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Abstract

We consider the development of unbiased estimators, to approximate the stationary distribution
of Mckean-Vlasov stochastic differential equations (MVSDEs). These are an important class of pro-
cesses, which frequently appear in applications such as mathematical finance, biology and opinion
dynamics. Typically the stationary distribution is unknown and indeed one cannot simulate such
processes exactly. As a result one commonly requires a time-discretization scheme which results in a
discretization bias and a bias from not being able to simulate the associated stationary distribution.
To overcome this bias, we present a new unbiased estimator taking motivation from the literature
on unbiased Monte Carlo. We prove the unbiasedness of our estimator, under assumptions. In order
to prove this we require developing ergodicity results of various discrete time processes, through an
appropriate discretization scheme, towards the invariant measure. Numerous numerical experiments
are provided, on a range of MVSDEs, to demonstrate the effectiveness of our unbiased estimator.
Such examples include the Currie-Weiss model, a 3D neuroscience model and a parameter estimation
problem.

Key words: McKean-Vlasov SDE, Unbiased Approximation, Stationary Distributions,
Euler-Maruyama discretization

1 Introduction
The focus of this article is on McKean-Vlasov stochastic differential equations (SDEs), which are SDEs
whose coefficients depend not only on the state of the process but also on its distribution. In particular,
we focus on the following McKean-Vlasov [22] stochastic differential equation (MVSDE), with a fixed
initial condition X0 = x0 ∈ Rd, given as

dXt = a
(
Xt, ξ1(Xt, µt)

)
dt+ b

(
Xt, ξ2(Xt, µt)

)
dWt, (1.1)

where for j ∈ {1, 2},

ξj(Xt, µt) =

∫
Rd

ξj(Xt, x)µt(dx),

where {Wt}t≥0 is a standard d−dimensional Brownian motion, for d ≥ 1. Furthemore, ξj : R2d → R,
a : Rd × R → Rd is the associated drift term, b : Rd × R → Rd×d is the diffusion coefficient and finally
µt is the law of the diffusion process Xt. In contrast to classical SDEs, the distribution of the MVSDE
(1.1) solves a nonlinear Fokker-Planck equation, which is a partial differential equation. McKean-Vlasov
processes have proven to be very useful for inference problems, in a wide range of useful applications.
These applications include, but are not limited to, stochastic filtering, financial mathematics, opinion
dynamics and flocking processes. Well-known examples of MVSDEs include the Kalman-Bucy filter, the
stochastic Cucker-Smale flocking dynamics and the stochastic Hegselmann-Krause model [6, 12, 13, 24].
Normally the solution of a MVSDE is approximated through an interacting particle system, where it is
well-known that empirical law of the particle system converges to the law of the MVSDE, in the infinite
particle limit.
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We are interested in the simulation of the stationary distribution, or invariant measure, of the SDE,
call it π, which is assumed to exist, but is typically unknown. There has been a limited literature on pro-
viding methods to approximation π. This includes both developing analysis (with particular assumptions
stated) [9, 11], and applying Monte Carlo methods given motivation to a Bayesian framework through
important sampling [4]. However, despite these recent developments, there is still an issue related to
these approximations methods, in that there remains a time-discretization bias, through numerically solv-
ing (1.1).Therefore, we motivate this work through the question of whether one can attain an unbiased
scheme, to approximate invariant measures. In the context of Monte Carlo methods, unbiased estimation
has been a recent hot topic largely due to important works by Rhee and Glynn. Specifically the au-
thors produced an unbiased estimator related to SDEs through a randomized multilevel telescoping sum
identity. We refer the reader to these various works [14, 23, 26].

The notion of randomized multilevel Monte Monte Carlo (MLMC) methods is based upon a hierarchy
of time-discretized SDEs becoming increasingly more precice in terms of discretization (i.e. an adaptive
step-size). Then given a probability distribution on the amount of time-discretization it is possible to
obtain unbiased and sometimes finite variance, finite expected cost estimators associated to ordinary
SDEs [2, 15, 17, 26] and using non-randomized MLMC for some classes of MVSDE problems; [1, 4, 5]. In
terms of simulating invariant measures associated to regular SDEs several works have appeared including
[8, 27]. The main idea of this article is to appropriately adapt and analyze methodology from [1, 17] in
the context of producing truely unbiased estimation from the stationary distribution of a MVSDE model.

1.1 Contributions
The main contributions of this article are provided below:

• We develop a first approximation scheme for unbiased estimates of the stationary distribution
of MVSDEs. This is based on the notion of randomization of MLMC, which utilizes two Euler-
Maruyama discretizations of MVSDEs.

• We prove a number of ergodicity results related to the Euler-Maruyama discretizations of the MVS-
DEs. In particular we demonstrate exponential ergodicity of both the discretized equations, and the
unbiased estimator. To the best of the authors knowledge, these are the first set of results in the
literature for the discretized setting.

• We provide and present a main theorem which demonstrates that, our estimator is unbiased. This
result relies heavily on the previous ergodicity results.

• Numerical experiments are provided, to demonstrate the robustness of the proposed unbiased ap-
proximation scheme. We test this on a range of MVSDEs motivated through different applications.
These include a parameter estimation problem, an Ornstein-Uhlenbeck process, the Currie-Weiss
Model and a more challenging 3D neuron model.

The outline of this paper is as follows. In Section 2 we present our unbiased methodology. Section 3
houses our mathematical results with some discussion on how some simulation parameters of the method
can be chosen. Numerical experiments will be provided in Section 4, to verify our theoretical findings.
We will test our methodology on a range of MVSDEs which include a toy Ornstein-Uhlenbeck process,
3D neuron model (motivated from neuroscience) and the Currie-Weiss Model. We conclude with some
final remarks in Section 5. Finally we defer the proofs of most of our results to the appendix.

2 Method
Our methodology for unbiased estimation is now described. Below, we will use the convention that the
time-discretized dynamics of the SDE (1.1) is iterated over unit time. This is simply a convention and
any O(1) time could be used. The reason for such iteration shall be explained later on.
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2.1 Discretization for MVSDE
We denote by Pµt−1,t(xt−1, dxt) the conditional law of Xt (as given in (1.1)) given Ft−1 (the natural
filtration of the process), for t ≥ 1; that is, the transition kernel over unit time. In most cases of practical
interest, µt and the dynamics Pµt−1,t(xt−1, dxt) are difficult to work with. For instance the transition
kernel cannot be simulated in many problems. We introduce a time-discretization over a regular grid of
spacing ∆l = 2−l, l ∈ N0. We will use the Euler-Maruyama method associated to (1.1) and denote the
law at any time t ∈ {0,∆l, 2∆l, . . . } as µl

t. That is, we now consider the approximation for k ∈ N0:

Xk∆l
= X(k−1)∆l

+ a
(
X(k−1)∆l

, ξ1(X(k−1)∆l
, µl

(k−1)∆l
)
)
+

b
(
X(k−1)∆l

, ξ2(X(k−1)∆l
, µl

(k−1)∆l
)
) [

Wk∆l
−W(k−1)∆l

]
(2.1)

where X0 = x0 and µl
0 = δ{x0}. Associated to (2.1), we denote by P l

µl
t−1,t

(xt−1, dxt) the conditional law
of Xt, t ∈ N, given Ft−1 for t ≥ 1; that is, the transition kernel over unit time induced by (2.1). It
should be remarked that in many cases, (2.1) cannot be simulated exactly as the expectations associated
to µl

(k−1)∆l
cannot be computed even if one knows µl

(k−1)∆l
, which is again unlikely. We denote by πl

stationary distribution of P l
µl
t−1,t

(xt−1, dxt) which is assumed to exist. More precisely, we shall make some
assumptions later on in the article which ensure that

lim
t→∞

W2(µ
l
t, π

l) = 0,

where W2 is the Wasserstein−2 distance (which will be defined later on). We note that the mathematical
details here are minimized to help readibility of this section of the article.

We now consider a method that will be used to provide a Monte Carlo based approximation of the law
µl
t. The approach we present is a simple discretized method in Algorithm 1 from [28]. In Algorithm 1, the

notation Nd(κ,Σ) denotes the d−dimensional Gaussian distribution with mean κ and covariance matrix
Σ. Id is the d× d identity matrix and ind∼ denotes independently distributed as. Algorithm 1 can be used
to approximate expectations w.r.t. µl

t and indeed on the grid in-between time t− 1 and t. Algorithm 1 is
given in the form that we need it later on in the article. In our main method it will be critical that for
two discretizations, we will need to be able to sample from a dependent coupling of a pair of laws µl

t, µ
l−1
t ;

this is presented in Algorithm 2.
Let l∗ ∈ N0 be given and {Nl}≥l∗ , be an increasing sequence of non-negative integers such that

liml→∞ Nl = ∞. Our objective will be first to generate Algorithm 1 sequentially in t for l = l∗ and Nl∗

samples. Then using the particle system that we have generated, to plug-in all the required laws to a
simulation of the Markov kernel P l

µ
l,Nl
t−1 ,t

; we denote the associated stationary distribution of P l

µ
l,Nl
t−1 ,t

as Πl.

