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Abstract 
Biological lifeforms can heal, grow, adapt, and reproduce -- abilities essential for sustained survival and 

development. In contrast, robots today are primarily monolithic machines with limited ability to self-repair, 

physically develop, or incorporate material from their environments. A key challenge to such physical 

adaptation has been that while robot minds are rapidly evolving new behaviors through AI, their bodies remain 

closed systems, unable to systematically integrate new material to grow or heal. We argue that open-ended 

physical adaptation is only possible when robots are designed using only a small repertoire of simple modules. 

This allows machines to mechanically adapt by consuming parts from other machines or their surroundings 

and shedding broken components. We demonstrate this principle using a truss modular robot platform 

composed of one-dimensional actuated bars. We show how robots in this space can grow bigger, faster, and 

more capable by consuming materials from their environment and from other robots. We suggest that machine 

metabolic processes akin to the one demonstrated here will be an essential part of any sustained future robot 

ecology.  



Teaser 
Robots grow bigger, faster and more capable by absorbing and integrating material in their environment. 

Introduction 

Biological organisms operate as open systems: they absorb material from their environment and expel 

waste (1). This process is the basis for the long-term resilience of biological organisms over their lifetime(2, 

3). Progress in artificial intelligence has advanced robots’ ability to adapt by learning new behaviors, but has 

left the robots’ physical morphology fixed and monolithic. Typical robots today cannot increase in size and 

complexity, adapt, or self-repair. In contrast, biological lifeforms developed the ability for physical 

adaptation, repair, and replication, including absorbing and expelling material, long before any form of 

intelligence ever emerged(4–6). In light of that, artificial intelligence, although important, may just be one 

piece of the puzzle of true robot autonomy: robot self-sufficiency. For robots to become resilient and 

sustainable in the long term, we must develop processes that allow them to act as open systems and develop 

physically by consuming, expelling, and reusing material from their environment. We call this process robot 

metabolism.  

Unlike traditional robot manufacturing processes, where robots may be involved in the process of 

making robots in a variety of ways, a robotic adaptation process qualifies as robot metabolism if it satisfies 

two criteria: First, robot metabolism cannot rely on physical support from any external system to accomplish 

its growth; the robot must grow using only its own abilities. The only external assistance allowed is that which 

comes from other robots made of the same components. Second, the only external provision to robot 

metabolism is energy and material in the form of robots or robot parts. No new types of external components 

can be provided. In the case of the platform used in this work, material comes in the form of robot modules 

and energy in the form of electricity stored in each module’s batteries. 

The concept of robot metabolism raises more questions than we can answer in this paper. Thus, we 

focused on a set of key challenges: self-assembly, self-improvement, recombination after separation, and 

robot-to-robot assisted-reconfiguration. In this work, we demonstrate the potential of this approach and 

introduce a robot platform capable of achieving it. We believe that this is the first demonstration of a robot 

system that can grow from single parts into a full 3D robot, while systematically improving its own capability 

in the process and without requiring external machinery. 

 



 

Figure 1: Robot metabolism concept. Robot modules can grow by consuming and reusing parts from their environment and 

other robots. This ability, essential to biological lifeforms, is crucial for developing a self-sustaining robot ecology. This paper 

demonstrates the above developmental sequence in detail: from individual modules to a fully assembled ratchet tetrahedron robot. 

The choice of robotic building blocks is key as it spans the ultimate space for all possible designs. 

Biological lifeforms comprise only about 20 amino acids assembled into polypeptides during protein 

synthesis, ultimately giving rise to innumerable proteins and millions of self-sustaining lifeforms(7). 

Similarly, modular robots constructed from a finite set of simple, standardized components give rise to diverse 

functional structures and adaptive mechanisms. We believe that imitating nature’s methods, rather than merely 

its results will lead more fundamental innovation in robotics. Replicating animals and humans in the form of 

robot dogs and humanoid robots is ultimately limiting. Thus, the robot building blocks need to be designed 

with the capacity for robot metabolism. Once developed, platforms capable of robot metabolism provide a 

physical counterpart to self-improving artificial intelligence. Thus, we open the possibility of robots changing 

their own form to ultimately overcome the limitations of human ingenuity.  

We introduce the Truss Link, a robot building block designed to enable robot metabolism. The Truss 

Link is a simple, expandable, and contractible, bar-shaped robot module with two free-form magnetic 

connectors on each end. Animating any structure, Truss Links form robotic “organisms” that can grow by 

integrating material from their environment or from other robots (see Fig. 1). We show how two substructures 

can combine to form a larger robot, how two-dimensional (2D) structures can fold into three-dimensional 

(3D) shapes, how robot parts can be shed and then be replaced by another found part, and how one robot can 

help another “grow” through assisted reconfiguration. 

Truss Link 

Truss Links can be used to build modular robots. Modular robot systems comprise multiple parts called 

modules, links, or cells that can self-assemble or be assembled to achieve an objective. The Truss Link is the 



basic building block of our modular robot system. Toshio Fukada sparked a new generation of research, when 

he introduced modular robotics in 1988 (8). Modular robots promise increased versatility, configurability, 

scalability, resiliency and ability to self-reconfigure and evolve(9–11). Additionally, robot modularity could 

make robots cheaper if the modules were mass produced(9). Modular robots are potentially resilient as a result 

of their redundancy and modularity, rather than mere material strength. 

 
Figure 2: Truss Link details. (a) A contracted Truss Link is 28cm long and weighs 280g (b). When fully expanded, a Truss Link 

can increase its length by over 53% to 43cm. (c.1-c.3) Inside the connector shell, a spherical neodymium magnet is held in 

position by a magnet holder, as shown in (d.1). The magnet holder allows the magnet to rotate freely to rotate to an equilibrium 

position when approached by another magnet. This mechanism ensures a strong connection between multiple links from a wide 

and continuous range of angles. We show connections between (c.1) two, (c.2) three, and (c.3) four connectors. Images (d.1) and 

(d.2) show the interior of the magnet connector in an active state with the magnet exposed at the tip and a fully-contracted, i.e., 

non-active state with the magnet retracted, respectively. The conical compression spring inside the connector resets the magnet 

connector to the active state after retracting it, so the Truss Link is ready to connect again. 



Modular robots can be classified as self-reconfiguring or manually reconfigurable robots(12). Self-

reconfiguring robots can attach and detach from other modules automatically, while manually reconfigurable 

robots must be assembled by an operator. Truss Links enable modular self-configuring robots. A single Truss 

Link is capable only of motion in one dimension and, therefore, is limited to crawling forwards and backwards. 

Once a multi-link topology such as a triangle or tetrahedron has been formed, the system becomes fully 

controllable in 2D or 3D, respectively. 

As truss robots, Truss Links form "scaffold-type" structures and have expanding and contracting 

prismatic joints rather than rotational ones as they are found in popular cubic-shaped models(10). Spherical 

and cubic robot models have the drawback of forming dense structures, making assembling large robots 

difficult. Recent developments in modular robotics have shown increased interest in both truss-style and free-

form modular robots. Spinos et. al. and Park et al. introduced the first truss-robot capable of self-

reconfiguration (13–15). Prior truss modular robots such as Morpho and Odin were limited by their attachment 

mechanism from self-reconfiguring (16–18). Both of these systems required connector cubes to join modules. 

Many of the well-known cubical modular robot designs, such as Molecubes, M-Blocks, and Smores-

EP, had power-sharing or communication channels built into their connectors and, as a result, were limited to 

a discrete set of attachment angles (19–22). Free-form modular robots such as the spherical FreeBot and 

FreeSN changed this by excluding electronic contacts from their connector; instead, they used a simple 

magnetic connector with infinite attachment possibilities(23, 24). We chose a free-form style connector design 

to allow Truss Links to effectively self-assemble. 

