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Abstract

A conforming partition of a rectilinear n-gon P is a partition of P into rectangles without using Steiner
points (i.e., all corners of all rectangles must lie on P ). The stabbing number of such a partition is the
maximum number of rectangles intersected by an axis-aligned segment lying in the interior of P . In this
paper, we examine the problem of computing conforming partitions with low stabbing number. We show
that computing a conforming partition with stabbing number at most 4 is NP-hard, which strengthens a
previously known hardness result [Durocher & Mehrabi, Theor. Comput. Sci. 689: 157-168 (2017)] and
eliminates the possibility for fixed-parameter-tractable algorithms parameterized by the stabbing number
unless P = NP. In contrast, we give (i) an O(n logn)-time algorithm to decide whether a conforming
partition with stabbing number 2 exists, (ii) a fixed-parameter-tractable algorithm parameterized by both
the stabbing number and treewidth of the pixelation of the polygon, and (iii) a fixed-parameter-tractable
algorithm parameterized by the stabbing number for simple polygons in general position.

1 Introduction
Partitioning an n-gon P with nice properties is a fundamental paradigm in computational geometry. We are
interested in the stabbing number of a partition, i.e., the maximum number of elements of the partition that
are intersected by a straight line segment that lies interior to the polygon. Consider a partition of a polygon
into triangles. Such a partition yields a data structure to efficiently process a ray shooting query inside the
polygon: a ray is traced by traversing the sequence of triangles that are stabbed by the ray. Since the running
time is proportional to the number of stabbed triangles, it is desirable to find a triangular partition such
that no ray intersects too many triangles, or in other words, to minimize the stabbing number. Hershberger
and Suri [15] showed that every simple polygon has a triangular partition with stabbing number O(log n)
and there exist polygons where any triangular partition has stabbing number Ω(log n). There is also an
O(1)-approximation algorithm for minimizing the stabbing number of triangular partitions [1].

In this paper, we restrict the attention to rectilinear polygons, partition them into rectangles, and for
the stabbing number only consider line segments that are in the interior of the polygon and axis-aligned
(we call these stabbing segments). More precisely, we study the following problem for a rectilinear n-gon P ,
possibly with holes: partition P into rectangles while minimizing the stabbing number of the partition, that
is, the maximum over all stabbing segments s of the number of partition rectangles intersected by s. We
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Figure 1: (a) An optimal rectangular partition of P1 using two Steiner points (tiny hollow circles) with
stabbing number 3. The portion of the edges of partition rectangles which are not on the boundary of P1 are
plain bold (red). (b) An optimal conforming partition of P1 with stabbing number 4. (c) The pixelation
of a polygon P1 in general position with one hole. The reflex vertices are tiny (black) discs and the reflex
segments are dotted (red). The horizontal and vertical reflex segments hp and vp from the reflex vertex p are
bold. The wedge-pixel of p is shaded (in orange) and labeled 1.(d) The pixelation of a thin polygon P2 with
three holes (not in general position). (e) An optimal conforming partition of P2 with stabbing number 3.

often describe such a partition via the inserted segments. A Steiner point of a partition is an endpoint of a
segment that does not lie on P . We say that such a rectangular partition is optimal, and call its stabbing
number the (minimum) stabbing number of P . Figure 1(a) shows an example of an optimal partition. Similar
to triangular partitions, every rectilinear polygon has stabbing number O(log n), and there exist polygons
of arbitrary size with stabbing number Ω(log n) [9]. However, there also exist arbitrary-size polygons with
stabbing number O(1). To this end, Abam et al. [1] gave a 3-approximation algorithm for computing the
stabbing number of simple rectilinear polygons. An interesting open problem in this context is to determine
the computational complexity of computing the stabbing number for simple polygons. Although this question
remains open in general, there has been some progress on a variant of rectangular partition called conforming
partition.

