d) The predictive mean as a function of the
second coordinate for L = 1.

(e) Predictive means of the weights (on the left) and of the
sparse weights (on the right) for L = 1.

Figure 7: Predictive means and uncertainty estimates computed for the observations and the architecture of
the network for the bound on the FDR α = 0.01 for different settings of network’s depth.

the predictions of Lasso. While the uncertainty is wide, the results suggest potential nonlinear relationships,
e.g. with lamotrigine and age, the latter of which is not selected in Lasso.

Moreover, Figure 9 highlights how predictions obtained from the sparse version of the variational pre-
dictive distribution almost overlap, thus providing a reasonable, cheaper approximation. However, we note
that predictive performance is only slightly improved with VBNN (see Table 2 and supplementary Figure 10
in Appendix C.3).

Table 2: RMSE, NLL and coverage for diabetes dataset.

RMSE NLL Coverage
LassoCV 53.7± .5 5.4± .13 .96± .03
VBNN 52.9± 4 5.4± .09 .96± .03
SVI 55.± 5 6.5± .5 .63± .07
BBB 54.2± .1 5.4± .08 .94± .02

4.3 UCI regression datasets
Lastly, we consider publicly available datasets from the UCI Machine Learning Repository M. et al. (2007):
Boston housing Harrison and Rubinfeld (1978), Energy Tsanas and Xifara (2012), Yacht dynamics J. et al.
(2013), Concrete compressive strength Yeh (2007) and Concrete slump test Yeh (2009) (see Appendix C.4 for
the description of the datasets). For all of the UCI regression tasks, we fit a neural network with one hidden

18



Figure 8: Coefficients of LassoCV regression (on the left), predictive means of the weights of the neural
network (in the middle) and predictive means of the sparse weights obtained for α = 0.01 (on the right).

Figure 9: Slices of the predictive mean and uncertainty for observations for four predictors obtained by
VBNN with and without node selection and by Lasso with cross-validation.

layer and DH = 50 hidden units. Table 3 compares RMSE, NLL and empirical coverage of the observations,
for VBNN, SVI and BBB baselines. Our model is more consistent in performance across various datasets
than the SVI baseline and is comparable to BBB. In terms of the coverage and uncertainty quantification,
VBNN performs consistently well across all datasets in contrast to the other models.

Table 3: RMSE, NLL and Coverage for UCI datasets.

Dataset RMSE NLL Coverage
VBNN SVI BBB VBNN SVI BBB VBNN SVI BBB

Slump 6.99± 1.4 7.02± 1.0 6.83± 1.52 3.37± .2 3.97± .6 4.33± 1.3 .92± .06 .75± .1 .84± .14
Yacht 1.34± .3 1.73± .44 1.02± .32 1.74± .19 2.08± .12 .9± .49 .96± .03 .99± .02 .99± .02
Boston 3.17± .5 3.25± .54 3.18± 1.13 2.59± .14 2.95± .4 2.69± .42 .96± .03 .82± .04 .87± .04
Energy 1.29± .19 2.35± .26 1.88± .33 1.7± .14 2.31± .14 1.43± .19 .98± .01 .89± .03 .99± .01

Concrete 6.6± .45 6.04± .66 5.7± .71 3.31± .07 3.22± .09 3.09± 0.22 .96± .02 .97± .02 .94± .03

5 Discussion
In this paper, we presented a variational bow tie neural network (VBNN) that is amendable to Polya-gamma
data augmentation so that the variational inference can be performed via the CAVI algorithm. While the
idea of the stochastic relaxation described in Section 2.1 was introduced in Smith et al. (2021), the novelty
of our model is in the employment of the variational inference techniques as well as sparsity-inducing priors.
Namely, we implement continuous global-local shrinkage priors and propose a post-process technique for
node selection. Additionally, we consider an improvement of the classical CAVI algorithm by adding EM
steps for critical hyperparameters. In this way, we enrich the class of models which are handled within the
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structured mean-field paradigm. We provide all the necessary (computations), techniques, and illustrative
experiments demonstrating the utility of the model.

At each iteration, CAVI has to cycle through the entire data set, which can be computationally expensive
and inefficient for large sample sizes. An alternative to coordinate ascent is gradient-based optimization and
a future direction of this research will extend the algorithm by employing Stochastic variational inference
Hoffman et al. (2013) and subsampling. Moreover, an extension to other output types, such as classifica-
tion tasks, will be developed through additional Polya-gamma augmentation techniques Durante and Rigon
(2019).
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A Derivations of the Variational Posterior

Global shrinkage parameters. Using Equation (11), the variational posterior for the global shrinkage
parameters is:

q(τ ) ∝ exp

E

log L+1∏
l

Dl∏
d

Dl−1∏
d′

N (Wl,d,d′ |0, τlψl,d,d′)

+ log

L+1∏
l

GIG (τl | νglob, δglob, λglob)


∝
L+1∏
l

Dl∏
d

Dl−1∏
d′

expE

[
log

(
1√

τlψl,d,d′
exp

(
−

W 2
l,d,d′

2τlψl,d,d′

))]
×
L+1∏
l

τ
νglob−1
l exp

(
−1

2

(
δ2glob
τl

+ λ2globτl

))

∝
L+1∏
l

τ
νglob−1
l exp

(
−
δ2glob
2τl

−
λ2globτl

2

)
Dl∏
d

Dl−1∏
d′

τ
− 1

2

l exp

−
E
[

1
ψl,d,d′

]
E
[
W 2
l,d,d′

]
2τl


∝
L+1∏
l

τ
νglob−

DlDl−1
2 −1

l exp

−1

2

 1

τl

 Dl∑
d

Dl−1∑
d′

E
[

1

ψl,d,d′

]
E
[
W 2
l,d,d′

]
+ δ2glob

+ λ2globτl


∝
L+1∏
l

GIG
(
τl | ν̂glob,l, δ̂glob,l, λglob

)
,

where for l = 1, . . . , L+ 1

ν̂glob,l = νglob − DlDl−1

2
,

δ̂glob,l =

√√√√δ2glob +

Dl∑
d

Dl−1∑
d′

E
[

1

ψl,d,d′

]
E
[
w2
l,d,d′

]
.