By combining free-form connectors with a truss-style module design, we created a self-assembling 

platform that forms sparse lattices rather than dense structures. The Truss Link’s free-form magnetic 

connector allows it to attach freely from a wide range of angles without requiring precise alignment. The 

Truss Link is the first truss-style modular robot capable of self-assembly and self-reconfiguration. 

Results 

Our results demonstrate that it is possible to form machines that can grow physically and become more 

capable within their lifetime by consuming and recycling material from their immediate surroundings and 

other machines. While these results are still nascent, they suggest a step towards a future where robots can 

grow, self-repair, and adapt instead of being purpose-built with the vain hope of anticipating all use cases. 

Robot platforms capable of robot metabolism open the door to the development of machines that can simulate 



their own physical development to achieve an objective and then execute that physical development. By acting 

as open systems, robots capable of robot metabolism bear the potential of forming self-sustaining robot 

ecologies that can grow, adapt, and sustain themselves, given a continued supply of robot material. 

The Truss Link is the first modular truss robot capable of robot metabolism. To start, we demonstrate 

the Truss Link’s capacity for self-assembly from individual parts—forming a three-pointed star and a 

triangle—and by integrating existing sub-structures—forming a diamond-with-tail from a triangle and a three-

pointed star. Second, we quantify the probability of random topology formation in simulation given similar 

randomized initial conditions used in our physical demonstration. Third, we show how Truss Link structures 

can recover their morphology after separation due to impact via self-reconfiguration or self-reassembly. 

Fourth, we introduce a way for a ratchet tetrahedron morphology to shed a “dead” Truss Link and replace it 

by picking up and integrating a found link. Finally, we expand beyond the individual robot and demonstrate 

how a ratchet tetrahedron robot can assist a 2D arrangement of links to form a tetrahedron. 

The Truss Links were operator-controlled in all physical Truss Link experiments using a custom 

keyboard interface. The interface allows the operator to send commands to selected Truss Links or trigger 

pre-programmed open-loop control scripts. The pre-programmed controllers allowed us to topple tetrahedrons 

or make ratchet tetrahedrons and tetrahedrons crawl. 

Multi-stage robot development 
The multi-stage robot development experiment tested whether a 3D structure capable of absorbing and 

integrating more material could be formed from independent 1D robotic building blocks. If possible, this 

would lay the foundation for truss robots capable of growing in complexity due to self-assembly and physical 

development. Next, we quantified the probability of our robotic building blocks randomly assembling into the 

topologies shown in the multi-stage robot development experiment in simulation. These probabilities provide 

a reference for the likelihood of achieving these developmental transitions. 
To test our hypothesis, we investigated which environmental conditions facilitated self-assembly. In 

nature, we see environmental factors crucial to successful development, with early-stage development being 

most sensitive to environmental conditions. Bird embryos require a hermetically sealed egg to grow, while 

mammals require a temperature-stabilized womb. Similarly, Truss Links’ ability to develop and form new 

structures is influenced by environmental factors. Identifying a suitable environment was crucial for achieving 

robot development from basic parts. 



 
Figure 3: Multi-stage robot development. Individual Truss Links can connect to other links to form multi-link robots. These 

robots can then absorb more links to change their topology. (a) shows a series of topological transitions, starting on the left from a 

group of individual links and ending on the right with a ratchet-tetrahedron topology. Starting from six independent links, three 

links combine to form a 3-pointed star shape, and the other three combine to form a triangle. Next, the triangle absorbs the 3-

pointed star by connecting to it and becomes a diamond-with-tail topology. The diamond-with-tail then folds itself into a 



tetrahedron. Next, the tetrahedron finds and integrates a free Truss Link by connecting and picking it up from the ground to form 

a ratchet tetrahedron. (b) shows the profile view of the experiment environment (not to scale), clarifying where each transition 

shown in (c.1-3) took place with section labels (b.1) through (b.4) as a reference. The frame sequences in (c.1), (c.2), and (c.3) 

show the formation of a diamond-with-tail, a tetrahedron robot, and a (c.3) ratchet tetrahedron, respectively. 

In our simulation environment, we explored what type of world environment would allow us to 

transition from 2D robot structures to 3D robot structures, particularly the diamond-with-tail to tetrahedron 

transition. Through experimentation, we found that this transition is more likely to succeed if a diamond-with-

tail crawls off a ledge (see Fig. 3 ledge between b.2 and b.3), and has an obstacle to lean up against (see black 

vertical obstacle in Fig. 3-b.3) while folding in on itself—connecting the tail of the diamond-with-tail to its 

tip (see t=217s-231s in Fig. 3 c.2).  Once we identified a suitable environment, we then built a four-stage (see 

Fig. 3-b and Fig. S1), 3.9m long and 0.9m wide experiment environment, mimicking the simulated 

environment. To enable the diamond-with-tail to tetrahedron transition, a ledge followed by an obstacle was 

placed between stages 3 and 4 (see Fig. 3 b.2 and b.3).  

The experiment involves a total of seven Truss Links. Six Truss Links start on the first stage (Fig. 4 

a.1), and the seventh Truss Link is waiting to be picked up by the tetrahedron on the 3rd stage (Fig. 4 a.3). 

Throughout the experiment, there are five topological transitions. First, the formation of a triangle and a 3-

pointed star from six individual links, followed by the triangle absorbing the 3-pointed star to form a diamond-

with-tail (see Fig. 4 b.1). Next, the diamond-with-tail forms by crawling off a ledge and folding in on itself 

(see Fig. 4 b.2). Last, similar to the tetrahedral mechanism discovered by Lipson and Pollack in (25), the 

tetrahedron transitions into a tetrahedron ratchet configuration by picking up a found Truss Link and using it 

as a walking stick (see Fig. 4 b.3). 



 
Figure 4: Locomotion speed comparison between a single Truss Link, a triangle, a tetrahedron, and a ratchet tetrahedron. The 

error bars show the standard deviation from the mean. The experiment was conducted on a flat, 10-degree decline. 
 
Each transition in this experiment is designed to produce a topology more capable than the previous 

one. Individual links can only crawl forward and backward in 1D space. A triangle and a 3-pointed star can 

both navigate in 2D space and, therefore, can circumvent obstacles that a single Truss Link couldn’t. In 

contrast with a triangle or a 3-pointed star, a diamond-with-tail can overcome a 25mm tall ledge and can fold 

itself into a tetrahedron. A tetrahedron can move in 3-dimensions by toppling onto obstacles that were 

inaccessible to previous topologies. A ratchet tetrahedron increases its walking speed by over 66.5% on a 10-

degree slope compared to a tetrahedron (see Fig. 4). See supplementary videos S2 and S3. 

After assessing its feasibility in simulation, we successfully reproduced every transition of the 

experiment on the physical platform. Our experiments demonstrated that three independent links can combine 

to form a triangle and a 3-pointed star configuration. Next, we showed that a triangle can connect to and 

integrate a 3-pointed star to form a diamond-with-tail shape that can further fold itself into a tetrahedron. 

Finally, we demonstrate how a tetrahedron robot can consume a found Truss Link and integrate it into a 

tetrahedron-ratchet configuration (see Fig. 3-c.3). 

Simulated Morphology Formation Probabilities 



Teleoperated, physical experiments don’t highlight the difficulty of forming different morphologies. 

