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AN INFINITE FAMILY OF ARTIN-SCHREIER CURVES WITH

MINIMAL A-NUMBER

IRIS Y. SHI

Abstract. Let p be an odd prime and k be an algebraically closed field with

characteristic p. Booher and Cais showed that the a-number of a Z/pZ-Galois

cover of curves φ : Y → X must be greater than a lower bound determined by

the ramification of φ. In this paper, we provide evidence that the lower bound

is optimal by finding examples of Artin-Schreier curves that have a-number

equal to its lower bound for all p. Furthermore we use formal patching to

generate infinite families of Artin-Schreier curves with a-number equal to the

lower bound in any characteristic.

1. Introduction

Let p be an odd prime and k be an algebraically closed field with characteristic
p. Let φ : Y → X be a smooth, projective, and connected cover of curves over k
with Galois group G. Some broad questions are

• “What properties of the curve Y can be determined solely from properties
of the curve X and the map φ?”

• “What information is needed to determine the other properties of Y ?”

A classic version of this question concerns the genus of the curves, a standard
numerical invariant associated to a curve. The genera of X and Y can be described
as the k-dimension of H0(X,Ω1

X) and H0(Y,Ω1
Y ), the space of regular 1-forms on

X and Y , respectively. The well known Riemann-Hurwitz formula explains how
the genus of Y can be determined entirely from X and ramification information
about the cover φ,

2gY − 2 = |G|(2gX − 2) +
∑

y∈φ−1(S)

∑

i≥0

(|Gi(y)| − 1),

where S is the branch locus of φ and Gi(y) is the ith ramification group in lower
numbering at y.

When k has characteristic p, as in this paper, there are additional invariants
arising from the Frobenius automorphism. We will work with the Cartier operator
(which is dual to the Frobenius on H1(X,OX) via Serre duality). For the curve X ,
the Cartier operator is a p−1-semilinear map CX : H0(X,Ω1

X) → H0(X,Ω1
X). As

H0(X,Ω1
X) is a finitely generated k[CX ]-module, the structure theorem for finitely

generated modules over a P.I.D. gives the following decomposition of k[CX ]-modules,

(1) H0(X,Ω1
X) =

⊕

i

k[CX ]/Cni

X ⊕
⊕

j

k[CX ]/fj(CX)nj ,

where fj(CX) are irreducible polynomials in k[CX ] not equal to CX . (Although
k[CX ] is not technically a P.I.D. as its non-commutative, there exists an identical
structure theorem for non-commutative P.I.D. [Jac43, Theorem 3.19].) Note that
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CX acts nilpotently on the first part of (1). The p-rank of X , which we write as
sX , is then defined as the k-dimension of

⊕

j k[CX ]/fj(CX)nj , the second half of

the decomposition in (1). Like the genus, the p-rank is another invariant of Y
that can often be determined from X and ramification information from π. The
Deuring-Shafarevich formula says that when G is a p-group,

sY − 1 = |G|(sX − 1) +
∑

y∈φ−1(S)

(dy − 1),

where S is the branch locus of φ and dy is the unique break in the ramification
filtration at y. We refer to dy as the ramification break at y.

The a-number is an additional numerical invariant describing the structure of
H0(X,Ω1

X), defined as the number of summands in
⊕

i k[CX ]/Cni

X , the first half
of (1), i.e. the k-dimension of ker(CX). This invariant is less understood and
the focus of this paper. Since the a-number is similar to the p-rank in definition
and simplicity, it would be natural to attempt to find an analog of the Deuring-
Sharfarevich formula. However, no such formula exists, and we can use Artin-
Schreier curves to see this. Artin-Schreier curves are smooth, projective, connected
covers of P1 with Galois group Z/pZ and are a key case of p-group curves. Any
Artin-Schreier curve can be defined by an equation of the form yp − y = f where
f ∈ k(x) is nonconstant and k(x) is the function field corresponding to P1. The
Artin-Schreier curve defined by y3−y = x7 has a-number 4 while the Artin-Schreier
curve defined by y3 − y = x7 + x5 has a-number 3, despite both being covers of
P1 and being branched only over ∞ with ramification break d = 7. This shows
that the a-number of Y cannot be determined using the same information needed
to determine its genus and p-rank.

However X and the ramification of φ still constrain the a-number of Y . Farnell
and Pries [FP12] discovered a formula for the a-number of an Artin-Schreier curve
dependent only on X and its ramification information for a specific congruence
condition on the order of the poles of its defining equation. Elkin and Pries [EP13]
found a specific formula for the a-number of hyperelliptic k-curves in characteristic
2 dependent only on its ramification information. These are specific cases where
the a-number of Y can be determined given some condition on the characteristic
or the ramification. In general, Booher and Cais [BC20] were able to find upper
and lower bounds for the a-number of a curve Y , where φ : Y → X is a branched
Z/pZ-cover, depending only on X and the ramification of φ,

(2) max
1≤j≤p−1





∑

Q∈S

p−1
∑

i=j

(⌊

idQ
p

⌋

−
⌊

idQ
p

−
(

1− 1

p

)

jdQ
p

⌋)



 ≤ aY ,

(3) aY ≤ paX +
∑

Q∈S

p−1
∑

i=1

(⌊

idQ
p

⌋

− (p− i)

⌊

idQ
p2

⌋)

,

where S is the branch locus and dQ is the ramification break over Q in lower
numbering. When the branch locus contains only one point Q, we refer to the
lower bound in the left side of (2) as L(dQ).

