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Abstract. This paper proposes ESTVocoder, a novel excitation-spectral-
transformed neural vocoder within the framework of source-filter theory.
The ESTVocoder transforms the amplitude and phase spectra of the ex-
citation into the corresponding speech amplitude and phase spectra using
a neural filter whose backbone is ConvNeXt v2 blocks. Finally, the speech
waveform is reconstructed through the inverse short-time Fourier trans-
form (ISTFT). The excitation is constructed based on the F0: for voiced
segments, it contains full harmonic information, while for unvoiced seg-
ments, it is represented by noise. The excitation provides the filter with
prior knowledge of the amplitude and phase patterns, expecting to re-
duce the modeling difficulty compared to conventional neural vocoders.
To ensure the fidelity of the synthesized speech, an adversarial training
strategy is applied to ESTVocoder with multi-scale and multi-resolution
discriminators. Analysis-synthesis and text-to-speech experiments both
confirm that our proposed ESTVocoder outperforms or is comparable to
other baseline neural vocoders, e.g., HiFi-GAN, SiFi-GAN, and Vocos, in
terms of synthesized speech quality, with a reasonable model complexity
and generation speed. Additional analysis experiments also demonstrate
that the introduced excitation effectively accelerates the model’s conver-
gence process, thanks to the speech spectral prior information contained
in the excitation.
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1 Introduction

Text-to-speech (TTS) is a technique that utilizes machines to convert written
text content into audible speech. With the recent advancements in deep learning,
there has been a significant improvement in the clarity and naturalness of syn-
thesized speech. A TTS system typically consists of two key components,i.e., an
acoustic model and a vocoder. The acoustic model is responsible for predicting
acoustic features (e.g., mel spectrogram) from the input text. Subsequently, the
vocoder uses these features to generate the final speech waveform. Besides TTS,
other fields such as voice conversion (VC) and singing voice synthesis (SVS) also
require a vocoder to reconstruct waveform. Thus, a robust vocoder is crucial for
the field of speech signal processing, which is also the focus of this paper.

Traditional vocoders, such as STRAIGHT [28] and WORLD [42], synthesize
speech waveform using traditional signal processing methods. Although they are
computationally simple and fast, result in synthesized speech with lower natu-
ralness. With the development of deep learning, the WaveNet [46] represents a
significant milestone in synthesized speech quality. WaveNet is an autoregres-
sive neural vocoder capable of producing natural and clear speech waveforms.
Unlike traditional vocoders that rely on traditional signal processing methods,
WaveNet relies entirely on end-to-end neural network training. However, autore-
gressive neural vocoders generate audio samples sequentially and use previously
generated samples to create new ones, leading to extremely low efficiency and
high computational complexity. To address the issue of low efficiency in au-
toregressive models, researchers have proposed various alternative approaches,
including knowledge distillation-based models [45,50], flow-based models [52,51],
and glottis-based models [26,62]. Although these models have improved inference
efficiency, their overall computational complexity remains high.