Note that in effect here, one runs Algorithm 1 independently of P l

µ
l,Nl
t−1 ,t

and the latter kernel, conditional

on the output of Algorithm 1 is a conventional Euler-Maruyama method. Subsequently for l > l∗, we will
be running Algorithm 2 sequentially in t with Nl and Nl−1 samples and then simulating a coupling of
P l

µ
l,Nl
t−1 ,t

and P l−1

µ̃
l−1,Nl−1
t−1 ,t

conditional on the simulation of Algorithm 2, that is, plugging-in all the required

laws and generating Algorithm 2 independently of all other randomness. The stationary distribution of
P l

µ
l,Nl
t−1 ,t

is still Πl.

2.2 Overall Strategy
We now present our main strategy as given in [17]; see also [8, 27] for a related approaches, which are
not easily adapted to this context. We suppose that φ : Rd → R is a functional of interest and that
for every l ∈ N0, Πl(φ) =

∫
Rd φ(x)Π

l(dx) is finite. Let PL be any positive probability mass function on
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Algorithm 1 Approximating the Laws when starting with a particle approximation at time t− 1, t ∈ N.

1. Input l ∈ N0 the level of discretization, N ∈ N the number of particles, t ∈ {1, . . . , T}. If t = 1

set µN
0 (dx) = δ{x0}(dx) otherwise input an empirical measure µN

t−1(dx) =
1
N

∑N
i=1 δ{Xi

t−1}(dx). Set
k = 1.

2. For i ∈ {1, . . . , N} generate:

Xi
t−1+k∆l

= Xi
t−1+(k−1)∆l

+ a
(
Xi

t−1+(k−1)∆l
, ξ1(X

i
t−1+(k−1)∆l

, µN
t−1+(k−1)∆l

)
)
+

b
(
Xi

t−1+(k−1)∆l
, ξ2(X

i
t−1+(k−1)∆l

, µN
t−1+(k−1)∆l

)
) [

W i
t−1+k∆l

−W i
t−1+(k−1)∆l

]
where

ξm(Xi
t−1+(k−1)∆l

, µN
t−1+(k−1)∆l

) =
1

N

N∑
j=1

ξm(Xi
t−1+(k−1)∆l

, Xj
t−1+(k−1)∆l

) m ∈ {1, 2}

µN
t−1+(k−1)∆l

(dx) =
1

N

N∑
j=1

δ{Xj
t−1+(k−1)∆l

}(dx)[
W i

t−1+k∆l
−W i

t−1+(k−1)∆l

]
ind∼ Nd(0,∆lId).

Set k = k + 1, if k = ∆−1
l + 1 go to step 3. otherwise go to the start of step 2..

3. Output all the required laws µN
t−1+∆l

, . . . , µN
t .

Nl∗ := {l∗, l∗ + 1, . . . }. Let {ξl}l∈Nl∗
be any sequence of independent random variables, such that

E[ξl∗ ] = EP [Πl∗(φ)]

E[ξl] = EP [Πl(φ)−Πl−1(φ)] =: EP [[Πl −Πl−1](φ)] l ∈ {l∗ + 1, l∗ + 2, . . . }

where EP is the expectation w.r.t. the law associated to the simulated systems in Algorithm 1 and
Algorithm 2. Now, let L be a random variable with probability PL that is independent of the sequence
{ξl}l∈Nl∗

then

π̂(φ) =
ξl

PL(l)
, (2.2)

will be shown to be an unbiased estimator of π(φ); see [23, 26] for the initial statement and proof.
Note however, that we have an additional level of complexity than the original papers as Πl are random
measures. Moreover, if ∑

l∈Nl∗

E[ξ2l ]
PL(l)

< +∞, (2.3)

the estimator π̂(φ) has finite variance. There is also the independent sum-estimator, which can be better
than this estimator and has been described in [26]. The main challenge is then to construct the sequence
{ξl}l∈Nl∗

.
Typically, one will run M ∈ N independent replicates of (2.2) and use the average

π̂(φ)avg :=
1

M

M∑
i=1

π̂(φ)i, (2.4)
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Algorithm 2 Approximating the Consecutive Laws when starting with a particle approximation at time
t− 1, t ∈ N.

1. Input l ∈ N0 the level of discretization, (Nl, Nl−1) ∈ N2, Nl−1 < Nl, the number of particles,
t ∈ {1, . . . , T}. If t = 1 set µl,Nl

0 (dx) = µ̃
l−1,Nl−1

0 (dx) = δ{x0}(dx) otherwise input a pair of empirical
measures µl,Nl

t−1 (dx) =
1
Nl

∑Nl

i=1 δ{Xl,i
t−1}

(dx), µ̃l−1,Nl−1

t−1 (dx) = 1
Nl−1

∑Nl−1

i=1 δ{X̃l−1,i
t−1 }(dx). Set k = 1.

2. For i ∈ {1, . . . , Nl} generate:

X l,i
t−1+k∆l

= X l,i
t−1+(k−1)∆l

+ a
(
X l,i

t−1+(k−1)∆l
, ξ1(X

l,i
t−1+(k−1)∆l

, µl,Nl

t−1+(k−1)∆l
)
)
+

b
(
X l,i

t−1+(k−1)∆l
, ξ2(X

l,i
t−1+(k−1)∆l

, µl,Nl

t−1+(k−1)∆l
)
) [

W i
t−1+k∆l

−W i
t−1+(k−1)∆l

]
where

ξm(Xi
t−1+(k−1)∆l

, µl,Nl

t−1+(k−1)∆l
) =

1

Nl

Nl∑
j=1

ξm(X l,i
t−1+(k−1)∆l

, X l,j
t−1+(k−1)∆l

) m ∈ {1, 2}

µl,Nl

t−1+(k−1)∆l
(dx) =

1

Nl

Nl∑
j=1

δ{Xl,j
t−1+(k−1)∆l

}(dx).

Set k = k + 1, if k = ∆−1
l + 1 go to step 3. otherwise go to the start of step 2..

3. For i ∈ {1, . . . , Nl−1} compute:

X̃ l−1,i
t−1+k∆l−1

= X̃ l−1,i
t−1+(k−1)∆l−1

+ a
(
X̃ l−1,i

t−1+(k−1)∆l−1
, ξ1(X̃

l−1,i
t−1+(k−1)∆l−1

, µ̃
l−1,Nl−1

t−1+(k−1)∆l−1
)
)
+

b
(
X̃ l−1,i

t−1+(k−1)∆l−1
, ξ2(X̃

l−1,i
t−1+(k−1)∆l−1

, µ̃
l−1,Nl−1

t−1+(k−1)∆l−1
)
) [

W i
t−1+k∆l−1

−W i
t−1+(k−1)∆l−1

]
where

ξm(X̃ l−1,i
t−1+(k−1)∆l−1

, µ̃
l−1,Nl−1

t−1+(k−1)∆l−1
) =

1

Nl−1

Nl−1∑
j=1

ξm(X̃ l−1,i
t−1+(k−1)∆l−1

, X̃ l−1,j
t−1+(k−1)∆l−1

) m ∈ {1, 2}

µ̃
l−1,Nl−1

t−1+(k−1)∆l−1
(dx) =

1

Nl−1

Nl−1∑
j=1

δ{X̃l−1,j
t−1+(k−1)∆l

}(dx)

and the increments of the Brownian motion
[
W i

t−1+k∆l−1
−W i

t−1+(k−1)∆l−1

]
were generated in step

2.. Set k = k + 1, if k = ∆−1
l−1 + 1 go to step 4. otherwise go to the start of step 3..

4. Output all the required laws µl,Nl

t−1+∆l
, . . . , µl,Nl

t , µ̃l−1,Nl−1

t−1+∆l
, . . . , µ̃

l−1,Nl−1

t .

where π̂(φ)i represents the i-th independent replicate of the estimate.
To continue with our discussion we will need a positive probability mass-function Pp on N0 and a

sequence of non-decreasing, non-negative integers {Ip}p∈N0
with limp→∞ Ip = ∞.

5



2.2.1 Approximation of Πl∗(φ)

Throughout the section l ∈ Nl∗ is fixed. Our method for contructing ξl∗ is detailed in Algorithm 3.

Algorithm 3 Simulation of ξl∗ .

1. Input Nl∗ .

2. Generate P ∼ Pp.

3. Generate Algorithm 1 with Nl∗ particles, sequentially until time Ip where the empirical measures at
any time t ∈ {1, . . . , Ip} have been obtained from time t − 1 and the case t = 0 has been specified
in Algorithm 1 .

