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TOTALLY GEODESIC SUBMANIFOLDS OF THE

HOMOGENEOUS NEARLY KÄHLER 6-MANIFOLDS

AND THEIR G2-CONES

JUAN MANUEL LORENZO-NAVEIRO AND ALBERTO RODRÍGUEZ-VÁZQUEZ

Abstract. In this article we classify totally geodesic submanifolds of homogeneous nearly
Kähler 6-manifolds, and of the G2-cones over these 6-manifolds. To this end, we develop new
techniques for the study of totally geodesic submanifolds of analytic Riemannian manifolds,
naturally reductive homogeneous spaces and Riemannian cones. In particular, we obtain
an example of a totally geodesic submanifold with self-intersections in a simply connected
homogeneous space.

1. Introduction

An almost Hermitian structure on a Riemannian manifold (M,g) is a (1, 1) tensor field
J preserving the Riemannian metric g and satisfying the identity J2 = − Id. Gray and
Hervella [24] showed that there are 16 natural classes of almost Hermitian structures. A nice
example of those are Kähler structures, which are characterized by the equation ∇J = 0,
where ∇ denotes the Levi-Civita connection of (M,g). Among the non-integrable Hermitian
structures, the nearly Kähler structures are particularly noteworthy. An almost Hermitian
structure J on a Riemannian manifold (M,g) is nearly Kähler if it satisfies

(∇XJ)(Y ) = −(∇Y J)(X) for all vector fields X and Y of M.

The study of nearly Kähler geometry is particularly interesting in dimension 6, as strictly
nearly Kähler 6-manifolds (that is, those which are not Kähler) are automatically Einstein,
and their Riemannian cones are 7-manifolds with holonomy groups contained in G2, see [5].
Indeed, in [11], Bryant constructed the first examples of manifolds with holonomy exactly
equal to G2, one of which is a Riemannian cone over the flag manifold F(C3) equipped with a
nearly Kähler metric.

Although investigations about nearly Kähler manifolds began in the 1950s, significant
progress has been made in the recent decades. In 2005, Butruille [12] classified simply con-
nected, homogeneous strictly nearly Kähler manifolds of dimension six. These are:

S6 = G2/SU(3), CP3 = Sp(2)/(U(1) × Sp(1)),

F(C3) = SU(3)/T2, S3 × S3 = SU(2)3/∆SU(2).

More recently, in 2017, Foscolo and Haskins [19] produced the first inhomogeneous nearly
Kähler structures on S6 and S3 × S3. These structures are of cohomogeneity one and are
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SU(2)×SU(2)-invariant. The aforementioned nearly Kähler manifolds constitute all the known
simply connected strictly nearly Kähler 6-manifolds so far.

The main goal of this article is to classify totally geodesic submanifolds in homogeneous
strictly nearly Kähler 6-manifolds. For this purpose, we develop some general tools for the
study of totally geodesic submanifolds of naturally reductive homogeneous spaces. Moreover,
we also classify maximal totally geodesic submanifolds of the G2-cones over homogeneous
strictly nearly Kähler 6-manifolds.

The theory of totally geodesic submanifolds in homogeneous spaces is especially fruitful
due to the large isometry groups of these spaces. Symmetric spaces are a particular type
of homogeneous spaces with an isometric geodesic reflection at each point. Totally geodesic
submanifolds of symmetric spaces have been extensively studied, see e.g. [7, 14, 15, 37]. In the
settting of symmetric spaces, totally geodesic submanifolds are orbits of the action of some
Lie group acting isometrically, and can be characterized algebraically by means of the so-
called Lie triple systems. That being said, the classification of totally geodesic submanifolds
in classical symmetric spaces of rank greater than two remains widely open. In contrast, in
a non-symmetric Riemannian homogeneous space we lack a nice algebraic characterization
of totally geodesic submanifolds. Furthermore, although these submanifolds are intrinsically
homogeneous, they are not necessarily orbits of Lie groups acting isometrically, see [34, 47].

Another relevant aspect is that in the (non-symmetric) homogeneous setting, it is natural to
consider totally geodesic immersions that are not necessarily injective. The theory of totally
geodesic immersions, developed in [56] and [28], is central to this work, and in this article we
aim to further build upon it, see Section 3. It is well known that in homogeneous spaces, every
one-dimensional totally geodesic submanifold is injectively immersed (in other words, every
geodesic loop is a closed geodesic), and in symmetric spaces, all totally geodesic submanifolds
are injectively immersed. In this work, we present what is, up to the best of our knowledge,
the first example of a totally geodesic submanifold in a simply connected homogeneous space
with self-intersections, see Subsection 5.2.6.

In this article, we introduce the class of D-invariant totally geodesic submanifolds of a
reductive homogeneous space, where D denotes the difference between the Levi-Civita con-
nection ∇ and the canonical connection ∇c, see Subsection 2.1. In the setting of naturally
reductive homogeneous spaces, which includes symmetric spaces, D-invariant totally geodesic
submanifolds are orbits of Lie groups acting isometrically, and they admit a nice algebraic
description similar to that of Lie triple systems in symmetric spaces. Furthermore, totally
geodesic submanifolds of symmetric spaces are trivially D-invariant. Thus, the class of D-
invariant totally geodesic submanifolds seems to be a natural generalization of totally geodesic
submanifolds of symmetric spaces. As we will see, not all totally geodesic submanifolds in a
naturally reductive homogeneous space are D-invariant. It will follow from our classification
that all maximal totally geodesic submanifolds, i.e. those not contained in any other proper
totally geodesic submanifold, in the homogeneous nearly Kähler 6-manifolds are D-invariant.

As we have seen, there are exactly four examples of simply connected homogeneous nearly
Kähler 6-manifolds. The sphere S6 = G2/SU(3), whose nearly Kähler structure is induced by
octonionic multiplication, was the first one that appeared. Since S6 = G2/SU(3) is isotropy
irreducible, it carries the round metric. Thus, its totally geodesic submanifolds are open
parts of intersections of vector subspaces of R7 passing through the center of the unit sphere
S6 ⊆ R7. Each of the remaining three examples appears as the total space of a homogeneous
fibration

F = K/H →M = G/H → B = G/K

induced by a triple of compact Lie groups H ≤ K ≤ G. In the cases of CP3 and F(C3),
these fibrations are also examples of twistor fibrations. A twistor fibration of an oriented
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Riemannian 4-manifold N is a fiber bundle π : M → N , where each fiber over p ∈ N is equal
to the set of complex structures of TpN which preserve the orientation and the Riemannian
metric of N . It turns out that π is an S2-bundle over N , and the twistor space M admits two
different natural almost Hermitian structures. One of them is called the Atiyah-Hitchin-Singer
structure and it is integrable if and only if the 4-manifold N is self-dual, see [4]. The other
one is the Eells-Salamon structure, which can be obtained from the Atiyah-Hitchin-Singer
structure by changing the sign only in the fibers. The nearly Kähler structures of CP3 and
F(C3) that we are considering are precisely the Eells-Salamon structures that we get when
N is the round sphere S4 and the complex projective plane CP2, respectively. Moreover,
the celebrated Eells-Salamon correspondence, see [18], states a one-to-one correspondence
between (branched) minimal surfaces in N , and non-vertical J-holomorphic curves in M , i.e.
J-invariant immersions of 2-manifolds in M .

When studying the totally geodesic submanifolds of the total space of a Riemannian submer-
sion F →M → B, it is also relevant to consider their behavior with respect to the underlying
Riemannian submersion. Following [47], we say that a totally geodesic submanifold Σ of the
total space of a Riemannian submersion M is well-positioned if

TpΣ = (Vp ∩ TpΣ)⊕ (Hp ∩ TpΣ) for all p ∈ Σ,

where V and H denote the vertical and horizontal distributions associated with the Rie-
mannian submersion F → M → B. It turns out that if a totally geodesic submanifold is
well-positioned, the metric of the total space can be rescaled in the direction of the fibers
while preserving the totally geodesic property for all these new metrics, see [16, Lemma 3.12].
In this work, we find several examples of not well-positioned totally geodesic submanifolds.

There is a relatively large number of articles focusing on the investigation of totally geodesic
submanifolds of nearly Kähler homogeneous 6-manifolds under strong assumptions. In these
works the authors use special frames to carry out the classification for Lagrangian totally geo-
desic submanifolds, or totally geodesic J-holomorphic curves. In CP3, the Lagrangian totally
geodesic submanifolds were classified in [3, 43]. In the flag manifold F(C3) the Lagrangian
totally geodesic submanifolds were classified in [53], and the totally geodesic J-holomorphic
curves were classified in [13]. In S3 × S3, the totally geodesic Lagrangian submanifolds were
classified in [17], and the totally geodesic J-holomorphic curves were classified in [8]. Although
they listed six congruence classes of totally geodesic submanifolds in S3×S3, there are just two
different ones: either a round sphere or a Berger sphere, where the latter was first constructed
in [44]. It is important to remark that there are no known results obstructing the existence of
totally geodesic submanifolds Σ of nearly Kähler 6-manifolds when: Σ3 is not Lagrangian, Σ2

is not J-holomorphic, or Σ has dimension 4. In this article, we generalize the aforementioned
partial classifications following an entirely different approach. By employing tools from the
theory of Riemannian homogeneous spaces, we address the classification problem of totally
geodesic submanifolds in its full generality.

In what follows we state the main results of this article. We denote by Sn(r) the n-
dimensional sphere of radius r, and by RPn(r) its Z2-quotient under the antipodal map.
Moreover, let us consider the sphere S3 with the Berger metric gτ given by taking the round
metric (of radius one) and rescaling the vertical subspace of the Hopf fibration S1 → S3 → S2

by a factor of τ > 0. Then S3C,τ (r) denotes the sphere S3 equipped with the Riemannian

metric r2gτ , and we denote by RP3
C,τ (r) its Z2-quotient. We also denote by T2

Λ the torus

induced by a lattice Λ ⊆ R2.
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Theorem A. Let Σ be a complete submanifold of the homogeneous nearly Kähler manifold
CP3 = Sp(2)/U(1)× Sp(1) of dimension d ≥ 2. Then, Σ is totally geodesic if and only if it is
congruent to a totally geodesic submanifold listed in Table 1.

Submanifold Relationship with J Comments Well-positioned?

RP3
C, 1

2

(2) Lagrangian Orbit of U(2) Yes

S2
(

1√
2

)
J-holomorphic Fiber of CP3 → S4 Yes

S2(1) J-holomorphic Orbit of SU(2) Yes

S2
(√

5
)

J-holomorphic Orbit of SU(2)Λ3 No

Table 1. Totally geodesic submanifolds of CP3 of dimension d ≥ 2.

As far as we know, the totally geodesic S2(
√
5) has not appeared previously in the literature.

This is an orbit of the group SU(2)Λ3 , which is the maximal connected subgroup of Sp(2)
induced by the 4-dimensional complex irreducible representation of SU(2) (note that this
representation is of symplectic type). All the examples in this theorem are maximal. The
non-vertical totally geodesic J-holomorphic curves are S2(1) and S2(

√
5). Their associated

minimal surfaces in S4 under the Eells-Salamon correspondence are a totally geodesic 2-sphere
in S4, and the Veronese embedding of the projective plane in S4, respectively.

Theorem B. Let Σ be a complete submanifold of the homogeneous nearly Kähler manifold
F(C3) = SU(3)/T2 of dimension d ≥ 2. Then, Σ is totally geodesic if and only if it is congruent
to a totally geodesic submanifold listed in Table 2.

Submanifold Relationship with J Comments Well-positioned?

F(R3) Lagrangian Orbit of SO(3) Yes

S3
C, 1

4

(
√
2) Lagrangian Orbit of SU(2) No

T2
Λ J-holomorphic Orbit of T2 No

S2
(

1√
2

)
J-holomorphic Fiber of F(C3) → CP2 Yes

S2
(√

2
)

J-holomorphic Orbit of SO(3) No

RP2
(
2
√
2
)

Totally real Not injectively immersed No

Table 2. Totally geodesic submanifolds of F(C3) of dimension d ≥ 2.

To the best of our knowledge, RP2(2
√
2) is the first example in the literature of a totally ge-

odesic immersed submanifold of dimension d ≥ 2 with self-intersections in a simply connected
homogeneous space. Moreover, this is the only non-maximal example, it is not D-invariant,
and not extrinsically homogeneous, i.e. an orbit of a subgroup of the isometry group of the
ambient space. The non-vertical totally geodesic J-holomorphic curves are T2

Λ and S2(
√
2).

Their associated minimal surfaces in CP2 under the Eells-Salamon correspondence are the
Clifford torus in CP2, that is, {[z0 : z1 : z2] ∈ CP2 : |z0| = |z1| = |z2|}, and a totally geodesic
RP2 in CP2, respectively.
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Theorem C. Let Σ be a complete submanifold of the homogeneous nearly Kähler manifold
S3 × S3 = SU(2)3/∆SU(2) of dimension d ≥ 2. Then, Σ is totally geodesic if and only if it is
congruent to a totally geodesic submanifold listed in Table 3.

Submanifold Relationship with J Comments Well-positioned?

S3
(

2√
3

)
Lagrangian Fiber of S3 × S3 → S3 Yes

S3
C, 1

3

(2) Lagrangian Orbit of ∆1,3SU(2)× SU(2)2 Yes

T2
Γ J-holomorphic Orbit of a two-dimensional torus Yes

S2
(√

3
2

)
J-holomorphic Orbit of ∆SU(2) No

S2
(

2√
3

)
Totally real Orbit of ∆SU(2) Yes

Table 3. Totally geodesic submanifolds of S3 × S3 of dimension d ≥ 2.

Interestingly, S2( 2√
3
) is not a D-invariant totally geodesic submanifold, but is extrinsically

homogeneous. This together with the characterization ofD-invariant totally geodesic subman-
ifolds given in Theorem 4.3 gives a counterexample to Proposition 2 in [1], see Remark 5.6.
Furthermore, S2( 2√

3
) is the only non-maximal example in the list above.

A way to measure how a submanifold fails to be complex is by using the notion of Kähler
angle, see e.g. [9]. We say that a submanifold Σ of an almost Hermitian manifold M has
constant Kähler angle Φ(Σ) = ϕ ∈ [0, π/2] if

||projTpΣJv||2 = cos2(ϕ)||v||2 for all v ∈ TpΣ and every p ∈M,

where projTpΣ denotes the orthogonal projection onto TpΣ. The submanifolds satisfying

Φ(Σ) = 0 or Φ(Σ) = π/2 are exactly those submanifolds which are almost complex or to-
tally real, respectively. An interesting question is to determine the possible constant Kähler
angles of the totally geodesic submanifolds of an almost Hermitian manifold. Of course, this
question is only interesting for spaces with non-constant curvature, since in Cn every number
in [0, π/2] can be realized as the constant Kähler angle of a totally geodesic submanifold. In
the setting of Hermitian symmetric spaces, not all totally geodesic submanifolds Σ satisfy
Φ(Σ) ∈ {0, π/2}. For instance, Klein realized in [36] that there is a totally geodesic 2-sphere
in the Hermitian symmetric space G+

2 (R
5) = SO(5)/(SO(3) × SO(2)) with constant Kähler

angle arccos(1/5). Even more, the second author of this article proved in [49] that every
rational number between [0, 1] can be realized as the arccosine of the Kähler angle of a totally
geodesic submanifold embedded in a Hermitian symmetric space of large enough rank. As a
consequence of Theorem A, Theorem B, and Theorem C, we have:

Corollary D. Let Σ be a maximal totally geodesic submanifold of a homogeneous nearly
Kähler 6-manifold of non-constant curvature. Then the following statements hold:

(i) if Σ has dimension two, then Σ is a J-holomorphic curve.
(ii) if Σ has dimension three, then Σ is a Lagrangian submanifold.

Thus, every totally geodesic submanifold Σ of a homogeneous nearly Kähler 6-manifold of
non-constant curvature satisfies Φ(Σ) ∈ {0, π/2}. This raises the question whether this also
holds for (not necessarily homogeneous) irreducible strictly nearly Kähler manifolds.

In this article, we also study totally geodesic submanifolds of Riemannian cones. It can
be checked that for every totally geodesic submanifold Σ of a Riemannian manifold M , the
cone over Σ is a totally geodesic submanifold of the cone over M , see Lemma 6.6. However,
there might be totally geodesic submanifolds of a Riemannian cone that do not arise as
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cones, see Examples 6.13 and 6.15. In Section 6, we prove a structure result for totally
geodesic submanifolds in cones, see Theorem 6.9. As a consequence of this, we deduce that
maximal totally geodesic submanifolds of Riemannian cones are either cones over a totally
geodesic submanifold or totally geodesic hypersurfaces, see Corollary 6.10. It was observed
in [5] that Riemannian cones are intimately linked to special holonomy. For instance, a
special class of Sasakian manifolds is that of Sasakian-Einstein manifolds, whose investigation
has led to the construction of many inhomogenous Einstein metrics on spheres, see [10]. It
turns out that the holonomy of the cone over a Sasakian-Einstein manifold is contained in
SU(n). Similarly, Riemannian cones over strictly nearly Kähler 6-manifolds have its holonomy
contained in G2. This holonomy reduction is equivalent to the existence of a parallel G2-
invariant three form φ, i.e. a torsion-free G2-structure. Another class of G2-structures defined
on seven dimensional manifolds is that of nearly parallel G2-structures. A G2-structure φ is
nearly parallel if it satisfies ⋆dφ = cφ, for c ∈ R\{0}, where ⋆ denotes the Hodge star operator.
It can also be proved that cones over nearly parallel G2-manifolds have its holonomy contained
in Spin(7). Indeed, the first examples of manifolds with exceptional holonomy G2 and Spin(7)
were constructed in [11], and they are cones over the homogeneous nearly Kähler 6-manifold
F(C3) = SU(3)/T2, and the homogeneous nearly parallel G2-manifold B7 = SO(5)/SO(3).
We prove that Sasakian-Einstein, strictly nearly Kähler 6-manifolds, and nearly parallel G2-
manifolds do not admit totally geodesic hypersurfaces, see Theorem 6.7.

Moreover, we consider the classification problem of totally geodesic submanifolds in cones
with holonomy G2 over homogeneous nearly Kähler manifolds. As a consequence of Corol-
lary 6.4, these are the only Riemannian cones with holonomy equal to G2 equipped with a
metric of cohomogeneity one, and thus with the highest possible degree of symmetry, con-
tributing to a rich presence of totally geodesic submanifolds.

Theorem E. Let M be a homogeneous nearly Kähler 6-manifold of non-constant curvature

and let Σ be a maximal totally geodesic submanifold of the G2-cone M̂ over M of dimension
greater than one. Then Σ is the Riemannian cone of a maximal totally geodesic submanifold
S of M .

Notice that combining Theorem E with the classification of totally geodesic submanifolds
in cones over space forms (see Proposition 6.12) and three dimensional Berger spheres (see
Proposition 6.14), one can list all totally geodesic submanifolds in cohomogeneity one G2-cones
and thus obtain the full classification.

Moreover, Riemannian cones over J-holomorphic curves or Lagrangian submanifolds of a
nearly Kähler 6-manifold give rise to associative or coassociative manifolds of the correspond-
ing G2-cone overM , respectively. By definition, associative and coassociative submanifolds are
the submanifolds of a G2-manifold calibrated by φ and the Hodge dual of φ, respectively; see
[27] and [33, Chapters 4 and 12] for an introduction to calibrated geometry. As a consequence
of Corollary D and Theorem E, one has the following:

Corollary F. Let Σ be a maximal totally geodesic submanifold of the G2-cone over a homo-
geneous nearly Kähler 6-manifold of non-constant curvature. Then the following statements
hold:

(i) if Σ has dimension three, then Σ is an associative submanifold.
(ii) if Σ has dimension four, then Σ is a coassociative submanifold.

Both Corollaries D and F seem to indicate that for totally geodesic submanifolds of nearly
Kähler 6-manifolds and their G2-cones, there is a strong link between this purely Riemannian
property and the underlying nearly Kähler and G2-structures, respectively. Consequently, we
find that it would be very interesting to investigate whether both corollaries hold true without
the homogeneity assumptions.
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Organization of the paper. In Section 2, we summarize some standard facts about Rie-
mannian homogeneous spaces (Subsection 2.1), and we describe the simply connected nearly
Kähler homogeneous 6-manifolds (Subsection 2.2). In Section 3, we recall and further develop
the theory of totally geodesic immersions in analytic Riemannian manifolds. In particular,
we prove a characterization of inextendable totally geodesic immersions in terms of their
geodesics, see Proposition 3.4; and we make sense of the maximality notion for the case
of totally geodesic immersions, see Proposition 3.6. In Section 4 we introduce and develop
new tools for the study of totally geodesic submanifolds in naturally reductive homogeneous
spaces. In particular, in Subsection 4.1, we consider the class of D-invariant totally geodesic
submanifolds, and we characterize those both from an algebraic and geometric point of view,
see Theorem 4.3. In Subsection 4.2, we derive a useful criterion for the existence of totally
geodesic surfaces in naturally reductive homogeneous spaces, see Proposition 4.8. Also, in
Subsection 4.3, we characterize when a totally geodesic submanifold of the total space of
a homogeneous fibration is well-positioned, see Lemma 4.9. In Section 5, we exhibit and
discuss the properties of the totally geodesic submanifolds of CP3, the flag manifold F(C3),
and S3 × S3. In Section 6, we study totally geodesic submanifolds of Riemannian cones. In
Subsection 6.1, we start by observing that totally geodesic submanifolds of a Riemannian
manifold induce totally geodesic submanifolds in its Riemannian cone, see Lemma 6.6. We
also obtain a non-existence result for totally geodesic hypersurfaces in three distinct types
of manifolds: Sasakian-Einstein manifolds, six-dimensional strictly nearly Kähler manifolds,
and nearly parallel G2-manifolds. Moreover, we prove Theorem 6.9, which gives a structure
result for totally geodesic submanifolds in Riemannian cones. Finally, in Section 7 we provide
the proofs for the main theorems.