Local shrinkage parameters. Similarly, the variational posterior for the local shrinkage parameters is:
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Covariance matrix. Under the assumption of a diagonal covariance matrix, with parameters ηl =
(η2l,1, . . . η
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), the variational posterior is:
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For the parameters βl,d, we must compute the sum of squares terms. For the last layer l = L + 1, this
term, for each data point n, is given by:
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Instead, for an intermediate layer l = 1, . . . , L, the sum of squares term, for each data point n, is given
by:
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Weights and biases. The variational posterior for the weights and biases is:
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Therefore, using also the fact that Σl is diagonal, we have that the variational posterior factorizes as
q(b,W) =

∏L+1
l

∏Dl

d=1 q(bl,d,Wl,d). We consider the terms q(bl,d,Wl,d) for the intermediate layers l =
1, . . . , L and q(bL+1,d,WL+1,d) for the last layer separately.

Starting with the last layer L+ 1, we first introduce the matrix
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Then, for the variational posterior of the weights and biases for the dth dimension of the final layer, we only
need to consider the relevant terms:
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Thus, completing the square, we have that
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)
.

Next, for the intermediate layers l = 1, . . . , L, we can similarly obtain the variational posterior of the
weights and biases q(bl,d,Wl,d) for dimensions d = 1, . . . , Dl. We introduce the matrices
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and consider the terms relevant to derive each q(bl,d,Wl,d) separately:
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Again, completing the square, we obtain the Gaussian variational posterior

q(bl,d,Wl,d) = N ((bl,d,Wl,d) | ml,d,Bl,d) .

Augmented variables. The variational posterior of the augmented variables is
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Binary activation. The variational posterior of the binary activations is:
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Therefore, the variational posterior q(γ) factories across observations n = 1, . . . , N , layers l = 1, . . . , L, and
dimensions of the layer d = 1, . . . , Dl, with each factor q(γn,l,d) given by:

q(γn,l,d) ∝ exp

(
−1

2
E
[
η−2
l,d

](
γ2
n,l,dE

[(
W̃l,dãn,l−1
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ãn,l−1ã
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[
W̃l,d

]
E [ãn,l−1an,l,d]

)
+

1

T
E
[
W̃l,d

]
E [ãn,l−1]

)
.

Then noticing that σ−1(ρ) = log(ρ(1− ρ)−1) and combining separate factors of the variational posterior of
the binary activations, we obtain:

q(γ) ∝
N∏
n

L∏
l

Dl∏
d

ρ
γn,l,d

n,l,d (1− ρn,l,d)
1−γn,l,d

∝
N∏
n

L∏
l

Dl∏
d

Bern (γn,l,d | ρn,l,d) .

Stochastic activation. The variational posterior of the stochastic activation is

q(a) ∝ exp

(
E

[
log

N∏
n

N (yn | zn,L+1,ηL+1) + log

N∏
n

L∏
l

N (an,l | γn,l ⊙ zn,l,ηl)

+ log

N∏
n

L∏
l

Dl∏
d

exp(
(γn,l,d − 1

2 )zn,l,d

T
) exp(−

ωn,l,dz
2
n,l,d

2T 2
)

])

∝
N∏
n

exp

−1

2

DL+1∑
d

E

[
1

η2L+1,d

]
E
[
(yn,d −WL+1,dan,L − bL+1,d)

2
]

×
N∏
n

exp

(
−1

2

L∑
l

Dl∑
d

E

[
1

η2l,d

]
E
[
(an,l,d − γn,l,d (Wl,dan,l−1 + bl,d))

2
])

×
N∏
n

exp

(
L∑
l

Dl∑
d

E

[(
γn,l,d − 1

2

)
zn,l,d

T
−
ωn,l,dz

2
n,l,d

2T 2

])
.

Therefore, the variational posterior of the stochastic activations factories across observations n = 1, . . . , N
and we derive q(an) separately. For each layer l = 1, . . . , L, we introduce the following diagonal matrix
Σ̂−1
l = diag

(
E
[
η−2
l,1

]
, . . . ,E

[
η−2
l,Dl

])
and consider the relevant terms of the variational posterior:

q(an) ∝ exp

−1

2
aTn,L

DL+1∑
d

E

[
1

η2L+1,d

]
E
[
WT

L+1,dWL+1,d

]
an,L


30



× exp

−aTn,L

DL+1∑
d

E

[
1

η2L+1,d

] (
E
[
WT

L+1,dbL+1,d

]
− E

[
WT

L+1,d

]
yn,d

)
× exp

(
−1

2

(
aTn,LΣ̂

−1
L an,L − 2aTn,LΣ̂

−1
L

((
E [γn,L]1

T
DL−1

⊙ E [WL]
)
an,L−1 + E [γn,L]⊙ E [bL]