To overcome the aforementioned issues, non-autoregressive neural vocoders
have gradually been proposed. Non-autoregressive models generate all samples
in parallel, offering high computational efficiency. For instance, HiFi-GAN [29]
vocoder maintains high naturalness in synthesized audio thanks to the genera-
tive adversarial network (GAN) [16] based training while balancing high gener-
ation speed. However, there is still room for efficiency improvement with these
vocoders, as they directly predict high-temporal-resolution waveforms from in-
put acoustic features. The substantial discrepancy in time resolution between
the acoustic fratures and waveforms, results in extensive upsampling operations
on the acoustic features, leading to significant computational demands. Thus,
subsequent neural vocoders have adopted the approach of predicting amplitude
and phase spectrum and then reconstructing the waveform using the inverse
short-time Fourier transform (ISTFT). For instance, Vocos [59] with ConvNeXt
blocks [35] as backbone, directly predicts the amplitude and phase spectrum at
the same temporal resolution from the input acoustic features, thereby main-
taining the same feature resolution at all frame rates. Vocos has increased its
generation speed by more than tenfold compared to HiFi-GAN while maintaining
high-quality synthesized speech.
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Most of the aforementioned vocoders only use the mel spectrogram as input,
which is convenient, but the mel spectrogram is a compressed representation
of the amplitude spectrum and may lose some acoustic details. Therefore, many
vocoders that utilize other acoustic features have also been proposed. A common
approach is to enhance vocoder performance based on the source-filter theory
framework by introducing the F0 as an additional acoustic feature. Neural source
filter (NSF) model [65] is a pioneer in applying neural networks within the source-
filter framework, which synthesizes speech waveform directly based on explicit
F0 and mel spectrograms. Recently, some works combining source-filter vocoders
with GAN-based training, such as SiFi-GAN [71] and SF-GAN [37], have been
proposed. This type of vocoders generates excitation based on the F0. The exci-
tation waveform is then processed through a neural filter conditioned on the mel
spectrogram to directly produce the final speech waveform. Experiments have
shown that after introducing the additional F0 features, the quality of the speech
generated by these vocoders is obviously improved. However, their excitations are
often constructed based on single F0, lacking harmonic information, which may
impact the reconstruction performance of the neural filter. In addition, these
methods often rely on direct transformation of the excitation waveform, still
leaving room for improvements in efficiency and model complexity. Excitation-
spectral-transformed methods in source-fileter-based neural vocoders have not
yet been thoroughly investigated.

To achieve high-fidelity speech synthesis as well as efficient training and
rapid generation speed, we propose a novel excitation-spectral-transformed neu-
ral vocoder called ESTVocoder. The ESTVocoder is designed based on the
source-filter theory and first produces an excitation according to the F0. Com-
pared to the single-F0-based excitation used by SiFi-GAN [71] and SF-GAN
[37], the proposed ESTVocoder utilizes a full-harmonic excitation which con-
tains richer spectral information. Subsequently, a neural filter with ConvNeXt
v2 blocks [67] as the backbone transforms the amplitude and phase spectra of the
excitation into the corresponding amplitude and phase spectra of the speech, con-
ditioned on the mel spectrogram. Finally, the speech waveform is reconstructed
via ISTFT. Both analysis-synthesis and TTS experimental results show that our
proposed ESTVocoder outperforms or is comparable to HiFi-GAN, SiFi-GAN,
and Vocos, in terms of synthesized speech quality. Our proposed ESTVocoder
also has an extremely fast training convergence speed, thanks to the introduction
of spectral prior information contained in the excitation.

This paper is organized as follows: In Section 2, we provide details on our
proposed ESTVocoder. In Section 3, we present our experimental results. Finally,
we give conclusions in Section 4.

2 Proposed Method

2.1 Overview

Fig. 1 shows an overview of the proposed ESTVocoder model. In ESTVocoder,
the F0 sequence f ∈ RF first passes through an excitation producer to produce
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Fig. 1: Overview of the proposed ESTVocoder. Here, CAT represents the con-
catenation operation.

an excitation waveform e ∈ RT , i.e.,

e = EP (f , Sr), (1)

where EP represents the excitation producer and Sr is waveform sampling rate.
F and T denote the number of frames of the F0 and the number of excitation
waveform samples, respectively. Assuming the frame shift for extracting F0 and
spectral features from the waveform is ws, it holds T = F ·ws. Then, a spectral-
transformed neural filter transforms the amplitude spectrum Ae ∈ RF×N and
phase spectrum Pe ∈ RF×N extracted from the excitation waveform e by STFT
into the corresponding speech amplitude spectrum Â ∈ RF×N and phase spec-
trum P̂ ∈ RF×N , with the mel spectrogram M ∈ RF×M as conditions, i.e.,

Ae,Pe = STFT (e), (2)