Acknowledgments. We wish to thank Prof. Jason Lotay and Prof. Thomas Leistner for
very helpful discussions, and Prof. Miguel Domı́nguez-Vázquez for his valuable comments on
an earlier draft of this manuscript. The first author would also like to thank his PhD advisor
Prof. José Carlos Dı́az-Ramos for his constant support.

2. Preliminaries

2.1. Riemannian homogeneous spaces. Let M = G/K be a Riemannian homogeneous
space and o = eK. We denote by Gp the isotropy subgroup of p, that is, the set of all elements
of G that fix p. For our purposes we will assume that G is connected and the action of G on M
is almost effective, in the sense that

⋂
p∈M Gp is a discrete subgroup of G. The (Lie) group of

isometries of M will be written as I(M), and I0(M) ⊆ I(M) denotes its identity component.
Lie groups will be denoted by uppercase letters and their Lie algebras will be denoted by their
corresponding lowercase gothic letters.

To each X ∈ g we can associate its corresponding fundamental vector field X∗ ∈ X(M) de-
fined via X∗

p = d
dt |t=0 Exp(tX) ·p for all p ∈M . Clearly, X∗ is a Killing vector field. Moreover,

one can see that the map X ∈ g 7→ X∗ ∈ X(M) is a Lie algebra anti-homomorphism. We
may identify the quotient g/k with the tangent space ToM via the isomorphism X + k 7→ X∗

o ,
which also establishes an equivalence of representations between the isotropy representation
K → GL(ToM) and the adjoint representation K → GL(g/k).

We say that M is reductive if there exists a vector subspace p ⊆ g such that g = k ⊕ p

and Ad(K)p = p. The subspace p is called a reductive complement and the decomposition
g = k ⊕ p is known as a reductive decomposition. It can be shown that every Riemannian
homogeneous space is reductive. As a consequence, we may identify p with ToM and the
isotropy representation is equivalent to the adjoint representation K → GL(p). In particular,
we may endow p with the scalar product induced by the metric on M , and one sees that it is
K-invariant. We denote both the metric on M and the inner product on p by 〈·, ·〉. If X ∈ g,
we denote by Xk and Xp the unique vectors in k and p respectively such that X = Xk +Xp.
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Furthermore, if V is an Euclidean space and W ⊆ V is a subspace, we will denote by vW the
orthogonal projection of v ∈ V onto W . We define the symmetric bilinear map U : p× p → p

by

(1) 2〈U(X,Y ), Z〉 = 〈[Z,X]p, Y 〉+ 〈X, [Z, Y ]p〉, X, Y, Z ∈ p.

The reductive decomposition g = k ⊕ p is naturally reductive if U is identically zero. In that
case, one sees that the curves Exp(tX) ·o (where X ∈ p) are geodesics. Suppose that g admits
an Ad(G)-invariant inner product q and consider p = k⊥, where k⊥ denotes the orthogonal
complement of k in g with respect to q. Then, we say that the reductive decomposition g = k⊕p

is normal homogeneous. In particular, normal homogeneous reductive decompositions are
naturally reductive.

Every reductive homogeneous spaceM = G/K admits two natural connections. On the one
hand, we may consider the canonical connection ∇c, which is characterized by the equation

(∇c
X∗Y ∗)o = (−[X,Y ]p)

∗
o, X, Y ∈ p.

On the other hand, we have the Levi-Civita connection ∇. We can also consider the tensor
D := ∇ − ∇c. It turns out that D is a G-invariant tensor defined on M = G/K called the
difference tensor. Notice that U = 0 holds if and only if the operators AX : Y ∈ p → [X,Y ]p
are skew-symmetric for all X ∈ p. In particular, if D is an element of HomK

(
∧2p, p

)
, then

the reductive decomposition g = k⊕ p is naturally reductive.
We can express ∇ and D at the base point o ∈M in terms of the Lie bracket of g and the

metric of M in the following way:

(∇X∗Y ∗)o =

(
−1

2
[X,Y ]p + U(X,Y )

)∗

o

, DXY =
1

2
[X,Y ]p + U(X,Y ),

where X,Y ∈ p. Moreover, the curvature tensor associated with the canonical connection and
the Levi-Civita connection can be written, respectively, as

Rc(X,Y )Z = −[[X,Y ]k, Z], R(X,Y )Z = DXDY Z −DYDXZ − [[X,Y ]k, Z]−D[X,Y ]pZ,

where X,Y,Z ∈ p. We will also need to compute the covariant derivative ∇R of the curvature
tensor. As it is shown in [47, Remark 2.5], ∇R is given at o by

∇VR(X,Y,Z) = DV (R(X,Y )Z)−R(DVX,Y )Z −R(X,DV Y )Z −R(X,Y )DV Z

for all X,Y,Z, V ∈ p.
An important class of Riemannian submersions involving homogeneous spaces is that of

homogeneous fibrations, which we briefly describe. The main reference is [26]. Let H ⊆ K ⊆ G

be a chain of inclusions of compact connected subgroups of the connected Lie group G, and
endow G/K with a G-invariant Riemannian metric. Then there exists a left-invariant metric
on G that is also right K-invariant, and a G-invariant metric on G/H that makes the canonical
projection π : G/H → G/K a Riemannian submersion with totally geodesic fibers isometric to
K/H. We denote by V and H the vertical and horizontal distributions associated with the
Riemannian submersion π. We will be concerned with the case that G is a compact group
with a bi-invariant metric and the homogeneous spaces F = K/H, M = G/H and B = G/K
are endowed with the corresponding normal homogeneous metrics. If V is a Euclidean vector
space and W ⊆ V is a vector subspace, we denote by V ⊖W the orthogonal complement of
W in V . In this case, the tangent space ToM at o = eH is identified with p = g ⊖ h, so the
vertical and horizontal subspaces at o are Vo = k ⊖ h and Ho = p ⊖ k. It turns out that the
distributions V and H are G-invariant in the sense that for every p ∈ M and g ∈ G, we have
g∗pVp = Vg·p and g∗pHp = Hg·p.

A submanifold N ⊆ M is said to be extrinsically homogeneous with respect to the presen-
tation M = G/K if there exists a Lie subgroup S ⊆ G such that N is an orbit of S. More
generally, a submanifold N of a Riemannian manifold M is extrinsically homogeneous if it
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is an orbit of a Lie subgroup S ⊆ I(M). In the following lemma, we provide a formula for
the second fundamental form for an extrinsically homogeneous submanifold of a homogeneous
space. This formula was originally derived by Solonenko in the case of Riemannian symmetric
spaces, see [52, Proposition 2.2.43]. See also [2, Proposition 2.2] for an alternative expression.

Lemma 2.1. Let M = G/K be a Riemannian homogeneous space equipped with an arbitrary
G-invariant metric and reductive decomposition g = k⊕ p. Assume that S is a Lie subgroup of
G, and let sp and s⊥p be the tangent and normal spaces to S · o at o (regarded as subspaces of

p). Let Vs⊥p denote the orthogonal projection of V ∈ p onto s⊥p . Then the second fundamental

form of S · o at o is given by

(2) II(Xp, Y ) = ([Xk, Y ] +DXp
Y )s⊥p

for all X ∈ s and Y ∈ sp. In particular, S·o is totally geodesic if and only if [Xk, Y ]+DXp
Y ∈ sp

for all X ∈ s and Y ∈ sp.

Proof. Choose arbitrary elements X, Y ∈ s, so that the vector fields X∗ and Y ∗ are tangent
to S · o and their values at o are Xp and Yp respectively. We evaluate the covariant derivative
∇Y ∗X∗ at o. We see that

∇Y ∗X∗ = ∇Y ∗
p
X∗ = ∇X∗Y ∗

p + [Y ∗
p ,X

∗] = ∇X∗
p
Y ∗
p + [X,Yp]

∗ = ∇X∗
p
Y ∗
p + [Xk, Yp]

∗ + [Xp, Yp]
∗

= − 1

2
[Xp, Yp]p + U(Xp, Yp) + [Xk, Yp] + [Xp, Yp]p = [Xk, Yp] +DXp

Yp.

Thus, projecting to the normal space and using the fact that the second fundamental form is
symmetric, we obtain that

II(Xp, Yp) = (∇Y ∗X∗)s⊥p = ([Xk, Yp] +DXp
Yp)s⊥p ,

as desired. �

2.2. Homogeneous nearly Kähler manifolds. In this section we present the ambient
spaces that we will work with throughout the rest of this article. The classification of homo-
geneous nearly Kähler manifolds in dimension six was done by Butruille [12]. Indeed, every
simply connected Riemannian manifold satisfying the previous conditions is homothetic to
either the sphere S6, the complex projective space CP3, the flag manifold F(C3), and S3 × S3.
Since S6 carries its natural round metric, the totally geodesic submanifolds of S6 are well-
known, so we will only focus on the other three spaces. It turns out that these manifolds
are examples of 3-symmetric spaces. The main reference for the description of 3-symmetric
spaces is [25].

Let (M,J) be an almost Hermitian manifold. Recall that M is nearly Kähler if for every
vector field X ∈ X(M) we have (∇XJ)X = 0, and that it is strictly nearly Kähler if it is nearly
Kähler and ∇XJ 6= 0 for all nonzero X ∈ TM . If dimM = 6, this condition is equivalent to
∇J 6= 0. On the other hand, a 3-symmetric space M is a Riemannian manifold M together
with a family of isometries sp : M → M , where p ∈ M , satisfying s3p = IdM for all p ∈ M ,
p is an isolated fixed point of sp, and each sp is holomorphic with respect to the so-called
canonical almost complex structure J defined via

(3) (sp)∗p = −1

2
IdTpM +

√
3

2
Jp, p ∈M.

Any 3-symmetric space is automatically homogeneous [22, Theorem 4.8]. Conversely, one can
construct a 3-symmetric space in terms of algebraic data. Indeed, let G be a connected Lie
group and K a closed subgroup of G. Assume that there exists an automorphism Θ: G → G

of order three such that GΘ
0 ⊆ K ⊆ GΘ, where GΘ is the fixed point set of Θ and GΘ

0 is its
identity component. It turns out that M = G/K is a reductive homogeneous space in a way
that θ = Θ∗ preserves the reductive complement. Let g = k⊕ p be a reductive decomposition
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of g satisfying θp = p. Then, any inner product on p that is invariant under Ad(K) and
θ gives rise to a G-invariant metric on M that turns M into a 3-symmetric space, where
the isometry of order three at o = eK is given by so(xK) = Θ(x)K. We say that (G,K,Θ)
is the triple associated with the 3-symmetric space M . The corresponding almost complex
structure is the G-invariant tensor field J defined at o by (3). By [22, Proposition 5.6], the
almost Hermitian manifold (M,J) is nearly Kähler if and only if the decomposition g = k⊕ p

is naturally reductive.
We now proceed to describe our six-dimensional examples, exhibiting them as 3-symmetric

spaces.

2.2.1. The complex projective space CP3. Consider H2 as a right C-vector space, so that the
projective space P(H2) is exactly CP3. The natural action of G = Sp(2) on CP3 is transitive,
and the isotropy subgroup of o = [1 : 0] is K = U(1) × Sp(1), so that CP3 can be viewed as
the quotient Sp(2)/U(1) × Sp(1). The Killing form of g = sp(2) is B(X,Y ) = 12Re trH(XY ),
so −B is an Ad(Sp(2))-invariant inner product in g, but we will renormalize it so that the
inner product on g is 〈X,Y 〉 = −2Re trH(XY ). Let p be the orthogonal complement of
u(1) ⊕ sp(1) in sp(2). Once again, we endow CP3 with the homogeneous metric induced by

the restriction of 〈·, ·〉 to p. We also consider the element ω = diag(e
2πi
3 , 1) ∈ K. Then the

conjugation Θ = Iω defines an inner automorphism of order three in G, whose fixed point
set is Sp(2)Θ = U(1)× Sp(1), and (Sp(2),U(1) × Sp(1),Θ) is the triple associated with the 3-
symmetric space CP3. The nearly Kähler complex structure J is defined as J = 2√

3
Θ∗+

1√
3
Idp.

Let Eij ∈ gl(2,H) be the elementary matrix which has all components equal to zero except
for the (i, j) component, which is one. We will use the orthonormal basis {e1, . . . , e6} of p
defined by

e1 =
j√
2
E11, e2 =

k√
2
E11, e3 =

1

2
(E21 − E12),

e4 =
i

2
(E12 +E21), e5 =

j

2
(E12 + E21), e6 =

k

2
(E12 +E21).

The isotropy representation allows us to decompose p as the direct sum of two irreducible
submodules p1 = span{e1, e2} and p2 = span{e3, . . . , e6}. Indeed, the subrepresentation p1 of
U(1) × Sp(1) is isomorphic to the representation C with the action given by (λ, µ) · z = λ2z,
whereas p2 is isomorphic to the representation R4 of U(1) × Sp(1) under (λ, µ)x = µxλ̄. In
particular, both subrepresentations are transitive on the unit sphere of each pi.

The isometry group of CP3 is I(CP3) = (Sp(2)/Z2) ⋊ Z2, where the outer Z2 is generated
by conjugation by diag(j, 1) ∈ Sp(2) (see for example [51]).

Now, consider the chain of subgroups U(1) × Sp(1) ⊆ Sp(1) × Sp(1) ⊆ Sp(2). This gives
rise to the homogeneous fibration CP1 → CP3 → HP1 = S4, which is precisely the twistor
fibration, the fiber of which is a totally geodesic CP1 = S2. The decomposition of p into the
vertical and horizontal subspaces of this submersion is given by Vo = p1 and Ho = p2.

2.2.2. The flag manifold F(C3). Recall that a full flag in C3 is a chain 0 = V0 ⊆ V1 ⊆ V2 ⊆
V3 = C3 (also denoted by (V1, V2)) of subspaces such that dimC Vk = k for each k. We denote
by F(C3) the space of all flags in C3, which is naturally identified with the quotient of the Stiefel
manifold of orthonormal bases of C3 under the standard action of U(1)3. The group G = SU(3)
acts transitively on F(C3), and if o is the standard flag 0 ⊆ Ce1 ⊆ span{e1, e2} ⊆ C3,
its isotropy subgroup is the maximal torus T2 of diagonal matrices in SU(3), so we have
F(C3) = SU(3)/T2.

Let us endow F(C3) with a reductive decomposition and a Riemannian metric. Note that the
Killing form of g = su(3) satisfies B(X,Y ) = 6 tr(XY ) for all X, Y ∈ g. As a consequence,
the negative Killing form gives a bi-invariant metric on SU(3). However, for the sake of
convenience, we will rescale this metric so that the inner product in g is 〈X,Y 〉 = − tr(XY )
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for all X, Y ∈ su(3). Let p be the orthogonal complement of t = u(1) ⊕ u(1) in g. Then, the
restriction of 〈·, ·〉 to p induces an Ad(T2)-invariant inner product on p, that is, a G-invariant
metric on F(C3). This metric is homothetic to the standard homogeneous metric on M . We

also consider the automorphism Θ = Iω : SU(3) → SU(3), where ω = diag(e
2πi
3 , 1, e−

2πi
3 ) ∈ T2.

Then Θ is an automorphism of order three, whose fixed point set is precisely SU(3)Θ = T2, so
(SU(3),T2,Θ) is the triple associated with the 3-symmetric space F(C3). The corresponding
almost complex structure J at p is determined by J = 2√

3
Θ∗ + 1√

3
Idp. We consider the

orthonormal basis {e1, . . . , e6} of p, where

e1 =
1√
2
(E12 − E21), e2 =

i√
2
(E12 + E21), e3 =

1√
2
(E23 − E32),

e4 =
i√
2
(E23 + E32), e5 =

1√
2
(E13 − E31), e6 =

i√
2
(E13 + E31).

Once again, the Eij denote elementary 3 × 3 matrices. It is easy to check that the tangent
space splits as the direct sum of irreducible submodules p = p1 ⊕ p2 ⊕ p3, where each pk =
span{e2k−1, e2k} is isomorphic to C. To be more precise, if g = diag(eix, eiy , e−i(x+y)) is

an arbitrary element of T2, then Ad(g) acts on p1 as multiplication by ei(x−y), on p2 as

multiplication by ei(x+2y), and on p3 as multiplication by ei(2x+y). Note that p1, p2 and p3 are
pairwise nonisomorphic as representations of T2. Furthermore, if g ∈ U(3) is a permutation
matrix, then the map aT2 → gag−1T2 is an isometry fixing o and whose differential at o
permutes the irreducible submodules of p, and every permutation of these submodules can
be achieved in this way. For example, the transposition (1, 2) interchanges p2 and p3 and the
cycle (1, 2, 3) acts as the cycle (p1, p2, p3).

Consider the chain of inclusions T2 ⊆ U(2) ⊆ SU(3). The corresponding homogeneous
fibration is CP1 → F(C3) → CP2 (explicitly, it takes the flag (V1, V2) ∈ F(C3) to V ⊥

2 ∈ CP2)
and the fiber CP1 = U(2) · o is totally geodesic. The vertical and horizontal subspaces of this
fibration at o are precisely Vo = p1 and Ho = p2 ⊕ p3.

We now determine the full isometry group of F(C3). This computation was done by Shankar
in [51] when F(C3) carries a metric of positive sectional curvature. However, the homogeneous
metric that we are considering in F(C3) does not have positive sectional curvature. In our
case, we may calculate the isometry group of F(C3) via the following approach (based on the
proof of [48, §4, Proposition 6 and §16, Theorem 3]). Firstly, the effectivized version of the
presentation SU(3)/T2 is PSU(3)/(T2/Z3), and we may apply [58, Theorem 5.1] to conclude
that I0(F(C3)) = PSU(3). As for the group of components I(F(C3))/I0(F(C3)), since the
flag manifold is simply connected, this group is equal to H/H0, where H is the isotropy
subgroup of I(F(C3)) at o and H0 its identity component. This follows from the long exact
sequence of homotopy groups associated with the fibration H →֒ I(F(C3)) → F(C3). Now,
the conjugation map C : H → Aut(PSU(3),T2/Z3) = {ϕ ∈ Aut(PSU(3)) : ϕ preserves T2/Z3}
is injective by [51, Proposition 1.7]. In addition, any ϕ ∈ Aut(PSU(3),T2/Z3) descends to
a diffeomorphism ϕ̄ of F(C3), which is actually an isometry because ϕ preserves the Killing
form and the metric on the flag manifold is induced by it. It is easy to show that ϕ̄ ∈ H and
C(ϕ̄) = ϕ, so C is an isomorphism and H = Aut(PSU(3),T2/Z3). Now, since Aut(PSU(3)) =
Ad(PSU(3))⋊Z2, where the outer Z2 is generated by complex conjugation, the computation

of H/H0 reduces to that of
NPSU(3)(T

2/Z3)

ZPSU(3)(T2/Z3)
⋊ Z2. The first factor is merely the Weyl group

W(PSU(3)) = S3, so we have obtained H/H0 = S3 ⋊ Z2, and we conclude that the full
isometry group is I(F(C3)) = PSU(3)⋊ (S3 ⋊ Z2).

2.2.3. The almost product S3 × S3. This space is obtained via the Ledger-Obata construction
from the group SU(2) (see for example [40]). We consider the product G = SU(2)3 and
the subgroup K = ∆SU(2) obtained by embedding SU(2) diagonally in G. Then G acts on
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M = S3 × S3 = SU(2) × SU(2) via the equation (g, h, k) · (x, y) = (gxk−1, hyk−1), and the
isotropy subgroup at o = (I, I) is K, so we obtain that M = G/K. The Killing form of
su(2) is B(X,Y ) = 4 tr(XY ), and the direct sum B ⊕ B ⊕ B is precisely the Killing form of g
whose inverse yields the standard homogeneous metric on M . Similarly to the previous cases,
we will consider the renormalized metric given by 〈(X1,X2,X3), (Y1, Y2, Y3)〉 = − tr(X1Y1)−
tr(X2Y2)− tr(X3Y3). We denote by p the orthogonal complement of k = ∆su(2) in g and we
consider the order three automorphism Θ: G → G defined by Θ(g, h, k) = (h, k, g). The nearly
Kähler complex structure J is given as J = 2√

3
Θ∗ +

1√
3
Idp. Furthermore, if Lg : S

3 → S3

denotes left multiplication by g ∈ S3, the almost product structure of S3×S3 is the G-invariant
tensor P of type (1, 1) defined by

P (v,w) = ((Lab−1)∗bw, (Lba−1)∗a v) , v ∈ TaS
3, w ∈ TbS

3.