)))
×
L−1∏
l=1

exp

(
−1

2

(
aTn,lΣ̂

−1
l an,l − 2aTn,lΣ̂

−1
l

((
E [γn,l]1

T
Dl−1

⊙ E [Wl]
)
an,l−1 + E [γn,l]⊙ E [bl]

)))

×
L∏
l=1

exp

(
−1

2

(
aTn,l−1

(
Dl∑
d=1

E

[
1

η2l,d

]
E [γn,l,d]E

[
WT

l,dWl,d

]
an,l−1

)))
×

×
L∏
l=1

exp

(
−aTn,l−1

(
Dl∑
d=1

E

[
1

η2l,d

]
E [γn,l,d]E

[
WT

l,dbl,d
]))

×
L∏
l=1

exp

(
−1

2

(
aTn,l−1

(
1

T 2

Dl∑
d=1

E [ωn,l,d]E
[
WT

l,dWl,d

])
an,l−1

))

×
L∏
l=1

exp

(
aTn,l−1

(
1

T

Dl∑
d=1

E
[
WT

l,d

](
E [γn,l,d]−

1

2

)
− 1

T 2

Dl∑
d=1

E [ωn,l,d]E
[
WT

l,dbl,d
]))

.

The variational posterior of the stochastic activations does not factories into independent blocks, however
it does have a structured sequential factorization q(an) =

∏L
l=1 q(an,l | an,l−1).And, we can derive the

variational factor q(an,L | an,L−1) by only considering the terms with an,L. First, introduce the matrices
Sn,L and Mn,L and a vectors tn,L:

S−1
n,L = Σ̂−1

L +

DL+1∑
d=1

E

[
1

η2L+1,d

]
E
[
WT

L+1,dWL+1,d

]
,

tn,L = Sn,L

Dl+1∑
d=1

E

[
1

η2L+1,d

] (
−E

[
WT

L+1,dbL+1,d

]
+ E

[
WT

L+1,d

]
yn,d

)+ Σ̂−1
l E [γn,L]⊙ E [bL]

 ,

Mn,L = Sn,LΣ̂
−1
L E [γn,L]1

T
DL−1

⊙ E [WL] .

Then we consider relevant terms of the variational posterior:

q(an,L | an,L−1) ∝ exp

(
−1

2

(
aTn,LS

−1
n,Lan,L − 2aTn,LS

−1
n,L (tn,L +Mn,Lan,L−1)

))
∝ exp

(
−1

2
(an,L − (tn,L +Mn,Lan,L−1))

T
S−1
n,L (an,L − (tn,L +Mn,Lan,L−1))

)
×

× exp

(
1

2
(tn,L +Mn,Lan,L−1)

T
S−1
n,L (tn,L +Mn,Lan,L−1)

)
∝ N (an,L | tn,L +Mn,Lan,L−1,Sn,L)× exp

(
1

2
(tn,L +Mn,Lan,L−1)

T
S−1
n,L (tn,L +Mn,Lan,L−1)

)
,

where the first term in the equation above provides q(an,L | an,L−1) and the second terms is relevant for
computing the subsequent q(an,L−1 | an,L−2). Recursively repeating a similar procedure for l = L−1, . . . , 1,
we are then able to obtain each of the variational posteriors q(an,l | an,l−1). Each time we define Sn,l,Mn,l

and tn,l as follows:

S−1
n,l = Σ̂−1

l −MT
n,l+1S

−1
n,l+1M̂n,l+1 +

Dl+1∑
d=1

E

[
1

η2l+1,d

]
E [γn,l+1,d] +

1

T 2

Dl+1∑
d=1

E [ωn,l+1,d]

E
[
WT

l+1,dWl+1,d

]

tn,l = Sn,l

MT
n,l+1S

−1
n,l+1tn,l+1 + Σ̂−1

l E [γn,l]⊙ E [bl] +
1

T

Dl+1∑
d=1

E
[
WT

l+1,d

](
E [γn,l+1,d]−

1

2

)
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−
Dl+1∑
d=1

(
E

[
1

η2l+1,d

]
E [γn,l+1,d] +

1

T 2
E [ωn,l+1,d]

)
E
[
WT

l+1,dbl+1,d

] ,

Mn,l = Sn,lΣ̂
−1
l E [γn,l]1

T
Dl−1

⊙ E [Wl] .

Then substituting the above into the terms of the variational posterior containing an,l:

q(an,l | an,l−1) ∝ exp

(
−1

2
(an,l − (tn,l +Mn,lan,l−1))

T
S−1
n,l (an,l − (tn,l +Mn,lan,l−1))

)
× exp

(
1

2
(tn,l +Mn,lan,l−1)

T
S−1
n,l (tn,l +Mn,lan,l−1)

)
∝ N (an,l | tn,l +Mn,lan,l−1,Sn,l)× exp

(
1

2
(tn,l +Mn,lan,l−1)

T
S−1
n,l (tn,l +Mn,lan,l−1)

)
.

Finally, we combine the terms q(an,l | an,l−1) for l = 1, . . . , L+1 and get the variational posterior of the
stochastic activation

q(a) ∝
N∏
n=1

L∏
l=1

N (an,l | tn,l +Mn,lan,l−1,Sn,l) .