Â, P̂ = ST -NF (Ae,Pe|M), (3)

where ST -NF denotes the spectral-transformed neural filter. N and M repre-
sent the number of the frequency bins of the amplitude/phase spectra and mel
spectrogram, respectively. Finally, the predicted speech amplitude and phase
spectra are reconstructed into the speech waveform x̂ ∈ RT through the ISTFT,
i.e.,

x̂ = ISTFT (Â · exp(jP̂ )). (4)

2.2 Excitation Producer

The excitation producer generates the corresponding excitation waveform e
based on the frame-level F0 sequence f . First, a point-level F0 sequence fpl =

[f1, . . . , fT ]
⊤ is first generated by repeating the F0 value of f within each frame,

which then serves as the input to the excitation producer. The excitation pro-
ducer outputs an excitation signal e = [e1, . . . , eT ]

⊤, which is a sine-based signal
at voiced segments and Gaussian white noise at unvoiced segments. Specifically,
the excitation waveform can be represented as:
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Fig. 2: Visualization of the amplitude spectrum of the excitation waveform and
the speech waveform generated by ESTVocoder.

et =


K∑

k=1

α sin(
t∑

h=1

2πk fh
Sr

) + nt, ft > 0, t ∈ Vj

1
3σnt, ft = 0

, (5)

where K =
⌊

Sr/2
min(f)

⌋
represents the minimum number of harmonics required to

cover the entire frequency band. ft = 0 indicates that the t-th sampling point
is part of an unvoiced frame, nt ∼ N (0, σ2) is a Gaussian noise, Vj represents
the j-th voiced segment to which the t-th sampling point belongs, α and σ are
hyperparameters.

The left subplot of Fig. 2 gives a visualization example of the amplitude spec-
trum of the excitation waveform. Compared to previous works [37,2], the most
significant difference in our proposed excitation is that our excitation includes
all possible harmonic information. In this way, the produced excitation already
includes the basic acoustic pattern of the speech waveform, expecting to effec-
tively alleviate the modeling and learning difficulty for the subsequent neural
filter.

2.3 Spectral-Transformed Neural Filter

Unlike the waveform-transformed neural filters used in other vocoders, the neu-
ral filter in ESTVocoder transforms the amplitude spectrum Ae and phase spec-
trum Pe of the excitation waveform e into the speech amplitude spectrum Â
and phase spectrum P̂ conditioned on the mel spectrogram M , and then recon-
structs the speech waveform x̂ through ISTFT. Fig. 2 provides an visualization
example of amplitude spectral transformation (from the left subplot to the right
subplot). Therefore, the role of the neural filter is to achieve the gradual spectral
refinement using a neural network, guided by the information from the mel spec-
trogram. As mentioned in Section 2.2, the excitation spectrum already has the
rudiments of the speech spectrum, essentially providing the neural filter with
prior spectral information. We expect that such an excitation can reduce the
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Fig. 3: The specific compositional structure of the ConvNeXt v2 block.

learning difficulty of the neural filter model, thereby accelerating the model’s
convergence speed, while also diminishing the smooth artificial artifacts in the
amplitude and phase spectra of the synthesized speech.

Specifically, the amplitude and phase spectra of the excitation are concate-
nated along the dimensional axis and then passed through a dimension-reduction
layer. The mel-spectrogram, used as a condition, is first injected into a dimension-
expansion layer to match the dimension of the dimension-reduced amplitude-
phase feature. Then, these two features with same dimension are added together
and passed through the backbone network (i.e., ConvNeXt v2) along with a
layer normalization layer and a feed-forward layer to predict the speech ampli-
tude and phase spectra. Inspired by Vocos [59], we split the output of the above
feed-forward layer into two features along the dimensional axis. One feature gen-
erates the amplitude spectrum through exponential activation, while the other
feature generates the phase spectrum by first applying sine/cosine calculations
and then the atan2 function.