A conforming partition of a rectilinear polygon P is a rectangular partition without Steiner points. Put
differently, the partition is obtained by using internally disjoint axis-aligned segments that are maximal (i.e.,
both endpoints are in P ). To minimize the stabbing number, it suffices to restrict the attention to partitions
that use only reflex segments, i.e., maximal axis-aligned open segments where one endpoint is a reflex vertex
of P (Figure 1(b)). Again, we say that a conforming partition is optimal if its stabbing number is minimum
among all the conforming partitions, and we call this stabbing number the conforming stabbing number of
P . Durocher and Mehhrabi [12, 11] showed that computing an optimal conforming partition is NP-hard for
polygons with holes, and gave a 2-approximation algorithm for computing the conforming stabbing number
(see also [16] for experimental results). However, the complexity of the problem remains open for simple
polygons without holes.

Contributions. In this paper, we investigate the problem of computing an optimal conforming partition of
rectilinear polygons (possibly with holes) from the perspective of designing fixed-parameter tractable (FPT)
algorithms, i.e., algorithms with a running time of the form f(k)nO(1) for some chosen parameter k and
some computable function f(·) that is independent of n. A natural question in the context of asking for
(conforming) partitions with stabbing number at most k is to search for an FPT algorithm parameterized
by k. We show that such an algorithm does not exist unless P = NP. Specifically, deciding whether the
conforming stabbing number (and in fact the stabbing number) of a polygon is at most 4 remains NP-hard
(Section 3). This strengthens the NP-hardness result of Durocher and Mehhrabi [12], who show it is NP-hard
to determine whether the conforming stabbing number is Θ(

√
n).

Our hardness result puts forward two interesting questions. First, is it decidable whether a rectilinear
polygon admits a conforming partition with stabbing number at most 2 or 3 in polynomial time? Second,
are there other natural parameters for FPT algorithms to compute optimal conforming partitions? For
the former, we give an O(n log n)-time algorithm to decide whether a conforming partition with stabbing
number 2 exists (Section 4); this leaves the case of stabbing number 3 open. For the latter, we give two
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FPT algorithms to test whether a polygon P has conforming stabbing number at most k (Section 5). One is
parameterized by the sum of k plus the treewidth of P , the other is specific to simple polygons in general
position and is parameterized by k alone.

2 Preliminaries
Throughout the article, the polygons we consider are all rectilinear (i.e., the edges are axis-aligned) and may
contain holes. A polygon is in general position if no three vertices lie on one axis-aligned line (Figure 1(c)).
A polygon is thin if no pair of its reflex segments intersect (Figure 1(d)-(e)).

The pixelation of a polygon P (possibly with holes) is the partition of P obtained by adding for each reflex
vertex p its horizontal and vertical reflex segments; these segments are denoted hp and vp (Figure 1(c)-(d)).
A pixel is a maximal region of P that does not intersect a reflex segment. For a reflex vertex p of P , the
wedge-pixel of p is the pixel incident to the wedge defined by the reflex segments of p, i.e., the pixel that is
incident to p and to hp and vp (Figure 1(c)).

Recall that a stabbing segment of a rectilinear polygon P is an axis-aligned line segment that lies in the
interior of P ; for purposes of the stabbing number we only need to consider segments of maximal length, and
we consider them to be open segments. We say that two stabbing segments are equivalent if they intersect the
same set of pixels; there are O(n) equivalence classes of stabbing segments. For instance, in Figure 1(c), there
are 26 equivalence classes. Given a rectilinear polygon P , by k-STAB (k-CSTAB) we denote the problem of
deciding whether P admits a partition (conforming partition) into rectangles such that all stabbing segments
intersect at most k rectangles.

We will reduce from an NP-hard problem called rectilinear planar monotone 3-SAT (RPM-3-SAT) [8]
to prove the hardness results. The RPM-3-SAT problem is a variant of 3-SAT where every clause is either
negative or positive, i.e., consists of either three negated or three non-negated variables. Furthermore, the
bipartite graph constructed from the variable-clause incidences admits a planar drawing such that all vertices
are drawn as rectangles, the variable rectangles (i.e., rectangles of vertices corresponding to variables) lie
along the x-axis, the positive (negative) clause rectangles (i.e., rectangles of vertices corresponding to such
clauses) lie above (below) the x-axis, and edges are represented by vertical lines of visibility between the
rectangles of their endpoints. Figure 2(a) illustrates such an instance where the rectangles are shaded in gray.