B ELBO computation

B.1 ELBO for training
Recall, that optimal variational parameters maximize the ELBO function of Equation (10) which for our
model is:

ELBO = E [log p(y,a,γ,ω|W,b,Σ)] + E [log p(W|ψ, τ )] + E [log p(ψ)] + E [log p(τ )]

+ E [log p(b)] + E [log p(Σ)]− E [log q(a)]− E [log q(γ)]− E [log q(ω)]

− E [log q(W,b)]− E [log q(η)]− E [log q(ψ)]− E [log q(τ )] .

Similar to the variational update, we compute the terms of the ELBO corresponding to different blocks
of parameters separately.

ELBO of τ . First, consider the terms of the ELBO containing the global shrinkage parameters:

E [log p(τ )− log q(τ )] =

L+1∑
l=1

E
[
logGIG (τl | νglob, δglob, λglob)− logGIG

(
τl|ν̂glob,l, δ̂glob,l, λglob

)]
= Cτ +

L+1∑
l=1

E

[
log τ

νglob−1
l exp

(
−1

2

(
δ2glob
τl

+ λ2globτl

))]
− E

[
log
(
τ
ν̂glob,l−1
l

)
exp

(
−1

2

(
δ̂2glob,l
τl

+ λ2globτl

))]

= Cτ +
1

2

L+1∑
l=1

DlDl−1E [log τl] + E
[
1

τl
(δ̂2glob,l − δ2glob)

]
,

where the normalizing constant is

Cτ =

L+1∑
l=1

(νglob − ν̂glob,l) log(λglob) + ν̂glob,l log(δ̂glob,l)− νglob log(δglob)

+

L+1∑
l=1

log(Kν̂glob,l
(λglobδ̂glob,l))− log(Kνglob(λδglob)).
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ELBO of ψ. Similarly, the terms of the ELBO containing the local shrinkage parameters are

E [log p(ψ)− log q(ψ)] = Cψ +

L+1∑
l=1

Dl∑
d=1

Dl−1∑
d′=1

E [logGIG (ψl,d,d′ | νloc,l, δloc,l, λloc,l)]

−
L+1∑
l=1

Dl∑
d=1

Dl−1∑
d′=1

E
[
logGIG

(
ψl,d,d′ |ν̂loc,l,d,d′ , δ̂loc,l,d,d′ , λloc,l

)]

= Cψ +

L+1∑
l=1

Dl∑
d=1

Dl−1∑
d′=1

E

[
logψ

νloc,l−1
l,d,d′ exp

(
−1

2

(
δ2loc,l

ψl,d,d′
+ λ2loc,lψl,d,d′

))]

−
L+1∑
l=1

Dl∑
d=1

Dl−1∑
d′=1

E

[
log
(
ψ
ν̂loc,l,d,d′−1

l,d,d′

)
exp

(
−1

2

(
δ̂2loc,l,d,d′

ψl,d,d′
+ λ2loc,lψl,d,d′

))]

= Cψ +
1

2

L+1∑
l=1

Dl∑
d=1

Dl−1∑
d′=1

E [logψl,d,d′ ] + E
[

1

ψl,d,d′

](
δ̂2loc,l,d,d′ − δ2loc,l

)
,

where the normalizing constant is

Cψ =

L+1∑
l=1

Dl∑
d=1

Dl−1∑
d′=1

(νloc,l − ν̂loc,l,d,d′) log(λloc,l) + ν̂loc,l,d,d′ log(δ̂loc,l,d,d′)− νloc,l log(δloc,l)

+

L+1∑
l=1

Dl∑
d=1

Dl−1∑
d′=1

log(Kν̂loc,l,d,d′ (λglobδ̂loc,l,d,d′))− log(Kνloc,l(λloc,lδloc,l)).

ELBO of η. As before, the covariance matrix matrix is assumed to be diagonal so that the relevant ELBO
is:

E [log p(Σ)− log q(η)]

= Cη +

L∑
l=1

Dl∑
d=1

E
[
log IG(η2l,d|αh0 , βh0 )

]
+

DL+1∑
d=1

E
[
log IG(η2l,d|α0, β0)

]
−
L+1∑
l

Dl∑
d

E
[
log IG(η2l,d | αl,d, βl,d)

]
= Cη +

L∑
l

Dl∑
d

(
αl,d − αh0

)
E
[
log η2l,d

]
+

DL+1∑
d=1

(αL+1,d − α0)E
[
log η2L+1,d

]
+

L∑
l=1

Dl∑
d=1

(
βl,d − βh0

)
E

[
1

η2l,d

]
+

DL+1∑
d=1

(βL+1,d − β0)E

[
1

η2L+1,d

]

= Cη +
N

2

L+1∑
l

Dl∑
d

E
[
log η2l,d

]
+

L∑
l=1

Dl∑
d=1

(
βl,d − βh0

)
E

[
1

η2l,d

]
+

DL+1∑
d=1

(βL+1,d − β0)E

[
1

η2L+1,d

]
,

where the normalizing constant is

Cη =

L∑
l=1

Dl∑
d=1

αh0 log β
h
0 − αl,d log βl,d + log Γ(αl,d)− log Γ(αh0 )

+

DL+1∑
d=1

α0 log β0 − αL+1,d log βL+1,d + log Γ(αL+1,d)− log Γ(α0).