The neural filter adopts a ConvNeXt v2 [67] as its backbone, which has been
proven to possess superior modeling capabilities compared to the commonly used
ResNet networks [20] in HiFi-GAN [29] and the ConvNeXt network [35] in Vocos
[59]. The backbone ConvNeXt v2 network consists of multiple cascaded identical
ConvNeXt v2 blocks. As shown in Fig. 3, the key components of the ConvNeXt
v2 block include a 1D depth convolutional layer, a layer normalization layer, a
feed-forward layer that projects features to higher dimensions, a Gaussian Er-
ror Linear Unit (GELU) activation [21], a global response normalization (GRN)
layer [67], and an another feed-forward layer that projects features back to their
original dimensions. The GRN layer comprises three integral steps, i.e., aggre-
gating global features, normalizing these features, and calibrating them, thereby
enhancing feature diversity and ultimately boosting the representational quality.
The final output of the ConvNeXt v2 block is obtained by adding the input of
the 1D depth convolutional layer and the output of the last feed-forward layer
(i.e., residual connection).

2.4 Training Criteria

In ESTVocoder, only the neural network filter contains trainable parameters, and
it is trained using an adversarial training approach. The ESTVocoder uses multi-
period discriminator (MPD) [29] and multi-resolution discriminator (MRD) [25]
for adversarial training to ensure the quality of synthesized waveforms.
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– MPD: The MPD consists of 5 parallel sub-MPDs that operate in parallel.
Each sub-MPD converts the input synthesized waveform x̂ or natural wave-
form x into a 2D periodic map based on the preset period. This mapping result
then goes through a series of 5 consecutive processing stages, each stage con-
taining a layer of 2D convolution and a leaky rectified linear unit (LReLU)
activation function. The final output of the processing chain is further pro-
cessed through a 2D convolutional output layer to generate discriminative
scores. The period parameters are set to 2, 3, 5, 7, and 11, respectively.

– MRD: The MRD is configured with 3 parallel sub-MRDs. Each sub-MRD
uses the amplitude spectrum extracted from x̂ or x as input, based on specific
STFT parameters. Assuming the STFT parameters for extracting the input
amplitude and phase spectrum for the neural filter are: [frame length, frame
shift, FFT point number] = [wl, ws, 2N+1]. We set the STFT parameters for
the three sub-MRDs as [wl/2, ws/2, (2N + 1)/2], [wl, ws, 2N + 1] and [2wl,
2ws, 2(2N + 1)], respectively. Each sub-MRD consists of blocks made up of
2D convolutional layer and LReLU activation, followed by a 2D convolutional
layer that provides the final output.
We use the hinge form of adversarial loss. Assuming D∗ represents the sub-

discriminator of MPD or MRD, the corresponding generator adversarial loss and
discriminator adversarial loss are as follows.

L∗
adv−G = Ex̂ max (0, 1−D∗(x̂)) , (6)

L∗
adv−D = E(x̂,x) [max (0, 1−D∗(x)) + max (0, 1 +D∗(x̂))] . (7)

Additionally, feature matching loss L∗
FM [31] is also utilized, characterized by

the summation of the mean absolute error (MAE) between the corresponding
intermediate layer outputs of sub-discriminator D∗ when provided with inputs
x̂ or x.

In addition, we also incorporate the mean absolute error (MAE) loss on the
mel spectrogram between the extracted mel spectrogram M̂ and natural one M
derived from synthesized waveform x̂ and natural one x, respectively, i.e.,

LM =
1

FM
· E(M̂ ,M)

(∥∥∥M̂ −M
∥∥∥
1

)
. (8)

Therefore, the final GAN-based losses for generator (i.e., the neural filter) and
discriminator (i.e., the MPD and MRD) are respectively defined by the following
expressions.

LG =

5∑
i=1

(
LPi
adv−G + LPi

FM

)
+ λMRD

3∑
j=1

(
LRj
adv−G + LRj

FM

)
+ λMLM , (9)

LD =

5∑
i=1

LPi
adv−D + λMRD

3∑
j=1

LRj
adv−D, (10)
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where Pi and Rj represent i-th sub-MPD and j-th sub-MRD, λMRD and λM

are hyperparameters. The training process follows the standard training mode of
GAN, i.e., using LG and LD to train the generator and discriminator alternately.