The restriction of P to To(S
3×S3) is identified with the Ad(K)-invariant map P : p → p given

by P (X,Y,Z) = (Y,X,Z).
Consider the following basis of su(2) in terms of elementary matrices:

(4) H = i(E11 − E22), E = E21 − E12, F = i(E12 + E21).

Then we can give a basis {e1, . . . , e6} of p as follows:

e1 =
1√
12

(H,−2H,H) , e2 =
1√
12

(E,−2E,E) , e3 =
1√
12

(F,−2F,F ) ,

e4 =
1

2
(H, 0,−H) , e5 =

1

2
(E, 0,−E) , e6 =

1

2
(F, 0,−F ) .

Consider the chain of inclusions ∆SU(2) ⊆ ∆1,3SU(2)×SU(2)2 ⊆ SU(2)×SU(2)×SU(2). This
gives rise to the homogeneous fibration S3 →֒ S3 × S3 → S3 which is merely the projection
on the first factor. Once again the fibers are totally geodesic. The vertical and horizontal
subspaces at o are given by

Vo = p1 = span{e1, e2, e3}, Ho = p2 = span{e4, e5, e6}.
The isometry group of S3 × S3 is I(S3 × S3) = (SU(2)3/∆Z2) ⋊ S3 where S3 denotes the
symmetric group on three elements acting in the natural manner on S3 × S3, see [57, Lemma
3.3] for a proof.

3. Totally geodesic immersions in real analytic Riemannian manifolds

In this section we develop some new tools in the theory of totally geodesic immersions in
analytic Riemannian manifolds.

To conduct the global study of totally geodesic submanifolds, it is natural to assume that
the ambient space is real analytic, since homogeneous spaces are examples of real analytic
manifolds [38, Proposition 4.2]. As we will see, it is also necessary to allow self-interesctions in
our submanifolds, leading to the study of totally geodesic immersions in analytic Riemannian
manifolds.

Let M be a Riemannian manifold and f : Σ → M an isometric immersion of a connected
Riemannian manifold Σ to M . We say that f is a totally geodesic immersion (and Σ is a
totally geodesic submanifold of M) if for every geodesic γ of Σ, the composition f ◦ γ is also a
geodesic of M . This condition is equivalent to the vanishing of the second fundamental form
II of Σ. We refer the reader to [28, Appendix A] and [6, Section 10.3] for more details on
totally geodesic immersions. A similar treatment can be found in [56].

When studying general totally geodesic immersions, certain redundancies arise that need to
be avoided. The first one is due to reparametrizations of the domain, which is handled by in-
troducing the notion of equivalence. We say that two totally geodesic immersions fi : Σi →M



TOTALLY GEODESIC SUBMANIFOLDS OF THE HOMOGENEOUS NEARLY KÄHLER 6-MANIFOLDS 13

are equivalent if there exists an isometry h : Σ1 → Σ2 such that f2 = f1 ◦ h. The second re-
dundancy occurs when considering surjective local isometries. For instance, a totally geodesic
embedding of RP2 in RP3 yields the same information as its composition S2 → RP3 with the
universal cover S2 → RP2, though the latter is not an embedding. We can deal with this issue
by working exclusively with compatible immersions. Let f : Σk →M be totally geodesic, and
consider the Grassmann bundle Gk(TM) of k-planes in TM . Then f induces a smooth map

f̃ : Σ → Gk(TM) by letting f̃(p) = (f(p), f∗p(TpΣ)) (for ease of notation, we will simply write

f̃(p) = f∗p(TpΣ)). The map f is said to be compatible if f̃ is injective (this is the case, for
example, if f is injective). In other words, we allow Σ to have self-intersections in M , but
at each point of self-intersection the corresponding tangent spaces must be different. It turns
out that any totally geodesic immersion can be factored through a compatible one [6, p. 272],
so imposing this condition does not cause us to lose information. We note that in general,
given compatible totally geodesic immersions f1 : Σ1 → Σ2 and f2 : Σ2 →M , the composition
f2 ◦ f1 may not be compatible. A counterexample will be provided in Remark 5.4.

One sees that a compatible immersion f : Σ → M is determined up to equivalence by the

image f̃(Σ) ⊆ Gk(TM). Given two compatible totally geodesic immersions fi : Σi → M ,
we say that f2 : Σ2 → M extends f1 : Σ1 → M if there exists an injective local isometry

j : Σ1 → Σ2 satisfying f1 = f2 ◦ j, or equivalently, if f̃1(Σ1) ⊆ f̃2(Σ2). This defines a partial
ordering in the set of equivalence classes of compatible totally geodesic immersions. By [6,
Proposition 10.3.2], every compatible totally geodesic immersion can be extended to an inex-
tendable one (that is, an immersion which is maximal with respect to the partial ordering),
and this extension is unique up to equivalence (we say in this case that the submanifold is
inextendable1). We thus aim to classify complete totally geodesic submanifolds up to congru-
ence.

Moreover, given p ∈ Σ and a vector subspace V ⊆ TpM , if there exists a compatible totally

geodesic immersion f : Σ →M with complete domain such that (p, V ) ∈ f̃(Σ), then f is unique
up to equivalence. In other words, there exists at most one inextendable totally geodesic
submanifold passing through p with tangent space V . Because of this, we are interested in
determining which subspaces V of TpM are tangent to a totally geodesic submanifold. The
answer to this question is given by means of the following result, see [6, Section 10.3.2]:

Theorem 3.1. Let M be a real analytic Riemannian manifold, p ∈M and V ⊆ TpM a vector
subspace. There exists a totally geodesic submanifold Σ of M whose tangent space at p is V
if and only if (∇kR)p preserves V for all k ≥ 0.

Motivated by the previous theorem, we introduce the following definition. A vector subspace
V ⊆ TpM is totally geodesic if there exists a totally geodesic immersion f : Σ →M such that

V ∈ f̃(Σ).

Remark 3.2. For the sake of convenience, we will refer to the totally geodesic submanifold
f : Σ → M as Σ during the rest of this paper unless we need to specify the immersion.
In most cases, the totally geodesic immersions that will appear are inclusions of embedded
submanifolds Σ ⊆M , so in this context there is no ambiguity in omitting the immersion.

For each X ∈ TpM we can define its corresponding Jacobi operator RX : TpM → TpM
via the equation RXY = R(Y,X)X. Moreover, we may also consider the Cartan operator
CX : TpM → TpM given by CXY = ∇R(X,X, Y,X). Both linear maps are symmetric with
respect to the inner product on TpM , so we may decompose TpM as the orthogonal direct
sum of the eigenspaces of RX , as well as the orthogonal direct sum of the eigenspaces of CX .

1Note that Heintze, Liu and Olmos [28] refer to these submanifolds asmaximal totally geodesic submanifolds,
whereas we prefer to reserve this term for another concept.
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Remark 3.3. If V ⊆ TpM is a totally geodesic subspace and X ∈ TpM is any vector, it
follows from Theorem 3.1 that V is an invariant subspace for RX and CX . In particular, if
TpM = (TpM)λ1 ⊕· · ·⊕ (TpM)λr

is the eigenspace decomposition of TpM with respect to RX ,
we have V = (V ∩ (TpM)λ1) ⊕ · · · ⊕ (V ∩ (TpM)λr

). The same argument can be applied for
CX .

We also establish the following notation. Given a smooth curve α : I → P , where I is
an interval and P is a Riemannian manifold, the parallel transport map from α(t1) ∈ P to
α(t2) ∈ P along α is denoted by Pα

t1,t2 .
In this paper we focus on real analytic manifolds which are not necessarily complete (see

Section 6). Because the exponential map of a real analytic Riemannian manifold is also real
analytic, one sees that for any compatible totally geodesic immersion f : Σ →M , the domain
Σ is also a real analytic manifold and f is a real analytic map. We will provide a criterion
that allows us to determine whether a totally geodesic submanifold Σ of M is inextendable
in terms of the maximal geodesics of Σ and M . The key observation that makes use of real
analyticity is the following: if p ∈ M and V ⊆ TpM is a totally geodesic subspace, then for
every geodesic γ : I ⊆ R →M satisfying γ(0) = p and γ′(0) ∈ V , the parallel translates Pγ

0,tV

are also totally geodesic subspaces of Tγ(t)M for all t ∈ I (see for example the proof in [56,
Corollary 3.7]).

Proposition 3.4. Let M be a connected real analytic Riemannian manifold and f : Σ → M
a compatible totally geodesic immersion. Then the following conditions are equivalent:

(i) The immersion f is inextendable.
(ii) For every maximal geodesic γ : I ⊆ R → Σ, the composition f ◦ γ : I → M is also a

maximal geodesic of M .

Proof. Firstly, suppose that (i) holds. If (ii) is not satisfied, we can find a geodesic γ : [0, 1) →
Σ with γ(0) = x that is not extendable to the right while the composition f ◦ γ admits an
extension σ : [0, 1] → M . We consider q = σ(1). The subspace W = Pσ

0,1V ⊆ TqM , where

V = f̃(x) is therefore totally geodesic.

We show that W /∈ f̃(Σ). Indeed, suppose that for a certain y ∈ Σ we have W = f̃(y).
Since −σ′(1) = −Pσ

0,1σ
′(0) ∈ W = f∗y(TyΣ), there exists a geodesic α : [0, δ) → Σ satisfying

α(0) = y and α′(0) = −(f∗y)−1σ′(1). Suppose without loss of generality that δ < 1. The
composition f ◦ α satisfies f(α(0)) = q and (f ◦ α)′(0) = −σ′(1), so f(α(t)) = σ(1 − t) for
t ∈ [0, δ). Furthermore, we have

f̃(α(t)) = f∗α(t)(Tα(t)Σ) = f∗α(t)(Pα
0,tΣ) = Pf◦α

0,t f∗y(TyΣ) = Pσ
1,1−tW = Pσ

0,1−tV

= Pf◦γ
0,1−tV = Pf◦γ

0,1−tf∗x(TxΣ) = f∗γ(1−t)(Tγ(1−t)Σ) = f̃(γ(1− t)),

so using that f̃ is injective we see that α(t) = γ(1−t) for all t ∈ [0, δ). Because α is continuous
at 0, we see that the limit limt→1− γ(t) exists and coincides with y, but this contradicts the

fact that γ is not extendable to the right. We deduce that W is not in the image of f̃ .
We now consider an ε > 0 sufficiently small so that expq : BTqM (0, ε) →M is a diffeomor-

phism onto its image and S = expq(BTqM (0, ε) ∩W ) is a totally geodesic submanifold of M .
As −σ′(1) ∈W , there exists a δ > 0 such that σ(t) ∈ S for all t ∈ (1− δ, 1]. In particular, we
have for all t ∈ (1− δ, 1) that

f̃(γ(t)) = f∗γ(t)(Tγ(t)Σ) = Pf◦γ
0,t V = Pσ

0,tPσ
1,0V = Pσ

1,tV = ĩ(σ(t)),

where i : S →֒M is the inclusion map. This means that f̃(Σ)∩ ĩ(S) 6= ∅, so [6, Lemma 10.3.1]
allows us to construct a compatible totally geodesic immersion that strictly extends f and i,

as W = TqS is not contained in f̃(Σ), contradicting the fact that f is inextendable.
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Conversely, suppose that f satisfies (ii) and let g : E → M be an extension of f . By
definition, we can find an injective local isometry φ : Σ → E satisfying f = g ◦ φ. Replacing
Σ by φ(Σ), we may suppose directly that Σ ⊆ E is an open subset and f = g|Σ. If we show
that Σ is also closed, then we may conclude that Σ = E and f = g.

If Σ is not closed in E, then we can find a geodesic γ : [0, 1] → E such that γ(t) ∈ Σ for
all t ∈ [0, 1) and γ(1) ∈ E \ Σ. Write x = γ(0) ∈ Σ. The composition f ◦ γ : [0, 1] → M is

also a geodesic with f(γ(0)) = f(x) and (f ◦ γ)′(0) ∈ f̃(x), so by (ii) we may find a geodesic
β : [0, 1] → Σ satisfying β(0) = x and f(β(t)) = f(γ(t)) for all t ∈ [0, 1]. By uniqueness of
E-geodesics, we have β = γ, so γ(1) = β(1) ∈ Σ, which gives a contradiction. We conclude
that Σ = E and f = g, and because the choice of g is arbitrary we obtain that Σ does not
admit a proper extension, thus showing (i). �

Thus, as a consequence of the Hopf-Rinow theorem and Proposition 3.4, one obtains the
following corollary which generalizes a result by Hermann [29] to the case of non-complete
ambient manifolds.

Corollary 3.5. Let M be a connected real analytic Riemannian manifold, p ∈ M and V a
totally geodesic subspace of TpM . If f : Σ →M is the inextendable compatible totally geodesic
immersion associated with the subspace V , then Σ is complete if and only if the exponential
map expp is defined on all V .

3.1. Maximal totally geodesic submanifolds in analytic Riemannian manifolds. We
now concern ourselves with defining a notion of maximality for totally geodesic submanifolds.
Indeed, if M is a real analytic Riemannian manifold and Σ1, Σ2 ⊆ M are two inextendable
and embedded totally geodesic submanifolds, one can ask if Σ1 ⊆ Σ2. In this case, it is easy
to see that Σ1 ⊆ Σ2 if and only if there exists a point p ∈ Σ1 ∩ Σ2 such that TpΣ1 ⊆ TpΣ2.
Therefore, the study of inclusions between embedded totally geodesic submanifolds of M
containing the point p is equivalent to that of inclusions between totally geodesic subspaces
of TpM . For general totally geodesic immersions, the situation is more involved, and one
needs to introduce the following “pullback-type” construction to make sense of the inclusion
relationship.

Proposition 3.6. Let M be a connected real analytic Riemannian manifold, p ∈ M and
V1, V2 ⊆ TpM two totally geodesic subspaces. For each i ∈ {1, 2}, consider the inextendable

compatible totally geodesic immersion fi : Σi → M satisfying Vi ∈ f̃i(Σi) and let xi ∈ Σi be

the unique point such that f̃(xi) = Vi. Then the following assertions are equivalent:

(i) V1 ⊆ V2.
(ii) There exists a connected Riemannian manifold E, a surjective local isometry π : E → Σ1,

an inextendable compatible totally geodesic immersion h : E → Σ2 and a point z ∈ E
such that f1 ◦π = f2 ◦h, π(z) = x1 and h(z) = x2. In other words, the following diagram
commutes:

E Σ2

Σ1 M

h

π f2

f1

Furthermore, if Σ2 ⊆ M is injectively immersed and f2 = ι : Σ2 →֒ M , one can take
E = Σ1, π = IdΣ1 , h : Σ1 → Σ2 given by h(x) = f1(x) and z = x1, so V1 ⊆ V2 if and only
f1(Σ1) ⊆ Σ2.

Proof. Start by assuming (ii). Then we have

V1 = f̃1(x1) = f̃1(π(z)) = (f1)∗π(z)(Tπ(z)Σ1) = (f1 ◦ π)∗z(TzE) = (f2 ◦ h)∗z(TzE)

= (f2)∗x2(h∗z(TzE)) ⊆ (f2)∗x2(Tx2Σ2) = f̃2(x2) = V2,
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which proves (i).
Now, suppose (i) is true, and let W = (f2)

−1
∗x2

(V1), which is a totally geodesic subspace of
Tx2Σ2. We can construct an inextendable compatible totally geodesic immersion h : E → Σ2

such that W ∈ h̃(E), and there exists a unique z ∈ E for which h(z) = x2 and h̃(z) =W . As
M and Σ2 are real analytic, we may apply Proposition 3.4 twice to see that the composition
f2 ◦ h : E → M sends maximal geodesics of E to maximal geodesics of M . However, f2 ◦ h
need not be compatible. Let R be the equivalence relation on E defined by

xRy : ⇔ f̃2 ◦ h(x) = f̃2 ◦ h(y).
The quotient space E/R admits a unique smooth structure and Riemannian metric such that
the natural projection ρ : E → E/R is a surjective local isometry and the map g : E/R →M
given by g([x]) = f2(h(x)) is a compatible totally geodesic immersion [6, Section 10.3.1].
Because f2 ◦ h sends maximal geodesics to maximal geodesics and ρ is a surjective local
isometry, the immersion g sends the maximal geodesics of E/R to maximal geodesics of M ,
so g is inextendable by Proposition 3.4. Observe that

g̃([z]) = g∗[z](T[z]E/R) = (g ◦ ρ)∗z(TzE) = (f2 ◦ h)∗z(TzE) = (f2)∗x2(W ) = V1,

so by uniqueness of f1 there exists a global isometry φ : E/R → Σ1 such that g = f1 ◦ φ. By
considering π = φ ◦ ρ : E → Σ1, we obtain the equalities f1 ◦ π = g ◦ ρ = f2 ◦ h and π(z) = x1
because f̃1 is injective and

f̃1(π(z)) = (f1)∗π(z)(Tπ(z)Σ1) = (f1 ◦ π)∗z(TzE) = (g ◦ ρ)∗z(TzE) = V1 = f̃1(x1).

Therefore, (ii) holds.
Finally, note that if Σ2 ⊆ M and f2 = ι is the inclusion map, one sees easily that the

composition ι ◦ h in the previous paragraph is also a compatible totally geodesic immersion,
so E/R = E and we obtain in this case a global isometry φ : E → Σ1 satisfying ι ◦ h = f1 ◦φ.
By replacing E with Σ1 and h with h ◦ φ−1, we obtain ι ◦ h = f1, so h : Σ1 → Σ2 is simply
the restriction in codomain of f1, and f1(Σ1) ⊆ Σ2. �

Motivated by the previous proposition, we say that an inextendable compatible totally
geodesic immersion f : Σ → M (or simply, Σ) is maximal if it is not a global isometry and
whenever we have another inextendable compatible totally geodesic immersion f ′ : Σ′ → M ,
a Riemannian manifold E, a surjective local isometry π : E → Σ and a compatible totally
geodesic immersion h : E → Σ′ satisfying f ′ ◦ h = f ◦ π, we have that f ′ is either a global
isometry or equivalent to f . From Proposition 3.6, these conditions are equivalent:

• f : Σ →M is maximal.

• For all x ∈ Σ, f̃(x) = f∗x(TxΣ) is a maximal totally geodesic subspace of Tf(x)M .

• There exists an x ∈ Σ such that f̃(x) is a maximal totally geodesic subspace of Tf(x)M .

4. Totally geodesic submanifolds in naturally reductive homogeneous spaces

In this section, we introduce new techniques for studying totally geodesic submanifolds
in naturally reductive homogeneous spaces. Because homogeneous spaces are complete and
real analytic, by Corollary 3.5 their inextendable totally geodesic submanifolds are complete.
These submanifolds are also homogeneous as Riemannian manifolds, but they need not be
extrinsically homogeneous.

We denote byM = G/K a naturally reductive homogeneous space endowed with a reductive
decomposition g = k ⊕ p. Since M is homogeneous, we may only consider totally geodesic
submanifolds passing through o = eK, which is equivalent to studying totally geodesic sub-
spaces of ToM ≡ p. In this setting, we have the following characterization of these subspaces
due to Tojo:



TOTALLY GEODESIC SUBMANIFOLDS OF THE HOMOGENEOUS NEARLY KÄHLER 6-MANIFOLDS 17

Theorem 4.1 (Tojo’s criterion [54]). Let M = G/K be a naturally reductive homogeneous
space with reductive decomposition g = k⊕ p. Assume v ⊆ p is a vector subspace and consider
for each X ∈ v the operator DX : p → p. Then, the following conditions are equivalent:

(i) There exists a totally geodesic submanifold Σ ofM passing through o with tangent space v.
(ii) For each X ∈ v, we have R(X, e−DXv)e−DXv ⊆ e−DXv.
(iii) For each X ∈ v, the subspace e−DXv is R-invariant.

We now give a geometric interpretation of the subspace e−tDXv. Consider the geodesic
γ(t) = Exp(tX)·o with initial condition X ∈ v. Then there are two vector space isomorphisms
that we can establish between p = ToM and Tγ(t)M : parallel translation Pγ

0,t : ToM → Tγ(t)M

and the pushforward of the flow of X∗, given by Exp(tX)∗o : ToM → Tγ(t)M . Both maps are
related by [45, Equation (2.2.1)]

(5) Exp(tX)−1
∗o ◦ Pγ

0,t = e−tDX .

Suppose that v is totally geodesic. We consider the complete totally geodesic immersion

f : Σ →M such that v = f̃(p) and take v = (f∗p)−1(X) ∈ TpΣ, g = Exp(−tX). From (5) and

the fact that f commutes with parallel translations we see that e−tDXv = g̃ ◦ f(expp(tv)),
yielding the following result:

Corollary 4.2 ([54, Proposition 3.5]). If v ⊆ p is a totally geodesic subspace, then for every
X ∈ v the subspace e−DXv is also totally geodesic, and the corresponding totally geodesic
submanifolds are congruent.