ELBO of (W,b).
Recall, previously introduced matrices Dl,d = diag

(
s−2
0 ,E

[
τ−1
l

]
E
[
ψ−1
l,d,1

]
, . . . ,E

[
τ−1
l

]
E
[
ψ−1
l,d,Dl−1

])
and

denote further D0
l,d = diag

(
s20, τlψl,d,1, . . . , τlψl,d,Dl−1

)
. Then the ELBO of weights and biases is:

E [log p(W|ψ, τ )] + E [log p(b)]− E [log q(W,b)]
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=

L+1∑
l=1

Dl∑
d=1

Dl−1∑
d′=1

E
[
logN

(
W̃l,d|0,D0

l,d

)]
−
L+1∑
l

Dl∑
d

E
[
logN

(
W̃l,d | ml,d,Bl,d

)]
=

L+1∑
l=1

Dl∑
d=1

E
[
log (|Dl,d|)−

1
2 exp

(
−1

2
W̃l,d

(
D0
l,d

)−1
W̃T

l,d

)]

−
L+1∑
l

Dl∑
d

E
[
log |Bl,d|−

1
2 exp

(
−1

2

(
W̃l,d −ml,d

)
B−1
l,d

(
W̃l,d −ml,d

)T)]

=
1

2

L+1∑
l

Dl∑
d

E [log |Bl,d|]− E
[
log
(
|D0

l,d|
)]

− E
[
W̃l,d(D

0
l,d)

−1W̃T
l,d

]
+ E

[(
W̃l,d −ml,d

)
B−1
l,d

(
W̃l,d −ml,d

)T]

=
1

2

L+1∑
l

Dl∑
d

log |Bl,d| − E
[
log
(
|D0

l,d|
)]

− Tr
(
E
[
W̃T

l,dW̃l,d

]
E
[
(D0

l,d)
−1
])

+

L+1∑
l

Dl

2

=
1

2

L+1∑
l

Dl∑
d

log |Bl,d| − Tr
(
E
[
W̃T

l,dW̃l,d

]
Dl,d

)
−
Dl−1∑
d′=1

E [logψl,d,d′ ]

− 1

2

L+1∑
l

Dl

(
log s20 +Dl−1E [log τl]− 1

)
.

ELBO of a, γ and ω. The remaining terms of the ELBO are the ones with stochastic and binary
activations and additional augmented variables:

E [log p(y,a,γ,ω|W,b,Σ)]− E [log q(a)]− E [log q(γ)]− E [log q(ω)]

=

N∑
n=1

DL+1∑
d=1

E [logN (yn,d | zn,L+1,d,ΣL+1,d)] +

N∑
n=1

L∑
l=1

Dl∑
d=1

E [logN (an,l,d | γn,d ⊙ zn,l,d,Σl,d)]

+

N∑
n=1

L∑
l=1

Dl∑
d=1

E

[
log

(
exp

(κn,l,dzn,l,d
T

)
exp

(
−
ωn,l,dz

2
n,l,d

2T 2

)
PG(ωn,l,d | 1, 0)

)]

−
N∑
n=1

L∑
l=1

E [logN (an,l | tn,l +Mn,lan,l−1,Sn,l)]

−
N∑
n=1

L∑
l=1

Dl∑
d=1

E [logBern (γn,l,d | ρn,l,d)] + E [logPG(ωn,l,d | 1, An,l,d)]

=

N∑
n=1

DL+1∑
d=1

E

[
log(η2L+1,d)

−1/2 exp

(
− 1

2η2L+1,d

(yn,d −WL+1,dan,L − bL+1,d)
2

)]
− NDL+1

2
log(2π)

+

N∑
n=1

L∑
l=1

Dl∑
d=1

E

[
log(η2l,d)

−1/2 exp

(
− 1

2η2l,d
(an,l,d − γn,l,d ⊙ (Wl,dan,l−1 + bl,d))

2

)]
−N

L∑
l=1

Dl log(2)

+
1

T

N∑
n=1

L∑
l=1

Dl∑
d=1

E
[(
γn,d −

1

2

)
(Wl,dan,l−1 + bl,d)

]
− 1

2T 2

N∑
n=1

L∑
l=1

Dl∑
d=1

E
[
ωn,l,d (Wl,dan,l−1 + bl,d)

2
]

−
N∑
n=1

L∑
l=1

E
[
log |Sn,l|−

1
2 exp

(
−1

2
(an,l − tn,l −Mn,lan,l−1)

T
S−1
n,l (an,l − tn,l −Mn,lan,l−1)

)]

−
N∑
n=1

L∑
l=1

Dl∑
d=1

(ρn,l,d log ρn,l,d + (1− ρn,l,d) log(1− ρn,l,d)) +

N∑
n=1

L∑
l=1

Dl∑
d=1

E
[
log

PG(ωn,l,d | 1, 0)
PG(ωn,l,d | 1, An,d)

]

=− 1

2

N∑
n=1

DL+1∑
d=1

E

[
1

η2L+1,d

](
y2n,d − 2yn,dE

[
W̃L+1,d

]
E [ãn,L] + Tr

(
E
[
W̃T

L+1,dW̃L+1,d

]
E
[
ãn,Lã

T
n,L
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− 1

2

N∑
n=1

L∑
l=1

Dl∑
d=1

E

[
1

η2l,d

](
E
[
a2n,l,d

]
− 2E [γn,l,d]E

[
W̃l,d

]
E [ãn,l−1an,l,d]