In some sense, the bounds in (2) and (3) are an analog to the Deuring-Shaferavich
for the a-number. However, because they are not an exact formula, work needs to
be done to show that they are the optimal bounds. Experimentally, the bounds
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seem to be optimal. A randomly generated curve over Fp with a fixed ramification
break, d, has a high chance of having an a-number equal to the lower bound, which
suggests (2) is optimal. The authors of [Abn+22] provides some harder evidence
that the lower bound is optimal for small p, as they exhibit curves over F3 and
F5 with any size ramification break that attains an a-number equal to the lower
bound in (2). In this paper, we provide additional evidence that the bound in (2)
is optimal.

Theorem 3.12. For any prime p and any positive d ≡ −1 (mod p2) there exists
a Z/pZ-Galois cover X → P1 branched at one point with ramification break d and
a-number equal to L(d).

Theorem 3.13. For any prime p and any positive d ≡ p− 1 (mod p2) there exists
a Z/pZ-Galois cover X → P1 branched at one point with ramification break d and
a-number equal to L(d).

Theorem 3.14. For any prime p ≤ 23 and any positive d ≡ −1 (mod p), there
exists a Z/pZ-Galois cover X → P1 branched at one point with ramification break
d and a-number equal to L(d).

In Theorem 3.12 and 3.13, we generate families of curves with arbitrarily large
ramification break in any finite characteristic that have a-number equal to the
lower bound in (2). We do this by exhibiting small curves with minimal a-number
and then using formal patching to build an infinite family of curves by combining
the smaller curves together inductively. Note that our method generates curves of
arbitrarily large ramification breaks for any prime p, as opposed to just p = 3 and
p = 5. This serves as evidence that the bounds are optimal.

Remark 1.1. The specific method we use can only produce curves with ramifi-
cation break d ≡ −1 (mod p). We only tackle two of p many possible congruence
classes in this paper due to the difficulty in finding curves that have a-number
equal to the lower bound for all p that are easy to analyze. We produce curves for
all of the congruence classes for small p in Theorem 3.14 by using the MAGMA
computational algebra system [BCP97] to find examples.

Remark 1.2. In Section 3, we form covers with a-number equal to the lower
bound with a single branch point by combining curves with the same branch point.
However, we could also construct covers with multiple branch points having minimal
a-number. To do so, combine the examples with a single branch point that we give
in this paper using the formal patching arguments in [BP20; Abn+22].

Acknowledgements. The initial idea for this paper came from Rachel Pries, who
I would like to thank for both the inspiration and her helpful review. I would also
like to thank my advisor Jeremy Booher for his support and indispensable guidance.

2. Small Artin-Schreier Curves

2.1. Numerical invariants of Artin-Schreier curves. Fix an odd prime p. Let
k be an algebraically closed field with characteristic p. An Artin-Schreier curve
is a finite morphism of smooth, projective, connected curves X → P1 with Galois
group Z/pZ. Any Artin-Schreier curve can be defined by an equation of the form
yp − y = f(x) where f(x) ∈ k(x) is nonconstant, and k(x) is the function field of
P
1. There are several numerical invariants associated to an Artin-Schreier curve,
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namely the genus, p-rank, and a-number. These invariants can be viewed as prop-
erties of the Cartier operator and the space of regular 1-forms, H0(X,Ω1

X).

The Cartier operator, CX : H0(X,Ω1
X) → H0(X,Ω1

X), is a semi-linear operator
with the following properties:

CX(fpα+ β) = fCX(α) + CX(β),

CX(xp−1dx) = dx,(4)

CX(xndx) = 0 if n 6≡ −1 (mod p).

The genus, g, of X is equal to the dimension of H0(X,Ω1
X). The p-rank is equal

to the dimension of the image of Cg
X . The a-number, written as a(X), is equal to

the dimension of the kernel of the Cartier operator.
An Artin-Schreier curve with branch locus S and D = {dQ}Q∈S , the set of

ramification breaks over S, was found to have lower bound L(D) [BC20],

L(D) = max
1≤j≤p−1





∑

Q∈S

p−1
∑

i=j

(⌊

idQ
p

⌋

−
⌊

idQ
p

−
(

1− 1

p

)

jdQ
p

⌋)



 .

We will only examine curves branched at one point. So in this case D = {d} is
a singleton set and we denote the lower bound as L(d). We will use the following
simplified formula for L(d) in calculations.