2.5 Analysis-synthesis and TTS applications

During the test stage, we apply the proposed ESTVocoder on two tasks, i.e., the
analysis-synthesis task and TTS task. The process of analysis-synthesis applica-
tions is consistent with the training process. We first extract the natural F0 and
the natural mel spectrogram from the natural speech and then inject them into
the well-trained ESTVocoder to generate the speech waveform.

In TTS tasks, after predicting the mel spectrogram from text via an acoustic
model, we use an F0 predictor [37] to predict the F0 from the mel spectrograms.
Then the predicted F0 and mel spectrogram are inject into the well-trained
ESTVocoder to generate the speech waveform. The structure of the F0 predictor
is shown in Fig. 4. The mel spectrogram is first input into three parallel con-
volutional layers with different kernel sizes to obtain three sets of intermediate
features. Subsequently, the concatenated features are inputted into two parallel
feed-forward layers with different activation functions (Sigmoid and ReLU, re-
spectively) to separately derive the F0 contour and the voiced/unvoiced (V/UV)
flag. Finally, multiply the F0 contour and the V/UV flag to obtain the final F0
sequence.

3 Experiments

3.1 Experimental Setup

Dataset and Implementation. We conducted experiments on the LJSpeech
[24] dataset, which included 13,100 speech utterances from an English female for
a total of approximately 24 hours. All speech waveforms were downsampled to
16 kHz for our experiments. We randomly selected 10,480 utterances for train-
ing, 1,310 for validation, and remaining 1,310 for testing. When performing the
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STFT, the frame length was 640 (i.e., wl = 640), the frame shift was 160 (i.e.,
ws = 160), and the number of FFT points was 1024 (i.e., N = 513).

In the neural filter model, before the ConvNeXt v2 block, both the layer
dimension-reduction and dimension-expansion layers had 512 nodes. The number
of ConvNeXt v2 blocks in the ConvNeXt v2 network was set to 8. For each
ConvNeXt v2 block, the kernel size and channel size were set to 7 and 512,
respectively. The model was trained on on a single NVIDIA RTX TITAN GPU
and optimized using the AdamW optimizer with β1 = 0.8, β2 = 0.99, and weight
decay of 0.01. The learning rate was set initially to 2 × 10−4 and scheduled to
decay with a factor of 0.999 at every epoch.

Baselines. We compared ESTVocoder with HiFi-GAN [29] 1, SiFi-GAN [71] 2

and Vocos [59] 3. SiFi-GAN introduces excitation into HiFi-GAN, constructing
a neural vocoder within the source-filter framework. In contrast to HiFi-GAN
and SiFi-GAN, Vocos models the amplitude and phase spectra instead of di-
rectly modeling the waveform. However, it is not designed within the source-
filter framework. Therefore, comparing them with the proposed ESTVocoder is
fair and reasonable. All the baseline models were trained on the same LJSpeech
dataset with the same training environment as ESTVocoder.

Tasks. In this paper, we conducted analysis-synthesis experiments on HiFi-
GAN, SiFi-GAN, Vocos, and ESTVocoder. We performed TTS experiments only
on HiFi-GAN, Vocos, and ESTVocoder using mel spectrograms predicted by
FastSpeech2 [54] 4. Since SiFi-GAN utilized mel cepstral features extracted by
WORLD [42] and no TTS experiments were conducted in the original paper [71],
we also discarded the TTS experiment on SiFi-GAN.

Evaluation metircs. For the analysis-synthesis experiment, we have adopted
a variety of objective metrics to evaluate the quality of synthesized speech from
multiple perspectives. To evaluate the amplitude-related quality, the root mean
square error of logarithmic amplitude spectrum (LAS-RMSE) and mel cep-
strum distortion (MCD) were used. To evaluate the F0 modeling accuracy, root
mean square error of F0 (F0-RMSE) and V/UV flag error (denoted by V/UV)
were adopted. Finally, to comprehensively evaluate the quality of synthesized
speech, we introduced two commonly used tools, including perceptual evalua-
tion of speech quality (PESQ) [53] and virtual speech quality objective listener
(ViSQOL) [10].