)
− 1

2

N∑
n=1

L∑
l=1

Dl∑
d=1

E

[
1

η2l,d

]
E
[
γ2n,l,d

]
Tr
(
E
[
W̃T

l,dW̃l,d

]
E
[
ãn,l−1ã

T
n,l−1

])

− N

2

DL+1∑
d=1

E
[
log η2L+1,d

]
− N

2

L∑
l=1

Dl∑
d=1

E
[
log η2l,d

]
+

1

2

N∑
n=1

L∑
l=1

log(|Sn,l|)

+

N∑
n=1

L∑
l=1

Dl∑
d=1

(
1

T

(
ρn,l,d −

1

2

)
E
[
W̃l,d

]
E [ãn,l−1]−

1

2T 2
E [ωn,l,d]

(
Tr
(
E
[
W̃T

l,dW̃l,d

]
E
[
ãn,l−1ã

T
n,l−1
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−
N∑
n=1

L∑
l=1

Dl∑
d=1

(
ρn,l,d log ρn,l,d + (1− ρn,l,d) log(1− ρn,l,d)−

A2
n,l,d

2
E [ωn,l,d] + log(cosh(

An,l,d
2

))

)
+ Ca,

where the normalizing constant is

Ca = −NDL+1

2
log(2π)−N

L∑
l=1

Dl log(2).

Total ELBO Then, we can sum the derived above parts to get the total ELBO of our model:

ELBO = const. +
L+1∑
l=1

1

2
E
[
1

τl

](
δ̂2glob,l − δ2glob

)
+ (ν̂glob,l log(δ̂glob,l) + log(Kν̂glob,l(λglobδ̂glob,l))

+

L+1∑
l=1

Dl∑
d=1

Dl−1∑
d′=1

1

2
E
[

1

ψl,d,d′

](
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Note that when implementing VI with EM scheme, we adjust the formula above by adding the term which
arises in the normalizing constant Cτ defined when computing the ELBO of global shrinkage parameters,
specifically, we add

ELBOEM = (L+ 1)
(
νglob (log(λglob)− log(δglob))− log

(
Kνglob(λglobδglob)

))
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+
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l=1

(νglob − 1)E [log τl]−
1

2
λ2globE [τl]− νl log(λglob).

B.2 ELBO for prediction
To obtain the posterior predictive distribution, we compute the approximate variational predictive distribu-
tions of a∗, γ∗ and ω∗ with the objective function being the ELBO of Equation (10). Thus, in the predictive
step of our algorithm, we monitor the convergence of the ELBO of a∗, γ∗ and ω∗, which we derive as follows:
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=
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E [ã∗,l−1]

− 1

2

L∑
l=1

Dl∑
d=1

(
E

[
1

η2l,d

]
E
[
γ2
∗,l,d

]
+

1

T 2
E [ω∗,l,d]

)
Tr
(
E
[
W̃T

l,dW̃l,d

]
E
[
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C Experiments

C.1 Initialization schemes
Initialization plays an important role in the ability of Bayesian inference algorithms to effectively approximate
the posterior. This is especially true in variational schemes for complex posteriors (such as for BNNs), which
are only guaranteed to converge to local optimum. We design two possible variations of random yet effective
initialization schemes. To simplify the exposition, we describe the procedure in the case of Inverse Gamma
shrinkage priors, for which λ = 0 and the selection of the scale parameters δ determines the level of shrinkage.
Note that during the training step, we employ the expectation-maximization algorithm to set an optimal
δglob, whilst the value of δloc,l remains the fixed. To encourage more shrinkage for larger depth, we assume
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δglob ∝ 1/
√
L, and to encourage shrinkage for larger width set δloc,l ∝ 1/

√
Dl. Given specified values of

νloc, νglob, δloc, δglob, α
h
0 , α0, β

h
0 , β0, we first re-scale the shrinkage parameters to scale appropriately

δglob =
δglob√
L
, δloc,l =

δloc√
Dl−1

, νloc,l = νloc,

and the initialization steps are:

Algorithm 3 Initialization
Require: Training inputs xn, n = 1, . . . , N ; choice of mode laplace or spike-slab
zn,0 = xn
for l = 1 . . . L, do

set ∆ = 0.05 ∗ (max(zn,l−1)−min(zn,l−1))
for d = 1 . . . Dl do

if laplace then

mW
l,d,d′ ∼ Laplace

(
0,

√
2

Dl−1

)
,

end if.
if spike-slab then

mW
l,d,d′ ∼ πN

(
0,

2√
Dl−1

)
+ (1− π)δ0, where π =

1

1 +
√
Dl−1

,

end if.

s = (s1, . . . , sDl−1
), where sd′ ∼ Unif([min(zn,l−1,d′)−∆d′ ,max(zn,l−1,d′) + ∆d′ ]),

mb
l,d = −mW

l,ds, ml,d =
(
mb
l,d,m

W
l,d

)
,

end for.

ρn,l,d = σ

(
mb
l,d +mW

l,dzn,l−1

T

)
d = 1, . . . , Dl,

Mn,l = mW
l ⊙ ρn,l1

T
Dl
, where by 1 we denote a vector of ones,

tn,l = mb
l ⊙ ρn,l,

zn,l = Mn,lzn,l−1 + tn,l,

end for.
Ensure: Mn,l, tn,l,ml,d for l = 1, . . . , L, d = 1, . . . , Dl and zL.