4. For t ∈ {1, . . . , Ip} generate U l∗
t |ul∗

t−1 using P l∗
µ,t−1(u

l∗
t−1, ·) where µ = µ

l∗,Nl∗
t−1 , all of the laws

µ
l∗,Nl∗
t−1 , µ

l∗,Nl∗
t−1+∆l∗

, . . . , µ
l∗,Nl∗
t−∆l∗

needed are obtained in Step 3. and ul∗
0 = x0.

5. If p = 0 return

ξl∗ =
1

Pp(p)

1

Ip

Ip∑
t=1

φ(ul∗
t )

otherwise return

ξl∗ =
1

Pp(p)

 1

Ip

Ip∑
t=1

φ(ul∗
t )− 1

Ip−1

Ip−1∑
t=1

φ(ul∗
t )

 .

The approach as developed in Algorithm 3 is a simple adaptation of the method in [17] in the context
here, except for that method one does not have to feed the empirical measures into any simulation as we
have done here. Note that in practice one would run Step 3. and Step 4. concurrently, that is at each time
they are simulated at the same ∆l∗ order increments, for computational efficiency. However, for clarity
of presentation we have de-coupled the two steps. The key property of the estimator, that will help to
ensure that our final estimator is unbiased is that we will show almost surely

E[ξl∗ |L ] = Πl∗(φ). (2.5)

where L is the filtration generated by Algorithm 1 and Algorithm 2 along with L generated from PL (in-
dependently of all other random variables. The property in (2.5) is intrinsically based on the convergence
of E[ 1

Ip

∑Ip
t=1 φ(u

l∗
t )|L ]. The details are in the proof of our main result, but we try to give some intuition

here.

2.2.2 Approximation of [Πl −Πl−1](φ)

Our objective is now to provide, for l ∈ {l∗+1, l ∗+2, . . . } fixed, an estimator of [Πl−Πl−1](φ), such that

E[ ̂[Πl −Πl−1](φ)|L ] = [Πl −Πl−1](φ). (2.6)

One could simply use the method outlined above, independently, for Πl and Πl−1 and independently for
each l ∈ {l∗ + 1, l ∗+2, . . . }. However, this is unlikely to provide an estimator that can achieve (2.3) and
hence the variance of such an approach is infinite and not useful in practice. We therefore present an
alternative method.

To describe the simulation of ξl, for l ∈ {l∗+1, l∗+2, . . . }, we will need the method given in Algorithm
4. The algorithm as stated is essentially a synchronous coupling of the simulation of an Euler-Maruyama
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time-discretization. The main difference is that one has to approximate the unknown laws, which for the
purposes of Algorithm 4 this is assumed to be given. Our method for simulating ξl is given in Algorithm
5. The method in Algorithm 5 helps one to achieve the property (2.6) as will be proved later on. The
essential point is that the differences E[ 1

Ip

∑Ip
t=1 φ(u

l
t)|L ]−Πl(φ) will converge almost surely to zero and

this permits the unbiasedness that we need. The coupling that is achieved in Algorithm 2 and Algorithm
4 will help to yield a finite variance estimator.

Algorithm 4 Simulation of a Coupling of P l
µ,t(ut−1, ·) and P l−1

µ,t (ut−1, ·).

1. Input l ∈ {l∗ + 1, . . . }, t ∈ N, the empirical laws µl,Nl

t−1 , µ
l,Nl

t−1+∆l
, . . . , µl,Nl

t−∆l
,

µ
l−1,Nl−1

t−1 , µ
l−1,Nl−1

t−1+∆l−1
, . . . , µ

l−1,Nl−1

t−∆l−1
and . (ut−1, ut−1) ∈ R2d.

2. For k ∈ {1, . . . ,∆−1
l } run the dynamics

Xt−1+k∆l
= Xt−1+k∆l

+ a
(
Xt−1+(k−1)∆l

, ξ1(Xt−1+(k−1)∆l
, µl,Nl

t−1+(k−1)∆l
)
)
+

b
(
Xt−1+(k−1)∆l

, ξ2(Xt−1+(k−1)∆l
, µl,Nl

t−1+(k−1)∆l
)
) [

Wt−1+k∆l
−Wt−1+(k−1)∆l

]
where Xt−1 = ut−1 and for k ∈ {1, . . . ,∆−1

l },
[
Wt−1+k∆l

−Wt−1+(k−1)∆l

] ind∼ N (0,∆lId). Set
Ut = xt.

3. For k ∈ {1, . . . ,∆−1
l−1} run the dynamics

Xt−1+k∆l−1
= Xt−1+k∆l−1

+ a
(
Xt−1+(k−1)∆l−1

, ξ1(Xt−1+(k−1)∆l−1
, µ

l−1,Nl−1

t−1+(k−1)∆l−1
)
)
+

b
(
Xt−1+(k−1)∆l−1

, ξ2(Xt−1+(k−1)∆l−1
, µ

l−1,Nl−1

t−1+(k−1)∆l−1
)
) [

Wt−1+k∆l−1
−Wt−1+(k−1)∆l−1

]
where Xt−1 = ut−1 and for k ∈ {1, . . . ,∆−1

l },
[
Wt−1+k∆l−1

−Wt−1+(k−1)∆l−1

]
is determined from

the simulation in Step 2. .Set U t = xt.

4. Return (ut, ut).

2.2.3 Final Methodology and Estimator

We now consolidate the above discussion by summarizing our proposed methodology to unbiasedly esti-
mate π(φ) and this is presented in Algorithm 6. As implied by (2.4) Algorithm 6 can be run M−times
on parallel. The choice of {Nl}l≥l∗ , {Ip}p∈N0 , PL and PP is discussed in Section 3.

The approach that we have considered as stated previously, follows that of [17] but as also mentioned,
there are alternatives based on [8, 27]. These previous papers are rather dependent upon the notion that
the simulated Markov kernel (i.e. the P l

µ,t in our notation) is time-homogenous. This is critical when
adopting the methodology of [14] which those works use and as is clear from our context we do not have
this property. Therefore we have concentrated upon the ideas in [17].

An alternative idea is to use a double randomization that focusses upon the systems generated in
Algorithms 1 and 2. In principle we expect that it is possible to do this, but we expect that the resulting
mathematical analysis is more complicated and the addition of an extra chain (i.e. the approaches in
Algorithms 3 and 5) does not add a significant cost versus using Algorithms 1 and 2 on their own; hence
we have proceeded with Algorithm 6.
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Algorithm 5 Simulation of ξl.

1. Input l ∈ {l∗ + 1, . . . }, (Nl, Nl−1).

2. Generate P ∼ Pp.

3. Generate Algorithm 2 with (Nl, Nl−1) particles, sequentially until time Ip where the empirical
measures at any time t ∈ {1, . . . , Ip} have been obtained from time t−1 and the case t = 0 has been
specified in Algorithm 2 .

4. For t ∈ {1, . . . , Ip} generate (U l
t , U

l−1

t |(ul
t−1, u

l−1
t−1) from the coupling of P l

µ,t(u
l
t−1, ·) and P l−1

µ,t (ul−1
t−1, ·)

given in Algorithm 4 where µ = µl,Nl

t−1 , µ = µ
l−1,Nl−1

t−1 , all of the laws µl,Nl

t−1 , µ
l,Nl

t−1+∆l
, . . . , µl,Nl

t−∆l
,

µ
l−1,Nl−1

t−1 , µ
l,Nl−1

t−1+∆l−1
, . . . , µ

l,Nl−1

t−∆l−1
, needed are obtained in Step 3. and ul

0 = ul−1
0 = x0.

5. If p = 0 return

ξl =
1

Pp(p)

 1

Ip

Ip∑
t=1

φ(ul
t)−

1

Ip

Ip∑
t=1

φ(ul−1
t )


otherwise return

ξl =
1

Pp(p)


 1

Ip

Ip∑
t=1

φ(ul
t)−

1

Ip

Ip∑
t=1

φ(ul−1
t )

−

 1

Ip−1

Ip−1∑
t=1

φ(ul
t)−

1

Ip−1

Ip−1∑
t=1

φ(ul−1
t )

 .

Algorithm 6 Unbiased estimator π̂(φ).
Input: PL.

1. Sample L ∼ PL.

2. If L = l∗, generate ξl∗ using Algorithm 3 and return

π̂(φ) =
ξl∗

PL(l∗)
.

3. If L > l∗, generate ξl using Algorithm 5 and return

π̂(φ) =
ξl

PL(l)
.