4.1. Totally geodesic submanifolds invariant under D. We now study a particular
class of totally geodesic submanifolds of M = G/K. Consider the canonical connection ∇c

associated with the reductive decomposition g = k⊕ p and the difference tensor D = ∇−∇c.
We say that an immersion f : Σ → M is D-invariant (and Σ is a D-invariant submanifold)

if for every x ∈ Σ the subspace f̃(x) ⊆ Tf(x)M is invariant under D. It is immediate that a
D-invariant submanifold is totally geodesic if and only if for every X, Y ∈ X(Σ) the covariant
derivative ∇c

XY remains tangent to Σ.
These submanifolds are related to certain subalgebras of g. We say that a Lie subalgebra

s is canonically embedded in g if it splits with respect to the reductive decomposition, that is,

s = (s ∩ k)⊕ (s ∩ p) = sk ⊕ sp.

The following theorem gives an algebraic characterization of D-invariant totally geodesic
submanifolds passing through the origin. Furthermore, it gives an explicit method to construct
them from their tangent space at o. The proof can be obtained by combining the theorem
in [50, p. 11] and the first result in [30, §2]. However, we will include it for the sake of
completeness.

Theorem 4.3. Let M = G/K be a naturally reductive homogeneous space with reductive
decomposition g = k⊕ p and v ⊆ p a vector subspace. The following conditions are equivalent:

(i) the subspace v is invariant under the tensors R and D,
(ii) the subspace v is invariant under the tensors Rc and D,
(iii) there exists a connected Lie subgroup S ⊆ G such that its Lie algebra s is canonically

embedded in g and the tangent space to the orbit S · o at o is v,
(iv) there exists a connected, injectively immersed, and complete D-invariant totally geodesic

submanifold Σ such that o ∈ Σ and ToΣ = v.

Furthermore, if any of the three previous conditions hold, we have:

(1) a Lie subgroup satisfying the conditions of item (iii) is the connected subgroup S with Lie
algebra

s = [v, v] + v = [v, v]k ⊕ v,
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(2) the totally geodesic submanifold Σ passing through o with tangent space v is Σ = S · o.
Proof. Firstly, note that the formula

Rc(X,Y )Z = − [[X,Y ]k, Z] = R(X,Y )Z −DXDY Z +DYDXZ + 2DDXY Z

implies that any D-invariant subspace of p is invariant under R if and only if it is invariant
under Rc, so (i) and (ii) are equivalent.

Now, suppose that v satisfies (ii). We prove that s = [v, v] + v is a Lie subalgebra of v.
This amounts to checking that [v, [v, v]] and [[v, v], [v, v]] are contained in s. Let X, Y , Z ∈ v.
Then we have

[[X,Y ], Z] =[[X,Y ]k, Z] + [[X,Y ]p, Z] = −Rc(X,Y )Z + 2[DXY,Z] ∈ s.

In particular, [v, s] ⊆ s. Similarly, by the Jacobi identity, we see that

[[v, v], [v, v]] ⊆ [v, [v, [v, v]]] ⊆ [v, s] ⊆ s.

Therefore, s is a Lie subalgebra. Because v is D-invariant, se wee that sp = v ⊆ s, and from
this inclusion it follows that s = sk ⊕ v, which proves that s is canonically embedded. It is
also immediate from the description of s that sk = [v, v]k. As a consequence, if we consider
the Lie subgroup S of G whose Lie algebra is s, then the tangent space To(S ·o) coincides with
sp = v, and therefore (iii) holds.

We now prove that (iii) implies (iv). Assume S ⊆ G is a Lie subgroup whose Lie algebra
is canonically embedded in g and To(S · o) = sp = v. It is clear from (2) that II is zero
at o. Because S · o is extrinsically homogeneous, this implies that the second fundamental
form vanishes everywhere, and thus S · o is totally geodesic. We now prove that S · o is D-
invariant, which by G-invariance of D is equivalent to checking that v is D-invariant. Given
X, Y ∈ sp ⊆ s, we have DXY = (1/2)[X,Y ]p ∈ sp, so the claim follows.

Finally, it is immediate that (iv) implies (i) from the definition of D-invariant submanifolds
and Theorem 3.1. �

Corollary 4.4. Every D-invariant totally geodesic submanifold of a naturally reductive ho-
mogeneous space M = G/K is extrinsically homogeneous with respect to the given presentation
of M , and thus an injectively immersed submanifold.

Remark 4.5. Theorem 4.3 is also a refinement of [47, Lemma 3.1], which states that for a
general reductive homogeneous space a subspace v ⊆ p invariant under R and D is tangent
to a complete totally geodesic submanifold. Also, notice that the class of D-invariant totally
geodesic submanifolds includes all totally geodesic submanifolds of symmetric spaces, since
in a symmetric space D = 0, thus, in the symmetric setting the subspaces v appearing in the
previous theorem are the Lie triple systems (see [6, §11.1]).

Remark 4.6. The case v = p in Theorem 4.3 is part of a result by Kostant [39], which implies
in particular that the connected (normal) subgroup with Lie algebra [p, p]+p acts transitively
on M .

Remark 4.7. It is worth noting that in the irreducible setting the conditions of Theorem 4.3
do not depend on the naturally reductive decomposition that we choose. Indeed, from [46,
Theorem 2.1], we see that if M = G/K is a simply connected irreducible naturally reductive
space which is not symmetric, then the canonical connection ∇c is unique. Therefore, given
any naturally reductive decomposition g = k⊕ p of g, the subspaces v ⊆ p that are invariant
under R and D correspond under the identification p ≡ ToM to the subspaces V ⊆ ToM
that are invariant under R and ∇ − ∇c, and the uniqueness of the canonical connection
implies that these subspaces are always the same regardless of the decomposition. Similarly,
if M is a nearly Kähler 3-symmetric space and one restricts their attention to the reductive
decompositions invariant under the automorphism of order three, then all of their associated
canonical connections coincide by [55, Lemma 3.1], and the same argument applies.
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4.2. Totally geodesic surfaces. As an application of Corollary 4.2, we derive a necessary
condition for the existence of totally geodesic surfaces with a given tangent plane.

Let v ⊆ p be a 2-dimensional subspace, and assume that v is the tangent plane at o of
the complete totally geodesic surface Σ of M . Fix a nonzero element X ∈ v and choose any
Y ∈ v \ {0} that is orthogonal to X, so that {X,Y } is an orthogonal basis of v. Since Σ is
homogeneous and two-dimensional, it follows that Σ is a space of constant curvature κ ∈ R,
and the same can be said for the totally geodesic submanifold Σt associated with e−tDXv for
all t ∈ R. This implies in particular that the restriction of∇R to the tangent space of Σ and Σt

at any of their points is the zero tensor. Furthermore, we have e−tDXv = span{X, e−tDXY },
since DXX = 0 due to the skew-symmetry of D. Because Σt has curvature κ, it follows
that e−tDXY is an eigenvector of the Jacobi operator RX with eigenvalue κ|X|2, as well as
an element of kerCX . One can argue similarly with the so-called Cartan operators of order

j given by Cj
XY = ∇jR(X, . . . ,X, Y,X), because they vanish identically on v. Since the

subspace of p generated by the curve e−tDXY is the span of all vectors of the form Dk
XY with

k ≥ 0, we have obtained the following:

Proposition 4.8. Let M = G/K be a naturally reductive homogeneous space with reductive
decomposition g = k⊕p. Choose orthogonal vectors X, Y ∈ p and suppose that v = span{X,Y }
is the tangent space of a totally geodesic surface Σ ⊆M . Then we have the inclusion

span{Dk
XY : k ≥ 0} ⊆ ker(RX − κ|X|2 Idp) ∩

∞⋂

j=1

kerCj
X .

4.3. Well-positioned totally geodesic submanifolds and homogeneous fibrations.

We now study the case that M = G/H is also the total space of the homogeneous fibration
induced by the inclusions H ⊆ K ⊆ G (observe the change of notation). Let B = G/K be the
base space and F = K/H be the fiber of the given submersion. Consider a totally geodesic
immersion f : Σ → M . We say that Σ is well-positioned at p ∈ Σ (with respect to the

fibration M → B) if f̃(p) =
(
f̃(p) ∩ Vf(p)

)
⊕

(
f̃(p) ∩Hf(p)

)
. Furthermore, Σ is said to be

well-positioned if it is well-positioned at every point p ∈ Σ. The next result allows us to give
an algebraic characterization for a totally geodesic submanifold to be well-positioned.

Lemma 4.9. Let F →M → B be the homogeneous fibration induced by the chain of inclusions
H ⊆ K ⊆ G, where H, K and G are compact and the Riemannian metrics on F , M and B
are induced from a bi-invariant metric on G. Let f : Σ → M be a complete totally geodesic
immersion passing through the point o with tangent space v. The following conditions are
equivalent:

(i) Σ is well-positioned with respect to the submersion M → B,
(ii) for all X ∈ v, the subspace e−DXv splits with respect to the decomposition p = Vo ⊕Ho.

Proof. Let p ∈ Σ be such that f̃(p) = v. Since we are assuming that Σ is connected and
complete, every point of Σ is of the form q = expp(v) for a certain v ∈ TpΣ. Consider the
geodesic γ(t) = f(exp(tv)) = Exp(tX) · o (where X = f∗p(v)) connecting p and q. Then, we

have f̃(q) = Pγ
0,1v. As V and H are invariant under G, we see that Vf(q) = Exp(X)∗oVo and

Hf(q) = Exp(X)∗oHo. Therefore, using (5) we see that Σ is well-positioned at q if and only if

the subspace Exp(X)−1
∗o (f̃(q)) = e−DXv splits with respect to the decomposition p = Vo⊕Ho.

As v = f∗p(TpΣ), the equivalence follows. �

Corollary 4.10. Let F → M → B be as in Lemma 4.9, and let Σ ⊆ M be a D-invariant
totally geodesic submanifold passing through o. Then Σ is well-positioned if and only if it is
well-positioned at o.

Proof. This follows from noting that the D-invariance of v implies that e−DXv = v for all
X ∈ v. �
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5. The examples

In this section we will describe the totally geodesic submanifolds of CP3, F(C3) and S3×S3

that appear in the classification and determine their isometry type. We indicate if the exam-
ples are well-positioned with respect to the homogeneous fibrations given in Subsection 2.2.

Let us recall some definitions about special submanifolds of almost Hermitian manifolds.
If (M2n, J) is an almost Hermitian manifold and f : Σ → M is an immersion, we say that f
(and Σ) is totally real if for all p ∈ Σ the subspaces f∗p(TpΣ) and Jf∗p(TpΣ) of Tf(p)M are
orthogonal. If we also have TpM = f∗p(TpΣ) ⊕ Jf∗p(TpΣ) (that is, if dimΣ = n), then Σ
is a Lagrangian submanifold. Separately, f (and Σ) is almost complex (or J-holomorphic) if
f∗p(TpΣ) is invariant under J for all p ∈ Σ. Furthermore, if Σ is a surface, we will refer to it
as an almost complex surface or a J-holomorphic curve.

Remark 5.1. Many of the totally geodesic submanifolds that will appear in this section are
isometric to a sphere with a round or complex Berger metric. We can compute the radius r
of the sphere Sn(r), as well as the parameters of the Berger sphere S3C,τ (r) from its sectional

curvature. Indeed, it is well known that the sectional curvature of Sn(r) is equal to 1/r2. In the
case of S3C,τ (r), the parameters r and τ can be obtained from the equations τ = r2 sec(U,X)

and 4− 3τ = r2 sec(X,Y ), where U is a vertical vector and X, Y are horizontal vectors with
respect to the Hopf fibration (see [21]).

5.1. The complex projective space. We describe the totally geodesic examples of the
complex projective space CP3 equipped with a homogeneous nearly Kähler metric.

5.1.1. The real projective space [3, Example 3.9]. Consider the subgroup U(2)j ⊆ Sp(2) whose
Lie algebra is given by

u(2)j = span{jE11, jE22, E21 −E12, j(E12 + E21)} = (u(2)j ∩ k)⊕ (u(2)j ∩ p).

Then, u(2)j is canonically embedded in sp(2), so the orbit U(2)j · o is a totally geodesic sub-
manifold of CP3, whose tangent space is pRP3

C, 12

(2) = span{e1, e3, e5}. The isotropy subgroup

U(2)j · o is equal to Z2 × U(1), so U(2)j · o is diffeomorphic to a real projective space RP3.
The induced metric is Berger-like. Indeed, this totally geodesic submanifold is isometric to
RP3

C, 1
2

(2). A computation gives J(pRP3

C, 12

(2)) = p ⊖ pRP3

C, 12

(2), and since RP3
C, 1

2

(2) is extrin-

sically homogeneous we see that RP3
C, 1

2

(2) is a Lagrangian submanifold. Finally, note that

RP3
C, 1

2

(2) is well-positioned at o, so by Corollary 4.10, it is well-positioned.

5.1.2. The fiber of the twistor fibration. Recall that the fibers of the twistor fibration are
totally geodesic surfaces in CP3. In particular, the orbit through o is (Sp(1)× Sp(1)) · o =
Sp(1)f ·o, where Sp(1)f denotes the image of the standard embedding of Sp(1) in Sp(2) in the
first block. The isotropy subgroup (Sp(1)f )o coincides with U(1), so Sp(1)f ·o is diffeomorphic
to a sphere. Its tangent space at o is pSp(1)f ·o = p1. The sectional curvature in this case is

sec(p1) = 2, so Sp(1)f ·o is a round sphere of radius 1√
2
. Furthermore, the fact that J(p1) = p1

implies that Sp(1)f · o is an almost complex surface in CP3. By definition, Sp(1)f · o is well-
positioned.

5.1.3. The horizontal sphere SU(2) · o. Consider the standard embedding of SU(2) in Sp(2).
Since the Lie algebra su(2) is given by

su(2) = span{i(E11 −E22), E21 − E12, i(E12 + E21)} = (su(2) ∩ k)⊕ (su(2) ∩ p),

it follows that su(2) is canonically embedded, and the orbit SU(2) · o is a totally geodesic
submanifold of CP3 with tangent space pSU(2)·o = span{e3, e4}. The isotropy subgroup of
SU(2) at o is the canonical U(1), so SU(2) · o is diffeomorphic to a sphere. Furthermore, its
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sectional curvature is given by sec(pSU(2)·o) = 1, so this submanifold is a round sphere of
radius 1. Finally, note that pSU(2)·o is J-invariant, so this sphere is also an almost complex

surface in CP3. Note that SU(2) · o is well-positioned by Corollary 4.10. Indeed, its tangent
space at every point is always contained in the horizontal subspace of the twistor fibration.

5.1.4. The sphere SU(2)Λ3 · o. Consider the unique complex irreducible representation Λ3

of SU(2) of dimension four. Since this representation is unitary and of symplectic type, it
restricts to a homomorphism SU(2) → Sp(2). To get an explicit description of this map at
the Lie algebra level (which is enough for our purposes), it suffices to see that the linear map
su(2) → sp(2) defined via

H 7→ i(E11 + 3E22), E 7→
√
3(E21 − E12) + 2jE11, F 7→ −2kE11 − i

√
3(E12 + E21),

is a Lie algebra homomorphism which is also irreducible as a representation, so by uniqueness
it must be equal to Λ3.

We denote by SU(2)Λ3 the image of the previous homomorphism. The Lie algebra of this
group satisfies

su(2)Λ3 = span
{
i(E11 + 3E22),

√
2e1 +

√
3e3,

√
2e2 +

√
3e4

}
= (su(2)Λ3 ∩ k)⊕ (su(2)Λ3 ∩ p),

so it is canonically embedded in sp(2). As a consequence, the orbit SU(2)Λ3 ·o is a totally geo-

desic submanifold of CP3 with tangent space pSU(2)Λ3
·o = span

{√
2e1 +

√
3e3,

√
2e2 +

√
3e4

}
.

The isotropy subgroup at o is the U(1) subgroup with Lie algebra generated by diag(i, 3i),
so this orbit is actually a sphere. Since the sectional curvature of pSU(2)Λ3

·o is 1
5 , we see that

SU(2)Λ3 ·o is a sphere of radius
√
5. One sees that pSU(2)Λ3

·o is J-invariant, and by homogene-

ity it follows that SU(2)Λ3 · o is an almost complex submanifold of CP3. Clearly, SU(2)Λ3 · o
is not well-positioned at o, so it is not well-positioned.

5.2. The flag manifold. We describe the totally geodesic examples of the flag manifold
F(C3) equipped with a homogeneous nearly Kähler metric.

5.2.1. The real flag manifold F(R3) [53, Example 3.1]. There is a natural embedding of the
real flag manifold F(R3) in F(C3) which is induced by the usual inclusion of R3 in C3. This
submanifold can also be seen as the orbit SO(3) · o of the standard SO(3) ⊆ SU(3), and the
corresponding isotropy subgroup is SO(3)o = Z2 ⊕ Z2, so we get F(R3) = SO(3)/Z2 ⊕ Z2 =
Sp(1)/Q8, where Q8 = {±1,±i,±j,±k}. Observe that so(3) is canonically embedded in su(3),
since so(3) ⊆ p. Thus, Theorem 4.3 allows us to conclude that F(R3) is totally geodesic in
M , and its tangent space is precisely pF(R3) = so(3) = span{e1, e3, e5}. A direct computation

shows that F(R3) has constant curvature equal to 1
8 . Furthermore, we have the equality

J(so(3)) = span{e2, e4, e6}, implying that the inclusion F(R3) ⊆ F(C3) is Lagrangian. Finally,
note that F(R3) is well-positioned at o, so F(R3) is well-positioned by Corollary 4.10.

5.2.2. The Berger sphere [53, Example 3.2]. Let SU(2)(1,0,1) denote the subgroup of SU(3) that

fixes (1, 0, 1) ∈ C3. This subgroup is conjugate to the standard SU(2) inside SU(3). The Lie
algebra su(2)(1,0,1) is the set of all X ∈ su(3) such that X(1, 0, 1) = 0, and its projection to p is
spanned by {e1 + e3, e2 − e4, e6}. It is easy to check that the isotropy subgroup of SU(2)(1,0,1)
at o is trivial, so the corresponding orbit SU(2)(1,0,1) ·o is diffeomorphic to a 3-sphere. A direct

application of (2) yields that SU(2)(1,0,1) ·o is a totally geodesic submanifold of F(C3) isometric

to S3
C, 1

4

(
√
2) and whose tangent space is given by pS3

C, 14

(
√
2) = span{e1 + e3, e2 − e4, e6}. The

subspace pS3
C, 14

(
√
2) is also invariant under D. However, the Lie algebra su(2)(1,0,1) is not

canonically embedded in su(3). In this case, the connected subgroup given by Theorem 4.3
is actually the subgroup U(2)(1,0,1) that fixes the complex line generated by (1, 0, 1). A direct
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calculation shows that J(pS3
C, 14

(
√
2)) = p⊖ pS3

C, 14

(
√
2), so the Berger sphere is Lagrangian. Note

from the expression of pS3
C, 14

(
√
2) that S

3
C, 1

4

(
√
2) is not well-positioned.

5.2.3. The torus [13, Example 3.3]. Consider the maximal torus H ⊆ SU(3) whose Lie algebra
is given by h = span{e1 + e3 + e5, e2 + e4 − e6}. Observe that h ⊆ p, so it is a canonically
embedded subalgebra of g, and the orbit H · o is a totally geodesic surface. Since H · o is a
quotient of H by a finite group, it is a compact abelian Lie group itself and hence diffeomorphic
to a torus. However, we will see that H · o is not isometric to the standard flat torus. Indeed,
in order to determine the isometry type of H · o, we compute the preimage exp−1

o (o). For this,
we will need a description of the Riemannian exponential map expo : h → H · o ⊆M , which is
merely the restriction of the Riemannian exponential map of M . To this end, we define the
orthonormal vectors X = 1√

3
(e1 + e3 + e5), Y = 1√

3
(e2 + e4 − e6) of h. Then the exponential

map of h satisfies that expo(uX + vY ) = euXevY · o, and this element is equal to o if and only
if euXevY is a diagonal matrix. The solutions to expo(uX + vY ) = o are given by the lattice
Λ = spanZ

{(√
2π,

√
2π/

√
3
)
,
(
0, 2

√
2π/

√
3
)}

. Since expo is h-equivariant, in the sense that
it satisfies the equation expo(T + S) = Exp(T ) · expo(S), it follows that expo is actually a
Riemannian covering map, so H·o is isometric to the quotient R2/Λ. We will refer to this orbit
as T2

Λ = H·o = R2/Λ. Note that H·o is not a product S1(r1)×S1(r2), since the closest points in

Λ \{(0, 0)} to the origin are those in
{(

±
√
2π,±

√
6π/3

)
,
(
±
√
2π,∓

√
6π/3

)
,
(
0,±2

√
6π/3

)}
,

and thus there exist three different closed geodesics of minimum length, as opposed to two in
the case of S1(r) × S1(r) or one in the case of S1(r1) × S1(r2) with r1 6= r2. Let pT2

Λ
= h =

span{e1 + e3 + e5, e2 + e4 − e6} be the tangent space of this surface, then J(pT2
Λ
) = pT2

Λ
, and

by homogeneity it follows that T2
Λ is an almost complex surface in F(C3). However, it is clear

from the expression of pT2
Λ
that T2

Λ is not well-positioned.