1. Covariance for biases and weights: Bl,d = 0.01IDl−1+1 for l = 1, . . . , L+ 1, d = 1, . . . Dl.

2. Covariance for stochastic activation: Sn,l = 0.01IDl
for n = 1, . . . , N, l = 1, . . . , L.

3. Variational parameters for η: Set αL+1,d = α0, αl,d = αh0 and βL+1,d = β0, βl,d = βh0 .

4. Variational parameters for τ ,ψ:

νloc,l,d,d′ = νloc,l, νglob,l = νglob,
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δglob,l ∼
√
2(νglob,l − 1)IG (νglob,l, δglob),

δloc,l,d,d′ ∼
√
2(νloc,l,d,d′ − 1)IG (νloc,l,d,d′ , δloc,l).

5. Use Algorithm 3 to initialize the variational means of the weights and biases for all intermediate layers,
and the variational means of the stochastic activations and the variational parameters of the binary
activations.

6. Variational mean of the weights and biases for the last layer mL+1 is obtained as a solution of fitting
Dy ridge regressions with inputs zL and outputs yd.

C.2 Implementation details
When comparing the performance of our method to already existing ones we implement the following model
in Numpyro:

y ∼ N (WL+1ReLU(zL) + bL,Σ) , where Σ ∼ IG(2, σy)IDy
,

zl = WlReLU(zl−1) + bl, Wl,d,d′ ∼ N

(
0,

σ2
W γ√
Dl−1

)
, bl,d ∼ N(0, σ2

bγ),

where zn,0 = xn, γ ∼ IG(2, 1) and l = 1, . . . , L, d = 1, . . . Dl, d
′ = 1, . . . , Dl−1. The choice of σy, σW and σb

is made in accordance with α0, s0 and δloc,l, respectively. For experiments with SVI we use Adam optimizer
with learning rate set to 0.001 and maximum number of iterations varying from 5000 to 20000 depending on
the dataset and depth of the network. Additionally, we consider the Bayes by Backprop model of Blundell
et al. (2015) and adapt its Pytorch implementation from the publicly available repository Javier (2019). For
all experiments with BBB we set the learning rate to 0.01 and maximum number of epochs varies from 500
to 1000.

Suppose that the data on which we evaluate the predictive performance consists of N points and the true
target is y∗, then recorded evaluation metrics are RMSE, NLL and EC and are computed as follows:

RMSE =

√√√√ 1

N

N∑
n

[(y∗n − E[yon])2],

NLL =
1

N

N∑
n

logN(y∗n | E[yon],Var(yon))

EC =
#{y∗ ∈ [qo0.025, q

o
0.975]}

N
.

where the predicted observations are yo and the corresponding quantiles are denoted as qo. When com-
puting quantiles to obtain empirical coverage and illustrating the uncertainty in Section 4 and below in
Appendix C.3, we rely on the Gaussian approximation.

C.3 Supplementary material to the diabetes example.
Figure 10 supplements Table 2 and the diabetes example in Section 4.2. Here, in the case of VBNN, BBB and
SVI models we provide the uncertainty of the observations and in the case of the LassoCV we provide residual
standard deviation. Additionally, we illustrate the sparse prediction and the uncertainty obtained from sparse
weights of the VBNN, which largely coincide with the original prediction and uncertainty estimates. Whilst
the coverage estimates for observations of VBNN and BBB are comparable, the SVI underestimates the
uncertainty and provides a dramatically lower coverage for observations.
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Figure 10: Predictive mean and the uncertainty estimates for the observations for three of the predictors
with considerable contribution.

C.4 Supplementary information on the datasets
Boston housing Harrison and Rubinfeld (1978): n = 506, p = 13, the predictors are per capita crime rate
by town, the proportion of residential land zoned for lots over 25,000 sq.ft., the proportion of non-retail
business acres per town, Charles River dummy variable, nitrite oxides concentration, average number of
rooms per dwelling, the proportion of owner-occupied, units built before 1940, weighted distances to five
Boston employment centres, index of accessibility to radial highways, full-value property-tax rate, the pupil-
teacher ratio by town, the quantitative measure of systemic racism as a factor in house pricing, lower status
of the population; the response of interest is the median value of owner-occupied homes. The Boston housing
dataset is among the most popular pip available datasets, and with respect to variable selection it was
considered in e.g. Schäfer and Chopin (2013).

Energy Tsanas and Xifara (2012): n = 768, p = 8, the predictors are relative compactness, surface area,
wall area, roof area, overall height, orientation, glazing area, and glazing area distribution, and the task is
to predict the heating load of residential buildings.

Yacht dynamics J. et al. (2013): n = 308, p = 6, the predictors are long position, prismatic coefficient,
length-displacement ratio, bean-draught ratio length-bean ratio and froude number, and the task is to model
the residuary resistance per unit weight of displacement for a yacht hull.

Concrete compressive strength Yeh (2007): n = 1030, p = 8, the predictors are cement, furnace slag, fly
ash, water, superplasticizer, coarse aggregate, fine aggregate and the age of testing, and the response variable
is the compressive strength of concrete. This is also considered from the variable selection perspective in
several works including Schäfer and Chopin (2013); Griffin (2024).

Concrete slump test Yeh (2009): n = 103, p = 7, the predictors are concrete ingredients, namely cement,
furnace slag, fly ash, water, superplasticizer, coarse aggregate, and fine aggregate and the task is to predict
slump of concrete.