To evaluate the generation efficiency of vocoders, we compared the real-time
factor (RTF) and training speed. The RTF is calculated as the ratio of generation
time and the actual duration of the test set. The training speed is defined as
the seconds taken to complete one epoch of training (s/e), which reflects the
efficiency of model training.

1https://github.com/jik876/hifi-gan.
2https://github.com/chomeyama/SiFi-GAN.
3https://github.com/gemelo-ai/vocos.
4https://github.com/ming024/FastSpeech2.

https://github.com/jik876/hifi-gan
https://github.com/chomeyama/SiFi-GAN
https://github.com/gemelo-ai/vocos
https://github.com/ming024/FastSpeech2


10 X.-H. Jiang et al.

Table 1: Quality-related objective evaluation results of for ESTVocoder, HiFi-
GAN, SiFi-GAN and Vocos on the test set of the LJSpeech for the analysis-
synthesis experiments. The bold and underline numbers indicate the optimal
and sub-optimal results, respectively.

LAS-RMSE MCD F0-RMSE V/UV PESQ↑ ViSQOL↑
(dB)↓ (dB)↓ (cent)↓ (%)↓

ESTVocoder 36.51 0.931 4.17 4.99 3.70 4.895
HiFi-GAN 40.34 1.227 5.07 5.23 3.48 4.815
SiFi-GAN 29.39 1.252 5.03 5.15 3.33 4.703
Vocos 39.07 1.033 4.40 5.31 3.51 4.863

Table 2: Efficiency-related objective evaluation results of for ESTVocoder, HiFi-
GAN, SiFi-GAN and Vocos on the test set of the LJSpeech for the analysis-
synthesis experiments. The bold and underline numbers indicate the optimal
and sub-optimal results, respectively. Here, s/e represents second per epoch and
"a×" represents a× real time.

RTF RTF Training Speed
(GPU)↓ (CPU)↓ (s/e)↓

ESTVocoder 0.0016 (625.0×) 0.0112 (89.3×) 203
HiFi-GAN 0.0013 (769.2×) 0.1496 (6.8×) 358
SiFi-GAN 0.0135 (74.1×) 0.1568 (6.4×) 567
Vocos 0.0009 (1111.1×) 0.0093 (107.5×) 199

For the TTS experiment, we employed a subjective mean opinion score
(MOS) test, to compare the naturalness of the vocoders. In each MOS test,
20 test utterances synthesized by compared vocoders along with the natural ut-
terances were compared and evaluated by at least 30 native English listeners.
This test was conducted on the Amazon Mechanical Turk crowd-sourcing plat-
form, where listeners were asked to rate the naturalness on a scale from 1 to 5,
with a score interval of 0.5.

3.2 Evaluation Results5

The quality-related objective evaluation results of the proposed ESTVocoder
and baseline HiFi-GAN, SiFi-GAN and Vocos for the analysis-synthesis ex-
periments are presented in Table 1. Regarding the amplitude quality, it can
be observed that our proposed ESTVocoder achieved the lowest MCD results,
but it was second only to SiFi-GAN in the LAS-RMSE metric. However, the
MCD calculation is performed in the mel domain, which better reflects hu-
man perception. Therefore, it can be inferred that the synthesized speech of

5Audio samples of the proposed ESTVocoder can be accessed at
https://pb20000090.github.io/NCMMSC2024/.

https://pb20000090.github.io/NCMMSC2024/
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Table 3: Subjective evaluation results of ESTVocoder, HiFi-GAN and Vocos on
the test set of the LJSpeech for the TTS experiments.