5.2.4. The fiber of the submersion F(C3) → CP2 [13, Example 3.1]. Recall that the fibers
of the Riemannian submersion F(C3) → CP2 are totally geodesic. The fiber through o is
CP1 = U(2) · o = SU(2) · o, where the isotropy subgroup of SU(2) at o is U(1). The tangent
space, as said before, is pCP1 = p1. Since the sectional curvature of p1 is 2, it follows that
SU(2) · o is isometric to the round sphere of radius 1√

2
. Furthermore, J(p1) = p1, so SU(2) · o

is an almost complex surface in F(C3). Clearly, CP1 is well-positioned as it is a fiber itself.

5.2.5. The sphere [13, Example 3.2]. Consider E = span{(0, 1, 0), (1, 0,−1), (i, 0, i)}, which is
a real form of C3, and let σ : C3 → C3 be the associated real structure. Then the normalizer

SO(3)σ = {g ∈ SU(3) : g(E) = E} = {g ∈ SU(3) : gσ = σg}
is a subgroup of SU(3) conjugate to the standard SO(3). The corresponding Lie algebra is given
by so(3)σ = span{diag(i, 0,−i), e1 + e3, e2 + e4}, and in particular it is canonically embedded
in su(3). One sees that the isotropy subgroup SO(3)σo is the U(1) subgroup generated by
so(3)σ ∩ t, so we obtain that SO(3)σ · o is a totally geodesic submanifold of F(C3) that is
diffeomorphic to a sphere. Its tangent space at o is pso(3)σ = span{e1 + e3, e2 + e4}, and this

plane has sectional curvature 1
2 , so SO(3)σ ·o is isometric to a two-dimensional sphere of radius√

2. The equality J(pso(3)σ ) = pso(3)σ implies that SO(3)σ · o is an almost complex surface in

F(C)3. Since SO(3)σ · o is not well-positioned at o, it is not well-positioned.

5.2.6. Real projective planes inside F(R3). Recall that F(R3) is a Lagrangian submanifold
with constant sectional curvature. In particular, every 2-plane inside pF(R3) will give rise to a

totally geodesic surface inside F(R3) (hence inside F(C3)). We describe these examples.
As we saw earlier, F(R3) can be regarded as the Lie group quotient Sp(1)/Q8 with a

metric of constant curvature equal to 1
8 . As a consequence, F(R3) is isometric to the quotient
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S3(2
√
2)/Q8, and the projection map π : S3(2

√
2) → F(R3) is a Riemannian covering map.

This projection is equivariant with respect to the double cover Sp(1) → SO(3).
We view H ≡ R4. Consider the totally geodesic embedding h : S2(2

√
2) →֒ S3(2

√
2) defined

by h(x, y, z) = xi + yj + zk. Then π ◦ h is also a totally geodesic immersion of the 3-sphere

satisfying π ◦ h(−x,−y,−z) = π ◦ h(x, y, z) for all (x, y, z) ∈ S2(2
√
2), so it factors through

an isometric immersion φ : RP2(2
√
2) → F(R3) defined via

(6) φ([x : y : z]) = (xi+ yj + zk)Q8, (x, y, z) ∈ S2(2
√
2).

As the projection S2(2
√
2) → RP2(2

√
2) is also a covering map, we deduce that φ is a totally

geodesic immersion. Note that φ is not injective, as the points [2
√
2 : 0 : 0], [0 : 2

√
2 : 0] and

[0 : 0 : 2
√
2] have the same image.

Proposition 5.2. The map φ : RP2(2
√
2) → F(R3) defined by (6) is a non-injective inextend-

able compatible totally geodesic immersion.

Proof. Since RP2(2
√
2) is complete, we only need to show that φ is compatible. This is

equivalent to proving the following: for every pair of different points p = [x : y : z] and
q = [x′ : y′ : z′] ∈ RP2(2

√
2) such that φ(p) = φ(q), the images φ∗p(TpRP2(2

√
2)) and

φ∗q(TqRP2(2
√
2)) are different subspaces of Tφ(p)F(R

3).

Let p = [x : y : z] and q = [x′ : y′ : z′] be as above. Then φ(p) = φ(q) implies that there
is an element λ ∈ Q8 such that x′i + y′j + z′k = (xi + yj + zk)λ. Changing the sign of the
homogeneous coordinates of q if necessary, we may assume that λ ∈ {i, j, k}. We will deal
with the case λ = i, as the other two cases can be treated in an analogous manner. In this
setting, we obtain that x′i+y′j+z′k = (xi+yj+zk)i = −x−yk+zj, which yields x = x′ = 0,
y′ = z and z′ = −y, so p = [0 : y : z] and q = [0 : z : −y].

Let us compute φ∗p(TpRP2(2
√
2)). On the one hand, we can identify the tangent space

of RP2(2
√
2) at p = [0 : y : z] with the tangent space T(0,y,z)S

2(2
√
2) ≡ R(0, y, z)⊥ =

span{(1, 0, 0), (0,−z, y)}. Moreover, we can also view T(yj+zk)Q8
F(R3) as T(yj+zk)S

3(2
√
2) ≡

R(yj + zk)⊥. Under these identifications, φ∗p(TpRP2(2
√
2)) is spanned by φ∗p(1, 0, 0) = i,

and φ∗p(0,−z, y) = −zj + yk. We now determine φ∗q(TqRP2(2
√
2)). For this, we have

identifications TqRP
2(2

√
2) ≡ R(0, z,−y)⊥ = span{(1, 0, 0), (0, y, z)} and T(−zj+yk)F(R

3) ≡
R(−zj + yk)⊥. We obtain that φ∗q(TqRP2(2

√
2)) is generated by φ∗q(1, 0, 0) = i, and

φ∗q(0, y, z) = yj + zk. In order to finish, observe that the composition of the isomorphisms

R(yj + zk)⊥ → T(yj+zk)Q8
F(R3) = T(zj−yk)Q8

F(R3) → R(zj − yk)⊥

is simply right multiplication by i, so φ∗p(TpRP2(2
√
2)), regarded as a subspace of R(zj−yk)⊥,

is spanned by 1 and yj + zk. Thus, we obtain that the images of φ∗p and φ∗q are different,
and therefore φ is a compatible immersion. �

The next lemma shows that, up to congruence, RP2(2
√
2) is the unique totally geodesic

surface of F(R3).

Lemma 5.3. Let ψ : Σ → F(R3) be a compatible totally geodesic immersion of a complete two-
dimensional Riemannian manifold. Then ψ is congruent to φ under an element of SO(3). In
particular, ψ and φ are congruent as immersions into F(C3) as well.

Proof. Let a ∈ Sp(1) be arbitrary, and take the map φa : RP
2(2

√
2) → F(R3) = S3(2

√
2)/Q8

given by φa([x : y : z]) = a(xi + yj + zk)Q8. Since left multiplication by a is an isometry,
φa is also a compatible totally geodesic immersion of RP2 congruent to φ. We show that all
totally geodesic surfaces arise in this manner.

Let π : S3(2
√
2) → F(R3) be the projection map and consider the totally geodesic sphere

S21(2
√
2) ⊆ S3(2

√
2) obtained as the intersection of span{i, j, k} with our 3-sphere. Take
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any point p = π(z) ∈ F(R3) and a two-dimensional subspace V ⊆ Tπ(z)F(R
3). As π is a

Riemannian covering map, we may regard V as a subspace of TzS
3(2

√
2) ≡ Rz⊥, where we

are considering the standard inner product on H ≡ R4. Let a ∈ Sp(1) be orthogonal to
V and z and consider the great sphere S2a = a · S21(2

√
2). Note that S2a coincides with the

great sphere obtained by intersecting S3(2
√
2) with the subspace V ⊕ Rz, and thus the map

ha : S
2(2

√
2) → S3(2

√
2) defined by ha(x, y, z) = a(xi + yj + zk) is the unique compatible

totally geodesic immersion passing through z with tangent space V . Since ha(−x,−y,−z) =
−ha(x, y, z), the map ha descends to the map φa : RP

2(2
√
2) → F(R3), so φa passes through

p = π(z) with tangent space V . As p and V are arbitrary, we conclude that every complete
compatible totally geodesic immersion from a surface to F(R3) is equivalent to one of the form

φa, and is thus congruent to φ : RP2(2
√
2) → F(R3). The element in SO(3) that achieves this

congruence is the image of a under the double cover Sp(1) → SO(3). �

Clearly, the fact that φ(RP2(2
√
2)) is contained in a Lagrangian submanifold implies that

φ is totally real. Note that none of these submanifolds are well-positioned. Indeed, the totally
geodesic RP2(2

√
2) corresponding to the subspace v = span{e1+ e3, e5} is not well-positioned

(since it is not well-positioned at o), and because all of these submanifolds are congruent to

this RP2(2
√
2) by an element of SO(3), it follows that no totally geodesic RP2(2

√
2) is well-

positioned. Also, as RP2(2
√
2) is not injectively immersed, it can not arise as an extrinsically

homogeneous submanifold of F(C3).

Remark 5.4. Let us consider the unit speed geodesic γ of RP2(2
√
2) given by the expression

γ(t) =
[
cos t

2
√
2
: sin t

2
√
2
: 0

]
. Then γ descends to an injective totally geodesic immersion

f : S1 = R/(2
√
2πZ) → RP2(2

√
2) defined via f([t]) =

[
cos t

2
√
2
: sin t

2
√
2
: 0

]
. Thus, f is a

compatible totally geodesic immersion. We now take the compatible totally geodesic immer-
sion φ : RP2(2

√
2) → F(R3) defined as in (6). The composition β = φ ◦ f : S1 → F(R3) is not

compatible. Indeed, a short calculation yields

φ(γ(0)) =φ(γ(
√
2π)) = 2

√
2Q8,

(φ ◦ γ)′(0) =(φ ◦ γ)′(
√
2π) =

d

dt

∣∣∣∣
t=0

2
√
2

(
cos

t

2
√
2
i+ sin

t

2
√
2
j

)
Q8,

so β̃([0]) = β̃([
√
2π]), implying that β̃ is not injective.

5.3. The almost product S3× S3. We describe the totally geodesic examples of the almost
product S3 × S3 equipped with a homogeneous nearly Kähler metric.

5.3.1. The fiber of S3 × S3 → S3 [59, Example 3.1]. Let Σ = S3 be the fiber of the projection
map (x, y) 7→ x, which we know from Subsection 2.2.3 that it is a totally geodesic submanifold
of S3×S3, and it is coincides with the orbit (∆1,3SU(2)× SU(2)2) ·o. It is immediate to check
that the normalizer of Σ in G is precisely NG(Σ) = ∆1,3SU(2) × SU(2)2, and the restricted
action NG(Σ) y Σ satisfies

(7) (g, h, g) · (I, x) = (I, hxg−1), g, h, x ∈ SU(2),

so this action coincides with the double cover Spin(4) = SU(2) × SU(2) → SO(4) acting on
S3. As a consequence, Σ is isometric to a round sphere. A direct calculation yields that

its sectional curvature is 3/4, so we actually have Σ = S3
(

2√
3

)
. The tangent space of Σ

through o is p
S3

(
2√
3

) = p1. A direct calculation yields J(p1) = p2, so S3
(

2√
3

)
is a Lagrangian

submanifold. As S3
(

2√
3

)
is the fiber, it is obviously well-positioned.
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5.3.2. The Berger sphere [59, Example 3.4]. Consider the subgroup

B =
{(
g, k,HgH−1

)
∈ G : g ∈ SU(2), k ∈ U(1)

}
,

where H ∈ SU(2) is the element defined in (4) and U(1) is embedded in SU(2) diagonally. The
Lie algebra b ⊆ g satisfies b = R(H,H,H) ⊕ span{e1, e5, e6} = (b ∩ k) ⊕ (b ∩ p), so the orbit
B · o is a totally geodesic submanifold of S3 × S3. As the isotropy subgroup Bo is merely the
diagonally embedded U(1), it follows that B · o is diffeomorphic to a 3-sphere. More precisely,
B · o is the Berger sphere S3

C, 1
3

(2). Its tangent space at o is pS3
C, 13

(2) = b∩ p = span{e1, e5, e6}.

One sees that J(pS3
C, 13

(2)) = p ⊖ pS3
C, 13

(2), so S3
C, 1

3

(2) is a Lagrangian submanifold. Finally, a

direct application of Corollary 4.10 yields that S3
C, 1

3

(2) is well-positioned.

Remark 5.5. We note that although the authors in [59] provide six examples of Lagrangian
totally geodesic submanifolds of S3 × S3, the first three are congruent to the round sphere
given in Subsection 5.3.1 and the last three are congruent to the Berger sphere described in
Subsection 5.3.2. This will be a consequence of Theorem C.

5.3.3. The torus [8, Example 1]. Let T2 be the connected subgroup of G with Lie algebra
t = span{e1, e4}. As T2 is contained in the torus U(1) × U(1) × U(1) (where U(1) is the
diagonal subgroup of SU(2)), it follows that T2 is a two-dimensional torus. Furthermore, as
t ⊆ p, we see that t is canonically embedded, so T2 · o is a totally geodesic surface of S3 × S3

diffeomorphic to a torus. Consider the exponential map expo : t → T2 ·o, which is t-equivariant
in the sense that expo(T + S) = Exp(T ) · expo(S). This means that expo is a Riemannian
covering map, and T2 · o is isometric to the quotient of t = R2 by the lattice Γ = exp−1

o (o).
Now, given u, v ∈ R, we see that expo(ue1 + ve4) is equal to
(
diag

(
e

1
6
i(
√
3u+3v), e−

1
6
i(
√
3u+3v)

)
,diag

(
e
− iu√

3 , e
iu√
3

)
,diag

(
e

1
6
i(
√
3u−3v), e−

1
6
i(
√
3u−3v)

))
· o,

so the corresponding lattice is Γ = spanZ
{
(2π/

√
3, 2π), (4π/

√
3, 0)

}
. Thus, T2 · o is isometric

to the flat torus T2
Γ = R2/Γ. It turns out that the closest points in Γ\{(0, 0)} to the origin are

those in the set
{
±
(
2π/

√
3, 2π

)
,±

(
4π/

√
3, 0

)
,±

(
2π/

√
3,−2π

)}
, so T2

Γ admits three closed

geodesics of minimum length 4π√
3
, unlike any Riemannian product of the form S1(a) × S1(b).

By construction, we have that pT2
Γ
= span{e1, e4} is a J-invariant subspace, so T2

Γ is an almost

complex surface inside S3 × S3. By Corollary 4.10, T2
Γ is a well-positioned totally geodesic

submanifold of S3 × S3.

5.3.4. Not well-positioned totally geodesic spheres [8, Example 2]. Let g =
(
e

iπ
3
F , I, e−

iπ
3
F
)

and take the subgroup gKg−1 ⊆ G. Its Lie algebra Ad(g)k satisfies

Ad(g)k = R(F,F, F )⊕ span{e1 + e5, e2 − e4} = (Ad(g)k ∩ k)⊕ (Ad(g)k ∩ p) ,

so Ad(g)k is a canonically embedded subalgebra of g and the orbit (gKg−1) · o is a totally
geodesic surface. The isotropy subgroup (gKg−1) ·o is isomorphic to U(1), and thus (gKg−1) ·o
is isometric to a round sphere. A simple computation yields that its sectional curvature is
2
3 , so (gKg−1) · o is a round sphere with radius

√
3
2 . Its tangent space at o is given by

p
S2

(√
3
2

) = Ad(g)k ∩ p = span{e1 + e5, e2 − e4}. One sees that J preserves this subspace, and

by homogeneity we deduce that S2
(√

3
2

)
is an almost complex surface in S3 × S3. Clearly,

S2
(√

3
2

)
is not well-positioned at o.
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5.3.5. Great spheres inside S3
(

2√
3

)
. Let Σ be a totally geodesic surface inside the Lagrangian

round S3, so it is merely a great sphere inside S3. Then Σ ⊆ S3×S3 is automatically a totally
real totally geodesic submanifold. Plus, Σ is also homogeneous. Indeed, as S3 = SO(4)/SO(3)
is a symmetric space, its totally geodesic submanifolds are homogeneous, so Σ is an orbit of a
subgroup H ⊆ SO(4). Let φ : NG(S

3) → SO(4) be the double cover defined as the composition
of the isometric action defined in (7) with the projection of S3 × S3 onto its second factor.
The preimage L = φ−1(H) is a subgroup of G whose orbit at any p ∈ Σ coincides with Σ, so Σ
is extrinsically homogeneous. For instance, one can take the diagonal subgroup K ⊆ NG(S

3),
and the orbit K · (I,H) is an example of these spheres. Similarly, if Σ′ is another totally
geodesic surface inside the round S3, there exists an element g ∈ SO(4) such that g · Σ = Σ′,
which implies that any element h ∈ φ−1(g) also satisfies h · Σ = Σ′. As Σ is contained in the
fiber of S3 × S3 → S3, its tangent space at every point is contained in the vertical subspace,
so Σ is well-positioned.

It is worth noting that even though theses spheres are extrinsically homogeneous, they are
not D-invariant. Indeed, observe that the difference tensor restricted to p1 is given by

1

2
[(X,−2X,X), (Y,−2Y, Y )]p =

1

2
(−[X,Y ], 2[X,Y ],−[X,Y ]), X, Y ∈ su(2),

which means that the D-invariant subspaces of p1 are in a one-to-one correspondence with
the Lie subalgebras of su(2). As su(2) admits no codimension one subalgebras, it follows that
no two-dimensional subspace of p1 (and thus no totally geodesic sphere inside the fiber S3) is
D-invariant.

Remark 5.6. The round S2 described in Section 5.3.5 serves as a counterexample to [1,
Proposition 2]. In this result, the authors claim that for a compact geodesic orbit space
M = G/K with reductive decomposition g = k ⊕ p, a subspace v ⊆ p is tangent to an
extrinsically homogeneous totally geodesic submanifold if and only if it generates a canonically
embedded subalgebra s ⊆ g satisfying sp = v and U(v, v) ⊆ v (recall that U is defined by (1)).
In the naturally reductive setting, because U = 0, the proposition would imply that every
extrinsically homogeneous totally geodesic submanifold of M is automatically D-invariant,
which we know from the aforementioned example that is not true in general.

6. Riemannian cones and totally geodesic submanifolds

In this section we start by recalling the definition and the basic properties of Riemann-
ian cones. After that we will prove a structure result for totally geodesic submanifolds of
Riemannian cones. We refer the reader to [41] for a detailed account on semi-Riemannian
cones.

LetM be a Riemannian manifold, which for our purposes will be assumed to be real analytic

and complete. We define its Riemannian cone as the warped product M̂ = R+ ×f M , where
f : R+ → R+ is the identity map. More explicitly, if g = 〈·, ·〉 denotes the metric on M

and r : M̂ → R+ is the projection on the first factor, the inner product on M̂ is given by
ĝ = dr2 + r2g.

Every vector field X ∈ X(R+) (respectively, X ∈ X(M)) admits a natural extension to M̂ ,
which we will also denote by X. In particular, if ∂r is the unit radial vector field on R+, then

its natural extension to M̂ is called the cone vector field or the radial vector field. Note that at

every point (τ, p) of M̂ we have the orthogonal decomposition T(τ,p)M̂ = R(∂r)(τ,p)⊕TpM . The

Levi-Civita connection ∇̂ of M̂ is characterized by the following equations for X, Y ∈ X(M):

(8) ∇̂∂r∂r = 0, ∇̂X∂r = ∇̂∂rX =
1

r
X, ∇̂XY = ∇XY − r〈X,Y 〉∂r.
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As a consequence, the curvature tensor R̂ is determined by the conditions

(9)
R̂(∂r, ·)· = R̂(·, ∂r)· = R̂(·, ·)∂r = 0,

R̂(u, v)w = R(u, v)w − 〈v,w〉u + 〈u,w〉v, u, v, w ∈ TpM.

Let X = a∂r + v ∈ T(τ,p)M̂ be arbitrary. From the equations above we see that the Jacobi
operator associated with X satisfies

R̂X(b∂r + w) = R̂(b∂r + w, a∂r + v)(a∂r + v) = R̂(w, v)v = Rvw − |v|2w + 〈v,w〉v.
Although the process is more tedious, it is possible to compute the covariant derivatives of
the curvature tensor from (8) and (9). For instance, one can show that

(10) (∇̂xR̂)(u, v, w) = (∇xR)(u, v, w) − 〈x, R̂(u, v)w〉τ∂r
for all (τ, p) ∈ M̂ and x, u, v, w ∈ TpM . We will make use of this formula later on.

Remark 6.1. Let M = Sn(1) be the standard round sphere of radius one. Then, its cone is
the punctured Euclidean space Rn+1 \ {0}. However, if r 6= 1, the cone of Sn(r) is not flat
due to (9). This illustrates that two homothetic manifolds may not have homothetic cones.

We can also describe the geodesics of M̂ in terms of those of M . Let (τ, p) ∈ M̂ be any
point and consider the tangent vector w = a∂r + v, where a ∈ R and v ∈ TpM are arbitrary.
From [41, Equation 2.7], we see that the geodesic γ̂(t) = êxp(τ,p)(tw) = (ρ(t), α(t)) is given in
a neighbourhood of t = 0 by

(11) ρ(t) =
√

(at+ τ)2 + |v|2τ2t2, α(t) = expp(f(t)v),

where

f(t) =

{
1
|v| arctan

(
|v|τt
at+τ

)
, v 6= 0,

0, v = 0.