Lemma 2.1. Let π : Y → X be a finite morphism of smooth, projective, and

geometrically connected curves over a perfect field with odd characteristic p and

Galois with group Z/pZ branched at a single point. Let d ∈ N be the ramification

break over that point. Then,

L(d) =

p−1
∑

i= p+1
2

⌊

id

p

⌋

−
⌊

id

p
−
(

1− 1

p

)

(p+ 1)d

2p

⌋

.

Proof. [Abn+22, Cor 2.15]. �

2.2. Computations with Artin-Schreier curves. Let p be an odd prime and
let k be an algebraically closed field with characteristic p. For an Artin-Schreier
curve X defined by yp − y = f such that f ∈ k[x] has a pole of order d at infinity,
the set BX , defined by

(5) BX :=

{

yixjdx : 0 ≤ i ≤ p− 2, 0 ≤ j ≤
⌈

(p− i− 1)d

p

⌉

− 2

}

,

is a basis for H0(X,Ω1
X) [BC20, Lemma 3.7]. We will examine the specific cases

d = p2− 1 and d = p2+1, so the following lemmas will be computationally helpful.

Lemma 2.2. For odd prime p and integers 0 ≤ i ≤ p − 2, the following two

equations hold:
⌈

(p− i − 1)(p2 − 1)

p

⌉

− 2 = p2 − (1 + i)p− 2,

⌈

(p− i − 1)(p2 + 1)

p

⌉

− 2 = p2 − (1 + i)p− 1.

Proof. Elementary. �
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Lemma 2.3. If p is an odd prime, then

L(p2 + 1) = L(p2 − 1) =

(

p− 1

2

)

p2 − 1

2
.

Proof. We only prove L(p2 + 1) =
(

p−1
2

)

p2−1
2 . The proof showing L(p2 − 1) =

(

p−1
2

)

p2−1
2 is similar. Setting d = p2 + 1 in Lemma 2.1 and simplifying gives

L(p2 + 1) =

p−1
∑

i= p+1
2

ip+

⌊

i

p

⌋

−
(

ip+
−p2 + 1

2
+

⌊

−−2ip+ p2 − 1

2p2

⌋)

.

Since p+1
2 ≤ i ≤ p − 1, the range for the numerator of the floor term will be

0 < −(−2ip+ p2 − 1) < 2p2. Hence ⌊ i
p⌋ = ⌊−−2ip+p2−1

2p2 ⌋ = 0. Simplifying gives

L(p2 − 1) =

p−1
∑

i= p+1
2

p2 − 1

2
=

(

p− 1

2

)

p2 − 1

2
. �

Lemma 2.4. If p is an odd prime, then

L(p− 1) =
(p− 1)2

4
.

Proof. The proof of Lemma 2.4 is similar to the proof of Lemma 2.3 �

Lemma 2.5. If p is an odd prime and d is a positive integer,

L(d+ p2) = L(d) + L(p2 + 1).

Proof. Plugging d+ p2 into Lemma 2.1 gives

L(d+ p2) =

p−1
∑

i= p+1
2

⌊

i(d+ p2)

p

⌋

−
⌊

i(d+ p2)

p
−
(

1− 1

p

)

(p+ 1)(d+ p2)

2p

⌋

=

p−1
∑

i= p+1
2

⌊

id

p

⌋

−
⌊

id

p
−
(

1− 1

p

)

(p+ 1)d

2p

⌋

+
p2 − 1

2

= L(d) +

(

p− 1

2

)

p2 − 1

2
.

Hence, with Lemma 2.3, L(d+ p2) = L(d) + L(p2 + 1) �

We will use the lexicographic ordering on BX with y > x. i.e. for differentials
yixjdx and yaxbdx, if yixjdx > yaxbdx then either i > a or i = a and j > b. For
any element α ∈ BX , define Bα to be the set of basis vectors smaller than α under
the lexicographic order. We also denote the span of the image of a set under the
Cartier operator with Span(CX(A)).

Bα := {β ∈ BX : β < α}
Span(CX(A)) := Span({CX(a) : a ∈ A}).

The defining equation yp − y = f with f ∈ k[x] can be used to rewrite differ-
entials in H0(X,Ω1

X). For ymxndx ∈ H0(X,Ω1
X), the differential can be rewritten

ymxndx = (yp − f)mxndx. This equivalence is useful in calculations with the
Cartier Operator since the rewritten form works well with the properties in (4) to



6 IRIS Y. SHI

determine what the Cartier of any differential is. The following theorems concern
cases where f is a binomial and thus the following fact will be useful.

Lemma 2.6. Fix odd prime p, distinct positive integers d, e 6≡ 0 (mod p) and

nonzero a, b ∈ k. Let X → P1 be the Artin-Schreier cover defined by the equation

yp − y = axd + bxe. A differential ymxndx ∈ H0(X,Ω1
X) can be expressed as

ymxndx =

m
∑

i=0

m−i
∑

j=0

(

m

i

)(

m− i

j

)

am−i−jbjypix(m−i−j)d+je+ndx.