MOS↑
Natural 4.01±0.044
ESTVocoder 3.87±0.051
HiFi-GAN 3.90±0.047
Vocos 3.87±0.049

our proposed ESTVocoder had higher perceived quality. For F0 recovery ca-
pability, our proposed ESTVocoder had the lowest F0-RMSE and V/UV er-
ror, indicating its strong F0 restoration capability and fewer pronunciation er-
rors. Thanks to ESTVocoder’s excellent performance in amplitude spectrum
perceptual quality and fundamental frequency recovery capability, it is unsur-
prising that its overall speech quality is also the best, according to PESQ and
ViSQOL results. Therefore, our proposed ESTVocoder outperformed commonly
used waveform-prediction-based neural vocoders (i.e., HiFi-GAN), excitation-
waveform-transformed neural vocoders (e.g., SiFi-GAN), and spectral-prediction-
based neural vocoders (i.e., Vocos) in terms of synthesized speech quality. This
confirms the advantages of our proposed excitation spectral transformation method.

Table 2 gives the results of the comparison of the generation and training
speeds among the proposed ESTVocoder, HiFi-GAN, SiFi-GAN and Vocos for
the analysis-synthesis experiments. We first compared the proposed ESTVocoder
with Vocos, as both were designed to predict spectra rather than waveforms. The
generation and training efficiency of ESTVocoder were slightly lower than those
of Vocos, which is reasonable given that ESTVocoder introduced an additional
excitation producer module. This conclusion is consistent with the comparison
between HiFi-GAN and SiFi-GAN. When compared with the two waveform-
prediction-based neural vocoders, i.e., HiFi-GAN and SiFi-GAN, although our
proposed ESTVocoder had a slightly slower generation speed on GPU compared
to HiFi-GAN, its generation speed on CPU was significantly faster than both
HiFi-GAN and SiFi-GAN. This demonstrates the efficiency advantage of predict-
ing spectra rather than waveforms, especially when GPU parallel acceleration is
not available. Additionally, the training efficiency of ESTVocoder is also signifi-
cantly higher than that of HiFi-GAN and SiFi-GAN.

For TTS experiments, the results of the subjective MOS test on the natural
speech and speeches generated by ESTVocoder, HiFi-GAN and Vocos are shown
in Table 3. We can see that their average MOS was similar. To determine the
significance of the differences among them, we also calculated the p-value of
the t-test. The results of the two t-tests between ESTVocoder and HiFi-GAN
and between ESTVocoder and Vocos indicated that the performance differences
between the ESTVocoder and other baseline vocoders were not significant (p >
0.05) in the TTS task. Therefore, our proposed ESTVocoder is comparable to
other baseline vocoders in terms of subjective quality on TTS tasks. However, it
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Fig. 5: Visualized amplitude spectra of natural speech and speeches generated by
Vocos-CNXv2*, ESTVocoder*, Vocos-CNXv2 and ESTVocoder (example sen-
tence LJ034-0143)

Table 4: Quality-related objective evaluation results of for ESTVocoder,
ESTVocoder-CNXv1, Vocos-CNXv2 and Vocos on the test set of the LJSpeech
for the analysis-synthesis experiments.

LAS-RMSE MCD F0-RMSE V/UV PESQ↑ ViSQOL↑
(Hz)↓ (dB)↓ (dB)↓ (%)↓

ESTVocoder 36.51 0.931 4.17 4.99 3.70 4.895
ESTVocoder-CNXv1 37.60 1.025 4.27 5.46 3.63 4.880
Vocos-CNXv2 38.53 0.998 4.30 5.30 3.58 4.878
Vocos 39.07 1.033 4.40 5.31 3.51 4.863

achieves better objective results in analysis-synthesis tasks and has considerable
training and generation speed advantages. In the following subsection, we also
demonstrate that ESTVocoder has a faster training convergence speed, thus
saving training costs, which is also one of its advantages.

3.3 Analysis and Discussion

Discussion on backbone. Choosing a good backbone is crucial for the perfor-
mance of the synthesized speech by a neural vocoder. As mentioned in Sec-
tion 2.3, we choose ConvNeXt v2 blocks as the backbone for our proposed
ESTVocoder due to their proven strong modeling capabilities. However, Vocos
uses ConvNeXt blocks as its backbone.