As a consequence, the maximal interval of definition of γ̂(t) contains the interval

(12) Ia =





R, a = 0,(
− τ

a ,∞
)
, a > 0,(

−∞,− τ
a

)
a < 0.

Note that Ia only depends on a. A consequence of (11) is that if γ is a geodesic of M̂ , its

projection to M is a pregeodesic of M . Observe that M̂ is never complete. However, it is
clear that it is an analytic Riemannian manifold. The following lemma shows that actually
the only incomplete geodesics are those tangent to the cone vector field.

Lemma 6.2. Let M be a complete Riemannian manifold, (τ, p) ∈ M̂ a point in its Riemann-
ian cone and w = a∂r + v ∈ T(τ,p)M a unit vector, where a ∈ R and v ∈ TpM . Consider the
maximal geodesic γ̂(t) such that γ̂(0) = (τ, p) and γ̂′(0) = w. The following statements hold:

(i) If v = 0, then the maximal interval of definition of γ̂(t) is precisely Ia.
(ii) If v 6= 0, then γ̂(t) is defined on all R.

Proof. Firstly, assume that v = 0. Without loss of generality, we may also suppose that

a is positive, so a = 1. From (11), we see that the curve β : (−τ,∞) → M̂ defined by

β(t) = (t+τ, p) is a geodesic of M̂ with initial conditions β(0) = (τ, p), β′(0) = ∂r. Since t+τ
converges to zero as t converges to −τ , the curve β is a maximal geodesic, thus proving (i).
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Now, assume that v 6= 0, so that the curve β : Ia → M̂ , β(t) = (ρ(t), α(t)) defined by (11)

is a geodesic of M̂ with β(0) = p, β′(0) = w. Note that the derivative

ρ′(t) =
2a(at+ τ) + 2|v|2τ2t

2ρ(t)
=

aτ + (a2 + |v|2τ2)t√
(at+ τ)2 + |v|2τ2t2

=
aτ + t√

(at+ τ)2 + |v|2τ2t2

vanishes at t0 = −aτ ∈ Ia (this last inclusion holds because |a| ∈ (0, 1) and τ > 0). As
a consequence, β′(t0) = α′(t0) ∈ Tα(t0)M . Looking at (12), we obtain that the geodesic
êxpβ(t0)(β

′(t0)) is defined on all of R, and by uniqueness it must coincide with the curve

β(t+ t0). Thus, β can be extended to all R, so (ii) holds. �

Suppose that f : M → N is a smooth map. We define its associated cone map as the

map f̂ : M̂ → N̂ given by f̂(τ, p) = (τ, f(p)). It can be easily checked that f̂ is an isometric
immersion (respectively, an isometry) if and only if f is an isometric immersion (respectively,
an isometry). In the following, we provide some information about the isometry group of
Riemannian cones.

Proposition 6.3. Let M and N be two complete Riemannian manifolds. Every isometry

f : M̂ → N̂ is the cone map of an isometry g : M → N . In particular, if the cones M̂ and N̂
are isometric, then M and N are also isometric.

Proof. We take the subset C(τ,p) = {X ∈ T(τ,p)M̂ : êxp(τ,p)(tX) is defined on R} of T(τ,p)M̂ for

each (τ, p) ∈ M̂ . It is clear from Lemma 6.2 that C(τ,p) = T(τ,p)M̂ \ R(∂r)(τ,p).
Now, let f : M̂ → N̂ be an isometry and fix (τ, p) ∈ M̂ with image (s, q) = f(τ, p). Since

f is an isometry, it sends C(τ,p) to C(s,q), and thus we have f∗(τ,p)((∂r)(τ,p)) = ±(∂r)(s,q).
The equality f∗(τ,p)((∂r)(τ,p)) = −(∂r)(s,q) is not possible, because in that case the maximal
geodesic γ(t) = êxp(τ,p)(t∂r) would be mapped to the maximal geodesic β(t) = êxp(s,q)(−t∂r),
which is not possible because the first geodesic is defined for all t ≥ 0, while the second one
is not. We deduce that f∗(τ,p)((∂r)(τ,p)) = (∂r)f(τ,p). Plus, the maximal geodesic γ(t) =
êxp(τ,p)(t∂r) is mapped to the maximal geodesic β(t) = êxp(s,q)(t∂r), and their corresponding

intervals of definition are (−τ, 0) and (−s, 0). Hence, τ = s. All in all, we have seen that f
sends the link {τ} ×M to {τ} ×N for each τ ∈ R+, so f takes the form f(τ, p) = (τ, h(τ, p))

for a map h : M̂ → N . Furthermore, at each (τ, p) ∈ M̂ we have

(∂r)f(τ,p) = f∗(τ,p)((∂r)τ,p) =
d

dt

∣∣∣∣
t=0

(τ + t, h(τ + t, p)) = (∂r)f(τ,p) + h∗(τ,p)((∂r)(τ,p)),

which means that h∗(τ,p)((∂r)(τ,p)) = 0, so h does not depend on τ . In other words, there

exists a map g : M → N such that h(τ, p) = g(p) for all (τ, p) ∈ M̂ . The fact that f is an
isometry readily implies that g is also an isometry. �

Corollary 6.4. For a complete Riemannian manifold M , the map f ∈ I(M) 7→ f̂ ∈ I(M̂ ) is
a Lie group isomorphism.

Many geometric properties of Riemannian manifolds can be translated into geometric prop-
erties of their cones. For instance, as a consequence of (9), M is an Einstein manifold with

Ric = (n− 1)〈·, ·〉 if and only if M̂ is Ricci-flat. It turns out that nearly Kähler structures on
six-dimensional manifolds are related to G2-structures on their cones. We briefly describe this
relationship, see [5] for details. For the general theory of G2-manifolds, we refer the reader to
[33, Chapter 10].

Let M be a six-dimensional strictly nearly Kähler manifold. Then M is Einstein with
positive Ricci curvature [23, Theorem 5.2] and after rescaling the metric we may assume that

the Einstein constant of M is λ = 5. In that case, one defines a three-form φ ∈ Ω3(M̂ ) via
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the equations (for X,Y,Z ∈ X(M))

φ(X,Y,Z) = r3〈Y, (∇XJ)Z〉, φ(∂r,X, Y ) =− φ(X, ∂r , Y ) = φ(X,Y, ∂r) = r2〈X,JY 〉,

and checks that φ is a parallel three-form inducing a G2 structure on M̂ . In addition, the

restricted holonomy group of M̂ is precisely G2 whenever M is not locally isometric to S6.

Conversely, suppose that M̂ is a G2-manifold whose structure is given by the parallel three-
form φ. Then the almost complex structure J defined on M by 〈X,JY 〉 = φ(∂r,X, Y ) is
strictly nearly Kähler and M is an Einstein manifold with Ric = 5〈·, ·〉.

Remark 6.5. Notice that the metrics of the nearly Kähler manifolds CP3,F(C3),S3 × S3

that we are considering have Einstein constants 5/2, 5/2 and 5/3, respectively. Therefore,
one would have to rescale these metrics by 1/2, 1/2, and 1/3 to obtain the G2-cones over
them. However, for our purposes this is not a problem, since the totally geodesic property is
preserved under rescalings of the ambient manifold and, as we will see, the maximal totally
geodesic submanifolds of these G2-cones are cones over the totally geodesic submanifold of a
homogeneous nearly Kähler 6-manifold.

There is also a relationship between submanifolds of M that have a nice interaction with

J and calibrated cones inside M̂ . The notions of calibrated geometry were introduced in the
seminal paper [27] by Harvey and Lawson. We remind that a calibration on a Riemannian
manifold N is a closed differential form ω ∈ Ωk(M) satisfying ω(v1, . . . , vk) ≤ 1 whenever
v1, . . . , vk are unit vectors in TN . A k-dimensional oriented submanifold S of N is calibrated
if the restriction of ω to S is equal to the Riemannian volume form of S, and it follows that
S is a minimal submanifold. It can be shown that for the case of a G2-manifold (N,φ), both
φ and its Hodge dual ⋆φ are calibrations ([27, Theorem 1.4 and Theorem 1.16]). We say in
this case that S is associative (respectively, coassociative) if it is calibrated with respect to φ

(respectively, ⋆φ). Coming back to the case that N = M̂ is the cone of a six-dimensional strict
nearly Kähler manifold, it is known that the cone of a J-holomorphic curve is an associative
submanifold, whereas the cone of a Lagrangian submanifold is a coassiciative submanifold.

6.1. Totally geodesic submanifolds of Riemannian cones. We now discuss the relation-
ship between the totally geodesic submanifolds of a Riemannian cone (over a complete real
analytic manifold) and those of its base. We will be interested in determining the maximal

totally geodesic submanifolds of the cone M̂ over M .
This first result shows that every totally geodesic submanifold of the base induces a totally

geodesic submanifold of the cone by means of the cone map.

Lemma 6.6. Let M be a Riemannian manifold and φ : S →M an isometric immersion of a
k-dimensional submanifold S. Then the following statements hold:

(i) The immersion φ is totally geodesic if and only if the cone map φ̂ : Ŝ → M̂ is totally
geodesic.

(ii) The totally geodesic immersion φ is compatible if and only if the cone map φ̂ : Ŝ → M̂
is compatible.

Proof. First of all, as being totally geodesic is a local property, we may suppose that S ⊆M

is embedded and φ is the inclusion map. As a consequence, Ŝ = R+ × S as a subset of M̂ .

Firstly, assume that S is totally geodesic in M . Given (τ, p) ∈ Ŝ and w = a∂r + v ∈ T(τ,p)Ŝ
(so v ∈ TpS), we know by (11) that the geodesic γ̂(t) = êxp(τ,p)(tw) is of the form γ̂(t) =

(ρ(t), β(t)), where β(t) is a pregeodesic of M such that β′(0) = v. Since S is totally geodesic,

there exists an ε > 0 such that β(t) ∈ S for all t ∈ (−ε, ε), so γ̂(t) ∈ Ŝ for all t ∈ (−ε, ε).
Therefore, Ŝ is totally geodesic in M̂ .
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Conversely, suppose that Ŝ is totally geodesic, and let p ∈ S, v ∈ TpS. The geodesic γ̂(t) =
êxp(1,p)(tw) is locally of the form (ρ(t), β(t)), where β(t) = expp(f(t)v) for a diffeomorphism

f(t) such that f(0) = 0 and f ′(0) = 1. Thus, as Ŝ is totally geodesic, there exists an ε > 0

such that γ̂(t) ∈ Ŝ for |t| < ε, which means that expp(f(t)v) ∈ S for the same values of t.

As f−1 is continuous at t = 0, it follows that there exists δ > 0 such that expp(sv) ∈ S for
|s| < δ. We conclude that S is totally geodesic in M , proving (i).

Finally, observe that since φ̂φ(τ,p)(T(τ,p)Ŝ) = R(∂r)φ(τ,p) ⊕ φ∗p(TpS) for all (τ, p) ∈ Ŝ, it

follows that the induced map of φ̂ is an injection of Ŝ to Gk+1(TM̂) if and only if the induced
map of φ is an injection of S to Gk(TM). This yields (ii). �

The following theorem shows that certain special types of Riemannian manifolds whose
cones possess special holonomy do not admit totally geodesic hypersurfaces.

Theorem 6.7. Let M be a complete Riemannian manifold with non-constant sectional cur-
vature. Assume that M satisfies one of the following conditions:

(i) M2n+1 is Sasakian-Einstein,
(ii) M6 is a 6-dimensional strictly nearly Kähler manifold,
(iii) M7 is a nearly parallel G2-manifold.

Then, M does not admit a totally geodesic hypersurface.

Proof. Observe that in all three casesM is an Einstein manifold with positive Ricci curvature.
As the (non)existence of totally geodesic hypersurfaces is a purely local question, we may
suppose that M is simply connected. Furthermore, as their existence is also independent of
rescalings of the metric, we may also suppose that the Einstein constant of M is equal to
dimM − 1.

Let Σ be a totally geodesic hypersurface of M . By Lemma 6.6, Σ̂ is a totally geodesic

hypersurface of M̂ . By the Gallot Theorem (see [20]), M̂ is locally irreducible since M has
non-constant sectional curvature. Moreover, by [5], we know that:

(i) IfM2n+1 is a Sasakian-Einstein manifold, then the restricted holonomy of M̂ is contained
in SU(n+ 1).

(ii) IfM6 is a strictly nearly Kähler manifold, then the restricted holonomy of M̂ is contained
in G2.

(iii) If M7 is a nearly parallel G2-manifold, then the restricted holonomy of M̂ is contained
in Spin(7).

Now, since M̂ is Einstein (indeed Ricci-flat), by [32, Theorem 4.3] the restricted holonomy of

the cone M̂ is SO(TpM̂). This contradicts the fact that the holonomy of M̂ is contained in
one of three aforementioned groups, yielding the result. �

The following result is concerned with the extendability of cones over totally geodesic
submanifolds of the base.

Lemma 6.8. Let M be a complete real analytic Riemannian manifold and φ : S → M a
compatible totally geodesic immersion of a k-dimensional complete submanifold S. Then

φ̂ : Ŝ → M̂ is an inextendable compatible totally geodesic immersion.

Proof. We have already seen in Lemma 6.6 that φ̂ : Ŝ → M̂ is compatible, so we only need

to show inextendability. Let (τ, p) ∈ Ŝ be arbitrary and w = a(∂r)(τ,p) + v be a nonzero

tangent vector, where v ∈ TpM . We consider the Ŝ-geodesic γ(t) = exp(τ,p)(tw). If v 6= 0,

then γ is defined on all R due to Lemma 6.2, so φ̂ ◦ γ is also globally defined. Otherwise,
we have v = a(∂r)(τ,p), and Lemma 6.2 implies that γ is defined precisely on Ia. Because

φ̂∗(τ,p)((∂r)(τ,p)) = (∂r)(τ,φ(p)), the maximal M̂ -geodesic exp(τ,φ(p))(tφ̂∗(τ,p)(w)) is also defined
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exactly on Ia, so it coincides with φ̂ ◦ γ. We conclude that φ̂ sends maximal geodesics of Ŝ to

maximal geodesics of M̂ , so it is inextendable by Proposition 3.4. �

We can now prove the following characterization of totally geodesic submanifolds in cones:

Theorem 6.9. Let M be a connected n-dimensional complete real analytic Riemannian man-

ifold and consider its Riemannian cone M̂ . Suppose Σ is a k-dimensional manifold with

1 ≤ k ≤ n and f : Σ → M̂ is an inextendable compatible totally geodesic immersion, and

let x ∈ Σ, (τ, p) = f(x) and V = f̃(x) = f∗x(TxΣ). Then exactly one of the following two
situations occur:

(i) The vector (∂r)(τ,p) is in V . In this case, Σ is incomplete, the vector field ∂r is every-
where tangent to the immersion f and there exists a complete compatible totally geodesic
immersion g : S →M such that f and ĝ are equivalent.

(ii) The vector (∂r)(τ,p) is not in V . In this case, Σ is complete, the vector field ∂r is nowhere
tangent to the immersion and there exists:

• a complete compatible totally geodesic immersion g : S →M ,

• a complete compatible totally geodesic immersion h : E → Ŝ, where E is a hyper-

surface in Ŝ,
• and a surjective local isometry ρ : E → Σ,

such that the following diagram commutes:

E Ŝ

Σ M̂

ρ

h

ĝ

f

Proof. We work with the natural projection π : M̂ → M . Let W = π∗(τ,p)(V ) ⊆ TpM , which
is precisely the orthogonal projection of V onto TpM . We have that V ⊆ R(∂r)(τ,p) ⊕W and
the dimension of W is either k − 1 or k, depending on whether (∂r)(τ,p) is in V or not.

Firstly, suppose that (∂r)(τ,p) ∈ V , so V = R(∂r)(τ,p)⊕W . Then Σ is not complete because
the geodesic exp(τ,p)(t(∂r)(τ,p)) is not defined on all R, and for every y ∈ Σ the tangent space

f̃(y) contains (∂r)f(y) (otherwise, Σ would be complete by Corollary 3.5). Therefore, the

radial vector field ∂r is everywhere tangent to the immersion f : Σ → M̂ . Now, consider
an ε > 0 such that êxp(τ,p) is a diffeomorphism of the ball B

T(τ,p)M̂
(0, ε) onto its image and

the set F = êxp(τ,p)(V ∩ B
T(τ,p)M̂

(0, ε)) is an embedded totally geodesic submanifold of M̂ .

Then ∂r is everywhere tangent to F and the restriction of π to F has constant rank equal
to k − 1, so the constant rank theorem implies that (perhaps after shrinking ε) the image
π(F ) is a (k − 1)-dimensional embedded submanifold of M and π : F → π(F ) is a surjective
submersion. Let (s, q) ∈ F be any point and consider a nonzero w ∈ Tqπ(F ) = π∗(s,q)(T(s,q)F ).

Then, since (∂r)(s,q) is tangent to F , the vector w ∈ T(s,q)M̂ is also tangent to F . As F is

totally geodesic, we may choose δ > 0 such that the M̂ -geodesic γ̂(t) = êxp(s,q)(tw) is in F for

all t ∈ (−δ, δ), and as a consequence the curve π(γ̂(t)) is also contained in π(F ) for t ∈ (−δ, δ).
Recall from (11) that π(γ̂(t)) = expq(f(t)w), where f : R → R is a homeomorphism satisfying
f(0) = 0. Because of this, the geodesic expq(tw) is contained in π(F ) for small values of
t. This proves that π(F ) is a totally geodesic submanifold of M , and in particular the
subspace W is totally geodesic in TpM . Consider the complete compatible totally geodesic
immersion g : S → M associated with W , and let y ∈ S be the unique point with g(y) = p

and g̃(y) = W . The cone map ĝ : Ŝ → M̂ is an inextendable compatible totally geodesic

immersion by Lemma 6.8 and it satisfies ĝ∗(τ,y)(T(τ,y)Ŝ) = R(∂r)(τ,p)⊕W = V , so f and ĝ are
equivalent by uniqueness.
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Secondly, assume that (∂r) /∈ V , so that V is a hyperplane in R(∂r)(τ,p) ⊕ W . In this

setting, Σ is complete by Corollary 3.5 and for all y ∈ Σ the tangent space f̃(y) does not
contain the vector (∂r)f(y) (otherwise, Σ would admit a noncomplete geodesic). Thus, the
radial vector field is nowhere tangent to f : Σ →M . We now argue in a similar way as in the
previous paragraph. Let ε > 0 be such that êxp(τ,p) is a diffeomorphism of B

T(τ,p)M̂
(0, ε) to

its image and F = êxp(τ,p)(V ∩B
T(τ,p)M̂

(0, ε)) is an embedded totally geodesic submanifold of

M̂ . Then, as ∂r is nowhere tangent to F , the restriction of π to M has constant rank equal
to k, so we may shrink ε so as to have that π(F ) is a k-dimensional embedded submanifold
of M and π : F → π(F ) is a diffeomorphism. The same argument as above shows that π(F )
is a totally geodesic submanifold, so in particular W is a totally geodesic subspace of TpM .
Let g : S → M be the associated complete compatible totally geodesic extension and y ∈ S

the unique point with g(y) = (τ, p) and g̃(y) = W . Then the cone map ĝ : Ŝ → M̂ is the
inextendable compatible totally geodesic immersion associated with R(∂r)(τ,p) ⊕W . Because
V ⊆ R(∂r)(τ,p) ⊕W , we may use Proposition 3.6 to conclude. �

Corollary 6.10. Let M be an analytic Riemannian manifold and M̂ its Riemannian cone.

If Σ is a maximal totally geodesic submanifold of M̂ , then Σ is either a hypersurface of M̂ or
a cone over a maximal totally geodesic submanifold S of M .

Theorem 6.9 reduces the classification of (maximal) totally geodesic submanifolds of cones
to that of the totally geodesic submanifolds of the base manifold, and separately to that of
totally geodesic hypersurfaces in the cone. We note that these hypersurfaces may not arise
as cones over totally geodesic hypersurfaces in the base space, as we will see in Example 6.13
and Example 6.15.

Remark 6.11. Let M be a Riemannian manifold and suppose that Σ is a totally geodesic
hypersurface of M that is not tangent to the cone vector field ∂r. We may assume without

loss of generality that Σ ⊆ M̂ is embedded, and we choose a point (τ, p) ∈ Σ. The tangent

space V = T(τ,p)Σ ⊆ T(τ,p)M̂ is a totally geodesic hyperplane satisfying ∂r /∈ V . This means

that there exists a unique (possibly zero) vector η ∈ TpM such that T(τ,p)M̂ ⊖V = R(∂r + η).

Let X = a∂r + v ∈ V be arbitrary, where a ∈ R and v ∈ V . Then, since V is R̂X-invariant

and R̂X is symmetric, it follows that ∂r + η is an eigenvector of R̂X . However, by (9) the

image of R̂X is contained in TpM , and because ∂r + η is not tangent to the link we must have

R̂X(∂r+η) = 0, so R̂(η, v)v = R̂(∂r+η,X)X = 0 for all X ∈ V . As the orthogonal projection
of V onto TpM is a linear isomorphism, we deduce that if V = R(∂r+η)

⊥ is a totally geodesic

hyperplane, then R̂(η, v)v = 0 for all v ∈ TpM .

