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Abstract— Dynamic morphing wing flights present significant
challenges in accurately estimating external forces due to
complex interactions between aerodynamics, rapid wing move-
ments, and external disturbances. Traditional force estimation
methods often struggle with unpredictable disturbances like
wind gusts or unmodeled impacts that can destabilize flight
in real-world scenarios. This paper addresses these challenges
by implementing a Conjugate Momentum-based Observer,
which effectively estimates and manages unknown external
forces acting on the Aerobat, a bio-inspired robotic platform
with dynamically morphing wings. Through simulations, the
observer demonstrates its capability to accurately detect and
quantify external forces, even in the presence of Gaussian noise
and abrupt impulse inputs. The results validate the robustness
of the method, showing improved stability and control of the
Aerobat in dynamic environments. This research contributes to
advancements in bio-inspired robotics by enhancing force es-
timation for flapping-wing systems, with potential applications
in autonomous aerial navigation and robust flight control.

I. INTRODUCTION

The precision with which biological entities navigate and
manipulate their environments is often highlighted by their
ability to dynamically respond to external stimuli. This
capability is crucial, as demonstrated by numerous studies
on various species. For instance, locusts in flight utilize
abdominal movements to adjust their body orientation in
response to external disturbances [1]. Similarly, vertebrates
like lizards manipulate their tails to maintain or change
orientation [2], while bats employ complex wing movements
to perform intricate aerial maneuvers [3]–[9].

In contrast to these biological systems, our research fo-
cuses on the robotic platform Aerobat, which is designed
to replicate bat-like flight dynamics. Aerobat features large,
dynamically morphing wings that pose significant challenges
for modeling and control due to their rapid flexion and
expansion [7], [10], [11]. While we have already developed
a robust aerodynamic model [12] that accurately estimates
aerodynamic forces, our work goes beyond traditional force
estimation approaches that primarily address aerodynamic
and inertial forces [13]. Instead, we focus on estimating
unknown external forces—such as wind gusts or mechan-
ical impacts—which are often unaccounted for in standard
models.

External disturbances, such as wind gusts or sudden im-
pacts, pose significant challenges to the stability and control
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Fig. 1. Shows Aerobat platform [19]. The platform is designed to study
inertial and aerodynamic dynamics’ contribution roles in dynamic morphing
wing flight.

of flapping-wing robots. The unsteady and highly nonlinear
aerodynamics inherent in flapping flight make these systems
particularly sensitive to external perturbations [14]. Wind
gusts can induce significant changes in aerodynamic forces
and moments, leading to the vehicle’s loss of control or
destabilization [15]. Additionally, sudden impacts or colli-
sions can disrupt the delicate balance required for stable
flapping flight, potentially causing mechanical damage or
loss of flight capability [16]. Detecting these external forces
is crucial for understanding their effects and developing
strategies to mitigate their impact on flight stability.

To address this challenge, we employ a Conjugate
Momentum-based Observer, a sophisticated tool traditionally
used in legged robotics to detect external forces [17]. This
observer’s application to flapping-wing robotics represents a
novel approach, especially given the intricate dynamics of
systems like the Aerobat. Theoretical frameworks for such
observers are well-established [18], yet their practical appli-
cation to flapping-wing flight remains relatively unexplored.

Our study aims to demonstrate the effectiveness of using a
Conjugate Momentum-based Observer to estimate unknown
external forces on the Aerobat. This methodology enhances
the understanding of how external forces impact bio-inspired
robotic flyers while improving the robustness and reliability
of their control systems in unpredictable environments. This
research contributes significantly to the field of robotic flight,
particularly in scenarios where external disturbances play a
critical role.

This work is organized as follows. Section II details
the kinematics, dynamics, and aerodynamics modeling of
the Aerobat platform. In Section III, we elaborate on the
theoretical framework and the implementation of the Conju-
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Fig. 2. Schematic of the Kinetic Sculpture (KS) mechanism featuring 7
linkages (L1 to L7) and 10 joints (J1 to J10). The KS is uniquely engineered
to be driven by a single actuator. This design includes two pivotal angles: θs
and θe representing the shoulder and elbow joint angles respectively [19].

gate Momentum-based Observer used for estimating external
forces. Section IV presents a comprehensive analysis of the
simulation setup, methodology, and results demonstrating
the observer’s effectiveness in real-world scenarios. Finally,
Section V discusses the implications of these findings for the
field of bio-inspired robotics and outlines potential avenues
for future research.