D Review of relevant distributions

D.1 Generalized Inverse Gaussian
The Generalized Inverse Gaussian has density:

p(x | ν, δ, λ) = (λ/δ)ν

2Kν(λδ)
xν−1 exp

(
−1

2
(δ2/x+ λ2x)

)
,
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where Kν() is the modified Bessel function of the second kind. The GIG prior requires ν > 0 if δ = 0 and
ν < 0 if λ = 0 for a proper prior. Then the expectations arising in computations throughout this paper are:

E [x] =
δKν+1(λδ)

λKν(λδ)
,

E
[
1

x

]
=
λKν+1(λδ)

δKν(λδ)
− 2ν

δ2
.

Often, it is sensible to consider special cases of the GIG, which include:

1. Inverse Gamma: when λ = 0, the GIG reduces to the IG with density:

p(x | ν, δ) = 2ν

δ2νΓ(−ν)
(1/x)−ν+1 exp

(
− δ2

2x

)
,

where ν < 0 and δ > 0. This can also be re-written in terms of the more standard parametrization of
the IG:

p(x | α, β) = βα

Γ(α)
(1/x)α+1 exp

(
−β
x

)
,

where α = −ν > 0 and β = δ2/2 > 0. Note that if w ∼ N(0, τ) and τ ∼ IG(α, β), this implies a marginal
student t-prior on w with degrees of freedom dof = 2α = −2ν and scale s =

√
β/α = δ/

√
−2ν. For

example, setting ν = −1.5 would correspond to dof = 3 and ν = −2.5 is equivalent to dof = 5.

The relevant expectations for the VI updates and ELBO computation include:

E [x] =
β

α− 1
=

−δ2

2ν + 2
,

E
[
1

x

]
=
α

β
=

−2ν

δ2
,

where ψ is the logarithmic derivative of the gamma function (a.k.a. digamma function).

2. Gamma: when δ2 = 0, the GIG reduces to the Gamma with density:

p(x | ν, λ) = λ2ν

2νΓ(ν)
xν−1 exp(−λ

2

2
x),

where ν > 0, rewriting in the standard parametrization with α = ν and β = λ2/2:

p(x | α, β) = βα
1

Γ(α)
xα−1 exp(−βx),

where α = ν > 0 and β = λ2/2 > 0. Similarly, the relevant expectations are:

E [x] =
α

β
=

2ν

λ2
,

E
[
1

x

]
=

β

α− 1
=

λ2

2 (ν − 1)
.

Note that if w ∼ N(0, τ) and τ ∼ Gam(1, β), this implies a marginal Laplace prior on w (i.e. Bayesian
Lasso Park and Casella (2008)) with scale s = 1/

√
2β = 1/λ.

3. Inverse Gaussian (IGaus): when ν = −1/2, the GIG reduces to the Inverse Gaussian with density:

p(x | δ, λ) = δ√
2πx3

exp

(
− (λx− δ)2

2x

)
,
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where setting α = δ/λ > 0 and β = δ2 > 0 we derive

p(x | α, β) =
(

β

2πx3

) 1
2

exp

(
−β(x− α)2

2α2x

)
.

The relevant expectations for the VI updates and ELBO computation include:

E [x] = α =
δ

λ
,

E
[
1

x

]
=

1

α
+

1

β
=
λ

δ
+

1

δ2
.

Note that if w ∼ N(0, τ) and τ ∼ IGaus(α, β), the marginal distribution is of the form Caron and
Doucet (2008):

p(wk) =
1

πα

(
β

β + w2
k

) 1
2

exp

(
β

1
2

α

)
K1

(
(β + w2

k)
1
2

α

)

=
λ

π
exp(λ)

(
δ2 + w2

k

)− 1
2 K1

(
λ

δ

(
δ2 + w2

k

) 1
2

)
.

D.2 EM update for different cases of global-local priors
As discussed above, the special cases of the GIG include Inverse Gamma, Gamma and Inverse Gaussian
distributions, we derive the EM updates in each of the special cases of priors:

1. Inverse Gamma: when the global shrinkage parameter has an Inverse Gamma distribution, then

δglob = argmax

(
δ2glob

L+1∑
l=1

νglob,l
δ2glob,l

− 2(L+ 1)νglob log(δglob)

)
,

δglob = ((L+ 1)νglob)
1
2

(
L+1∑
l=1

νglob,l
δ2glob,l

)− 1
2

.

2. Gamma: similarly, when global shrinkage parameter is Gamma:

λglob = argmax

(
4(L+ 1)νglob log(λglob)− λ2glob

L+1∑
l=1

δglob,lKνglob,l+1(λglob,lδglob,l)

λglob,lKνglob,l
(λglob,lδglob,l)

)
,

λglob = (2(L+ 1)νglob)
1
2

(
L+1∑
l=1

δglob,lKνglob,l+1(λglob,lδglob,l)

λglob,lKνglob,l
(λglob,lδglob,l)

)− 1
2

.

3. Inverse Gaussian: if the global shrinkage parameter is Inverse Gaussian, then

λglob = argmax

(
2(L+ 1)λglobδglob − λ2glob

L+1∑
l=1

δglob,lKνglob,l+1(λglob,lδglob,l)

νglob,lKνglob,l
(λglob,lδglob,l)

)
,

λglob = 2(L+ 1)δglob

(
L+1∑
l=1

δglob,lKνglob,l+1(λglob,lδglob,l)

νglob,lKνglob,l
(λglob,lδglob,l)

)−1

.
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