Thus, we quantified the formation probabilities of different morphologies in simulation. We simulated the 

morphological development experiment environment, spawned the Truss Links randomly in the same section 

of the experiment environment as the physical experiment, and randomized the control inputs. We added walls 

to the simulated experiment environment to prevent Truss Links from falling off. To track the morphologies 

during simulation, we hashed all magnets based on their x and y locations into a 2D occupancy grid with 

16mm-by-16mm square cells and then considered all magnets that were within the same cell or within 

neighboring cells to be connected. Based on our empirical observation of the physical platform, this is a 

reasonable assumption since two magnets within that range would inevitably snap together. Next, we 

represented the morphology as a graph by treating the links as edges and groups of connected connectors as 

nodes. Finally, we computed the Weisfeiler-Lehman hash for each graph representing a specific morphology 

(see supplementary materials S1.7). The resulting formation probabilities provide a numerical reference for 

the likelihood of the transitions in our previous experiment occurring by chance without human assistance. 

Table 1: 

Simulated random topology formation probabilities over 2000 20-minute simulation runs 
Formation Probability Formation Probability 

 

100% 

 

8.4% 

 

98.6% 

 

64.35 

 

97.6% 

 

44.3% 

 

9.2% 

 

0% 

 



The analysis was conducted on 2000 random experiment runs, each limited to 20 minutes of simulation 

time. Experiments that were initialized with links already connected were excluded from the analysis and not 

counted towards the 2000 analyzed experiment runs. For each run, we stored the set of all morphologies that 

occurred during the simulation. From this data, we extracted the probabilities shown in Table 1. 

The formation probabilities show that some but not all of the morphologies could be reproduced 

spontaneously from the random initial state with random motor commands within 2000 attempts. It becomes 

apparent that the formation of a diamond-with-a-tail is highly likely from the spawn locations chosen in the 

experiment, given that it occurred in 44.3% of the experiment runs. This high probability points towards an 

initialization bias, which was intentional since the initialization was supposed to mimic the one used in the 

physical experiment. However, it is worth noting that just 9.2% of the experiment runs exhibited a three-

pointed star and a triangle simultaneously, indicating that most diamond-with-tail shapes were not formed as 

demonstrated on the physical robot by combining a triangle with a three-pointed star.   

From the physical experiment, we learned that forming the tetrahedron and the ratchet tetrahedron is 

possible. Thus, we can conclude that more randomized runs and more simulation time would have produced 

a non-zero probability for the tetrahedron. Following this line of reasoning, Truss Links could “grow” on their 

own even if they acted randomly. 

Damage recovery 
Biological life’s ability to self-heal by reforming broken bonds or growing back parts inspired us to 

attempt robot self-repair by reforming broken bonds between Truss Links. The magnetic connections between 

Truss Link connectors form pre-determined breaking points, reducing the risk for physical damage to the 

Truss Link hardware from impact. In this section, we explore how this feature enables robots to recover their 

original topology after being separated upon impact. In our tests, we let triangle, three-pointed star, and 

diamond-with-tail robots crawl off the 30cm tall ledge between stage b.2 and b.3 of the experiment setup 

shown in Fig. 3, such that they disconnected on impact and then attempted to regain their original morphology. 

For this experiment, we limited damage to a loss of the original topology due to broken connections 

between Truss Links. This is in contrast to the breaking or malfunctioning of Truss Links. We intentionally 

kept the drop height low to avoid damage to the Truss Links. In the case of a broken Truss Link the robot 

would need to get rid of the broken part and replace it with a functioning one, as shown in our next experiment. 

The violent disconnections after impact and the slopes of the experiment environment resulted in hard-

to-predict outcomes that were difficult to control for the operator. Thus, several reconstruction attempts were 

not successful. We share examples of successful shape recovery for all three topologies below. 



 
Figure 5: Triangle shape recovery. A Truss Link triangle robot crawls off the ledge, breaks a connection due to the impact, 

proceeds to recover its triangle shape, and crawls away. 

 

The triangle is a fully constrained shape and, therefore, a naturally stable planar topology. As a result, 

the triangle resisted breaking any connections on several attempts. All triangle connections are strong two-

connector connections without unconstrained degrees of freedom. If one connection did break, the other two 

would usually hold. 

In one failed attempt, the triangle managed to break both connections with the back Truss Link, which, 

due to the sloped surface, rolled and re-connected at the connection point between the other two links—

forming a three-pointed star. In another attempt, the back Truss Link broke a single connection, but the 

operator didn’t manage to re-form the triangle within the bounds of the filming setup and thus aborted the 

attempt. 

A successful damage recovery sequence is shown in Fig. 5. Notice how at t=84s the triangle’s back 

left connection gets disconnected due to the asymmetric fall. After extending its back Truss Link, the triangle 

recovers the connection by extending its front-right Truss Link. 



 
Figure 6: Three-pointed star shape recovery. A three-pointed star robot crawls off a ledge and breaks all Truss Link 

connections. The robot then regains a three-pointed star shape and crawls away. 

In contrast to the triangle, the three-pointed star topology is under-constrained: all three links are only 

connected on one end. As a result, it is less predictable, harder to control, and more brittle. Several attempts 

failed spectacularly with links being flung down the ramp or rolling away, thereby making shape recovery 

impossible. 

A successful sequence showing the damage recovery of a three-pointed star is shown in Fig. 6. At 

t=80s the three-pointed star drops and completely disconnects following the impact. The three-pointed star 

recovered its original form after the links rolled near each other, and the Truss Link facing in the 2 o’clock 

direction at t=82s shuffled itself to a 3 o’clock position (t=260s). The three-pointed star was able to crawl 

away after recovering its shape. 



 
Figure 7: Diamond-with-tail shape recovery. A Truss Link diamond-with-tail robot crawls off a ledge and separates into a 

three-pointed star and a triangle robot. The three-pointed star robot lands on top of the triangle robot. Next, the three-pointed star 

robot crawls off the triangle and reconnects to it, ultimately regaining the diamond-with-tail shape. 

To assess if a larger structure could recover its original shape, we conducted the experiment using the 

diamond-with-tail topology consisting of six links. Only one of the connections on the diamond-with-tail are 

two-connector connections; the other three connections are three-connector connections. 

The diamond with tail structure is under-constrained and similarly unstable when falling as the three-

pointed star. When falling off the ledge, the front of the structure crashes into the experiment surface, while 

the back end is still sliding or falling, adding additional force to the Truss Link connections and breaking 

them. As a result, the Truss Links further back in the structure can fall on top of the links in the front. 

A successful recovery sequence of a diamond-with-tail that separated in the middle into a triangle and 

a three-pointed star is shown in Fig 7. The three-pointed star landed on top of the triangle and had to shuffle 

itself off of the triangle first before reconnecting. The three-pointed star managed to connect to the lower-

right vertex of the triangle. After four minutes of maneuvering, the second Truss Link of the three-pointed 

star reconnected to the lower-left corner of the triangle. Finally, the reformed diamond-with-tail moved itself 

off the ramp. 

 



Replacing a “dead” Truss Link 

Truss Link structures can self-assemble, but can they self-repair? In this experiment, we tested if a 

ratchet tetrahedron could recover from losing its ratchet Truss Link due to power loss. Truss Links are 

programmed to fully contract and detach by retracting the magnets inside the connectors once battery power 

drops below a critical threshold. Thus, similar to apoptosis in multicellular organisms (i.e., programmed cell 

death), the robot can shed a Truss Link that is no longer needed or threatens the robot’s overall functionality. 