II. MODELING

The Aerobat system, as shown in Fig. 1, can be described
using five distinct rotating bodies connected by joints or
hinges, illustrated in Figs. 2 and 3. These include the main
body, along with the proximal and distal segments of both
left and right wings. This arm-wing mechanism is designed
to imitate the natural degrees of freedom (DoF) of a bat’s
wing, as depicted in Fig. 2. The degrees of freedom in Aer-
obat’s flapping wing closely resemble the natural movement
of a bat’s wings. The shoulder joint plunge angle (θs) plays
a key role in controlling the upstroke and downstroke of
the wings, forming the primary flapping motion essential for
flight. The elbow flexion and extension angle (θe) allows the
wing to expand during the downstroke and retract during the
upstroke. This movement enhances the wing’s efficiency by
reducing negative lift during the upstroke, thereby optimizing
the overall flight performance.

To simplify the dynamic modeling of the complex Aerobat
system, several assumptions are made: the left and right-wing
linkages are treated as coupled, allowing their movements to
be coordinated; the linkages of the kinetic sculpture (KS)
are assumed to be massless; and KS kinematic constraints
are enforced.

A. KS Kinematic Constraints Modeling

The Kinetic Sculpture (KS) system, illustrated in Fig. 2,
is modeled as a constrained planar linkage system with 10
joints and 7 linkages. Each joint, denoted i, is defined by an
angle qi and a position pi ∈ R2. The motion dynamics are
captured by kinematic equations listed below, which illustrate

Fig. 3. Aerobat with simplified linkages model using five rotating bodies,
the linear position p represents the center of mass, and l represents the
length vectors relevant to the Aerobat model conformation.

the interdependencies within the linkages.

p̈1
4 = p̈5

4, p̈1
7 = p̈8

7, p̈5
10 = p̈8

10, q̈1 = uk, (1)

The system’s primary degree of freedom (DOF), q̈1, is
governed by the motor’s angular acceleration uk. This sim-
plifies to a set of equations that model the joint acceler-
ations essential for the dynamic behavior of the structure:
q̈k = [q̈1, q̈2, . . . , q̈9]. Let state vectors xk = [qk, q̇k] define the
kinematic subsystem:

ΣK :

{
ẋk = fk(xk)+gk(xk)uk,

yk = [q̈6, q̈7] =Ck( fk(xk)+gk(xk)uk),
(2)

Here, yk denotes the accelerations at the shoulder and
elbow joints, functioning as dynamic constraints that are
effectively mapped to um, a generalized motor torque. This
torque acts as an input to the Aerobat’s dynamic model,
facilitating precise control over the joints’ movements.

B. Flight Dynamics Modeling

In this context, vectors with superscripts are defined in
non-inertial coordinate frames, while those without super-
scripts are defined in the inertial frame. For example, xB

represents the vector x relative to frame B. The rotations
between the reference frames for the five bodies can be
described as follows:

x = RB xB, xB = RPL xPL = RPR xPR

xPL = RDL xDL , xPR = RDR xDR ,
(3)

In these equations, RB represents the rotation matrix of
the body relative to the inertial frame. RPL and RPR are
the rotation matrices for the left and right proximal wings
with respect to the body frame. Additionally, RDL and RDR

correspond to the rotations of the left and right distal wings
relative to their respective arms.

The angular velocities associated with these rotation ma-
trices can also be expressed within their specific coordinate
frames. This leads to the following pairs of rotation matri-
ces and angular velocities: (RB,ωB), (RPL ,ω

B
PL
), (RPR ,ω

B
PR
),

(RDL ,ω
B
DL
), and (RDR ,ω

B
DR

).
Let the angles θs and θe denote the shoulder and elbow

angles, respectively, which are biologically relevant flapping
angles, as illustrated in Fig. 2. Here the superscripts L and



R signify the left and right wings. The rotation matrices for
the left proximal and distal wings can then be expressed as
follows:

RPL = Rx(θ
L
s ), RDL = Rx(θ

L
e ) (4)

Here, Rx(θ) represents the rotation matrices about the x-axis.
The angular velocities for the left proximal-distal wings are
defined as follows:

ω
B
PL

=
[
θ̇ L

p ,0,0
]⊤

+ω
B
B

ω
PL
DL

=
[
θ̇ L

e ,0,0
]⊤

+ω
PL
PL
.