Although researchers have systematically compared the differences between
ConvNeXt and ConvNeXt v2 in the field of image processing [67], this difference



ESTVocoder 13

Fig. 6: Training curves of mel-spectrogram loss for ESTVocoder and Vocos-
CNXv2.

has yet to be systematically validated in the field of speech signal processing.
Therefore, we replaced all ConvNeXt v2 blocks in ESTVocoder with ConvNeXt
blocks (referred to as ESTVocoder-CNXv1) and compared it with the original
ESTVocoder. Simultaneously, we replaced all ConvNeXt blocks in Vocos with
ConvNeXt v2 blocks (referred to as Vocos-CNXv2) and compared it with the
original Vocos. Objective experimental results are listed in Table 4. We can
observe that in all metrics, the ESTVocoder outperformed the ESTVocoder-
CNXv1, and the Vocos-CNXv2 outperformed the Vocos. This result indicates
that ConvNeXt v2 has a stronger modeling capability in vocoder tasks com-
pared to ConvNeXt, which is why we chose ConvNeXt v2 as the backbone for
ESTVocoder.

Analysis of the role of the excitation producer. As mentioned in Section
2.2, the original intention of introducing the excitation spectra in ESTVocoder
is to provide the neural filter with prior information about the speech spec-
tra, thereby reducing the training difficulty of the neural filter and improv-
ing the quality of the synthesized speech. To confirm this point, we compared
ESTVocoder with Vocos-CNXv2. They both use ConvNeXt v2 as the back-
bone, so Vocos-CNXv2 can be approximately regarded as the ablated version
of ESTVocoder without the excitation producer. We conducted the following
three analyses. 1) Objective evaluation. As shown in Table 4, the ESTVocoder
outperformed the Vocos-CNXv2 for all objective metrics. This confirms that the
introduced excitation producer significantly helps improve the quality of syn-
thesized speech. 2) Visual analysis. Both ESTVocoder and Vocos-CNXv2 used
8 ConvNeXt v2 blocks, so we attempted to reconstruct the speech waveform
based on the output from their 4th block (referred to as ESTVocoder* and
Vocos-CNXv2*, respectively) to test their performance at intermediate stages of
the model. Figure 5 shows the amplitude spectra of the speeches generated by
Vocos-CNXv2*, ESTVocoder*, Vocos-CNXv2, and ESTVocoder. Interestingly,
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the amplitude spectrum of ESTVocoder* is close to that of natural speech, while
the amplitude spectrum of Vocos-CNXv2* is significantly worse. This indicates
that the speech spectral prior introduced by the excitation allows the neural fil-
ter to quickly learn the shape of the speech spectra, resulting in a faster learning
speed. By comparing Vocos-CNXv2 and ESTVocoder, as shown by the red circles
in Figure 5, ESTVocoder’s harmonic restoration is more accurate, which is also
attributed to the introduction of the excitation prior information. 3) Conver-
gence speed analysis. Figure 6 plots the training curves of the mel spectrogram
loss for Vocos-CNXv2 and ESTVocoder. From the figure, we can also see that
ESTVocoder’s convergence speed is significantly faster, which is also attributed
to the excitation prior information provided to the neural filter.

4 Conclusions

In this paper, we present an excitation-spectral-transformed neural vocoder
called ESTVocoder under the source-filter framework. An excitation producer
produces the excitation waveform according to F0, and then the neural filter
transforms the excitation amplitude and phase spectra to speech ones condi-
tioned on the mel spectrogram. The comprehensive experimental results demon-
strate that our proposed ESTVocoder outperforms several baseline vocoders.
Analysis experiments confirm that the excitation provides the neural filter with
speech spectral priors, effectively reducing the training difficulty of the neural
filter and improving the quality of synthesized speech. Further improving the ef-
ficiency of ESTVocoder and applying it to other tasks (i.e., speech enhancement)
will be the focus of our future work.
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