 
Figure 8: Ratchet-tetrahedron sheds “dead” ratchet Truss Link and picks up a replacement. The ratchet tetrahedron 

approaches the single Truss Link and latches onto it. Next, it sheds the dead link: the fully contracted and detached “dead” Truss 

Link falls off of the tetrahedron and rolls down the slope. The tetrahedron then topples itself twice to re-orient itself to pick up the 

newly found Truss Link. After the pickup at t=192s, the tetrahedron swings the Truss Link into its center and ratchets away. 

In the frame sequence shown in Fig. 8, the ratchet tetrahedron first finds and connects to a replacement 

Truss Link with its right-front-bottom vertex. Next, as shown in Fig. 8 at t=36s and following, the ratchet 

Truss Link is triggered to execute its death sequence, where the Truss Link fully contracts both servos. This 

causes the ratchet Truss Link to let go of its connection and then roll away due to the environment slope at 

t=38s. Next, the tetrahedron topples first forward (see t=107s) and then to the right (see t=147s) to get into 



position to pick up the replacement Truss Link. Finally, at t=192s, the tetrahedron picks up the new Truss 

Link, swings it inside itself (t=226s to 331s), and then continues to use it as a ratchet at t=379s and following. 

This experiment was conducted on stages three and four of the experiment (see Figure 3 – c.3 and c.4). 

The experiment environment has a slope that is necessary to enable the tetrahedron to pick up the found Truss 

Link. The slope also has the benefit of allowing a shed Truss Link to potentially roll away and thereby not 

interfere with the process of picking up the replacement link. 

Robot-to-robot assisted reconfiguration 

Earlier, we have demonstrated how a ratchet-tetrahedron can be assembled from individual Truss 

Links. However, the transformation from diamond-with-tail to tetrahedron, as shown in Fig. 3, is not trivial 

and requires specific environmental conditions. Here, we study if, once a tetrahedron has been formed, the 

transition from a two-dimensional flat pattern to a tetrahedron could be facilitated by robots assisting each 

other. 

 



 
Figure 9: Robot-to-robot assisted tetrahedron formation. A ratchet tetrahedron uses its ratchet Truss Link to fish through a 

hole in the white platform for the vertex where the triangle and the three-pointed star are connected. After being lifted up, the 

three-pointed star connects to the two free vertices of the triangle, forming the tetrahedron. The different, time-synchronized 

camera angles in the frame sequence were picked based on which camera provided the most informative view of each stage. 

In this experiment, we identified a way to erect multiple consecutive flat patterns into tetrahedrons 

one after another, thereby significantly lowering the difficulty of forming more tetrahedrons after the first 

ratchet tetrahedron is formed. Inspired by the teardrop-shaped canyon cross-sections found in Leprechaun 



Canyon, the experiment environment features a raised platform with a narrow opening and a sloped surface 

below. From this elevated position, the ratchet tetrahedron can assist other links to extend into the third 

dimension. 

A frame sequence of this experiment, including multiple camera angles, is shown in Fig. 9. A ratchet 

tetrahedron can position itself on the raised platform above the opening (see t=0min to 1:51min). The raised 

platform mimics a washed-out canyon with overhanging walls that only leave a narrow gap at the top. A three-

pointed star and a triangle then crawl underneath it. The three-pointed star connects to one of the triangle 

vertices by extending one of its links, as shown at t=0:30min. The ratchet tetrahedron can then reach down 

through the narrow gap—like a crane, connect to that same vertex and lift it up (see t=4:58min to 8:28min). 

Since the whole weight of another tetrahedron exceeds the holding power of the ratchet link’s magnet 

connection, it has to support the ratchet Truss Link body on the edge of the gap (see t=7:01min). In this way, 

the links below can move around without risking the structural integrity of the ratchet above. The three-

pointed star’s two free links then shuffle their way toward the triangle's vertices, as shown from t=7:01min to 

t=8:06min, until they connect—voila, a tetrahedron is formed. Next, the ratchet tetrahedron needs to 

disconnect from the tetrahedron. The ratchet tetrahedron drops the newly formed tetrahedron by fully 

contracting one side of its ratchet Truss Link and retracting the magnet inside the connector (see t=8:28min). 

Then, at t=9:57min, the newly formed tetrahedron crawls away. At this point, the next three-pointed star and 

triangle could come along and undergo the same assisted transformation. 

Through this experiment, we showed that the difficulty of forming a Truss Link tetrahedron can be 

reduced by robots assisting robots. This method of tetrahedron formation could be repeated without navigating 

the risks of folding an underconstrained three-pointed star by crawling it off a drop. Finally, the transformation 

shown in this experiment aligns with the constraints of the robot metabolism and shows that robot 

development need not be a solitary endeavor. 

Discussion and conclusion 
We presented a robotic system that can produce structures that can develop physically, i.e., grow in 

size and capability, by absorbing and integrating found Truss Links or existing Truss Link structures. Many 

self-reconfiguring robotics systems have been demonstrated in the past, including our own systems capable 

of self-production (7). However, this is the first demonstration of a robot system that can develop from single 

1D cells to a full 3D robot, while systematically improving its own capability in the process and without 

requiring external machinery. 



Limitations and future work 
The robot structures presented in this paper are very simple. This is a direct result of the still nascent 

stage of the field of self-reconfiguring modular robotics and the software infrastructure surrounding it. The 

Truss Link’s design was deliberately kept to the bare minimum required to perform this demonstration. We 

believe that smaller and simpler building blocks will ultimately span a larger space of potential robot 

morphologies. However, practical considerations dictated by available linear actuators limit the expansion 

ratio, weight, and strength of each link. In future work, we aim to develop microscale models that would allow 

the construction of single robots composed of millions of cells.  

A second factor in selecting the appropriate building block is choosing one that would enable scalable 

growth. We plan to tackle the challenge of developing a high-fidelity, highly parallelized simulator for 

modular robotics to study the physical potential of growing robotics stems and a more systematic development 

of suitable cells. 

Applications for platforms capable of robot metabolism are distant but inevitable. As our economic 

welfare grows increasingly dependent on robots, it becomes necessary that these robots can take care of 

themselves physically. It is unlikely that human engineers will be able to maintain the growing numbers of 

robotic systems or manually adapt them to new needs, tasks, and environments, given their increasing 

complexity. We must understand how to build robot building blocks that enable robots that physically care 

for themselves, adapt, and grow. In essence, we need to create a self-sustaining robot ecology. 

  



Materials and Methods 
Here we share additional information on our experiment environment and how the walking speeds of 

different Truss Link topologies were measured. We provide in-depth information on the Truss Link’s 

hardware and design. We explain how the Truss Links were coordinated using our Truss Link server and 

controller. Next, we address the key aspects of our customized PyBullet simulation environment used in our 

experiments. A rendered video of a diamond-with-tail forming in a randomized experiment can be seen in 

supplementary video S4. 

Experiment Environment Details 
Our experiment setup (shown in Fig. S1) was designed to allow the Truss Links to transition from 

single links to a ratchet tetrahedron. The experiment environment was designed with adjustable slopes for 

each stage. We initially set the slopes to the values that were used in the simulation and then adjusted the 

slopes as needed to achieve the transformations shown in the multi-stage robot self-assembly experiment. 

Stages one to four are 1.2m, 0.6m, 0.6m, and 1.2m long, respectively. The surface is built from 6mm thick 

plywood that is covered with a layer of 10mm thick foam board to smoothen the stage transitions from 

stages one to two and three to four. Additionally, a cardboard cylinder containing weight was placed as an 

obstacle on stage three to allow the diamond-with-tail to fold itself into a tetrahedron in a controlled manner. 

All our physical experiments were conducted on a 4mm-pile Polypropylene carpet to ensure a 

consistent experiment surface. We used stationary cameras and LED lighting to film each experiment.  