(5)

Based on our assumption regarding the coupling of the
right and left wings, the subsequent sections of this paper
will concentrate solely on the left wings. The derivations for
the right wings can be similarly formulated.

As illustrated in Fig. 3, let pB represent the linear position
of the center of mass of a body, while lL

j and lR
j (where

j = {1,2,3}) denote the length vectors that describe the
morphology of the Aerobat mechanism. These length vectors
are constant relative to their local frame of reference. The
linear position of the center of mass for the left proximal
and distal wings can be expressed as follows:

pPL = pB +RB lB
L1 +

1
2 RB RPL lPL

L2

pDL = pPL +
1
2 RB RPL lPL

L2 +RB RPL RDL lDL
L3 ,

(6)

The linear velocity of the center of mass can be obtained
by differentiating the linear positions from (6) with respect
to time.

The kinetic and potential energy of the system can be
derived as follows:

T = ∑
F∈F

(
mF ṗ⊤F ṗF +(ωF

F )
⊤ ÎF ω

F
F

) 1
2

U = ∑
F∈F

mF [0,0,g] pF ,
(7)

where F = {B,PL,PR,DL,DR} represents the set of ref-
erence frames. In this context, mF denotes the mass and ÎF
signifies the inertia matrix of the corresponding body. The
inertia matrix ÎF is defined with respect to the local frame
of reference and is both diagonal and constant.

Let qd = [p⊤B ,qs,qe] represent the states of the system,
where pB ∈R3 denotes the position of the center of mass in
the inertial frame, and qs and qe are the shoulder and elbow
joint angles, respectively. Additionally, let ωB ∈R3 represent
the angular velocity of the body, which can be expressed
as ṘB = RB[ω

B]×, where [·]× denotes the skew-symmetric
operator.

The equations of motion for the remaining states can
be derived by applying the Euler-Lagrange equation. This
equation provides a systematic way to obtain the dynamics
of a system, where the Lagrangian L is given by L = T −U
from (7). The Euler-Lagrange equation for each generalized
coordinate qi is expressed as:

d
dt

(
∂L
∂ q̇d

)
− ∂L

∂qd
= ud .

where ud is the non-conservative force about the generalized
coordinate qd .

Finally, let ad = [q̈d , ω̇
B] represent the acceleration vector

of the dynamic states. By solving the Euler-Lagrange equa-
tions of motion, we obtain the following constrained equation
of motion:

Md(qd ,RB)ad = hd(qd , q̇d ,RB,ω
B)+ua +um +u f , (8)

Here, Md represents the mass and inertia matrix, while hd
is a vector that includes the Coriolis and gravitational terms.
The term ua refers to the generalized aerodynamic forces
acting on the system, and um is the generalized motor torque
acting on the wing joints which is selected to directly actuate
the joints angles qs and qe. u f is some unknown generalized
force form of f (θe) acting on a point location on the wing
as shown in Fig. 3.

C. Aerodynamic Modeling

The aerodynamic behavior of the Aerobat in flight can
be captured through the use of an indicial model [12]. The
system is described as:

ΣAero :

{
ξ̇ = Aξ (t)ξ +Bξ (t)y1

ua =Cξ (t)ξ +Dξ (t)y1
(9)

In this formulation, ξ refers to the aerodynamic state vari-
ables, while u represents the aerodynamic force, providing
insight into the external forces acting on the wings during
flapping flight. As shown in Eq. 9, the aerodynamic system is
modeled in state-space form, where the matrices Aξ , Bξ , Cξ ,
and Dξ govern the aerodynamic response over time [12].
This state-space formulation is based on Wagner’s indicial
model and Prandtl’s lifting line theory, both of which are
fundamental to fluid dynamics [12].

The indicial model is advantageous because it allows for
the efficient calculation of unsteady aerodynamic forces and
moments, which is crucial for optimization-based control
strategies in flying systems. Furthermore, it can predict
wake structures that result from vortex shedding, which is
essential for describing flight gaits, similar to those observed
in biological systems such as bat flight [20], [21].

Knowing um from the kinematic constraint model and ua
from the aerodynamic model, we are left with the unknown
term u f . The next step is to estimate this unknown force
using a conjugate momentum-based observer to complete our
Aerobat model. For simplicity, we assume that the unknown
external force acts as a point force on each wing as shown
in Fig. 3.