Proof. Since ymxndx ∈ H0(X,Ω1
X), we can use the equation yp − y = axd + bxe to

substitute ymxndx = (yp − (axd + bxe))mxndx. The binomial theorem then gives
the desired formula. �

2.3. Exhibiting curves with minimal a-number. In this section, we exhibit
curves for all odd primes p with some fixed ramification break d such that their
a-number is equal to the lower bound L(d). These curves will be the base curves
that combine to get an infinite family of curves in section 3.2.

Proposition 2.7. Let p be an odd prime. If f(x) ∈ k[x] has degree p − 1, then
the Artin-Schreier cover X → P1 defined by yp − y = f(x) has a-number equal to

L(p− 1).

Proof. By Lemma 2.4, we get the lower bound

L(p− 1) =
(p− 1)2

4
.

This is the a-number of any Artin-Schreier cover defined by yp − y = f(x) such
that f(x) ∈ k[x] has degree p− 1. [FP12, Theorem 3.9] �

Lemma 2.8. Let p be an odd prime and d = p2 + 1. Let X → P1 be the Artin-

Schreier cover defined by the equation yp − y = −xd − xd/2+p. Let 0 ≤ k < p−1
2

and 0 ≤ l ≤ d(p−2
2 −k)+1

p . Then there is ymxndx ∈ BX with m < p−1
2 such that the

largest term of CX(ymxndx) is ykxldx.

Proof. Let a be the largest integer such that a(d−2p) ≤ lp+(p−1). Setm = a+1+k
and n = lp+(p−1)−b, where b is the largest element of {a(d−2p), 2a+1

2 d−p, (a+1)d}
such that n ≥ 0. Check using (5) that ymxndx ∈ BX . Using Lemma 2.6, we write

(6) ymxndx =
m
∑

i=0

m−i
∑

j=0

(

m

i

)(

m− i

j

)

ypix(m−i)d−j(d/2−p)+ndx.

Recall from (4) that CX(ypaxbdx) 6= 0 if and only if b ≡ −1 (mod p). Finding the
largest term of CX(ymxndx), then, is equivalent to finding the largest 0 ≤ i ≤ m
such that there is (m− i)d− j(d2 − p) + n ≡ −1 (mod p) with j maximized under

these conditions. Substituting m and n then gives (a+1+ k− i)d− j(d2 − p)− b+
lp+ (p− 1) ≡ (mod p), so it suffices to find the largest i such that there is j with

(a+1+k− i)d− j(d2 −p)−b = 0. This occurs with i = k and j = (a+1)d
d/2−p . With this

choice of i and j, we get the term ypkxlp+(p−1)dx and CX(ypkxlp+(p−1)dx) = ykxldx.
�
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Lemma 2.9. Let p be an odd prime and d = p2 + 1. Let X → P1 be the Artin-

Schreier cover defined by the equation yp−y = −xd−xd/2+p. For all α = ymxndx ∈
BX with m ≥ p−1

2 , CX(α) 6∈ Span(CX(Bα)).

Proof. Fix α = ymxndx with m ≥ p−1
2 . Using Lemma 2.6, α can be rewritten

using to the formula in (6). For a fixed 0 ≤ i ≤ m, any 0 ≤ j ≤ m − i gives
(m − i)d − j(d2 − p) + n a distinct value. Hence each summand given by a pair
(i, j) has a unique combination of exponents and does not combine with any other

summand. Every pair (i, j) such that m − p−1
2 ≤ i ≤ m and 0 ≤ j ≤ 1 gives

(m− i)d− j(d2 −p)+n a distinct class (mod p). Hence there is always a summand
from (6) with exponent of the x term congruent to −1 (mod p). Hence every basis

element ymxndx with m ≥ p−1
2 has CX(ymxndx) 6= 0.

Choose 0 ≤ i ≤ m to be the largest integer such that there exists 0 ≤ j ≤ m− i
with (m− i)d− j(d2 − p) + n. Choose j to be as large as possible. This exists since

CX(α) is nonzero. Let β ∈ Bα with β = ykxldx, so either k < m or k = m and l < n.

Assume by way of contradiction that the coefficient of ypix(m−i)d−j( d
2−p)+ndx in

the expanded form of β is nonzero. This implies that 0 ≤ i ≤ k and there exists
0 ≤ g ≤ k − i and (k − i)d− g(d2 − p) + l = (m− i)d− j(d2 − p) + n. Solving for j

gives j(d2 −p) = d(m−k)+ g(d2 −p)+n− l. If m = k then using (5) we get bounds

0 ≤ n, l ≤ p2 −
(

1 +
p− 1

2

)

p− 2 =
p2 − p

2
− 2,

which implies n− l ≤ p2−1
2 − 2. However since j is an integer, (d2 − p) must divide

n− l. This implies l = n, a contradiction. Now assume m > k. From (5), we get
l ≤ p2− (1+k)p− 2. So for any m and k we get j ≥ (d(m−k)+n− l)/(d2 −p) > 1.