3 Intractability of Stabbing Number 4 or More
In this section, we sketch a proof of NP-completeness; details are in Appendix A.

Theorem 3.1. For all integer k ≥ 4, the decision problems k-STAB and k-CSTAB are NP-complete. Moreover,
k-CSTAB remains NP-complete even for thin polygons and for polygons in general position.

Proof structure. It is straightforward to verify that k-STAB and k-CSTAB are in NP for any integer k.
We thus concentrate on proving NP-hardness. First, we prove that 4-CSTAB is NP-hard, even if only thin
polygons are considered. In a thin polygon, any optimal partition is conforming, so in consequence 4-STAB is
also NP-hard. However, the gadgets take advantage of not being in general position. Second, we provide an
alternative version of this proof, this time for polygons in general position (but the gadgets take advantage
of not being thin). As an aside, we note here that it is not possible to make the gadgets both thin and in
general position; the problem is actually polynomial in this case, see Theorem 4.1.

As a third step, using a similar approach and with a similar alternative version, we prove that 5-CSTAB,
and thus 5-STAB, are NP-hard. Finally, we show how to modify our constructions for ℓ-CSTAB (ℓ ∈ {4, 5})
to work for ℓ+ 2m-CSTAB for any m ≥ 1. Therefore k-CSTAB is NP-hard for thin polygons for all k ≥ 4,
which implies hardness for k-STAB.
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Proof sketch of the NP-hardness of 4-CSTAB for thin polygons. We reduce RPM-3-SAT (defined in
the preliminaries) to 4-STAB in polynomial time. We transform an instance ϕ of RPM-3-SAT (shaded in the
background of Figure 2(a)) into an instance P (ϕ) of 4-STAB (the polygon in Figure 2(a)).

The polygon P (ϕ) consists of variable gadgets (drawn inside the variable rectangles), split gadgets (drawn
above and/or below the variable gadgets and still inside the variable rectangles), and clause gadgets (drawn
inside the clause rectangles). Crucial to our construction are forcer gadgets, indicated by a square labeled F
in Figure 2(a) and shown in detail in Figure 2(b). A forcer gadget is designed to force the presence (in any
conforming partition with stabbing number at most 4) of a certain pair of reflex segments in the pixel to
which it is attached.
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Figure 2: Gadgets used in the proof of Theorem 3.1 for k = 4 (using thin polygons). (a) The polygon P (ϕ)
(not to scale) of the RPM-3-SAT drawing of ϕ = (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4). Forcer
gadgets are represented by squares labeled F. The reflex segments of a partition with stabbing number 4 are
solid bold (in red), the other reflex segments are dotted (in red). Vertical stabbing segments propagating 0
(respectively 1) are thick purple (respectively thick green). We use 0⋆ for a value that is 1 in the variable
assignment but that has been decreased by a variable gadget or by a split gadget and is propagated as 0. (b)
The forcer gadget.

We now describe the properties of the gadgets and show at the same time that any conforming partition
R of P (ϕ) implies a satisfying assignment for ϕ. Without loss of generality, R is minimal, i.e., no reflex
segment can be removed while retaining a conforming partition.

We propagate information between gadgets along certain vertical stabbing segments that each intersect
two gadgets. We say that such a stabbing segment s propagates 0 (standing for ‘false’) if it intersects three
segments of R within the gadget that lies closer to the x-axis, and that s propagates 1 (standing for ‘true’) if
it intersects only two segments of R.

In the gadget of a variable x, there are two out-stabs, i.e., two vertical stabbing segments, which are
assigned to the literals x and x. We design variable gadgets such that not both out-stabs propagates 1, but
all other combinations of propagated values are possible. We then read from the partition a value for x: x is
assigned the value propagated by the out-stab of the literal x. Note that we set x = 0 (by convention) if
both out-stabs propagate 0 (the convention x = 1 would have worked as well). In the partition of P (ϕ) in
Figure 2(a), x1, x2, x3, x4 = 0, 1, 1, 0 (even though the out-stab of the literal x4 propagates 0).