III. CONJUGATE MOMENTUM BASED FORCE
ESTIMATION

In this section, we focus on estimating external forces
acting on specific points of the Aerobat’s wings, as shown
in Fig 3. The estimation approach illustrated in Fig. 4, is
based on the conjugate momentum observer introduced in
[22]–[24], a widely recognized technique in dynamic systems
control. This observer enables the estimation of unmeasured



Fig. 4. Block diagram of the conjugate momentum observer

external forces, such as disturbances or unknown inputs,
using the system’s state information and known inputs.

The conjugate momentum of the system, denoted as p(t),
is defined as the product of the mass-inertia matrix and the
generalized velocity:

p(t) = Md q̇d (10)

This variable encapsulates critical information about the
system’s dynamics and is influenced by both internal and
external forces.

To estimate the external forces, we construct a signal r(t),
that evolves according to the equation:

ṙ = Kr+Ku f (11)

This equation represents r(t) as a low-pass filtered version
of the external forces acting on the Aerobat [25]. To demon-
strate this relationship, we utilize the following established
equation:

Ṁ =C(qd , q̇d)+CT (qd , q̇d)

γ(qd , q̇d) = G(qd)−CT (qd , q̇d)q̇d
(12)

By integrating this signal Eq. (11) over time, we derive
an estimate of the unknown external forces:

r f (t) = K
(

p(t)−
∫ t

0
(ua +um − γ̂(qd , q̇d)+ r(s))ds− p(0)

)
(13)

where K is a fixed diagonal gain matrix, and p(t) is the
conjugate momentum.This method provides a robust frame-
work for estimating external forces, such as unmodeled
disturbances, during the Aerobat’s flight.

The conjugate momentum observer thus plays a crucial
role in real-time force estimation, helping to understand the
external dynamics that impact the Aerobat during its flight.

A. Modeling of Temporal Noise and Step Input in Force
Estimation

In our simulation, accurately modeling external distur-
bances, such as noise and transient inputs, is critical for
assessing the Aerobat’s dynamics. We introduce a Gaussian
noise component to simulate environmental variability and

Fig. 5. Shows position of Aerobat in a 3D space over a 2-second interval.

sensor noise. This noise is characterized by a mean µ = 0
and a standard deviation σ = 0.01, and is mathematically
represented in the force model as follows:

noise ∼ N (0,0.012) (14)

This noise simulates realistic operational conditions and
challenges the system’s ability to estimate forces accurately.

Additionally, a step input is integrated into the force
calculations to simulate sudden changes in external forces,
which can occur due to abrupt maneuvers or environmental
disturbances. The force ft at each timestep is calculated using
the following conditional equation:

ft =

{
0.2sin(qe)+noise+0.15, if 1 sec < t ≤ 1.6 sec
0.2sin(qe)+noise, otherwise

(15)
Here, qe represents the elbow joint angle, and the step

input of 0.15 is applied within a specified time window dur-
ing the simulation. This implementation allows for the study
of the system’s response to abrupt perturbations, which is
crucial for evaluating the robustness of control and estimation
algorithms.

By incorporating both Gaussian noise and step inputs, we
enhance the realism of the simulation, making the model
more representative of actual flight conditions. This approach
enables a comprehensive evaluation of the Aerobat’s dynamic
performance and resilience to external disturbances.

IV. RESULTS

The numerical simulation for estimating unknown external
forces acting on the Aerobat was conducted in MATLAB,
utilizing the dynamic equations, kinematic constraints, and
aerodynamic model detailed in section II and III. The fourth-
order Runge-Kutta method was employed to ensure high ac-
curacy in integrating the system’s differential equations. The
model’s effectiveness was evaluated by simulating various
wing morphologies under different flight conditions, focus-
ing on validating the conjugate momentum-based observer’s



Fig. 6. Dynamics of Aerobat depicting shoulder and elbow joint angles
(top), Body Euler angles (roll, pitch, yaw) over time (middle), and the three-
dimensional linear velocities (bottom).

Fig. 7. Top view snapshots of the simulation showing the trajectory of the
Aerobat.

ability to predict unknown forces in dynamic morphing wing
flights.