3 Theoretical Results

3.1 Notation
Denote by Cb(Rd1 ,Rd2) the set of Rd2 valued bounded continuous functions whose domain is Rd1 and equip
it with the norm ∥f∥ = supx∈Rd1 |f(x)|. Denote by C1

b (Rd1 ,Rd2) the set of continuously differentiable
functions with domain Rd1 and values in Rd2 whose partial derivatives of order 1 are bounded functions.
For a function For f ∈ C1

b (Rd1 ,Rd2) define the seminorm |f |1 = maxi∈{1,...,d1} supx∈Rd1 |∂xi
f(x)| and for

f ∈ Cb(Rd1 ,Rd2) ∩ C1
b (Rd1 ,Rd2) define the norm ∥f∥1 = max(∥f∥, |f |1). Denote by CLip(Rd1 ,Rd2) the set

of Lipschitz continuous functions f : Rd1 → Rd2 . Define the seminorm |f |Lip and the norm ∥f∥Lip for
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f ∈ CLip
b (Rd1 ,Rd2) by

|f |Lip := sup
x ̸=y

|f(x)− f(y)|
|x− y|

, ∥f∥Lip := max(∥f∥, |f |Lip).

For the function a denote by ∇1a(x, y) the gradient of the function x 7→ a(x, y) and by ∇2a(x, y) the
gradient of the function y 7→ a(x, y), similarly for the functions b, ξ1, ξ2.

3.2 Assumptions
In order for us to proceed we require a number of assumptions for our theory. We state the following
assumptions.

(A1) The functions a ∈ C1
b (Rd×R,Rd), b ∈ CLip(Rd×R,Rd×d), ξ1, ξ2 ∈ CLip(Rd×Rd,R)∩Cb(Rd×Rd,R).

(A2) The following inequality holds

− sup
x∈Rd+1

sup
|y|=1

y⊤∇1a(x)y > 2∥∇2a∥∥ξ1∥Lip + 2|b|2Lip(1 + ∥ξ2∥Lip)2.

Let us now discuss the importance of each assumption above. It is well known that under condition
(A1) a unique strong solution exists for the SDE (1.1), with details in [21]. The assumptions (A1-2)
are needed to guarantee the existence of the invariant measure for both the continuous McKean-Vlasov
SDE and the discretized SDE and to ensure the stability of the Euler Scheme. To show the existence
of the invariant measure of the McKean-Vlasov SDE (1.1) we utilize [29, Theorem 3.1] which guarantees
geometric ergodicity. which in turn requires one to verify conditions (H1), (H2’), and (H3) of [29].

3.3 Unbiasedness of the Estimator
Our main result is the unbiasedness of the estimator. Note that we require l∗ to be large enough and this
is assumed. The proof of this result depends itself on numerous egrodicity results that are established in
Appendix A.

Theorem 3.1. Assume (A1-2). Then for any φ ∈ Cb(Rd,R) ∩ CLip(Rd,R) we have

E [π̂(φ)] = π(φ).

Proof. The proof is completed in several simple computations as given below:

E[π̂(φ)] =E

 ∞∑
l=1

∞∑
p=1

[ 1
Ip

Mp∑
t=1

φ(U l
t)−

1

Mp

Mp∑
t=1

φ(U
l−1

t )
]
−
[ 1

Ip−1

Ip−1∑
t=1

φ(U l
t)−

1

Ip−1

Ip−1∑
t=1

φ(U
l−1

t )
]

= lim
L→∞

lim
p→∞

E

 1

Ip

Mp∑
t=1

φ(U l
t)


= lim

L→∞
E

 lim
p→∞

E

 1

Ip

Ip∑
i=1

φ(U l
t)

∣∣∣∣L


= lim
L→∞

E[ΠL(φ)]

=π(φ),

where we have used Theorem A.5 to go from line three to line four and again to go the final line and the
interchanges of limits and integrals are justifiable by the bounded convergence theorem.
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3.4 Discussion
Theorem 3.1 gives us unbiasedness, but little else to help us choose the parameters in the method. We
conjecture that, based on theory in [1, 17], that the variance is upper-bounded by a term that is as below

O

( ∞∑
l=l∗

∞∑
p=0

1

PL(l)PP (p)

{
∆l

Ip

(
1 +

1

Nl

)})
. (3.1)

Note that to achieve this bound, we expect that we need some ergodicity properties of the Markov kernel
P l
µ,t with convergence rates that are l−independent. We would expect again that this might only occur

under iteration as we have done in this paper. The expected cost is

O

( ∞∑
l=l∗

∞∑
p=0

PL(l)PP (p)Ip∆
−1
l N2

l

)
.

In this case it is difficult to choose {Nl}l≥l∗ , {Ip}p∈N0
, PL and PP so that both (3.1) and the expected cost

is finite. One can choose Nl = l, Ip = 2p, PL(l) ∝ 2−l(l+1) log2(l+2)2, and PP (p) ∝ 2−p(p+1) log2(p+2)2

and the expression in (3.1) is finite.

Remark 3.1. We note our ergodicity results assume a discretized MVSDE based on the Euler-Maruyama
discretization. It is important to highlight these results could be potentially extended to higher-order dis-
cretization methods which have more favorables error rates. Examples of this would include splitting order
schemes, which have proven to be successful.

4 Numerical Experiments
In this section we consider testing our unbiased estimator to approximate the invariant measures for
a selection of different MVSDEs. In particular we will consider three models to test, which include the
Curie-Weiss model, an OU process and a model taking motivation for mathematical neuroscience. We will
demonstrate the effectiveness of our approximation method through different plots such as comparing the
MSE to the number of Monte Carlo samples M and approximating the density of the invariant measure.
One of our numerical experiments is a parameter estimation problem. Before discussing each model, we
provide a brief overview on out simulation setup.

4.1 Simulation Setting
For M ∈ M we denote the by π̂M the estimator described in (2.4) run with M independent simulations.
Let φ : R → R. We estimate the mean squared error (MSE) corresponding to M and φ we run 50
independent runs {π̂k

M}50k=1 of the method and calculate the MSE given as

MSE =
1

50

50∑
k=1

(π̂k
M (φ)− π(φ))2

We set l∗ = 3, lmax = 10, pmax = 7 and

PL(l) ∝ 2−l(l + 1) log(l + 2)1{lmin≤l≤lmax},

PP (p) ∝ 2−p(p+ 1) log(p+ 2)21{0≤p≤pmax},

and where Nl = O(l). We denote by Kh(x) = N (0, h2) the density of the normal distribution with
standard deviation h. The density p of π is estimated using kernel density estimation (KDE) by

p(x) ≈
∫
Rd

Kh(x− y) d π̂M (y) = π̂M (Kh(x− ·)),

for an appropriate choice of h ∈ R.
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4.2 Curie-Weiss Model
Our first model we test our unbiased methodology on is the following one-dimensional SDE

dXt = β(−X3
t +Xt +KE[Xt])dt+ σdWt, (4.1)

with the initial condition X0 = x0 ∈ R, where β,K, σ > 0 and Wt is a standard Brownian motion. It is
well-known the invariant distribution π of this model is absolutely continuous with respect to the Lebesgue
measure and has the density

p(x) = C exp

(
−βx4

2
+ βx2

)
,

where C is the reciprocal of the normalizing constant. For this example, we set β = 1,K = 0.25, σ =
1, x0 = 1 and φ(x) = x2. We numerically approximate C ≈ 0.2401 and π(φ) ≈ 0.8935. We approximate
π(φ) using our method to and evaluate π̂M (φ). Figure 1 shows the MSE E[(π̂M (φ) − π(φ))2] and the
average running time corresponding to the runs. Furthermore we approximate the density p using our
method and KDE. Figure 1 demonstrates that unbiased estimator works well, as the KDE attains high
accuracy of the stationary distribution, and the rates are favourable which are coincide with the discussion
on the cost in Section 3.
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Figure 1: Numerical simulations for the Curie-Weiss model (4.1). Top left: MSE approximation of ϕ. Top
right: Meeting time for Curie-Weiss model. Bottom: comparison of exact and approximated invariant
distribution.
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4.3 Parameter Estimation
Let {pθ(x, y)}θ∈Θ be a parameterized family of probability densities on Rdx×Rdy . Given a y ∈ Rd consider
the problem of finding the Maximum Likelihood Estimator (MLE)

θ∗ = argmaxθ∈Θpθ(y) = argmaxθ∈Θ

∫
pθ(x, y)dx.

[18] shows that the MLE is the limit θ∗ = limt→∞ θt with θt being the solution of the following McKean-
Vlasov SDE dθt =

(∫
Rd

∇θ log pθt(x, y)dµt(x)

)
dt,

dXt = ∇x log pθt(Xt, y)dt+
√
2dWt.

(4.2)

where µt is the law of the process Xt and Wt is a standard Brownian motion. Furthermore, the law µt of
the process Xt defined in (4.2) is absolutely continuous with the Lebesgue measure and limt→∞ dµt/dx =
pθ∗(·|y) where pθ∗(x|y) = pθ∗(x, y)/pθ∗(y) is the posterior. To apply our method we discretize the system
as follows: For each N, l ∈ N we considerθ(k+1)∆l

= θk∆l
+

(∫
Rd

∇θ log pθk∆l
(x, y)dµN

k∆l
(x)

)
∆l +∆l(B(k+1)∆l

−Bk∆l
),

Xi
(k+1)∆l

= Xi
k∆l

+∇x log pθk∆l
(Xi

k∆l
, y)∆l +

√
2(W(k+1)∆l

−Wk∆l
),

(4.3)

where µN
k∆l

= 1
N

∑N
i=1 δ

i
Xk∆l

, i ∈ {1, . . . , N}, k ∈ ∆−1
l N0, and Bt is a standard Brownian motion inde-

pendent of Wt.