Walking speed experiments 
To assess the walking speed of different topologies during successful crawl cycles, we conducted a 

repeated locomotion experiment and plotted the results. Truss Links rely on differential friction for crawling 

and can get slowed down or stuck on uneven surfaces. Since this experiment aimed to assess speeds during 

successful walking or crawling maneuvers, we excluded video sequences where a topology got stuck on an 

uneven surface or crawled outside of the experiment setup from the measurement data. The speed 

measurements reported in this section were all collected on a 10-degree downward slope to mimic the 

conditions of stage four of the experiment setup. The gates used in the speed experiments were manually 

programmed, tuned based on empirical observations, and then executed in an open-loop fashion. We 

marked the experiment surface with a line every 5cm to track the robot speeds from the video footage. 



The experiment results are shown in Figure 4. The findings show that a crawling link, while only 

being able to move in a single dimension, is faster than a triangle. The triangle, which is superior to the 

individual Truss Link by being able to move in two dimensions, underperforms the single Truss Link’s 

speed due to its increased weight and inopportune Truss Link angles. The crawling tetrahedron is slightly 

faster than a single Truss Link and demonstrates the most consistent performance. The ratchet tetrahedron is 

the fastest topology tested in this experiment but also the one with the most variance in speed. During its 

crawling motion, the ratchet tetrahedron tends to rotate and orient itself away from the slope direction, 

which causes it to slow down or move sideways rather than forwards. This instability in the ratchet 

tetrahedron gate could be compensated for during closed-loop operation but was included intentionally to 

reflect the raw system's dynamics. 

Truss Link design 
The Truss Link is the homogenous building block of our truss-type modular robot system. Truss 

Links allow for the construction of chain and lattice structures. The main hardware innovation is the Truss 

Link’s compliant magnetic connector that passively orients the polarity of a 1.27cm diameter neodymium 

magnet sphere inside the connector to generate an equilibrium of attraction among all modules trying to 

connect at a single point. According to our in-line dynamometer pull-away tests, two connectors require a 

pull-away force of approximately 13.7N to be separated. Modular robot designs commonly incorporate 

communication channels into their connectors (26). We opted not to use the connector for power sharing or 

communication to reduce the design complexity and increase the connector’s versatility. Our design can 

form connections without needing passive connector blocks, such as the ones used in Morpho or the Odin 

robot, since that would have complicated self-assembly (16, 17). 

We designed the Truss Link platform to form a tetrahedron structure capable of picking up a Truss 

Link attached to a base vertex by toppling itself over. To achieve this motion, the tetrahedron must be able 

to sufficiently shift its center of mass without collapsing. A geometric analysis revealed that the Truss 

Link’s minimum expansion ratio—the maximum length of expansion a Truss Link can achieve as a 

percentage of the minimum length of a link—must be more than 41.5 percent to allow for the tetrahedron 

toppling behavior. Our current Truss Link design with a contracted length of 28cm and an expanded length 

of 43cm achieves an expansion ratio of 53%. 

Each Truss Link body comprises two prismatic actuators, one Particle Photon microcontroller, a 

WIFI antenna, a voltage regulator, a voltage divider, and batteries. As our actuator, we chose the 100mm 



stroke length Actuonix L-12I linear servo with a gearing ratio of 210:1. Its small form factor and simple 

control interface facilitated integration. Since the motor housing of the linear servo is the same size for each 

stroke length, we maximized the Truss Link’s expansion ratio by picking the Actuonix L-12 servo model 

with the maximum stroke length. 

The two linear actuators can be both independently and jointly actuated. The Truss Links were 

designed with a passive attachment/detachment mechanism in each connector. Considering the detachment 

mechanism as a separate degree of freedom (DoF), each Truss Link is a 4-DoF system. Aside from the 

Replacing a “dead” Truss Link, and Robot-to-robot assisted reconfiguration experiments, we treat each 

Truss Link as a 2-DoF system since the attachment/detachment mechanism is not used. 

Truss Links are powered by two removable single-cell 380mAh Lithium Polymer batteries that are 

connected in series. We step down the voltage to 5 Volts for the Particle Photon via a voltage regulator and 

use a voltage divider to monitor the battery voltage via the onboard 12-bit analog-to-digital converter. 

Truss Link connector 
The Truss Link uses a free-form magnetic connector with a detachment mechanism. The connector 

comprises FDM-printed body shells and a magnet holder, as well as a 12.7mm diameter N52 neodymium 

magnet sphere, a conical compression spring, and two screws and two heat-set inserts (See Fig. 2-d.1). The 

entire connector is held in place via the magnet holder which is screwed and hot-glued directly into the 

servo shaft. The magnet holder constrains the magnet’s position while allowing it to rotate freely, so it can 

align its polarity when connecting with other connectors. To reduce friction during magnet alignment, we 

apply a dry graphite lubricant on the inside of the magnet holder. 

The connector detaches by retracting the magnet inside the connector shell, thereby reducing the 

magnetic field outside the connector. The magnet gets retracted by 1.2 times its diameter to ensure secure 

detachment. The connectors’ shape results from a tradeoff between optimizing magnet connection strength 

while maintaining the ability to disconnect via the magnet pullback mechanism. The small rim below the 

connector tip prevents other connectors from simply sliding along the outside of the connector during 

detachment, while the conical shape helps create distance between the magnet sphere and any outside 

connectors. 

The connector detaches by fully retracting the Truss Link’s servo, thereby pushing the connector 

shell against the center body, and retracting the magnet holder. When expanding after a full retraction, the 

magnet holder resets itself back into an attachment-ready position using the conical spring inside the 



connector (See Fig. 2-d.1 and d.2). To ensure a smooth resetting behavior, we smoothen and grease the 

friction points between 3D printed parts. 

To minimize the center body size, the servo’s were aligned in parallel but in opposite directions. As 

a result, the servo shafts are not centered on the Truss Link body’s central axis, but offset. To compensate 

for this offset, we added an offset to the magnet holder, such that the connector tips are centered on the 

body’s central axis. This is important, since an unbalanced geometry could lead to the Truss Links rotating 

during maneuvers, introducing unwanted instability. 

We noticed during experiments that connectors and servo shafts sometimes come loose after 

repeated use, and then rotate out of alignment. One possible solution could be to retrofit the servo motors 

with square shafts and square shaft guides. This would prevent both the connector shell and shafts from 

rotating and unscrewing themselves. 
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S1. Supplementary Text 

1.1 Truss Link server and controller 
To coordinate the motion of multiple Truss Links, we wrote a server program that manages the 

communication with Truss Links and ensures synchronized command execution. Our experiment scripts can 

then use this server to send motor commands to the physical Truss Links. The server allows us to conduct 

experiments that treat the Truss Links as independent entities with separate controllers or as multi-link 

robots.  

Since each Truss Link acts as an independent client, the server handles multiple parallel connections, 

one with each Truss Link. The server uses a multi-threaded socket handling approach. Once started, the 

server software runs a Listening Thread that continuously listens for new Truss Link connections. The start 

time of this thread is stored as a UNIX timestamp and is subsequently used as the reference time by all 

connected links, enabling all devices to use a synchronized clock. Every time a connection from a Truss 

Link is accepted, a new Link Handler Thread begins, and the Listening Thread waits for the next Truss Link 

to connect once more. A lookup table holds all the initiated Link Handler threads so that Controller scripts 

can use them to communicate with Truss Links. 