Now observe that (m − (i + 1))d − (j − 2)(d2 − p) + n ≡ −1 (mod p) and 0 ≤
i+1 ≤ m and 0 ≤ j − 2 ≤ m− (i+1). Hence the maximality of i is violated, since
(i+ 1) satisfies the necessary condition. By way of contradiction, the coefficient of

ypix(m−i)d−j( d
2−p)+ndx is 0 in the expanded form for any differential in Bα. Hence

for all α = ymxndx ∈ BX with m ≥ p−1
2 , CX(α) 6∈ Span(CX(Bα)). �

Proposition 2.10. Let p be an odd prime. If d = p2 + 1, the Artin-Schreier cover

X → P1 defined by yp − y = −xd − xd/2+p has a-number equal to L(d).

Proof. An upperbound for the a-number can be found by computing a lower bound
for the dimension of the image of the Cartier operator by rank-nullity. Fix α =

y
p−1
2 dx. By Lemma 2.11, there are

∑(p−3)/2
k=0

⌊

d( p−2
2 −k)+p+1

p

⌋

many ω ∈ BX such

that ω < α and CX(ω) have distinct largest terms. Thus the rank of CX(Bα) is

at least
∑(p−3)/2

k=0

⌊

d( p−2
2 −k)+p+1

p

⌋

. Using Lemma 2.12, we get the lower bound

dim(Span(CX(BX))) ≥ dim(Span(CX(Bα))) + |{ω ∈ BX : ω ≥ y
p−1
2 dx}|. Denote

this lower bound as R(X):

R(X) =

(p−3)/2
∑

k=0

⌊

d(p−2
2 − k) + p+ 1

p

⌋

+

p−2
∑

k=(p−1)/2

(p2 − (1 + k)p).

An upperbound for the a-number can be found by subtracting this lower bound
from the genus. From (5) and Lemma 2.2, note that the genus can be written as
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gX =
∑p−2

k=0(p
2 − (1 + k)p).

a(X) ≤
p−2
∑

k=0

(p2 − (1 + k)p)−R(X)

≤
(p−3)/2
∑

k=0

(p2 − (1 + k)p)−
⌊

d(p−2
2 − k) + p+ 1

p

⌋

≤
p−1
∑

k=(p+1)/2

(−p2 + 3

2
+

⌊−k + 1

p

⌋)

Since (p+ 1)/2 ≤ k ≤ p− 1, we get that ⌊−k+1
p ⌋ = −1. Thus simplifying gives

a(X) ≤
p−1
∑

k= p+1
2

p2 − 1

2
=

(

p− 1

2

)

p2 − 1

2
= L(d).

Since a(X) ≥ L(d) [BC20, Theorem 1.1], we get a(X) = L(d). �

The case for d = p2−1 is proven with a similar approach to the case for d = p2+1.

Lemma 2.11. Let p be an odd prime and d = p2 − 1. Let X → P1 be the Artin-

Schreier cover defined by the equation yp − y = −xd − xd/2. Let 0 ≤ k < p−1
2 and

0 ≤ l ≤ d( p−2
2 −k)−p+1

p . Then there is ymxndx ∈ BX with m < p−1
2 such that the

largest term of CX(ymxndx) is ykxldx.

Proof. The proof of Lemma 2.11 is similar to the proof of Lemma 2.8. �

Lemma 2.12. Let p be an odd prime and d := p2 − 1. Let X → P1 be the Artin-

Schreier cover defined by the equation yp − y = −xd − xd/2. If α = ymxndx ∈ BX

has m ≥ p−1
2 , then CX(α) 6∈ Span(CX(Bα)).

Proof. The proof of Lemma 2.12 is similar to the proof of Lemma 2.9. �

Proposition 2.13. Let p be an odd prime. If d = p2 − 1, the Artin-Schreier cover

X → P1 defined by yp − y = −xd − xd/2 has a-number equal to L(d).

Proof. The proof of Proposition 2.13 is similar to the proof of Proposition 2.10. �

Example 2.14. The Artin-Schreier coversX → P1 defined by y11−y = −x122−x72

and Y → P1 defined by y11 = −x120 −x60 both have the a-number a(X) = a(Y ) =
300, which is equal to the lower bound, L(120) = L(122) = 300.