We consider the toy example considered in [18]. For θ ∈ R let θ̄ ∈ Rd be the vector whose all components
are equal to θ. Let pθ(x, y) = N (y;x, Id)N (x; θ̄, Id). Let y = (y1, . . . , yd) ∈ Rd, the likelihood pθ(y) =

N (y; θ̄, 2Id), the posterior pθ(x|y) = N (x; y+θ̄
2 , 1

2Id), and the MLE has the closed form θ∗ = 1
d

∑d
i=1 yi.

We set d = 10 and apply our method to the vector (θt, Xt). Denote by π̂ the estimate our method returns
for the invariant distribution of (θt, Xt) and define the function φ : (θ, x) 7→ θ. Our estimate of the MLE
θ∗ is π̂(φ). Figure 2 shows the convergences rate as function of the number of independent samples M and
the average running time. Figure 2 shows the estimated posterior of the 10th component of the process
Xt in (4.3). The results obtained for this experiment, follow similarly to that for the Currie-Weiss Model,
where we obtain two rate which are approximately -1 and 1, when comparing M to the MSE and the
average run time. By average run time we mean the total sum of all the M runs.

4.4 3D Neuron Model
Our final model we test is inspired from the work of [3], which develops a non globally Lipschitz MV-SDE
to model neuron activity. It is a 3D neuron model which has a specific form of for the drift term and
diffusion coefficient. For this model we assume the SDE takes the general form,

dXt = a(t, x, µ)dt+ b(t, x, µ)dWt, (4.4)

where the drift term, and diffusion coefficient, have the following representation

a (t, x, µ) :=

 x1 − (x1)
3/3− x2 + I −

∫
R3 J (x1 − Vrev) z3dµ(z)

c (x1 + a− bx2)

ar
Tmax(1−x3)

1+exp(−λ(x1−VT )) − adx3


b (t, x, µ) :=

 bext 0 −
∫
R3 bJ (x1 − Vrev) z3dµ(z)

0 0 0
0 b32(x) 0
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Figure 2: Numerical simulations for parameter estimation example (4.2). Top left: MSE approximation
of ϕ. Top right: Meeting time for parameter estimation example. Bottom: comparison of exact and
approximated posterior distribution.

with

b32(x) := 1{x3∈(0,1)}

√
ar

Tmax(1− x3)

1 + exp(−λ(x1 − VT ))
+ adx3 Γ exp(−Λ/(1− (2x3 − 1)2)),

whereT = 2 is chosen as the final time. Finally we set an initial condition and parameter values as

X0 ∼ N

 V0

w0

y0

 ,

 σV0
0 0

0 σw0
0

0 0 σy0

 ,

where the parameters have the values

V0 = 0 σV0
= 0.4 a = 0.7 b = 0.8 c = 0.08 I = 0.5 bext = 0.5

w0 = 0.5 σw0
= 0.4 Vrev = 1 ar = 1 ad = 1 Tmax = 1 λ = 0.2

y0 = 0.3 σy0
= 0.05 J = 1 bJ = 0.2 VT = 2 Γ = 0.1 Λ = 0.5.

Figure 3 shows the estimated marginals of the invariant distribution of the process Xt, while also presenting
a comparison of the the number of samples M and the the average run time, which attains a similar slope
of approximately −1.
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Figure 3: Numerical simulations for the 3D neuron model (4.4). Top left: approximated Invariant distri-
bution for 1st component. Top right: approximated Invariant distribution for 2nd component. Bottom
left: approximated Invariant distribution for 3rd component. Bottom right: Meeting time for parameter
estimation example.

5 Conclusion
McKean-Vlasov stochastic differential equations (MVSDEs) are an important class of processes, that are
used in a range of applications. A recent study of these processes has been on inference, related to either
parameter estimation, or approximations of their corresponding invariant measure. The focus of this work
was to develop a method that is able to unbiasedly approximate invariant measure of MVSDEs, which
are commonly subject to a bias resulting from a discretization scheme. We consider an Euler-Maruyama
discretization and present an unbiased algorithm motivated from the unbiased Monte Carlo algorithms,
that exploit variance reduction techniques. We were firstly able to demonstrate the ergodicity of various
processes we consider to an invariant measure at a geometric rate. To the best of our knowledge these are
the first such results, in the discrete-time setting. From this we proved that our estimator is unbiased.
We presented various numerical experiments to verify our theory on a range of MVSDEs. These includes
a Currie-Weiss model, a 3D neuron model and a parameter estimation problem. Our motivation was to
consider MVSDEs which omitted an invariant measure, and some where an approximation was required.

In terms of future work there are a number of interesting directions one can take.

• A first direction is to consider higher-order discretization schemes, which have more favourable
strong and weak error rates. Examples of this would be splitting order schemes, such as BAOAB
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and UBU. This has been explored in the following works [8, 25], which also used to develop unbiased
estimator for sampling.

• A second direction would be the consideration of neural MVSDEs [30], which are motivated form the
recent directions of neural SDEs and neural ODEs, used for approximations within deep-learning.
This is a recent field, with considerable potential in diffusion models. Presenting new schemes at
handling various biases would prove useful.

• One could consider the application of such unbiased methods to McKean-Vlasov stochastic partial
differential equations (MVSPDEs). This is very much an open direction as very little work has been
conducted, both numerically and theoretically.

• Finally it would be of interest to verify if our unbiased estimator is of finite variance. This compu-
tation is not so trivial, and goes beyond the work of this article. We envision the proof procedure
would follow similarly to that in [1].
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A Ergodicity Results

A.1 Notation
For a matrix A ∈ Rd×d define the norm ∥A∥ = supx∈Rd\{0}

|Ax|
|x| which is equal to the absolute value of the

largest eigenvalue of A. Denote by P0(Rd) the set of probability measures on Rd, and for i ∈ N define the
set of probability measures with finite i-th second moment as Pi(Rd) =

{
µ ∈ P0(Rd) :

∫
|x|iµ(dx) < ∞

}
.

In order for us to characterize the notion of ergodicity, we require ergodicity with respect to a metric.
One metric we will consider for this work is the i-Wasserstein distance, which is provided in the following
definition. For a random variable X defined on a probability space with probability measure P we denote
by LX = P ◦X−1 the law of X. Let µ be any sigma-finite measure on the measurable space (Rd,B(Rd)),
B(Rd) are the Borel sets, and let φ : Rd → R be µ−integrable, then we write µ(φ) =

∫
Rd φ(x)µ(dx).

Definition A.1 (i-Wasserstein distance). The i-Wasserstein distance between two measures µ, ν ∈ P2(Rd)
is defined as

Wi(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
R2d

|x− y|iγ (d(x, y))
)1/i

,

where
Γ(µ, ν) =

{
γ ∈ P0(Rd × Rd) :

∫
A×Rd

γ (d(x, y)) = µ(A),

∫
Rd×A

γ (d(x, y)) = ν(A)

}
,

is the set of couplings of µ and ν.

Definition A.2 (M distance). Let µ, ν ∈ P1(Rd), define the M distance between the two measures µ, ν
by

M(µ, ν) = sup
∥f∥Lip≤1

∣∣∣∣∫
Rd

f(x)µ(dx)−
∫
Rd

f(x)ν(dx)

∣∣∣∣ .
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We utilize the metric M and the metrics Wi in the proofs below. The M and W1 metrics are related
by the inequality M(µ, ν) ≤ W1(µ, ν) which follow from the Kantorovich duality:

W1(µ, ν) = sup
|f |Lip≤1

∣∣∣∣∫
Rd

f(x)µ(dx)−
∫
Rd

f(x)ν(dx)

∣∣∣∣ .
Jensen’s inequality guarantees that W1(µ, ν) ≤ W2(µ, ν). For random variables X,Y defined on the same
probability space we have W2(LX ,LY ) ≤ E[|X − Y |2]1/2. The spaces (Pi(Rd),Wi) are complete metric
spaces. Throughout the proofs below, we use the symbol C for generic constants and its value may change
from one line to another. Dependencies on various model and simulation parameters will be stated as
needed.