The Link Handler Thread is responsible for all communications with a link after the initial socket is 

connected by the Listening Thread. It executes the following process: 

1) Receive Hello package containing Truss Link’s device ID 

2) Send Time Epoch package, which holds the start time UNIX timestamp in it 

3) Enter the main update loop: 

a) Receive Update package via TCP connection and verify CRC-15 checksum 

b) Update local Truss Link values from package 

c) If socket disconnects or no package is received in 10 seconds, then exit loop 

4) Close socket connection cleanly 

5) End thread 

The above thread only uses the socket corresponding to the Truss Link to receive data. Data sending 

occurs to all Truss Links from the same socket. For this purpose, the data is encoded using RMLP and then 

sent via a TCP connection. The Truss Link status will be updated on the server by the Truss Link 

asynchronously via update packages received by the corresponding Link Handler Thread. The message is 



considered successful if the checksum indicates that the command was received without corruption. 

Otherwise, the process is repeated. 

On the Server, the experiment script can send commands to the Truss Link (instantly) in the main thread 

while the Link Handler receives update packages asynchronously in an independent thread. Since one thread 

only reads from the socket, while the other thread only writes to the socket, the implementation is thread-

safe, and errors due to parallel usage of the same resources are avoided. 

This modular software structure allows the experiment script to include topology controller classes, 

such as triangle, tetrahedron, or ratchet tetrahedron controllers. These classes allow robots made from Truss 

Links to be treated as cohesive systems and provide coordinated topology motion functions that assume a 

specific assembled structure. For example, an experiment script can call a single function from a triangle 

topology controller class to make a triangle crawl. 

An operator used a keyboard interface for our physical experiments to trigger open-loop scripts or send 

servo commands to the robot. The controller has a keyboard interface that allows the operator to use a 

topology controller automated movement pattern to make Truss Links crawl, a tetrahedron topple or crawl, 

or walk a ratchet tetrahedron in discrete directions (see Fig. A5). Individually selected links can be 

controlled by holding down the number keys corresponding to the Truss Link IDs while simultaneously 

using the arrow keys to expand or contract the servos of the Truss Link or execute a crawling script in a 

specific direction. 

1.2 Experiment Environment specifications 

 
Figure S1: The physical experiment environment was built from aluminum extrusions and has an area of 4.3 meters by 1 

meter. 
 



The experiment environment was constructed from 25x25 and 25x50 aluminum extrusions. We 

included a picture of the full setup, including LED lights in Fig. S1. We covered the environment using a 

single, continuous strip of carpet. 

1.3 Truss Link firmware 
Truss Links are controlled by a WIFI-enabled Particle Photon microcontroller (Photon). The Photon 

meets our power and computational requirements and provides a WIFI interface. The Photon allows us to 

standardize the communication and actuation interface across links. The Truss Links operate by receiving 

commands via WIFI from our server software. This communication is conducted using our custom protocol. 

Unlike the server software, the firmware running on the Photon is written in C++, and is computationally 

lightweight to not overload the microcontroller. Fig. S2 illustrates the firmware’s process flow.  

 
Figure S2: Flow diagram showing the states and transitions of the Truss Link’s firmware. 

 

Executing Commands: Due to the nature of the constant loop system, commands are executed at the 

main loop frequency. As a result, motor commands like sinusoidal motion and position-velocity commands 



need to be implemented to work in a loop instead of executing until the motion’s completion. This was done 

using Bang-Bang Motor Control in combination with Closed-loop Command Execution. 

Bang-Bang Motor Control: A limitation of the Actuonix L-12I motor is that it only physically 

moves when the difference between actual elongation and desired elongation is greater than 5mm. Thus, 

when the motor is instructed to move in increments smaller than 5mm, it doesn’t respond. This makes it 

difficult to implement sinusoidal motion patterns and low-velocity movements, as the motor actuates at full 

speed in a repetitive start/stop manner when presented with gradually increasing position commands. To 

override this 5mm threshold and force motor movement, we decided to either send a maximum or minimum 

command to the motor while monitoring the potentiometer feedback until the desired length is achieved. 

The result is a servo that moves discretely in full-speed increments. This allows us to approximate slower 

continuous motion via small incremental steps. One artifact of this method is the motor oscillations 

observed in our physical experiment videos, which result from the Bang-Bang Motor Controller over- and 

under-shooting the target position. 

Closed-loop Command Execution: For commands that did not require the servo to actuate at its 

maximum speed, such as during position-velocity control, instead of directly writing the final stroke length 

to the motor, we calculated intermediate lengths and gradually sent those as commands to the Bang-Bang 

Motor Control. For each movement, the desired elongation is calculated by passing the time passed since 

the start of the command into a function that gives the desired stroke-length position for that moment in 

time, which the motor moves towards using bang-bang control. The combination of bang-bang control and 

the closed-loop design makes the seemingly parallel receiving and executing commands possible and allows 

the servo to actuate at a slower speed without stalling for noticeable periods of time.  



1.4 Communications protocol  

 
Figure S3: Truss Link system communication diagram. RML Protocol (RMLP)  

 
Since the Particle Photon runs C++, and all server-side scripts run Python, a common protocol must 

be established for socket communication. We developed the Robot Metabolism Link Protocol (RMLP), a 

simple package specification defining communication between Truss Links and the server (see Fig. S3). 

 Header Body Footer 

Size 1 byte 1 byte  ~5 < 256 bytes  2 bytes 

Contents data size Pkg Type Data Checksum 

Table S1: Each RM Protocol package has a header, a body, and a footer. The header is 2 bytes in size, and contains the data size, 

and type. The body ranges in size based on the message type, and the footer is 2 bytes. The header specifies the size of the body. 

The RML Protocol uses packages consisting of C++ structs and datatypes. An RMLP Package 

consists of 3 parts: 

1) Header: the header contains two bytes, one holding the package type and the other the package 

length. This allows the program receiving the package to know how many bytes to read, and how to 

interpret them based on the package type. 

2) Body: the body varies based on the type of package. Optimizations were made to minimize the 

sizes of all types of packages. The body is usually on the order of 5 bytes which keeps data traffic lean even 

at high frequencies. 



3) Footer: the footer contains a 16-bit CRC-15 checksum of the package [30]. CRC-15 was picked 

due to its concise and efficient implementation that can effortlessly run on the Photon. Packages with 

incorrect checksums can be ignored by the receiver. 

The header, body, and footer are appended to create a complete RMLP Package, as illustrated in 

Table S1. 

1.5 Manual controller interface  
 

 
Figure S4: Overview of the key mappings used in the manual control interface.  

 
This section explains how the manual control interface for the Truss Links works. The controller 

employs topology or “species” controllers in the background to control crawling diamonds-with-tail, 

crawling and toppling tetrahedrons, and ratchet-crawl for ratchet tetrahedrons. These topology controllers 

assume a specific connection pattern and only work if the structure to be controlled matches the connection 

pattern assumed by the controller.  

The controller script waits for all links to connect before allowing the operator to send commands. 

The links are sorted based on their Truss Link ID and numbered, this directly corresponds to their position 

within a diamond-with-tail, tetrahedron, or ratchet tetrahedron. Thanks to this numbering, one can determine 

in advance which Truss Link will assume which position inside one of those structures, by first sorting the 

physical links to be used in order of ascending Truss Link ID, and then assembling the shape in the correct 

order. 

Below is a detailed overview of the commands and functionality of the keyboard control interface 

introduced, shown in Fig. S4: 



● 1~9: Select Truss Links by pressing the corresponding number keys on the keyboard. You can press 

multiple keys simultaneously to select multiple links. Truss Links are mapped to the number keys in 

ascending order based on their Truss Link IDs. The “1” key is associated with the smallest link ID 

number, and the “9” key corresponds to the link with the highest Truss Link ID number, assuming 

nine Truss Links are connected to the server. Pressing 0 will also select the Truss Link with the 

smallest ID number. 