Remark 2.15. Experimentally, it seems that an Artin-Schreier curves defined by

yp − y = −xnp2−1 − x
np2+(n−1)p−1

2 for some n ∈ N have a-number equal to the
lower bound L(np2 − 1). A technique similar to the ones presented in Propositions
2.13 and 2.10 might be able to show this, but we present a conceptual approach to
generating an infinite family with a-number equal to the lower bound in section 3.
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3. An Infinite Family of Curves via Patching

3.1. Notation and background. Notation 3.1 will be used for the entirety of this
section.

Notation 3.1. Fix an odd prime p and let k be an algebraically closed field with
characteristic p. Let R = k[[t]] be the ring of formal power series over k and
K = k((t)) be the field of fractions of R. Set U = Spec(k[[u]]) and V = Spec(k[[v]]).
For a positive integer e, set Ωe

uv = k[[u, v, t]]/(uv− te) and let Se
uv = Spec(Ωe

uv). A
relative curve (or R-curve) is a flat finitely presented morphism f : X → Spec(R) of
relative dimension 1. Let P e

R be an R-curve whose generic fibre is isomorphic to P1
k

and whose special fibre consists of projective lines Pu and Pv meeting transversally
at a point b where (u, v) = (∞,∞) and P̂R,b ≃ Se

uv.

An Artin-Schreier curve can be defined by an equation of the form yp−y = f(x)
where f(x) ∈ k(x) is nonconstant, and k(x) is the function field of P1. We often
define a smooth projective curve and its function field by describing its affine parts.
A morphism of curves is a cover if it is finite and generically separable. For a point
u on X , the germ X̂u of the curve X at u is the spectrum of the complete local
ring of functions of X at u. Let φ : Y → X be a Z/pZ-cover of curves branched
at the point u. Suppose η ∈ φ−1(u), then the ramification break of φ at η is the
integer d = val(q(πη)− πη), where q is a generator of Z/pZ and πη is a uniformizer
of Y at η.

This section closely follows the ideas presented in [Pri03]. We use the technique
of formal patching to glue together curves with known ramification breaks and a-
numbers to form a curve with a larger ramification break and known a-number.
This technique, pioneered by Harbater and Stevenson [HS99], has been used in
a similar way to exhibit curves with specific newton polygons [BP20] and large
conductors [Pri03].

Definition 3.2. A thickening problem of covers for (X, S) consists of the following:

(1) A cover f : Y → X of geometrically connected reduced projective k-curves,
(2) For each s ∈ S, a Noetharian normal complete local domain Rs with R ⊆ Rs

such that t is in the maximal ideal of Rs and a finite generically seperable
Rs-algebra As,

(3) For each s ∈ S, a pair of k-algebra isomorphisms Fs : Rs/(t) → ÔX,s and

Es : As/(t) → ÔY,s compatible with the inclusion morphisms.

Definition 3.3. A thickening of X is a projective normal R-curve X∗ such that
X∗

k ≃ X . We call a thickening problem G-Galois if f and the inclusion R ⊆ As are
G-Galois and Fs is compatible with the G-Galois action for all s ∈ S. We call it
relative if the problem has a thickening X∗ of X that is a trivial deformation of X
away from S such that the pullback of X∗ over the complete local ring at a point
s ∈ S is isomorphic to Rs.

Definition 3.4. A solution to a thickening problem of covers is a cover f∗ : Y ∗ →
X∗ of projective normal R-curves, where X∗ is a thickening of X , whose closed fibre
is isomorphic to f , whose pullback to the formal completion of X∗ alongX ′ = X−S

is a trivial deformation of the restriction of f over X ′, and whose pullback over the
complete local ring at a point s ∈ S is isomorphic to Rs ⊆ As with all isomorphisms
being compatible.



10 IRIS Y. SHI

Theorem 3.5. Every G-Galois thickening problem for covers has a G-Galois so-

lution. If the thickening problem is relative then the solution is unique.

Proof. [HS99, Theorem 4]. �

3.2. Patching curves with a specific congruence.

Proposition 3.6. Following Notation 3.1, let φ1 : X → U , φ2 : Y → V be Z/pZ-
Galois covers of normal connected germs of curves with ramification breaks j1 and

j2 such that j1 + j2 ≡ 0 (mod p). Let e = j1 + j2. Then there exists Z/pZ-Galois

cover φR : WR → Se
uv of irreducible germs of R-curves with the properties:

(1) The cover φR has one branch point, bR.
(2) The pullbacks of the special fibre of φR to U and V are isomorphic to φ1

and φ2 away from bR.
(3) The generic fibre φK : WK → Se

uv,K of φR is a Z/pZ-Galois cover of normal

irreducible germs of curves whose branch locus is bK := bR ×R K.

(4) The cover φK has ramification break e− 1 over the branch point.