Figure 5 shows the position tracking (X, Y, Z) of the
Aerobat during simulated open-loop flight scenarios. The X-
coordinate indicates consistent forward motion, while the
Y-coordinate shows a steady shift in the negative direc-
tion, reflecting lateral movement. The Z-coordinate oscillates
slightly, capturing the vertical motion due to wing flapping,
which validates the model’s ability to simulate complex,
multi-directional flight paths in an open-loop control frame-
work. Additionally, Fig. 7, the stitch diagram, provides a
visual representation of the Aerobat’s top-view trajectory
over time.

Figure 6 illustrates key aspects of the Aerobat’s dynamics,
including joint angles, body orientation, and linear velocity.
The shoulder and elbow joint angles exhibit periodic motion,
crucial for the flapping mechanism, while the Euler angles
(roll, pitch, yaw) remain stable with minor fluctuations,
confirming the model’s effectiveness in simulating dynamic
wing morphing. The body’s linear velocities (X, Y, Z) show
smooth, periodic trajectories that correspond with the flap-
ping cycles, validating the model’s ability to predict temporal

Fig. 8. Estimation of unknown external forces acting on Aerobat’s wing,
compared with the actual input forces.

velocity changes resulting from aerodynamic forces and wing
movements.

In this detailed analysis of force estimation for the Aero-
bat’s wing, Fig. 8 exemplifies the efficacy of the conjugate
momentum-based observer in precisely estimating unknown
external forces in the inertial frame.

The top panel (portion of the Fy component), marked
by the blue boxed region, illustrates the Gaussian noise
integrated into the force model to simulate sensor noise and
environmental variability. This noise, defined by Eq. (14),
challenges the observer’s ability to maintain accurate force
estimation under realistic conditions. The close alignment in
the graph, where the estimated forces (red line) match the
actual forces (black line), highlights the observer’s precision
and reliability in differentiating signal from noise in noise-
prone environments.

The magenta-boxed regions illustrate the observer’s re-
sponse to a sudden step input introduced between 1 and 1.6
seconds. This step input simulates an unexpected external
force, such as a gust or obstacle impact, which is essential
for evaluating the observer’s responsiveness and adaptability.
The graph shows that the estimated forces promptly adjust
to the step change, closely mirroring the actual force profile.
This demonstrates the observer’s ability to accurately predict
abrupt force changes and its potential to enhance the Aero-
bat’s adaptive responses in dynamic and unpredictable flight
conditions.

To quantitatively evaluate the model’s performance, sta-
tistical metrics were applied to measure the accuracy of
force predictions. Specifically, R2 values were calculated for
each force component: R2

Fx = 0.7448, R2
Fy = 0.9970, and

R2
Fz = 0.9991. These metrics demonstrate that the model

predicts forces along the Y and Z axes with exceptional
accuracy, capturing over 99% of the variance. Furthermore,
the prediction accuracy for the X-axis, while slightly lower,
still explains 74.48% of the variance. The lower R2 value



for the Fx component could be attributed to factors such as
continuous pitching motions of the Aerobat, as shown in
Fig. 6, which induce greater variability in the force along this
axis. This suggests that while the model performs strongly
overall, further refinement may be needed to improve force
estimation along the X-axis.

V. CONCLUSION

This paper presented the application of a Conjugate
Momentum-based Observer for estimating unknown external
forces acting on the Aerobat, a bio-inspired robotic platform
with dynamically morphing wings. Our approach demon-
strated the observer’s effectiveness in accurately detecting
external disturbances, such as wind gusts and unmodeled
impacts, which are challenging to capture with traditional
force estimation methods.

Through simulations, we validated the observer’s ability to
estimate these external forces under various flight conditions,
including scenarios with Gaussian noise and sudden step
inputs. The results show high accuracy in force estimation,
particularly for the Y and Z components, with R² values ex-
ceeding 0.99. While the X component showed slightly lower
accuracy (R² = 0.7448), possibly due to continuous pitching
motions, the overall performance suggests significant poten-
tial for improving flight control in dynamic environments.

Future work will focus on integrating the observer into the
closed-loop control and testing its performance in real-world
flight experiments, with the goal of enabling more robust
and autonomous navigation for bio-inspired robotic systems.
This integration has the potential to significantly enhance the
Aerobat’s ability to adapt to unpredictable external forces,
paving the way for more versatile and resilient flying robots.
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