● -/+: Fully contract/expand all Truss Links. When pressing “+”, also need to press SHIFT. 

● ↑/↓: Expand or contract selected servos on the selected Truss Links. 

● ←/→: Select servo 0 or servo 1. If both are pressed, both servos are selected. 

● NumLock: Enter single Truss Links crawling mode. In this mode, pressing number keys directly 

toggles on/off the crawling for selected Truss Links.  

● / *: Set the crawling direction to servo 0 or servo 1 in single Truss Links crawling mode. 

● s: Clear all sticky commands and stop sending commands to all Truss Links. If a gait is being 

executed, interrupt the gait. 

Preset Gaits 

● c, v, b: triangle, tetrahedron, diamond-with-tail crawling 

● d, f, g: tetrahedron ratchet crawling 

● t, y, u: topple tetrahedron 

● o, p: rotate triangle in counterclockwise/clockwise direction 

● r: reset ratchet crawling 

The below bullet points provide a few examples showing how a desired action corresponds to keys 

pressed on the controller interface. 

● Expand Truss Links 1 fully: press ‘1’, ‘←’, ‘→’, ‘↑’ simultaneously. 

● Contract servo 0 of Truss Links 1 and Truss Links 2: press ‘1’, ‘2’,  ‘←’, ‘↓’ simultaneously. 

● Make Truss Links 1 crawl in the servo 0 direction and make Truss Links 2 start crawling in the servo 

1 direction: 

○ Press NumLock to enter single Truss Links crawling mode 

○ Press ‘/’ to select servo 0 direction or ‘*’ to select servo 1 direction 

○ Press ‘1’ to start Truss Links 1 crawling 

○ Press ‘2’ to start Truss Links 2 crawling 

● Stop tetrahedron crawling and fully contract all Truss Links: press ‘s’ then ‘-’ 



1.6 Simulation 
To study the Truss Links’ dynamics and topology formation probabilities, we implemented a 

PyBullet based simulation environment. Since PyBullet does not provide a native implementation of 

magnets, we developed our own. We broke down the magnet implementation into two steps: computing 

pairs of interacting magnets and calculating and applying magnet forces.  

Computing magnet interactions is the main bottleneck in our simulation. Evaluating each magnet’s 

interaction with every other magnet is an O(N2) time complexity problem where N is the number of magnets 

present in the simulation: mathematically expressed !!"" =
!(!$%)

" .  To ensure physical accuracy despite the 

high magnet forces, magnet interactions must be computed at each simulation timestep i.e., 240 times a 

second. 

Our empirical tests showed that the forces between two magnets were negligible beyond a 14cm 

distance, even on lower friction experiment surfaces. We exploited this property to develop a quicker 

algorithm to solve the magnet interaction problem by omitting magnet calculations for magnet pairs further 

than 14cm apart. We arrived at our matrix-based search-and-apply magnet computation method after 

exploring various other approaches, including square and triangular occupancy grids to identify interacting 

magnet sub-groups. 

The activation $' ∈ [0, 1] of a magnet simulates how the magnet force decreases when the magnet 

gets retracted inside the connector during the detachment process. An activation of 0 represents a full 

retraction, and 1 represents no retraction. Hence, for magnets M1 and M2, with respective activations a1 and 

a2, and separation distance r, the force F is described by: 

|,| = - $% ∗ $"/"  

The problem of computing magnet interactions can be approximated by summing up the resultant 

force vectors for all interacting pairs of magnets. For example, for a magnet M1 interacting with magnets M2, 

M5, and M7, the total force is given by 

,(!000000⃗ = 2 -
'∈{",,,-}

$' ∗ $%
34/00⃗ − 4%000⃗ 3

0 (4/00⃗ − 4%000⃗ ) 

where 4/00⃗  and $'  represent the position and activation of Mi respectively. In the above formula, 8%,/000000⃗ = (4/00⃗ −
4%000⃗ ) is the direction vector from M1 to Mi, and thus its norm is the Euclidian distance between the two 

magnets. 



This approximate method overestimates the force applied to each connector when more than two 

connectors interact with each other. Thus, the overall attraction to a location increases linearly with the 

number of connectors at that location. Further, the method doesn’t account for magnet polarity, the moment 

of inertia of the magnet sphere, and the friction between the magnet sphere and the magnet holder. Despite 

these simplifications, we empirically observed that the simulated Truss Link behavior matched the real-

world Truss Link behavior well in simulated experiments with a small number of Truss Links that operated 

in a high-friction environment. 

By exploiting features in Python’s NumPy library, distances between all points of magnets can be 

calculated efficiently. Given a list of n magnets, we construct a nx3 matrix X as 

	

: =
⎣
⎢⎢
⎢
⎡40⃗%
40⃗"
⋮
40⃗1⎦
⎥⎥
⎥
⎤
 

Now, we convert the matrix X into a 3-dimensional matrix X0 with dimensions nx1x3, which retains 

the original positions of all elements, but adds a new axis in our matrix. Although redundant at first, this will 

now let us exploit NumPy’s broadcasting functionality, which defines how matrices with different 

dimensionalities interact during arithmetic operations. We will define a new matrix D0 as 

D0 = X0X 

In strict mathematical notation, this is prohibited as the dimensions of X0 and X do not match, 

however, NumPy interprets this as the following sets of operations between two 3-d matrices of the same 

dimensions: 

B2 = :2 − : =
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We subsequently square each element of the matrix D0 and sum all components of each vector to get 

a n × n matrix I"2 where the I"2[J, K] is the square of the norm between magnets Mi and Mj. Then we apply 

NumPy function argwhere on I"2 where the squared norm is smaller than the square of our maximum 



interaction distance to get a lx2 matrix containing pairs of indices whose magnet interaction is significant. 

We then remove entries in that matrix where the i index is less than the j index to ensure that the indices of 

each pair of proximate magnets is recorded only once using the arghwere function once more. We now have 

all the lists of pairs of magnets that are close enough to interact and the squared norms of those pairs in I"2. 

We use the Fast Inverse Square Root algorithm which uses advanced bit manipulation and Newton 

Iteration to speed up the approximation of the inverse square root (see lomont.org/papers/2003/InvSqrt.pdf). 

Using the fast inverse square root algorithm on every element of I"2 simultaneously, we calculate the 

inverse of the norms of the rows of B2  very efficiently. We can subsequently apply the formula for the 

resultant force simultaneously for all pairs using NumPy operations. This algorithm exploits NumPy 

parallelization and bit manipulation, outperforming all other previous methods we tested on our hardware: a 

workstation with an AMD Threadripper 2950X CPU, 64GB of RAM, and three NVIDIA RTX 2080Ti 

GPUs. The speed improvement of this matrix-based magnet computation method over other methods we 

tried becomes more significant as the number of magnets in the simulation increases. 

Collision computations are another bottleneck in simulation, especially if the collision bodies used 

are complex. To address this issue and speed up the simulation, we have found shape primitive terrains to be 

a happy medium between accuracy and performance. For example, arranging boxes in a circle to form a 

circular playpen is easy and avoids using a complex body mesh. The primitives supported in PyBullet are 

box, sphere, cylinder, capsule, plane, and multi-sphere. We designed the experiment environment shown in 

Fig. 3 using only boxes and a cylinder in simulation. The benefit of using primitives instead of a heightfield 

for this application is that the collision computation between flat surfaces is less complex than between the 

fine triangulated mesh of a heightfield. We found primitive terrains to run significantly faster than their 

heigh-field-based counterparts. Furthermore, heightfields only approximate perpendicularly intersecting 

faces and, thus, may represent such shapes with less accuracy than an arrangement of boxes, especially if 

the heightfield resolution is reduced to increase performance. 