Proof. We adapt the proof from [Pri03, Proposition 2.3.4]. There exists automor-
phisms Au and Av of fixing the closed points of U and V such that A∗

uφ1 and A∗
vφ2

can be given by the equations xp − x = uj1 and yp − y = vj2 respectively (see
[Art67, §10.4]). Denote the transformed covers as φ′

1 and φ′
2 respectively. We may

suppose the Galois action of φ′
1 maps x 7→ x+ 1 and the Galois action of φ′

2 maps
y 7→ y + a for some a ∈ F×

p .
Let φR : WR → Se

uv be the cover defined by the equation

(7) zp − z = (uj1 + avj2 + d0t)

for some d0 ∈ Ωe
uv. Note that after reducing (mod (v, t)), the equation becomes

zp − z = uj1 , which is identical to the equations defining φ′
1. So the normalization

of the reduction is isomorphic to φ′
1. Likewise the normalization of the reduction

(mod (u, t)) is isomorphic to φ′
2. The Galois action of φR sends z 7→ z + 1, which

reduces to the Galois action on φ′
1 and φ′

2 respectively. Hence the pullbacks of the
normalization of the special fibre of φR to U and V are isomorphic to φ′

1 and φ′
2 as

covers away from the branch point.
Set

d0 =
(u+ a1t

j2)e − ue − atj2e

uj2t

with a1 = e
√
a. Note that d0 ∈ Ωe

uv.
Plugging d0 into (7) and simplifying gives

(8) zp − z = u−j2(u+ a1t
j2)e.

Note that u has no zero or pole in Ωe
uv,K . Thus φK has a unique branch point

given by u = −a1t
j2 and v = −tj1/a1. This K-point specializes to the branch point

(u, v) = (∞,∞) of φk. Thus φR is branched at only one R-point with this d0.
Note that (8) is irreducible in R since the right hand side is not of the form αp−α.
Hence WR and WK are irreducible. From equation (8), u−j2(u + a1t

j2)e is an eth
power of a uniformizer. Hence the largest that the ramification break can be is e.
By Proposition 3.7, the lower ramification break must be greater than e− 1. Since
p cannot divide the ramification break, the lower ramification break on the generic
fibre must be e− 1. �
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Proposition 3.7. Given covers φ1 and φ2 with ramification breaks j1 and j2, the
ramification break on the generic fibre of a flat deformation of these two covers, φ,
will have ramification break j ≥ j1 + j2 − 1.

Proof. For an Artin-Schreier curve, the genus and ramification break are related by
the formula g = p−1

2 (j − 1), a corollary of the Riemann-Roch theorem. The genus

of the special fiber of the deformation is gφ = p−1
2 ((j1 − 1) + (j2 − 1)) + α, where

α is some nonnegative integer, contributed by the singularity. Note that the genus
is constant in a flat family of curves (see Corollary 9.9.10 in [Har97]). From the
above equality we then get the inequality jφ − 1 ≥ (j1 − 1) + (j2 − 1), which gives
the fact. �

Proposition 3.8. Let φ1 : X1 → P1, φ2 : X2 → P1 be Z/pZ-Galois covers branched

at only one point with ramification breaks j1 and j2 such that j1 + j2 ≡ 0 (mod p).
Then there exists a Z/pZ-Galois cover of curves φ : Y → P1

k with the following

properties:

(1) φ has exactly one branch point.

(2) There is a single ramification point of φ above the branch point and its

ramification break is e = j1 + j2 − 1.
(3) Y is smooth and connected.

Proof. We adapt the proof of Theorem 2.3.7 from [Pri03]. From Notation 3.1, label
X∗ = P e

R, S = {b}, and G = Z/pZ. There exists ramified points η1 ∈ φ−1
1 (u) and

η2 ∈ φ−1
2 (v). Consider the Z/pZ-Galois covers of germs of curves φ̂1 : X̂η1 → U

and φ̂2 : Ŷη2 → V . Apply Proposition 3.6 to φ̂1 and φ̂2 to get Z/pZ-Galois cover

φ̂R : WR → Se
uv which is ramified at one point with ramification break e. Note that

φ̂R corresponds to an inclusion of rings. Consider the cover φk of the special fibre
of P e

R which restricts to φ1 over Pu and to φ2 over Pv. Form a relative G-Galois

thickening problem using φk and φ̂R and the isomorphisms from the pullbacks of

the special fibre of φ̂R to φ1 and φ2. By Theorem 3.5, this problem has a solution,

a Z/pZ cover φR : YR → P e
R. The closed fibre of φR is isomorphic to φ̂R and φR

is isomorphic to the trivial deformation away from the closed point. Hence, YK is
smooth because WK and the trivial deformation are smooth.

Choose a subring O ⊆ R finitely generated over k with O 6= k, such that φR can
be defined over Spec(O). Note that such a subring exists because φR is defined using
only finitely many elements of R. Since k is algebraically closed, there are infinitely
many k-points of Spec(O). Let L be the set of k-points, x, of Spec(O) such that φx

is not a Z/pZ cover of smooth connected curves. Note that the closure L 6= Spec(O)
since YK is smooth and irreducible [Sta24, Lemma 055G]. Let α ∈ Spec(O) \ L be
a k-point and φ := φα : Y → Xk be the fibre over α. The map φ inherits properties
1 and 2 from φR and is smooth and connected by construction. �

Proposition 3.9. In the notation of Proposition 3.8, the special fiber of φR is a

cover of stable curves where the a-number of the cover is a(X1) + a(X2).