A.2 Outline of the Results and Structure
In the appendix we prove several results associated to various processes. We recall that the original
continuous-time process {Xt}t≥0 is governed by the dynamics (1.1). We will then denote by {X̃t}t∈{0,∆l,...

as the exact Euler-Maruyama time-discretization as featured in (2.1). We will also have to analyze the
interacting particle system as described in Algorithm 1 which is denoted as {X̌i

t}(i,t)∈{1,...,N}×{0,∆l,... }.
Note that N is fixed here. Finally we will consider {Xt}t∈{0,∆l,... } which the Euler-Maruyama time-
discretization of the SDE (1.1), except that we plug-in the laws of the SDE approximated by
{X̌i

t}(i,t)∈{1,...,N}×{0,∆l,... }.
We now prove a series of results which are needed for our main results in Section 3 in the main text.

We begin with Proposition A.1 which essentially implies that there is unique stationary distribution of
the processes {Xt}t≥0 and is summarized in Theorem A.1. We then turn to the exact Euler-Maruyama
time-discretization {X̃t}t∈{0,∆l,... for which we prove, in Theorem A.2, existence of a unique stationary
distribution πl. Theorem A.3 shows that πl converges to π as l−grows in 2−Wasserstein distance. In
Theorem A.4 we give a convergence theorem for the empirical measures µl,N

t associated to the particle
system {X̌i

t}(i,t)∈{1,...,N}×{0,∆l,... }, in terms of the convergence in N and t in expected 2−Wasserstein
distance with πl. Theorem A.5 shows that {Xt}t∈{0,∆l,... } has a unique stationary distribution Πl as t
grows and a rather important law of large numbers on a time-discrete grid (used in the proof of Theorem
3.1). Corollary A.2 considers the case that N = Nl and a convergence in 2−Wasserstein distance of Πl to
π. The results should be read in order and proofs of later results rely on earlier ones.

A.3 Ergodicity
Proposition A.1. Assume (A1-2). Then there exist constants Cj < +∞, j ∈ {1, . . . , 4} with C3 > C4

such that for any (x, y, µ, ν) ∈ (Rd)2 × P2(Rd)2

|b(x, ξ̄2(x, µ))− b(y, ξ̄2(y, ν))| ≤ C1|x− y|+ C1M(µ, ν), (A.1)

|a(x, ξ̄1(x, µ))− a(y, ξ̄1(y, ν))| ≤ C2|x− y|+ C2M(µ, ν), (A.2)
2⟨a(x, ξ̄1(x, µ))− a(y, ξ̄1(y, ν)), x− y⟩+ |b(x, ξ̄2(x, µ))− b(y, ξ̄2(y, ν))|2

≤ −C3|x− y|2 + C4M(µ, ν)2,
(A.3)

sup
µ∈P2(Rd)

|a(0, ξ̄1(0, µ))| < ∞, sup
µ∈P2(Rd)

|b(0, ξ̄2(0, µ))| < ∞. (A.4)

Proof. For the first inequality, using the assumption that b is Lipschitz and the triangular inequality we
have

|b(x, ξ̄2(x, µ))− b(y, ξ̄2(y, ν))| ≤ |b|Lip|x− y|+ |b|Lip
∣∣∣∣∫

Rd

ξ2(x, z)µ(dz)−
∫
Rd

ξ2(y, z)µ(dz)

∣∣∣∣
+ |b|Lip

∣∣∣∣∫
Rd

ξ2(y, z)µ(dz)−
∫
Rd

ξ2(y, z)ν(dz)

∣∣∣∣ .
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The second term in the line is bounded by |ξ2|Lip|x−y| and the third term is bounded by ∥ξ2∥LipM(µ, ν).
Thus inequality (A.1) holds with C1 = |b|Lip(1+ ∥ξ2∥Lip). Inequality (A.2) follows analogously. For (A.3)
we write

⟨a(x, ξ̄1(x, µ))− a(y, ξ̄1(y, ν)), x− y⟩
=⟨a(x, ξ̄1(x, µ))− a(y, ξ̄1(x, µ)), x− y⟩+ ⟨a(y, ξ̄1(x, µ))− a(y, ξ̄1(y, ν)), x− y⟩.

Let A = supx∈Rd+1 sup|y|=1 y
⊤∇1a(x)y and B = ∥∇2a∥. The first term is bounded above by A|x − y|2.

For the second term, we use the Cauchy inequality and calculations similar to the one used to prove the
first inequality

⟨a(y, ξ̄1(x, µ))− a(y, ξ̄1(y, ν)), x− y⟩ ≤|x− y|
∣∣a(y, ξ̄1(x, µ))− a(y, ξ̄1(y, ν))

∣∣
≤B∥ξ1∥Lip|x− y| (|x− y|+M(µ, ν))

≤3

2
B∥ξ1∥Lip|x− y|2 + 1

2
B∥ξ1∥LipM(µ, ν)2.

Therefore

2⟨a(x, ξ̄1(x, µ))− a(y, ξ̄1(y, ν)), x− y⟩+ |b(x, ξ̄2(x, µ))− b(y, ξ̄2(y, ν))|2

≤(2A+ 3B∥ξ1∥Lip + 2C2
1 )|x− y|2 + (B∥ξ1∥Lip + 2C2

1 )M(µ, ν)2,

and (A.3) follows by Assumption (A2). Inequality (A.4) follows from the continuity of the function a and
the boundedness of the function ξ̄1

sup
µ∈P2(Rd)

a(0, ξ̄1(0, µ)) ≤ sup
|x|≤∥ξ1∥

a(0, x) < ∞.

Proposition A.1 verifies the conditions needed for [29, Theorem 3.1], which we now state.

Theorem A.1. Assume (A1-2). Then there exists a unique π ∈ P2(Rd) such that

lim
t→∞

W2(µt, π) = 0.

Let ∆l > 0, unless explicitly stated the processes below in this section depend implicitly on ∆l. Define
∆lWt = Wt+∆ −Wt. Recall the discrete process {X̃t}t∈{0,∆l,... }

X̃t+∆l
= X̃t + a(X̃t, ξ̄1(X̃t, µ

l
t))∆ + b(X̃t, ξ̄1(X̃t, µ

l
t))∆Wt,

where µl
t is the law of X̃t. We follow the proof of Theorem 3.1 in [29] but in a discrete manner to show

that the process {X̃t}t∈{0,∆l,... } has a unique invariant measure. Define

∆⋆ = min

{
C3 − C4

2C2
,
C3

4C2
2

}
.

∆⋆ will serve as a threshold for the values of ∆l for which the following proofs will be valid.

Theorem A.2. Assume (A1-2) and that ∆l < ∆⋆. Then there exists a unique πl ∈ P2(Rd) such that

lim
t→∞

W2(µ
l
t, π

l) = 0.

Moreover, πl is independent of µl
0 and if µl

0 = πl then X̃t ∼ πl for every t ∈ {0,∆l, . . . }.
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Proof. Let s ∈ {∆l, 2∆l, . . . }. Let {Ỹt}t∈{0,∆l,... } be the discrete process defined by Ỹ0 ∼ µl
s and

Ỹt+∆l
= Ỹt + a(Ỹt, ξ̄1(Ỹt, ν

l
t))∆l + b(Ỹt, ξ̄1(Ỹt, ν

l
t))∆lWt,

where we remark that E[|X̃0 − Ỹ0|2] = W2(µ
l
0, µ

l
s)

2 and that νlt is the law of Ỹt. As Ỹt is discrete and
follows the same iteration as X̃t we have νlt = µl

s+t. For every t ∈ {0,∆l, . . . } we have

E[|X̃t+∆ − Ỹt+∆|2] = E[|X̃t − Ỹt|2] + E[|a(X̃t, ξ̄1(X̃t, µ
l
t))− a(Ỹt, ξ̄1(Ỹt, ν

l
t))|2]∆2

l

+ E[2⟨a(X̃t, ξ̄1(X̃t, µ
l
t))− a(Ỹt, ξ̄1(Ỹt, ν

l
t)), X̃t − Ỹt⟩

+ |b(X̃t, ξ̄2(X̃t, µ
l
t))− b(Ỹt, ξ̄2(Ỹt, ν

l
t))|2]∆l

≤ (1− C3∆l + C2∆
2
l )E[|X̃t − Ỹt|2] + (C4∆l + C2∆

2
l )W2(µ

l
t, ν

l
t)

2.

≤ (1− C3∆l + C2∆
2
l + C4∆l + C2∆

2
l )E[|X̃t − Ỹt|2],

where the constants C2, C3, C4 are as in Proposition A.1. As ∆l < ∆⋆ we have

ϵ = C3 − C2∆l − C4 − C2∆l > 0.

Therefore for every t ∈ {0,∆l, . . . }

E[|X̃t − Ỹt|2] =E[|X̃0 − Ỹ0|2]
t/∆l−1∏
k=0

E[|X̃(k+1)∆l
− Ỹ(k+1)∆l

|2]
E[|X̃k∆l

− Ỹk∆l
|2]

≤W2(µ
l
0, ν

l
0)

2(1− ϵ∆l)
t/∆l

≤W2(µ
l
0, ν

l
0)

2e−ϵt.