Proposition 6.12. Let M be a space of constant sectional curvature κ ∈ R. Then, every

totally geodesic submanifold of dimension d ≥ 2 of the Riemannian cone M̂ is a cone over a
totally geodesic submanifold S of M if and only if κ 6= 1.

Proof. Due to Theorem 6.9, we may focus only on totally geodesic hypersurfaces. Let M
be a connected complete Riemannian manifold of constant sectional curvature κ ∈ R and

dimension n ≥ 2, and suppose that M̂ admits a totally geodesic hypersurface Σ that is not

tangent to the cone vector field. By shrinking Σ if necessary, we can assume that Σ ⊆ M̂ is
embedded and every (τ, p) ∈ Σ is such that V = T(τ,p)Σ does not contain ∂r, so its orthogonal
complement must be generated by a vector of the form ∂r + η for a certain η ∈ TpM . Now,

from Remark 6.11 and (9) we deduce that 0 = R̂(η, v)v = (κ − 1)(|v|2η − 〈η, v〉v) for all
v ∈ TpM , which means that either κ = 1 or η = 0. If κ 6= 1, we deduce that V = T(τ,p)M for

all (τ, p) ∈ Σ, so Σ is an integral manifold of the distribution D = ∂⊥r on M̂ . The maximal
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integral manifolds of D are precisely the links {τ} ×M for each τ > 0, so Σ is actually an
open subset of a leaf {τ0} ×M for a certain τ0 > 0. However, the last equation in (8) shows
that the leaves are never totally geodesic, so we arrive at a contradiction. We conclude that if

κ 6= 1, the inextendable totally geodesic hypersurfaces of M̂ are precisely the cones over the
complete totally geodesic hypersurfaces of M .

If M has constant sectional curvature equal to 1, then M̂ is flat by (9), so for every point

(τ, p) ∈ M̂ and every hyperplane V ⊆ T(τ,p)M̂ there exists an inextendable compatible totally

geodesic hypersurface Σ ⊆ M̂ such that (τ, p) ∈ Σ and T(τ,p)Σ = V . In particular, Σ is not
(contained in) a cone over a totally geodesic hypersurface ofM if and only if (∂r)(τ,p) /∈ V . �

Example 6.13. Let us assume that M = Sn(1). Then M̂ is isometric to Rn+1 \{0} in such a

way that the cones over the totally geodesic submanifolds of M̂ are of the form V \{0}, where
V is an arbitrary vector subspace of Rn+1. In particular, any affine hyperplane Σ ⊆ Rn+1 not
containing the origin is a totally geodesic hypersurface that does not appear as a cone over a
totally geodesic hypersurface of Sn.

Proposition 6.14. Let M be either equal to S3C,τ (r) or RP3
C,τ (r) and let M̂ denote the Rie-

mannian cone over M . Then, every totally geodesic submanifold of dimension d ≥ 2 is a
cone over a totally geodesic submanifold of M if and only if τ 6= 1 or r 6= 1, i.e. M has not
constant curvature 1.

Proof. Let M = S3C,τ (r) be a three-dimensional Berger sphere of radius r and deformation

parameter τ . We will show that M̂ does not admit any totally geodesic hypersurfaces unless
r = τ = 1 (that is, M is the unit round sphere).

We first establish some notation. Recall that S3C,τ (r) = U(2)/U(1) as a homogeneous

space, and we have a reductive decomposition u(2) = u(1) ⊕ p, where u(1) = RK and p =
span{E,X, Y } for the matrices

K = iE11, E =
i

r
√
τ
E22, X =

1

r
(E21 − E12), Y =

i

r
(E21 + E12).

Furthermore, if 〈·, ·〉 denotes the inner product on p induced by the Berger metric on M , then
E, X and Y are orthonormal vectors with respect to this metric. Furthermore, the vertical
and horizontal subspaces at o = eU(1) with respect to the Hopf fibration are Vo = RE and
Ho = span{X,Y }.

Let us suppose that M 6= S3(1) and Σ is a totally geodesic hypersurface of M̂ . We may
assume that Σ is embedded in M . Because M is homogeneous, Corollary 6.4 allows us to

suppose that Σ passes through a point of the form (t, o) with tangent space V ⊆ T(t,o)M̂ ≡
R∂r ⊕ p. As M does not admit totally geodesic hypersurfaces [47, Theorem A], we have that
∂r /∈ V , so V ⊥ must be spanned by a vector of the form ∂r + η, where η ∈ p. We may write
η = a1E + a2X + a3Y for some constants a1, a2, a3 ∈ R. From Remark 6.11 we also know

that R̂(η, Z)Z = 0 for all Z ∈ p. A polarization argument shows that the previous condition

is equivalent to R̂(η, Z)W + R̂(η,W )Z = 0 for all Z, W ∈ p.
Firstly, suppose that τ 6= r2. Then the equations

0 =R̂(η,E)Y + R̂(η, Y )E =
(
1− τ

r2

)
(a3E + a1Y ),

0 =R̂(η,E)X + R̂(η,X)E =
(
1− τ

r2

)
(a2E + a1X),

imply that a1 = a2 = a3 = 0, so η = 0 and V = p. Using the action of U(2) we can repeat this
argument for all points of Σ to see that Σ is an integral manifold of D = ∂⊥r , so Σ is an open
set of a leaf {t0} ×M , which yields a contradiction as the leaves of the cone are not totally
geodesic.
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Secondly, suppose that τ = r2 and r 6= 1. Since 0 = R̂(η,X)Y + R̂(η, Y )X = 4(r2−1)
r2

(a3X+
a2Y ), we obtain a2 = a3 = 0. As a consequence, η ∈ Vo, and V contains the horizontal

subspace Ho. Using (10), we obtain that
(
4− 4

r2

)
t∂r = (∇̂XR̂)(X,Y, Y ) ∈ V , so ∂r ∈ V ,

which again yields a contradiction.

All in all, we have shown that M̂ does not admit totally geodesic hypersurfaces except
in the case M = S3(1). Since the natural projection S3C,τ (r) → RP3

C,τ (r) is a Riemannian
covering map, the same result holds for the three-dimensional Berger projective space. �

In view of these latter results, one could think that these totally geodesic hypersurfaces
nowhere tangent to the radial vector can only happen if the base is a sphere of radius one.
However, the following example shows that there are many “non-trivial” local examples of
such phenomena.

Example 6.15. Consider two smooth positive functions p, q : R2 → R. We consider the
Riemannian manifold M = (0, π/2) × R2 (endowed with Cartesian coordinates x, y, z) with
the metric

g = dx2 + (sinx)2p(y, z)2dy2 + (sinx)2q(y, z)2dz2.

We see that the metric on the cone M̂ = (0,∞) × (0, π/2) ×R2 is now given by

ĝ = dr2 + r2dx2 + r2(sinx)2p(y, z)2dy2 + r2(sinx)2q(y, z)2dz2

with respect to the product coordinates (r, x, y, z). A calculation shows that the hypersurface

Σ =

{(
1

cos x
, x, y, z

)
: (x, y, z) ∈M

}
⊆ M̂

is totally geodesic in M̂ . Note that Σ does not arise as a cone over a totally geodesic hyper-
surface of M because the cone vector field is nowhere tangent to it.

The abundance of examples highlights the appropriateness of further exploring this class
of totally geodesic hypersurfaces in cones.

7. Proof of the main theorems

In this section we provide the proofs of the main theorems of this article. We go through
each one of the homogeneous nearly Kähler 6-manifolds with non-constant sectional curvature,
and classify their totally geodesic submanifolds.

7.1. The complex projective space.

Lemma 7.1. If v ⊆ p is a totally geodesic subspace and v contains a vertical or a horizontal
vector, then v is well-positioned.

Proof. If X ∈ v is a unit vertical vector, we may assume by means of the isotropy representa-
tion that X = e1. Since the spectrum of the Jacobi operator Re1 : p⊖Re1 → p⊖Re1 consists
of the eigenvalues 2, with eigenspace Re2, and

1
8 , with eigenspace p2, the claim follows from

Remark 3.3. Similarly, if X is horizontal we may suppose that X = e3, and in this case the
eigenvalues of Re3 : p⊖Re3 → p⊖Re3 are 1

8 , with eigenspace p1, 1, with eigenspace Re4, and
5
8 , with eigenspace span{e5, e6}, so the result also holds in this case. �

Proposition 7.2. There are no dimension four totally geodesic submanifolds in CP3.

Proof. Assume, on the contrary, that there exists a totally geodesic submanifold Σ of M
of dimension four passing through o, and let v ⊆ p be its corresponding totally geodesic
subspace. From Lemma 7.1 and by dimension reasons, we know that v is well-positioned. We
will distinguish three possibilities according to the dimension of v ∩ p1.
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If v ∩ p1 = p1, then v ∩ p2 is two-dimensional. By using the isotropy representation if
necessary, we may suppose that e3 ∈ v. We can therefore consider a basis of v of the form
{e1, e2, e3, a4e4 + a5e5 + a6e6}. In particular, a6e5 − a5e6 is orthogonal to v, and the equality

0 = 〈R(e1, e2)(a4e4 + a5e5 + a6e6), a6e5 − a5e6〉 =
3(a25 + a26)

4

yields a5 = a6 = 0, so actually v = span{e1, e2, e3, e4}. This is a contradiction due to the fact
that (∇e1R)(e1, e2, e3) = − 3

4
√
2
e6 /∈ v, so this case is not possible.

If v ∩ p1 is one-dimensional (which forces dim v ∩ p2 = 3), we may use the isotropy repre-

sentation to assume that v contains e1 and e3. In particular, e5 = 4
√
2(∇e3R)(e3, e1, e3) also

belongs to v. As a consequence, v admits a basis of the form {e1, e3, e5, a4e4 + a6e6}, which
means that a6e4 − a4e6 ∈ p⊖ v, and

0 = 〈R(e3, e5)(a4e4 + a6e6), a6e4 − a4e6〉 = −1

8
(a24 + a26),

so a4 = a6 = 0, another contradiction.
If v ∩ p1 = 0, then v = p2, which is also not possible, since (∇e3R)(e3, e4, e6) = − 1

4
√
2
e1 is

not in v. In conclusion, no such v can exist, and the claim follows. �

Proposition 7.3. Let Σ be a complete totally geodesic submanifold of CP3 with dimΣ = 3.
Then Σ is congruent to the standard RP3

C, 1
2

(2).

Proof. Let Σ be such a submanifold, and assume without loss of generality that Σ passes
through o with tangent space v. Once again, by dimension reasons we see that v ∩ p2 6= 0,
and Lemma 7.1 implies that v is well-positioned. We consider three cases according to the
dimension of v ∩ p1.

If v ∩ p1 = 0, then v ⊆ p2 is a hyperplane, and since the isotropy representation is tran-
sitive on the unit sphere of p2, we may assume that v = span{e4, e5, e6}. However, since
R(e4, e5)e6 =

1
8e3, we obtain a contradiction.

If v∩p1 is one-dimensional, then by using the isotropy representation we may suppose that
v contains e1 and e3. Note that 4

√
2(∇e3R)(e3, e1, e3) = e5 also belongs to v, which gives

v = span{e1, e3, e5} = pRP3

C, 12

(
√
2). Therefore, in this case we obtain Σ = RP3

C, 1
2

(
√
2).

Finally, if v ∩ p1 = p1, then by using the isotropy representation we can assume that
v = span{e1, e2, e3}. This is not possible, since R(e1, e2)e3 = 3

4e4 is not in v. This finishes the
proof. �

Proposition 7.4. Let Σ be a complete totally geodesic surface inside CP3. Then Σ is con-
gruent to one of the spheres described in Table 1.

Proof. Suppose that v ⊆ p is a totally geodesic plane, and consider the corresponding complete
totally geodesic submanifold Σ of M . Notice that Σ must be intrinsically homogeneous, and
thus a space of constant curvature since it is of dimension two. Also, note that either v is
completely contained in one of the irreducible K-submodules of p or it contains a vector that
projects nontrivially on p1 and p2 at the same time. Since the case v = p1 already corresponds
to Σ being the fiber of the twistor fibration, we may skip this case.

Assume that v ⊆ p2. Using the isotropy representation if necessary, we can assume that
e3 ∈ v. One sees that the kernel of the Cartan operator CX is spanned by e3 and e4, so
we must have v = span{e3, e4} = pSU(2)·o, since Σ has constant curvature, which means that
Σ = SU(2) · o.

Finally, suppose that there exists a vector X ∈ v such that Xp1 and Xp2 are nonzero.
By using the isotropy representation and rescaling, we can assume that X = e1 + λe3
for a certain λ > 0. In this case, kerCX is spanned by X and Y = 3λe2 + (6 − λ2)e4,
so necessarily v = span{X,Y }, since Σ has constant curvature. In particular, we have
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0 = 4
√
2〈(∇XR)(Y,X, Y ), e5〉 = −λ

(
2λ4 + 3λ2 − 9

)
, and this is only possible if λ =

√
3/2.

Therefore, v = span{
√
2e1 +

√
3e3,

√
2e2 +

√
3e4} = pSU(2)Λ3

·o. As a consequence, we see that

in this case Σ = SU(2)Λ3 · o. This finishes the proof. �

Proof of Theorem A. The theorem follows from combining Theorem 6.7, Proposition 7.2,
Proposition 7.3, and Proposition 7.4. �

7.2. The flag manifold.

Proposition 7.5. The flag manifold F(C3) does not admit any codimension two totally geo-
desic submanifolds.

Proof. Suppose that F(C3) admits a totally geodesic submanifold of dimension four. This
means that there exists a totally geodesic subspace v ⊆ p with dim v = 4. By a dimension
argument, one sees that the intersection v∩(p1⊕p2) is nontrivial, and using both the isotropy
representation of T2 and conjugating by a permutation matrix if necessary, we may suppose
that v admits a nonzero vector of the formX = e1+λe3, where λ ∈ R is a nonnegative number.

The Cartan operator CX is diagonalizable with eigenvalues 0, 3λ
√
1+λ2

2
√
2

and −3λ
√
1+λ2

2
√
2

, and

corresponding eigenspaces

span{e1, e3, e5, λe2 + e4}, R
(
e2 − λe4 +

√
1 + λ2e6

)
, R

(
−e2 + λe4 +

√
1 + λ2e6

)
.

First, assume that λ > 0, so the three eigenvalues given above are pairwise distinct. We
will prove that v coincides with the kernel of the Cartan operator CX .

If CX |v is not identically zero, then there is a vector of the form Y = εe2−λεe4+
√
1 + λ2e6,

where ε ∈ {±1}.
If λ 6= 1, then we can construct a basis of v with the vectors

X = e1 + λe3,

Y = εe2 − λεe4 +
√

1 + λ2e6,

U = 8R(X,Y )X = −2ε
(
5λ2 + 8

)
e2 + 2ελ

(
8λ2 + 5

)
e4 −

(
1 + λ2

) 3
2 e6,

V = 8
√
2(∇XR)(X,Y, Y ) = −3λ

√
λ2 + 1

(
3λ2 + 5

)
εe1 − 3

√
λ2 + 1

(
5λ2 + 3

)
εe3

− 6λ
(
λ2 − 1

)
e5.

Therefore, the vector T = −λ
√
λ2 + 1

(
5λ2 + 3

)
e2 −

√
λ2 + 1

(
3λ2 + 5

)
e4 +2λ

(
λ2 − 1

)
εe6 is

orthogonal to v. Now, we see that 0 = 〈R(X,U)X,T 〉 = 36ελ3
(
λ2 − 1

)√
λ2 + 1, which is a

contradiction.
If λ = 1, the equation R(X,Y )X + 13

4 Y = 3
√
2e6 implies that the vectors X = e1 + e3,

Z = e2 − e4, and T = e6 are in v. We can therefore complete X, Z and T to a basis of v
by adding a vector of the form U = c1e1 + c2e2 − c1e3 + c2e4 + c3e5, where ci ∈ R for each
i ∈ {1, 2, 3}. In particular, we have that the vector −c2e1 + c1e2 + c2e3 + c1e4 is orthogonal
to v, so 0 = 2〈R(X,Z)U,−c2e1 + c1e2 + c2e3 + c1e4〉 = −9(c21 + c22), which forces c1 = c2 = 0.
Therefore v = span{X,Z, e5, e6}. However, we have 8R(X, e5)e6 = 3(e2 + e4) /∈ v, which
yields a contradiction.

From all of the above, we see that v must coincide with kerCX = span{e1, e3, e5, λe2 + e4}.
However, this is also not possible, since 8

3R(e1, e3)(λe2 + e4) = −e2 + λe4 /∈ v. Thus, the case
λ > 0 is not possible.

Now, suppose that λ = 0, and we deduce that e1 ∈ v. Since the intersection of v with p2⊕p3
is at least two-dimensional, we can use the isotropy representation to assume that there is a
tangent vector of the form Y = e3 + µe5, where µ ∈ R. However, µ = 0, for if µ 6= 0, by
means of the full isotropy representation we can conjugate v to a new totally geodesic subspace
containing a tangent vector of the form e1 + µe3, and we may use the previous case to derive
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a contradiction. Now this yields that e1 + e3 is also in v, which is yet another contradiction.
We conclude that this case is also not possible, and therefore there are no codimension two
totally geodesic subspaces in p. �

Proposition 7.6. Let Σ ⊆ F(C3) be a complete totally geodesic submanifold of dimension

three. Then Σ is congruent to either F(R3) or to S3
C, 1

4

(
√
2).

Proof. We need to classify three-dimensional totally geodesic subspaces of p. Let v ⊆ p be
such a subspace, and Σ = expo(v) the corresponding totally geodesic submanifold. Then we
know that there exists a vector X ∈ v∩(p1⊕p2), and using the full isotropy representation, we
may assume that it is of the form X = e1 + λe3 for a certain λ ≥ 0. The Cartan operator CX

is diagonalizable with eigenvalues 0, 3λ
√
1+λ2

2
√
2

, and −3λ
√
1+λ2

2
√
2

, and corresponding eigenspaces

span{e1, e3, e5, λe2 + e4}, R
(
e2 − λe4 +

√
1 + λ2e6

)
, R

(
−e2 + λe4 +

√
1 + λ2e6

)
.

First, assume that λ > 0, so the three eigenvalues given above are pairwise distinct. We
will prove in this case that either Σ = SU(2)(1,0,1) ·o or v ⊆ kerCX . Indeed, if there is a vector

of the form Y = εe2 − λεe4 +
√
1 + λ2e6 in v, where ε ∈ {±1}, then we may construct a basis

of v by adding the vector

Z = 8R(X,Y )X = −2
(
5λ2 + 8

)
εe2 + 2λ

(
8λ2 + 5

)
εe4 −

(
λ2 + 1

)3/2
e6 ∈ v.

In particular, −λe1 + e3 is orthogonal to v, and we must have 0 = 〈R(X,Y, Y ),−λe1 + e3〉 =
3
4λ(λ

2 − 1). This forces λ = 1. Note that 4R(X,Y )X = −13εe2 + 13εe4 −
√
2e6 ∈ v. This

means that v is spanned by e1 + e3, e2 − e4 and e6, so Σ coincides with SU(2)(1,0,1) · o. Now,
suppose that v ⊆ kerCX . Then either v = span{e1, e3, e5} (which yields Σ = F(R3)) or using
the isotropy we can find a basis of v given by the vectors of the form

X = e1 + λe3, Y = a1e1 + a3e3 + a5e5 + (λe2 + e4), Z = c1e1 + c3e3 + c5e5,

where λ ≥ 0. In particular, the vectors e6 and e2 − λe4 are in p ⊖ v. Now, we also see that

0 = 〈R(X,Y )X, e2 − λe4〉 = 3λ(λ2−1)
4 , which means that λ = 1. On the other hand, we have

〈(∇XR)(X,Y, Y ), e6〉 =
3(a3 − a1)

4
√
2

, 〈(∇XR)(X,Y, Y ), e2 − e4〉 =
−3a5

2
√
2
,

〈(∇XR)(X,Z, Y ), e6〉 =
3(c3 − c1)

4
√
2

, 〈(∇XR)(X,Z, Y ), e2 − e4〉 =
−3c5

2
√
2
.

Since all of these inner products are zero, we deduce that a5 = c5 = 0, a1 = a3 and c1 = c3.
In particular, Z and X are proportional, a contradiction.

We now assume λ = 0, so e1 ∈ v. Since p ∩ (p2 ⊕ p3) is nonzero, we may use the isotropy
representation to suppose that a vector of the form e3 + µe5 belongs to v. Note that if
µ 6= 0, then using an element of the full isotropy group permuting the factors of the isotropy
representation, we can carry this setting to the one in the previous paragraph, so we may
assume that µ = 0, and thus e3 ∈ v. As a consequence, e1 + e3 ∈ v, and we may use the
arguments in the case λ > 0 to derive the same conclusions, and the proposition is proved. �

Proposition 7.7. Every complete totally geodesic surface of F(C3) is congruent to one of the
following:

(i) the totally geodesic T2
Λ,

(ii) the Berger sphere S3
C, 1

4

(
√
2),

(iii) the fiber CP1,

(iv) or a totally geodesic RP2
(
2
√
2
)
⊆ F(R3).