1.7 Morphological representation and tracking in simulation 
To study the morphological development of Truss Links in simulation, we needed an efficient 

approach to represent the topological and geometrical configuration while also encoding the connection 

information between them. An efficient representation is crucial to identifying and tracking newly formed 

structures and analyzing different morphologies. A Morphology refers to the physical arrangement of Truss 

Links wherein each Truss Link is defined by its pose (i.e., position, orientation) and 2 servo positions. We 



implemented a "Structure Graph" representation to encode a physical Truss Link morphology as a digital 

object to represent this physical configuration. 

Since the Truss Link is a rigid body, we can determine its exact pose from the positions of the two 

magnets embedded in its connectors and servo positions. To identify how Truss Links are connected, we 

only need the positions of its magnets. We know empirically that Truss Link connector tips within two 

inches of each other snap together, and we can use this information to identify connections between 

magnets.  

Given a list of n magnets, we can compute a list of all pairs of magnets within a certain threshold 

distance from each other. This can be done in O(n) time using an occupancy grid to identify nearby 

magnets. Let us call this new list connections, assuming that magnets within the threshold distance are 

necessarily physically connected. In addition, we append all self-connections i.e., (m3,  m3) ∀ i ∈ {1,⋯ ,  R} 
to the connections list. Now, connections can be treated as a list of edges in an undirected graph G4 

describing physical magnet contacts. We then identify all independent subgraphs in G4 by repeatedly 

performing a breadth-first search. Each independent subgraph in G4 represents a subset of connected 

magnets. Based on this physical interpretation, let us consider each independent subgraph in G4 a geometric 

vertex of our robot morphology. We define the vertex position as the mean position of the magnets it 

comprises. We construct a new graph called the structure graph using these newly found vertices. The 

structure graph represents the robot’s morphology. The nodes of the structure graph are the vertices we 

identified. For each link, we add an edge between the two vertices containing one of the link’s magnets. As 

a result, we get a graph where the nodes represent clusters of connected magnets, and the edges represent 

the Links themselves, thereby representing the structure created by interconnecting Links. 

The graph representation is ideal because it allows us to identify structures with identical 

morphological properties regardless of where the morphology is located, which links it comprises, and how 

the links are oriented. Consider two tetrahedron morphologies comprising 12 links. Now, we can compute 

the structure graph for each tetrahedron and algorithmically verify that both structures are tetrahedrons by 

checking if an isomorphism exists between them. Identifying isomorphism can be done regardless of which 

unique links in which orientations comprise the robot and in which directions these links are connected. The 

Truss Links orientation is relevant to the controller since motor commands need to be sent to the correct 

motor. Once an isomorphism is identified, we can algorithmically find which directed Truss Link in the first 

tetrahedron is equivalent or (isomorphic) to which directed Truss Link in the second tetrahedron. If an 



isomorphism exists, we could use this information to control both morphologies identically by applying the 

same controller.  

Another benefit of the graph representation is that two isomorphic graphs hash to the same value. 

We used the Weisfeiler-Lehman Hash (WL-hash) for this purpose. The ability to hash graphs enables us to 

automatically name morphologies as we encounter them. Naming refers to the action of giving a unique 

string representation to a particular structure (for example, a triangle, a tetrahedron, or a 20- Truss Link sea-

urchin-like structure). In future research, we plan to automatically generate Phylogenetic Trees or Finite 

State Transition Models based on the sequence of hashes through which morphologies tend to develop and 

use them to associate learned controllers for each morphology. 

One shortcoming of the WL-hash is that it causes hashing collisions for graphs comprising 

independent subgraphs. For example, a connected cycle comprising six Truss Links would produce the 

same hash as two separate triangles hashed as one graph. Thus, to accurately hash all structures formed in a 

simulation, one has to iterate through all the connected components of the graph and compute their WL-

hash separately.  

S2. Video description: four developmental transformations 
This video shows the four developmental transformations from seven independent links to a ratchet 

tetrahedron topology. At each stage the robot grows by absorbing more material. First, six independent links 

combined into a 3-pointed star and a triangle. The triangle then integrates the three-pointed star and forms a 

diamond-with-tail configuration. Second, the diamond-with-tail crawls over the ledge in our experiment 

environment and folds itself into a tetrahedron shape. Finally, the tetrahedron picks up a single found link, 

and uses it like a walking stick in a ratchet tetrahedron configuration. It then goes on to propel itself down 

the slope of the ramp in large sliding strides. This video demonstrates the Robot Metabolism’s ability to 

grow within its lifetime, and change both its topology and its functionality.  

S3. Video description: improvement at every stage 
This video shows how each newly formed topology gained an ability that was unavailable to the 

previous one. First, a single Truss Link and a triangle try to circumvent an obstacle. The single Truss Link 

gets stuck since it lacks the ability to steer, while the triangle crawls around the obstacle with ease. Second, 

the triangle and the diamond-with-tail attempt to overcome a 2.5cm threshold with a bank on either side. 

Due to its long body, the diamond-with-tail can push itself over the threshold, while the triangle cannot shift 



its weight enough to overcome this obstacle. Third, a diamond-with-tail and a tetrahedron attempt to 

overcome a 2.5cm square aluminum extrusion. The diamond-with-tail cannot lift its tip and thus fails to 

overcome the obstacle, while the tetrahedron topples itself onto the aluminum extrusion and then crawls 

down on the other side. Finally, a tetrahedron and a ratchet tetrahedron face off in a race on a sloped 

surface. The ratchet tetrahedron arrives at the end of the slope while the tetrahedron just crosses the halfway 

line. This video demonstrates how growing and adapting allows even simple robots to gain a significant 

advantage.  

S4. Video description: simulated diamond-with-tail formation 
This video shows a rendering of a randomly moving set of six Truss Links forming a diamond-with-

tail. We added walls to the experiment environment to ensure the links don’t fall outside the experiment 

environment. The Truss Links in this video execute random motions based on a Fourier series initialized 

with random parameters sampled from a functional range of parameters. Due to the greedy attachment style 

of the Truss Links, random motion is likely to lead to the formation of new connections if links are nearby. 

The video rendering is sped up. In reality, Truss Link servos take 15-20 seconds to expand, varying slightly 

based on the battery voltage provided. 

S5. Video description: Recovering Morphology and Replacing Dead Truss Link 
This video shows a triangle, a three-pointed star and a diamond-with-tail robot crawling off a drop 

and recovering their previous topology.  

S6. Video description: simulated diamond-with-tail formation 
This video shows a ratchet tetrahedron on a platform placing itself above a hole in the platform, 

while a three-pointed star and a triangle connect at a single point. This newly formed structure then crawls 

down the slope, while the dangling Truss Link of the ratchet tetrahedron fishes for the central vertex of the 

planar structure below. Once connected, the ratchet tetrahedron uses the ratchet link’s body to support itself 

on the hole's edge and then elevates the links below by contracting one of its servos. You’ll notice the servo 

oscillating in and out, since the operator is trying to avoid fully contracting the link, since that would detach 

the lifted payload. Simultaneously, the two free links of the three-pointed star are shuffling their way down 

the slope to connect to the two free vertices of the triangle. Once they connect, and the tetrahedron is 



formed, the above ratchet Truss Link fully contracts it’s one servo to let go of the tetrahedron. Both the 

tetrahedron and the ratchet tetrahedron crawl away. 

S7. Code Availability 
A URL to the code repository will be shared here and made public at the time of publication 