(A.5)

This implies that
W2(µ

l
t, µ

l
t+s)

2 ≤ W2(µ
l
0, µ

l
s)

2e−ϵt ≤ 4 sup
s∈{0,∆l,... }

E[|X̃s|2]e−ϵt. (A.6)

To bound E[|X̃t|2] we follows similar calculations as follows

E[|X̃t+∆l
|2] =E[|X̃t|2] + ∆lE[2⟨a(X̃t, ξ̄1(X̃t, µ

l
t)), X̃t⟩+ |b(X̃t, ξ̄1(X̃t, µ

l
t))|2]

=E[|X̃t|2] + ∆lE[2⟨a(X̃t, ξ̄1(X̃t, µ
l
t))− a(0, ξ̄1(0, µ

l
t)), X̃t⟩+ |b(X̃t, ξ̄1(X̃t, µ

l
t))− b(0, ξ̄1(0, µ

l
t))|2]

+∆lE[2⟨b(X̃t, ξ̄1(X̃t, µ
l
t)), b(0, ξ̄1(0, µ

l
t))⟩ − |b(0, ξ̄1(0, µl

t))|2] + ∆lE[⟨a(0, ξ̄1(0, µl
t)), X̃t⟩]

≤(1− C3∆l)E[|X̃t|2] + C∆lE[|X̃t|] + C∆l

≤(1− C3∆l/2)E[|X̃t|2] + C∆l,

(A.7)

where we used the boundedness of a(0, ξ̄1(0, µ
l
t)) and b(0, ξ̄1(0, µ

l
t)), the Cauchy inequality, and the in-

equality

x ≤ C

2C3
+

C3

2C
x2.

Iterating inequality (A.7) yields

E[|X̃t|2] ≤ (1− C3∆l/2)
t/∆lE[|X̃0|2] + C∆l

∞∑
k=0

(1− C3∆l/2)
k ≤ e−C3t/2E[|X̃0|2] +

2C

C3
. (A.8)

Therefore the sequence {µl
t}t∈{0,∆l,... } is a Cauchy sequence on the complete metric space (P2,W2), thus

there exists an invariant measure πl that satisfies limt→∞ W2(µ
l
t, π

l)=0. Taking s → ∞ in the first half
of inequality (A.6) shows that if µl

0 = πl then X̃t ∼ πl.
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To prove uniqueness and independence of the initial distribution of the process, let ν̃ be an invariant
measure and define the processes Ỹt as above but with Ỹ0 ∼ ν̃ and suppose that µl

0 = πl. By invariance
of πl we have Ỹt ∼ ν̃ for all t ∈ {0, δl, . . . }. From inequality (A.5) we have

W2(π
l, ν̃)2 ≤ W2(π

l, ν̃)2e−ϵt,

and the claim follows by taking t → ∞.

Corollary A.1. Assume (A1-2). Let ∆ < ∆⋆ and ∆l < ∆. The bounds in (A.5),(A.6), and (A.8) depend
only on ∆, E[|X̃0|2], and the norms of the coefficients a, b, ξ1, ξ2.

Theorem A.3. Assume (A1-2). Then we have

lim
l→∞

W2(π
l, π) = 0.

Proof. Without loss of generality assume ∆l < ∆⋆. First, by [29, Theorem 3.1] we have sups≥0 E[|Xs|2] <
∞. Second, by using the inquality |x+ y|2 ≤ 2|x|2 + 2|y|2, Lipschitz properties of the functions a and b,
Proposition A.1, Cauchy inequality, Ito isometry, and Fubini’s Theorem, we have that for t > s > 0:

E[|Xt −Xs|2] ≤ CE

[∣∣∣∣∫ t

s

(|Xu|+ 1)du

∣∣∣∣2
]
+ CE

[∫ t

s

(|Xu|+ 1)2du

]
< C(t− s), (A.9)

with C independent of t and s. Write

Xt+∆l
− X̃t+∆l

= A+B,

where

A : = Xt − X̃t + (a(Xt, ξ̄1(Xt, µt))− a(X̃t, ξ̄1(X̃t, µ
l
t)))∆l

+ (b(Xt, ξ̄1(Xt, µt))− b(X̃t, ξ̄2(X̃t, µ
l
t)))∆lWt,

and

B : =

∫ t+∆l

t

(a(Xu, ξ̄1(Xu, µu))− a(Xt, ξ̄1(Xt, µt)))du

+

∫ t+∆l

t

(b(Xu, ξ̄2(Xu, µu))− b(Xt, ξ̄2(Xt, µt)))dWu.

Following the proof of Theorem A.2 there exists ϵ > 0 independent of ∆l that satisfies

E[|A|2] ≤ (1− ϵ∆l)E[|Xt − X̃t|2].

Using (A.9) and Ito isometry we have

E[|B|2] ≤ C∆l sup
0≤s≤∆l

E[|Xt+s −Xt|2] ≤ C∆2
l .
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Using (A.9) and Itô isometry we have that E[⟨A,B⟩] is equal to

E

[(
(b(Xt, ξ̄1(Xt, µt))− b(X̃t, ξ̄2(X̃t, µ

l
t)))∆lWt

)⊤ ∫ t+∆l

t

(b(Xu, ξ̄2(Xu, µu))− b(Xt, ξ̄2(Xt, µt)))dWu

]

≤E

[∣∣∣(b(Xt, ξ̄1(Xt, µt))− b(X̃t, ξ̄2(X̃t, µ
l
t)))
∣∣∣ ∫ t+∆l

t

∣∣b(Xu, ξ̄2(Xu, µu))− b(Xt, ξ̄2(Xt, µt))
∣∣ du]

≤CE

[(
|Xt − X̃t|+W1(µt, µ

l
t)
)∫ t+∆l

t

(|Xu −Xt|+W1(µu, µt)) du

]
≤C∆lE[|Xt − X̃t|2]1/2 sup

0≤s≤∆l

E[|Xt+s −Xt|2]1/2

≤C∆
3/2
l E[|Xt − X̃t|2]1/2

≤ϵ∆l

2
E[|Xt − X̃t|2] + C

∆2
l

2ϵ
.

To deduce the last three lines we used the inequalities

W1(µt, µ
l
t) ≤ E[|Xt − X̃t|]1/2, W1(µu, µt) ≤ E[|Xu −Xt|]1/2, x ≤ ϵ

2C
√
∆l

x2 +
C
√
∆l

2ϵ
.

Therefore

E[|Xt+∆l
− X̃t+∆l

|2] ≤E[|A|2] + 2E[⟨A,B⟩] + E[|B|2]
≤(1− ϵ∆l/2)E[|Xt − X̃t|2] + C∆2

l .

Iterating this last inequality yields

E[|Xt − X̃t|2] ≤ (1− ϵ∆l/2)
t/∆lE[|X0 − X̃0|2] + C∆2

l

∞∑
k=0

(1− ϵ∆l/2)
k ≤ Ce−ϵt/2 + C∆l.

Using W2(µt, µ
l
t) ≤ E[|Xt − X̃t|2] and taking t → ∞ then l → ∞ proves the claim.

Consider (i, k) ∈ {1, . . . , N} × N0

X̌i
(k+1)∆l

= X̌i
k∆l

+ a(X̌i
k∆l

, ξ̄1(X̌
i
k∆l

, µl,N
k∆l

))∆l + b(X̌i
k∆l

, ξ̄1(X̌
i
t , µ

l,N
k∆l

))∆lW
i
k∆l

, (A.10)

where µl,N
k∆l

= 1
N

∑N
j=1 δX̌i

k∆l

, X̌i
0 = x0, i ∈ {1, . . . , N} and {W i

k∆l
}i∈{1,...,N} are independent standard

Brownian motions.

Theorem A.4. Assume (A1-A2) and ∆l < ∆⋆. Then we have

lim
N→∞
t→∞

E[W2(µ
l,N
t , πl)2] = 0.

Proof. Consider the system

X̃i
t+∆l

= X̃i
t + a(X̃i

t , ξ̄1(X̃
i
t , µ

l
t))∆l + b(X̃i

t , ξ̄1(X̃
i
t , µ

l
t))∆lW

i
t ,

with X̃i
0

ind∼ µl
0 for i ∈ {1, . . . , N}. Following the calculations in Theorem A.2 we can show that

sup
t≥0

E[|X̌i
t |2] < ∞, sup

t≥0
E[|X̃i

t |2] < ∞,

20



and

E[|X̌i
t+∆l

− X̃i
t+∆l

|2] = E[|X̌i
t − X̃i

t |2] + E[|a(X̌i
t , ξ̄1(X̌

i
t , µ

l,N
t ))− a(X̃i

t , ξ̄1(X̃
i
t , µ

l
t))|2]∆2

l

+ E[2⟨a(X̌i
t , ξ̄1(X̌

i
t , µ

l,N
t ))− a(X̃i

t , ξ̄1(X̃
i
t , µ

l
t)), X̌

i
t − X̃i

t⟩

+ |b(X̌i
t , ξ̄2(X̌

i
t , µ

l,N
t ))− b(X̃i

t , ξ̄2(X̃
i
t , µ

l
t))|2]∆l

≤ (1− C3∆l + C2∆
2
l )E[|X̌i

t − X̃i
t |2] + (C4∆l + C2∆

2
l )E[M(µl,N

t , µl
t)

2].