38 J. M. LORENZO-NAVEIRO AND A. RODRÍGUEZ-VÁZQUEZ

Proof. Let v be a totally geodesic subspace of dimension 2 in p. We define r ∈ {1, 2, 3} to be
the largest number such that there exists a vector X ∈ v that projects nontrivially in r of the
irreducible submodules of p.

The case r = 3. Let X ∈ v be a vector that projects nontrivially on each of the submodules
pi. Then, by means of the isotropy representation, we know that X is (up to T2-conjugacy
and scaling) of the form X = e1 + a3e3 + a5e5 + a6e6, where a3, a

2
5 + a26 6= 0.

First, suppose that a6 6= 0. Then, one sees that the kernel of the Cartan operator CX is
spanned by X and Y = a3a5e1+a3a6e2+a5e3+a6e4+a3e5. As a consequence, if X is tangent
to a totally geodesic surface Σ, then its tangent space v = ToΣ is precisely v = span{X,Y }. In
particular, since Σ is intrinsically homogeneous and therefore of constant sectional curvature,
we have the equations

0 =〈(∇XR)(X,Y, Y ), e4〉 =
3a23a6(1− a25 − a26)

8
√
2

,

0 =〈(∇XR)(X,Y, Y ), e5〉 =
3a3a

2
6(a

2
3 − 1)

8
√
2

,

which imply a3 ∈ {±1} and a25 + a26 = 1. Therefore, we may rewrite v as the span of

X = e1 + εe3 + cosφe5 + sinφe6, Y = ε cos φe1 + ε sinφe2 + cosφe3 + sinφe4 + εe5,

where ε ∈ {±1} and sinφ 6= 0. It turns out that v = zp(X) is the centralizer of X in p, and in

particular it is (maximal) abelian. If ε = 1, then the element k = diag(eiφ/3, 1, e−iφ/3) ∈ T2

carries the subspace pT2
Λ
= span{e1 + e3 + e5, e2 + e4 − e6} to zp(X) = v, which means that

Σ is congruent to T2
Λ. Similarly, if ε = −1, the element k = diag(eiφ/3, eiπ/3, e−i(φ+π)/3) ∈ T2

carries pT2
Λ
to zp(X) = v, and thus Σ is congruent to T2

Λ.

Now, assume that a6 = 0. In this case, the kernel of the Cartan operator CX is equal to
so(3), see §5.2.1. Thus, the only totally geodesic surfaces containing X are projective planes
contained in F(R3).

The case r = 2. We can find a vector X ∈ v that projects nontrivially on two of the
three irreducible submodules. By using the full isotropy representation and rescaling, we can
assume that X = e1 + λe3 for a certain λ > 0. Take any vector Y ∈ v⊖ RX.

On the one hand if, DXY = 0, then Y ∈ kerDX ⊖ RX = R(e2 + λe4), so we may directly
assume that Y = e2+λe4, and we have v = span{X,Y }. In particular, observe that −λe2+e4
is orthogonal to v, and the condition 0 = 〈R(X,Y )X,−λe2 + e4〉 = 3λ(λ2 − 1) forces λ = 1.
Thus, v = span{e1 + e3, e2 + e4}, so Σ = SO(3)σ · o.

On the other hand, if DXY 6= 0, by Proposition 4.8, the vectors Dk
XY (for k ≥ 0) must

lie in a common eigenspace of RX (of dimension greater than one because Y and DXY are
orthogonal) and in the kernel of CX .

Moreover, the spectrum of the Jacobi operator RX consists of the (pairwise distinct) eigen-
values

0,
λ2 + 1

8
,

17 + 17λ2 + 3
√
25λ4 − 14λ2 + 25

16
,

17 + 17λ2 − 3
√
25λ4 − 14λ2 + 25

16
,

and the only eigenspace of dimension greater than one is that of λ2+1
8 , which actually is the

direct sum R(−λe1 + e3) ⊕ p3. On the other hand, the kernel of the Cartan operator CX is
span{e1, e3, e5, λe2 + e4}. Thus, Y ∈ span{−λe1 + e3, e5}, and in particular v is contained in
so(3), so Σ is contained in F(R3).

The case r = 1. Here, we simply have p = pk for k ∈ {1, 2, 3}, so actually Σ is congruent
to the fiber CP1 of the submersion F(C3) → CP2. �

Proof of Theorem B. The result now follows by combining Theorem 6.7, Proposition 7.5,
Proposition 7.6, and Proposition 7.7. �
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7.3. The almost product S3 × S3.

Lemma 7.8. Let v ⊆ p be a totally geodesic subspace. If v contains a nonzero vertical or
horizontal vector, then v is well-positioned.

Proof. Suppose that v contains a nonzero vector X ∈ p1 (respectively, X ∈ p2). Since the
isotropy representation of ∆SU(2) is transitive in the unit sphere of p1 (respectively, p2), we
may suppose that X = e1 (respectively, X = e4). Note that the matrices of Re1 and Re4

are given by Re1 = diag(0, 3/4, 3/4, 0, 1/12, 1/12) and Re4 = diag(0, 1/12, 1/12, 0, 3/4, 3/4),
which means that v = (v ∩ Re1)⊕ (v ∩ span{e2, e3})⊕ (v ∩ Re4)⊕ (v ∩ span{e5, e6}) in both
cases. This last equation implies directly that v is well-positioned. �

Proposition 7.9. The space M = S3×S3 does not admit any codimension two totally geodesic
submanifolds.

Proof. Suppose on the contrary that there exists a four-dimensional totally geodesic subman-
ifold Σ of M , and without loss of generality assume that Σ passes through o with tangent
space v. A dimension argument yields that v∩p1 is nonzero. Since the isotropy representation
is transitive on the unit sphere of p1, we can further assume that e1 ∈ v. Because v is Re1-
invariant, using the eigenspace decomposition of Re1 (obtained in the proof of the previous
lemma) we get v = (v ∩ span{e1, e4}) ⊕ (v ∩ span{e2, e3}) ⊕ (v ∩ span{e5, e6}). In particular
it follows that either e4 ∈ v or e4 ∈ p⊖ v.

Firstly, suppose that e4 ∈ v. If e2 and e3 are also tangent to v, then v = span{e1, e2, e3, e4},
which is a contradiction because R(e1, e2)e4 = − 5

12e5 /∈ v. Similarly, if e5 and e6 are tangent to
Σ we deduce that v = span{e1, e4, e5, e6}, which is also not possible, as in that case we would
have R(e1, e4)e5 =

1
6e2 /∈ v. Thus, we see that dim v∩ span{e2, e3} = dim v∩ span{e5, e6} = 1.

Conjugating by an adequate element in K, we can assume that v ∩ span{e2, e3} = Re2. As
a consequence, e5 = −6R(e1, e4)e2 ∈ v, and we obtain v = span{e1, e2, e4, e5}. However,

the equality 6
√
3(∇e1R)(e1, e4, e2) = e6 implies that v is not ∇R-invariant, which yields a

contradiction once again. Therefore, e4 is not tangent to Σ, so it must be normal to v.
We suppose that e1 ∈ v and e4 ∈ p ⊖ v. By dimensional reasons, and using the isotropy

representation if necessary, there are λ, c5, c6 ∈ R such that e2+λe3, c5e5+c6e6 ∈ v. Moreover,

0 = 〈R(e1, e2 + λe3)(c5e5 + c6e6), e4〉 =
5

12
(c5 + λc6) ,

0 = 〈∇e1R(e1, e2 + λe3, c5e5 + c6e6), e4〉 =
5

12
√
3
(λc5 − c6) ,

which implies c5 = c6 = 0, a contradiction. We conclude that the existence of Σ is not
possible. �

Proposition 7.10. Let Σ → S3 × S3 be a three-dimensional complete totally geodesic sub-
manifold. Then Σ is congruent to either the round sphere S3 (viewed as the first factor) or
the Berger sphere S3

C, 1
3

(2).

Proof. Suppose that Σ is such a submanifold, and assume without loss of generality that Σ
passes through o with tangent space v.

We start by assuming that v is well-positioned, so v = (v ∩ p1) ⊕ (v ∩ p2). We consider
several cases according to the dimension of v ∩ p1.

If v ∩ p1 = 0, then v = p2. However, the equation (∇e4R)(e4, e5, e4) =
1

3
√
3
e3 implies that

v is not ∇R-invariant, a contradiction.
If v∩p1 is one-dimensional, we may use the isotropy representation to assume that this inter-

section is spanned by e1. Now, since v∩ p2 is two-dimensional, it must intersect span{e5, e6},
and we may use an element of K that fixes e1 if necessary to assume that e5 ∈ v. As a
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consequence, e6 = 3
√
3(∇e5R)(e5, e1, e5) is also in v, so v = span{e1, e5, e6}, which implies

that Σ = S3
C, 1

3

(2) is the Berger sphere.

If v ∩ p1 is two-dimensional, then v ∩ p2 is one-dimensional, and we can assume that it is
spanned by e4. Arguing in an identical fashion as above, we can also assume that e2 ∈ v, and
therefore we have e6 = 3

√
3(∇e4R)(e2, e4, e4) ∈ v, but this contradicts our hypothesis that

v ∩ p2 is one-dimensional.
Lastly, if v∩ p1 = p1, then we actually have v = p1, so Σ is simply the fiber of the fibration

S3 × S3 → S3.
Now, suppose that v is not well-positioned, so that v ∩ p1 = v ∩ p2 = 0 by Lemma 7.8. We

start by proving (up to isotropy action) that v admits a vector of the form X = e1 + λe4 for
a certain λ ∈ R \ {0}.

Firstly, note that since dim v = 3, the intersection v ∩ span{e1, e4, e5, e6} is nontrivial.
Conjugating by an adequate element of K and rescaling, we can assume that a vector of the
form X = e1 + ρ cos θe4 + ρ sin θe5 is in v, where ρ ≥ 0 and θ ∈ [0, 2π). The condition
v ∩ p1 = v ∩ p2 = 0 forces ρ > 0, and the orthogonal projection maps v → pi are vector space
isomorphisms. Note that if θ ∈ {0, π}, then X = e1 ± ρe4, and our assertion is proved. On
the other hand, if θ /∈ {0, π}, we define polynomials

f(x) =
1

432

(
−ρ2 + 12x− 1

) (
−4ρ2 cos(2θ) + ρ2(4− 27x) + 9x(4x− 3)

)
,

g(x) =
1

144

(
−32ρ2 cos(2θ) + 9ρ4 + 50ρ2 + 144x2 − 120

(
ρ2 + 1

)
x+ 9

)
.

One sees that the product fg is precisely the characteristic polynomial of RX , so in particular
we obtain that f(RX)g(RX) = 0. Furthemore, f and g are relatively prime. As a consequence,
because v is RX-invariant, it admits the splitting v = (RX⊕(v∩ker f(RX))⊕(v∩ker g(RX )).
It turns out that

ker f(RX) = span{e2, ρ sin θe1 − e5, ρ cos θe1 − e4}, ker g(RX) = span{e3, e6},

and as the projections of v onto Re3 and Re6 are both nontrivial, we obtain that there
is a vector in v of the form e3 + λe6 (where λ 6= 0), and by conjugating via the isotropy
representation we can change v so that e1 + λe4 ∈ v.

We now let Y = e1+λe4 ∈ v, where λ ∈ R\{0}. The Jacobi operator RY ∈ End(p⊖RY ) has

three different eigenvalues 0, 1+λ2

12 and 3(1+λ2)
4 , with corresponding eigenspaces R(λe4 − e1),

span{λe2 − e5, λe3 − e6} and span{e2 + λe5, e3 + λe6}. Note that the isotropy subgroup
Ke1 fixes Y and acts transitively on the set of lines in both span{λe2 − e5, λe3 − e6} and
span{e2 + λe5, e3 + λe6}. Now, the fact that dim v = 3 implies that v must contain a nonzero
eigenvector from one of the last two eigenspaces. Our next step is to prove that λ2 = 3 or
λ2 = 1

3 .
If v ∩ span{λe2 − e5, λe3 − e6} 6= 0, we can conjugate by an element of Ke1 to assume that

Z = λe2 − e5 ∈ v is tangent to Σ. If we assume that λ2 /∈
{
3, 13

}
, then we can give a basis of

v with the vectors

Y = e1 + λe4, Z = λe2 − e5, T = 3
√
3(∇ZR)(Z, Y, Z) = λ(1− 3λ2)e3 + (3λ2 − 1)e6.

As a consequence, e3 + λe6 is orthogonal to v, and we deduce that

0 = 3
√
3〈(∇Y R)(Y,Z, Y ), e3 + λe6〉 = λ

(
3− λ2

) (
λ2 + 1

)
,

a contradiction, so we deduce that λ2 ∈
{
3, 13

}
.

Similarly, in the case that v ∩ span{e2 + λe5, e3 + λe6} 6= 0, we can use an element of Ke1

to assume that Z = e2 + λe5 also belongs to v. Here, if λ2 /∈ {3, 13}, then we can construct a
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basis of v with the vectors

Y = e1 + λe4, Z = e2 + λe5, T =
3
√
3

λ
(∇YR)(Y,Z, Y ) = λ(λ2 − 3)e3 + (3− λ2)e6.

In particular, e3 + λe6 ∈ p⊖ v, and we have

0 = 〈(∇TR)(Y,Z, T ), e3 + λe6〉 =
(
λ2 − 3

)2 (
λ2 + 1

) (
3λ2 − 1

)

6
√
3

,

contradicting our assumption.
All in all, we have proved that the totally geodesic subspace v contains Y = e1 + λe4, and

λ2 = 3 or λ2 = 1
3 . Now, consider the isometry so : S

3×S3 → S3×S3 defined in Subsection 2.2.3.
One sees that the differential (so)∗o satisfies the identities

(so)∗o(e1) = − 1

2
(e1 +

√
3e4) (so)

−1
∗o (e1) = − 1

2
(e1 −

√
3e4),

(so)∗o(e4) =
1

2
(
√
3e1 − e4), (so)

−1
∗o (e4) = − 1

2
(
√
3e1 + e4).

Using these equations, we deduce that either (so)∗o(v) or (so)
2
∗o(v) is a totally geodesic sub-

space that contains either e1 or e4, so by Lemma 7.8 it is well-positioned, and thus Σ is
congruent to S2( 2√

3
) or S3

C, 1
3

(2). �

Proposition 7.11. Let Σ → S3×S3 be a complete totally geodesic surface. Then, either Σ is

congruent to either T2
Γ, the not well-positioned S3

(√
3
2

)
, or a great sphere inside the round

S3
(

2√
3

)
.

Proof. Let Σ be a complete totally geodesic surface, and assume without loss of generality
that it passes through o with tangent space v. We distinguish two situations for v according
to whether it is well-positioned or not.

First, suppose that v is well-positioned. If v ⊆ p1, then Σ is merely a round sphere
inside the round S3. If v ⊆ p2, we may suppose that v = span{e4, e5}, but the equation

3
√
3(∇e4R)(e4, e5, e4) = e3 implies that v is not ∇R-invariant, a contradiction. Now, suppose

that v ∩ p1 and v ∩ p2 are both one-dimensional. By using the isotropy representation, we
may suppose that v ∩ p1 = Re1. The Jacobi operator Re1 preserves p2 and its restriction to
p2 has eigenvalues 0 (with eigenspace Re4) and

1
12 (with eigenspace span{e5, e6}). Thus, we

can further assume (up to the action of K) that either v = span{e1, e4} or v = span{e1, e5}.
The first case simply yields Σ = T2

Γ, while the second case gives a contradiction because

3
√
3(∇e5R)(e5, e1, e5) = e6. This completes the case that v is well-positioned.
Suppose v is not well-positioned. In particular vp1 6= 0, and this combined with the isotropy

representation lets us assume that v contains a vector of the form X = e1+ρ cos θe4+ρ sin θe5,
where ρ > 0 and θ ∈ [0, 2π).

Suppose v is invariant under D, which yields v ⊆ kerDX as it is two-dimensional. If
θ ∈ {0, π}, then kerDX = span{e1, e4}, which forces v = span{e1, e4}, contradicting our
hypothesis that v is not well-positioned. If θ /∈ {0, π}, the kernel of DX is spanned by X and
Y = ρ cos θe1 + ρ sin θe2 − e4, so v = span{X,Y }. As a consequence, we see that the vector
Z = −ρ sin θe1 + ρ cos θe2 + e5 is orthogonal to v, and thus 0 = 〈R(X,Y )X,Z〉 = 4

3ρ
2 sin 2θ,

which forces θ = π
2 or θ = 3π

2 . We group these cases together by writing X = e1 + te5
and Y = te2 − te4 for a nonzero t ∈ R. As a consequence, e2 + te4 is orthogonal to v, and
0 = 〈R(X,Y )X, e2 + te4〉 = 4

3t(t
2 − 1), so t = ±1. The cases t = 1 and t = −1 give rise to

congruent submanifolds. Indeed, the element k = (diag(i,−1),diag(i,−1),diag(i,−1)) ∈ K

satisfies Ad(k)(e1 + e5) = e1 − e5 and Ad(k)(e2 − e4) = −e2 − e4. As a consequence, we see



42 J. M. LORENZO-NAVEIRO AND A. RODRÍGUEZ-VÁZQUEZ

that v is conjugate to span{e1 + e5, e2 − e4}, so Σ is congruent to the not well-positioned

S2
(√

3
2

)
.

Now, assume that v is not D-invariant. Arguing as before, we may suppose that v contains
a vector of the form X = e1 + ρ cos θe4 + ρ sin θe5 for ρ > 0 and 0 ≤ θ < 2π. On the one
hand, one sees that CX = 0 if ρ =

√
3 and θ ∈ {0, π}, but in this case v is congruent to

a well-positioned example. Indeed, we argue as in the end of Proposition 7.10. Consider
the isometry so : S

3 × S3 → S3 × S3 defined as in Subsection 2.2.3. Then, if θ = 0 we have
X = −2(so)∗o(e1), so v is congruent to (so)

−1
∗o (v), and this subspace is well-positioned by

Lemma 7.8, so we may apply the conclusions from the previous case. Similarly, if θ = π, then
X = −2(so)

−1
∗o (e1), and (so)∗o(v) is well-positioned. On the other hand, if ρ 6=

√
3 or θ 6= π,

we have

CXe1 =
ρ2 sin 2θ

6
√
3

e3 +
ρ3 sin θ

3
√
3
e6, CXe2 =

ρ2 sin2 θ

3
√
3

e3 −
ρ
(
ρ2 − 3

)
cos θ

3
√
3

e6,

CXe4 = − ρ
(
ρ2 − 2

)
sin θ

3
√
3

e3 −
ρ2 sin 2θ

6
√
3

e6, CXe5 =
ρ
(
ρ2 − 3

)
cos θ

3
√
3

e3 −
ρ2 sin2 θ

3
√
3

e6.

A straightforward computation gives that these four vectors span the subspace span{e3, e6},
so we have span{e3, e6} ⊆ imCX . In particular, since CX is a symmetric endomorphism, we
have p = kerCX⊕imCX orthogonally, so kerCX is orthogonal to e3 and e6. As a consequence,
v is spanned by X and a vector of the form Y = a1e1 + a2e2 + a4e4 + a5e5, where a1, a2, a4,
a5 ∈ R. However,

DXY =
a4ρ sin θ − a5ρ cos θ + a2

2
√
3

e3 +
a1ρ sin θ − a2ρ cos θ − a5

2
√
3

e6

is in kerCX by Proposition 4.8 and in span{e3, e6} ⊆ p⊖ kerCX , which forces DXY = 0, and
thus v is D-invariant, contradicting our assumption. This finishes the proof. �

Proof of Theorem C. The result follows from combining Theorem 6.7, Proposition 7.9, Propo-
sition 7.10, and Proposition 7.11. �

Finally, we can also prove Theorem E.

Proof of Theorem E. Let M be a homogeneous nearly Kähler 6-manifold with non-constant
curvature. Since totally geodesic submanifolds are preserved under Riemannian coverings and

the universal cover of M̂ is the cone of the universal cover of M , we may assume that M is
simply connected, so M is either CP3, F(C3) or S3 × S3.

Let Σ be a complete totally geodesic submanifold of the G2-cone M̂ . By Corollary 6.10,

Σ is either a hypersurface of M̂ or the cone of a maximal totally geodesic submanifold of

M . The first case is not possible due to [32, Theorem 1.2], so we conclude that Σ = Ŝ for a
maximal totally geodesic submanifold S ⊆M , which yields the desired result. �

Remark 7.12. Let M ∈ {CP3,F(C3),S3 × S3}. A look at Tables 1, 2 and 3 shows that two
(complete) totally geodesic submanifolds of M are congruent if and only if they are isometric.
Combining this with Proposition 6.3, we deduce that the congruence classes of maximal totally

geodesic submanifolds of M̂ are in a bijective correspondence with the congruence classes of
maximal totally geodesic submanifolds of M .

We also note that in order to obtain the classification of all totally geodesic submanifolds

of M̂ , it suffices to iterate Corollary 6.10 and take into account Propositions 6.12 and 6.14.
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