A split gadget has an in-stab and two out-stabs. The in-stab is an out-stab of a variable gadget or of
another split gadget. A split gadget “splits the propagation” in the sense that the value propagated by the
two out-stabs is at most the value propagated by the in-stab. In Figure 2(a), the split gadget in x1 splits the
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in-stab’s value 0 into two out-stabs propagating 0 as well, whereas the split gadget in x3 splits the in-stab’s
value 1 into a left out-stab propagating 0 and a right one propagating 1.

A clause gadget has three in-stabs each of which is an out-stab (of a variable gadget or a split gadget)
propagating the value (possibly decreased) from a variable gadget. We design the clause gadget such that
there exists a conforming partition where the horizontal stabbing segment within a clause gadget intersects at
most four rectangles if and only if at least one of the three in-stabs of the clause gadget propagates 1. This in
turn is possible only if one of the literals of the clause corresponds to an out-stab propagating 1, which in
turn implies that we have assigned 1 to this literal, since propagated values do not increase. Therefore, a
solution to 4-CSTAB implies a satisfying assignment for ϕ.

The other direction (i.e., proving that a satisfying assignment to ϕ gives a solution to 4-CSTAB) is similar
and even easier and the reduction is hence complete. We prove that 5-CSTAB is NP-hard using the exact
same reduction idea with slightly modified gadgets.

Proof sketch for polygons in general position. In the previous reduction, we use aligned reflex vertices
in two places: within the forcer gadget, and where the forcer gadget attaches at some pixel. To achieve the
reduction for polygons in general position, we design a completely different forcer gadget based on a staircase,
and we shift the attachment points of forcer gadgets slightly so that they are no longer aligned.

Proof sketch for k > 4. For the case when k is even, i.e. k = 4 + 2m where m is a positive integer, we
generalize the forcer gadget for stabbing number 4, by adding m rows and m columns. We then generalize
the polygon P (ϕ) by attaching m forcer gadgets for stabbing number k to the middle of each row or column
of adjacent pixels of P (ϕ). The hardness reduction for k-CSTAB now follows the same technique that we
used to prove the hardness of 4-CSTAB. The case when k is odd is handled similarly by starting with the
hardness of 5-CSTAB.

4 Tractability of Conforming Stabbing Number 2

The tractability of 2-CSTAB is very easy to show by phrasing the problem as a 2-SAT problem. The running
time depends on the maximum number of reflex segments intersected by a stabbing segment.

Lemma 4.1. There exists an algorithm that, for a rectilinear n-gon P where every stabbing segment intersects
at most ℓ reflex segments, decides 2-CSTAB and provides a solution (if any) in O(ℓn) time.

Proof. Declare a boolean variable x(s) for every reflex segment s, with the intent that s is used in the solution
if and only if x(s) is true. To ensure that we have a conforming partition, we hence require

• x(hp) ∨ x(vp) for every reflex vertex p, as well as

• ¬x(hp) ∨ ¬x(vq) for any two intersecting reflex segments hp,vq.

To ensure that the conforming stabbing number is at most 2, we force that every stabbing segment intersects
at most one chosen reflex segment. In other words, we require ¬x(s1) ∨ ¬x(s2) for any two reflex segments
s1, s2 intersected by a common stabbing segment.

All these restrictions only involve two variables, so this gives a 2-SAT instance that has O(n) variables.
For every reflex segment s, variable x(s) belongs to at most two clauses of the first kind, and at most ℓ clauses
each of the second and the third kind. So the number of clauses is O(ℓn). Since 2-SAT can be solved in linear
time [2], the result follows.

In an arbitrary polygon there could be stabbing segments that intersect Θ(n) reflex segments, so the
running time of the 2-SAT approach is O(n2) in the worst case. Our main contribution in this section is to
give a faster algorithm, with O(n log n) running time.

We call a reflex segment impossible if no conforming partition with stabbing number 2 contains it, and
fixed if any such conforming partition must contain it. The idea of our algorithm is to determine via some
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rules that some segments are impossible or fixed, from which we deduce other segments to be impossible
or fixed. Repeated applications either provide an answer to 2-CSTAB, or end with a situation where the
undecided segments (i.e., the ones where we did not derive that they are fixed or impossible) are in very
restricted positions; we then find a conforming partition easily. We start with three obvious rules:

(R1) If, at some reflex vertex p, both reflex segments are impossible, then there is no conforming partition.