≤ (1− C3∆l + C2∆
2
l + C4∆l + C2∆

2
l )E[|X̌i

t − X̃i
t |2].

Let κ > 0 such that
C3 − C2∆l − (1 + κ)(C4 + C2∆l) > 0,

such a κ exists because ∆l < ∆⋆. Using the following inequality

(x+ y)2 ≤ (1 + κ)x2 +
(
1 +

1

κ

)
y2,

we have that for any f ∈ CLip(Rd,R) ∩ Cb(Rd,R)

E[|µl,N
t (f)− µl

t(f)|2] ≤(1 + κ)E

∣∣∣∣∣ 1N
N∑
i=1

{
f(X̌i

t)− f(X̃i
t)
}∣∣∣∣∣

2
+

(
1 +

1

κ

)
E

∣∣∣∣∣ 1N
N∑
i=1

{
f(X̌i

t)− E[f(X̃i
t)]
}∣∣∣∣∣

2


≤(1 + κ)∥f∥2Lip sup
i

E[|X̌i
t − X̃i

t |2] +
(
1 +

1

κ

) 1

N
E
[
(f(X̌1

t )− E[f(X̃1
t )])

2
]

≤(1 + κ)∥f∥2Lip sup
i

E[|X̌i
t − X̃i

t |2] + 4
(
1 +

1

κ

)
∥f∥2 1

N
.

In the above calculation, for the first term after the first inequality we used the inequality(
1

N

N∑
i=1

xi

)2

≤ 1

N

N∑
i=1

x2
i ,

and for the second term we use the fact that the random variables X̃i
t are i.i.d.. Now we define a sequence

of bounded Lipschitz random functions fn that satisfy the following inequalities

M(µl,N
t , µl

t)−
1

n
≤ µl,N

t (fn)− µl
t(fn) ≤ M(µl,N

t , µl
t), ∥fn∥Lip ≤ 1.

Since M(µl,N
t , µl

t) ≤ 2 we have by dominated convergence

E[M(µl,N
t , µl

t)
2] = lim

n→∞
E[|µl,N

t (fn)− µl
t(fn)|2] ≤ (1 + κ) sup

i
E[|X̌i

t − X̃i
t |2] + 4

(
1 +

1

κ

) 1

N
.

Letting ϵ = C3 − C2∆l − (1 + κ)(C4 + C2∆l), we have

sup
i

E[|X̌i
t+∆ − X̃i

t+∆|2] ≤ (1− ϵ∆) sup
i

E[|X̌i
t − X̃i

t |2] +
C∆l

N
.

Consequently

sup
i

E[|X̌i
t − X̃i

t |2] ≤(1− ϵ∆)t/∆l sup
i

E[|X̌i
0 − X̃i

0|2] +
C∆l

N

∞∑
k=0

(1− ϵ∆l)
k

<e−ϵt sup
i

E[|X̌i
0 − X̃i

0|2] +
C

ϵN
.

21



Noticing that W2(µ
l,N
t , µl

t)
2 ≤ supi E[|X̌i

t − X̃i
t |2] proves that

lim
N→∞
t→∞

E[W2(µ
l,N
t , µl

t)
2] = 0.

Finally, the Theorem statement follows from the inequality

W2(µ
l,N
t , πl)2 ≤ 2W2(µ

l,N
t , µl

t)
2 + 2W2(µ

l
t, π

l)2,

and using Theorem A.2.

For k ∈ N0 set

X(k+1)∆l
= Xk∆l

+ a(Xk∆l
, ξ̄1(Xk∆l

, µl,N
k∆l

))∆l + b(Xk∆l
, ξ̄1(Xk∆l

, µl,N
k∆l

))∆lBk∆l
, (A.11)

where the empirical measures have been plugged in from the system (A.10), X0 = x0 and Bk∆l
is a

standard Brownian motion independent of all random variables. By conditioning on L we can follow the
same strategy of Theorem A.2 and show that there exists a unique invariant (random) measure Πl for the
process defined in (A.11). Furthermore, we have

W2(Π
l,LXt

)2 ≤ W2(Π
l,LX0

)2e−ϵt. (A.12)

with ϵ a constant independent of L , which implies W2(Π
l,LXt

) → 0 both a.s. and in L2 as t → ∞. Next,
we show that a law of large numbers holds.

Theorem A.5. Assume (A1-2) and ∆l < ∆⋆. Then there exists a unique Πl ∈ P2(Rd) such that

W2(Π
l,LXt

)
a.s. and L2−−−−−−−→

t→∞
0

and
W2(Π

l, πl)
L2−−−−→

N→∞
0. (A.13)

In addition, for any φ ∈ CLip(Rd,R)

E

[
1

I

I∑
t=1

φ(Xt)

∣∣∣∣L
]

a.s. and L2−−−−−−−→
I→∞

Πl(φ). (A.14)

Proof. The existence and uniqueness of Πl is established above and we defer the proof of (A.13) at the
end. For φ ∈ CLip(Rd,R) we have almost surely∣∣∣∣∣E

[
1

I

I∑
t=1

φ(Xt)

∣∣∣∣L
]
−Πl(φ)

∣∣∣∣∣ ≤ 1

I

I∑
t=1

∣∣∣∣∣E
[
1

I

I∑
t=1

φ(Xt)

∣∣∣∣L
]
−Πl(φ)

∣∣∣∣∣ ≤ |φ|Lip
I

M∑
t=1

W2(LXt
,Πl),

and one can conclude (A.14) by Cesaro averages.
For (A.13), recall the discrete-time process in (A.11) and define the process k ∈ N0

Z(k+1)∆l
= Zk∆l

+ a(Xk∆l
, ξ̄1(Zk∆l

, µl
k∆l

))∆l + b(Zk∆l
, ξ̄1(Zk∆l

, µl
k∆l

))∆lBk∆l
,

Z0 = x0. Following the calculations of Theorem A.2 we have that

sup
N∈N

sup
s∈{0,∆l,... }

E[|Xs|2] < ∞, sup
N∈N

sup
s∈{0,∆l,... }

E[|Zs|2] < ∞,
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and

E[|Xt+∆l
− Zt+∆l

|2] ≤ (1− C3∆l + C2∆
2
l )E[|Xt − Zt|2] + (C4∆l + C2∆

2
l )E[M(µl,N

t , µl
t)

2], (A.15)

Let ζ > 0 by Theorem A.4 there exist s1 ∈ {0,∆l, . . . } and A ∈ N such that

E[M(µl,N
t , µl

t)
2] ≤ E[W2(µ

l,N
t , µl

t)
2] < ζ,

for all t > s1 and N > A. Let s2 ∈ {0,∆l, . . . } satisfy e(−C3+C2∆l)s2 < ζ and let s = max(s1, s2). For
every N > A and t > 2s the inequality (A.15) implies

E[|Xt − Zt|2] ≤(1− C3∆l + C2∆
2
l )

(t−s)/∆lE[|Xs − Zs|2]

+(C4∆l + C2∆
2
l )

(t−s)/∆l∑
k=0

(1− C3∆l + C2∆
2
l )

kE[M(µl,N
t−k∆l

, µl
t−k∆l

)2]

≤Ce(−C3+C2∆l)(t−s) + ζ(C4∆l + C2∆
2
l )

∞∑
k=0

(1− C3∆l + C2∆
2
l )

k

≤Cζ,

(A.16)

with C independent of ∆l. Therefore

lim
N→∞
t→∞

E[|Xt − Zt|2] = 0. (A.17)

Finally, we have that

E[W2(Π
l, πl)2] ≤ 3E[W2(Π

l,LXt
)2] + 3E[W2(LXt

, µl
t)

2] + 3W2(µ
l
t, π

l)2.

The first term approaches 0 as t,N → ∞ by (A.12), the second term approaches 0 using (A.17), and the
third term approaches 0 by Theorem A.2.

Finally, using Theorem A.5 we have the following corollary when we allow N = Nl (recall that Nl is
defined in the main text) to grow with l.

Corollary A.2. Assume (A1-2). Then we have that

W2(Π
l, π)

L2−−−→
l→∞

0.

Proof. By the triangular inequality we have

W2(Π
l, π) ≤ W2(Π

l, πl) +W2(π
l, π).

By using (A.16) we have W2(Π
l, πl)

L2−−−→
l→∞

0, and using Theorem A.3 we have W2(π
l, π) −−−→

l→∞
0.
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