Proof. Away from the reduction of the branch point, in the special fiber the cover
Ys is the disjoint union of X1 and X2 with the ramification points removed. The
genus of Ys is the sum of the genera of X1 and X2 with a contribution from the
singularity caused by glueing X1 and X2. This is the same setup as Proposition 3.7.

https://stacks.math.columbia.edu/tag/055G
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However, we know that

g(X1) + g(X2) =
p− 1

2
((j1 − 1) + (j2 − 1)) =

p− 1

2
(j1 + j2 − 1) = g(YR)

so the singularity makes no contribution. Thus the singularity is an ordinary double
point, so the generalized Jacobian is the product of the Jacobians of X1 and X2

and has no toric part. In particular, the a-number is a(X1) + a(X2). �

Proposition 3.10. Let S be irreducible with generic point η, and π : X → S be

a smooth family of projective curves over S. Then for any point s ∈ S, a(Xη) ≤
a(Xs).

Proof. The Cartier operator can be viewed as a map of OX/S-modules F∗Ω
1
X/S →

Ω1
X/S , whose kernel is a coherent sheaf F such that for s ∈ S

a(Xs) = dimk(s) H
0(Xs,Fs).

Note that F is flat over X and hence over S as it is a kernel of a map of locally free
sheaves. By the semicontinuity theorem [Har97, Theorem III.12.8], the a-number
is an upper semi-continuous function on S, i.e. a(Xη) ≤ a(Xs). �

Proposition 3.11. For a prime p, if there exists a Z/pZ-Galois cover X → P1

with ramification break d ≡ −1 (mod p) with a-number equal to L(d), then for any

e ≥ d with e ≡ d (mod p2) there exists a Z/pZ-Galois cover X → P1 branched at

one point with ramification break e and a-number equal to L(e).

Proof. We prove Proposition 3.11 by induction. By assumption there exists a Z/pZ-
Galois coverX → P1 with ramification break d ≡ −1 (mod p) with a-number equal
to L(d). Assume X1 → P1 is a Z/pZ-Galois cover of curves with ramification break
e ≥ d with e ≡ d (mod p2) and a-number a(X1) = L(e). LetX2 → P1 be the Artin-

Schreier cover defined by yp−y = −xp2+1−x
p2+1

2 +p. By Proposition 2.10, X2 has a-
number a(X2) = L(p2+1). Using Proposition 3.8, there exists a Z/pZ-Galois cover
X → P1 with ramification break e+p2 and, by Proposition 3.9 and 3.10, a-number
a(X) = a(X1)+a(X2). By Lemma 2.5, L(e+p2) = L(e)+L(p2+1) = a(X1)+a(X2).
Hence the a-number of X is equal to the lowerbound, a(X) = L(e+ p2). Hence, by
induction, for any integer e ≥ d with e ≡ d (mod p2) there exists a Z/pZ-Galois
cover X → P1 with ramification break e and a-number equal to L(e). �

Theorem 3.12. For any odd prime p and any positive d ≡ −1 (mod p2) there

exists a Z/pZ-Galois cover X → P
1 branched at one point with ramification break

d and a-number equal to L(d).

Proof. By Proposition 2.13, the cover defined by yp − y = −xp2
−1 − x

p2−1
2 has

a-number equal to L(p2 − 1). By Proposition 3.11, for any d > p2 − 1 with d ≡ −1
(mod p2), there exists Z/pZ-Galois cover X → P1 with ramification break d and
a-number equal to L(d). �

Theorem 3.13. For any odd prime p and any positive d ≡ p − 1 (mod p2) there

exists a Z/pZ-Galois cover X → P1 branched at one point with ramification break

d and a-number equal to L(d).

Proof. Choose f ∈ k[x] such that deg(f) = p − 1. By Proposition 2.7, the cover
defined by yp − y = f has a-number equal to L(p − 1). By Proposition 3.11, for



REFERENCES 13

any d > p − 1 with d ≡ p − 1 (mod p2), there exists Z/pZ-Galois cover X → P1

with ramification break d and a-number equal to L(d). �

Theorem 3.14. For any odd prime p ≤ 23 and any positive d ≡ −1 (mod p),
there exists a Z/pZ-Galois cover X → P1 branched at one point with ramification

break d and a-number equal to L(d).

Proof. Let d be a positive integer with d ≡ −1 (mod p). Let 1 ≤ k ≤ p such that
kp − 1 ≡ d (mod p2). By explicit computation, we found a polynomial f with
degree kp− 1 such that the cover defined by yp − y = f(x) has a-number equal to
L(kp − 1). A list of the polynomials and the MAGMA code are attached in the
arXiv submission. By Proposition 3.11, since d > kp− 1 and d ≡ kp− 1 (mod p2),
there exists Z/pZ-Galois cover X → P1 with ramification break d and a-number
equal to L(d). �
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