(R2) If, at some reflex vertex p, one reflex segment is impossible, then the other one is fixed.

(R3) If a stabbing segment s intersects a fixed segment, then all other reflex segments intersected by s are
impossible.

Two non-trivial rules, (R4) and (R5), which trigger the entire process, are in the following lemmas:

Lemma 4.2 (R4). Let hp and vq be a pair of horizontal and vertical reflex segments that intersect at a point
interior to both. Then hp and vq are impossible.

Proof. Assume for contradiction that some conforming partition used hp (the argument is similar for vq).
Then we cannot use vq (since partition segments must not intersect), so must use hq. Let χ be the common
point of hp and vq. Up to symmetry, we may assume that the wedge-pixel of q lies to the right of vq. Then
for small enough ε, the vertical stabbing segment through χ + (ε, ε) intersects both hp and hq (see also
Figure 3(a)) and the conforming partition has stabbing number 3 or more.

To explain (R5) we need a definition. A gate of a polygon is an axis-aligned segment pq that connects two
reflex vertices p, q such that the wedge-pixels of p and q lie on the same side of pq. Figure 3(b) shows a gate,
while segment pq in Figure 3(d) is not a gate since the wedge-pixels are not on the same side of pq.

Lemma 4.3 (R5). Any gate is fixed.

Proof. Up to symmetry we may assume that gate pq is horizontal, so pq = hp = hq. Since the wedge-pixels
lie on the same side of pq, we may assume up to symmetry that vp and vq both go upward from p and q. The
horizontal stabbing segment through p+ (0, ε) (for a small enough ε) then intersects both vp and vq since
it runs parallel to hp = hq (see also Figure 3(b)). Thus, by (R3), any conforming partition with stabbing
number 2 does not include both vp and vq, which means by (R2) that the segment pq is included instead.

q hq

hpχ

vq

p hp=hq

vq

q

vp

1

2

2

3
4

p
q

(a) (b) (c) (d)

Figure 3: (a) (R4) illustrated. (b) (R5) illustrated. (c) An example of the propagation. Both segments at 1
are impossible by (R4). This fixes the two segments labeled 2 by (R2). This makes the segment labeled
3 impossible by (R3), which in turn fixes the segment labeled 4 by (R2). (d) An example where no reflex
segments get fixed. There is a horizontal segment connecting two reflex vertices p, q, but it is not a gate.

Recall that our approach is to apply the above rules, and to keep track (by storing them in two lists
Lfixed and Limpossible) of all reflex segments that we determine to be fixed or impossible. (There may be other
fixed or impossible segments that we do not find.) This clearly can be done in polynomial time; we show in
Appendix B how to implement it in O(n log n) time by applying line-sweep and ray-shooting techniques. If
some segment s belongs to both Lfixed and Limpossible, then we conclude that there is no conforming partition
with stabbing number 2.
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We are left with three possible outcomes: We find that there is no conforming partition with stabbing
number at most 2, or Lfixed defines a conforming partition, or neither. We are done in the first outcome.
We are also done in the second outcome: If Lfixed defines a conforming partition, then by (R3) (and since
Lfixed is disjoint from Limpossible ) every stabbing segment intersects at most one segment of Lfixed, and so
the stabbing number is 2. In the third outcome, we provide an algorithm to test in linear time whether there
exists a solution. (In fact, there always is a solution, but for space reasons we do not prove this.)

Add the segments of Lfixed into P to obtain a partition of P into rectilinear polygons P1, . . . , Pℓ that
we call the pieces of P . The idea is now to solve the problem for each piece of P and to put the solutions
together. Next, we make two useful observations.

Observation 1. For every piece Pi, every reflex segment s of Pi is a reflex segment of P that was undecided
(i.e., neither in Lfixed nor in Limpossible).

Proof. Since s is a reflex segment of Pi, one endpoint of s is a reflex vertex of Pi, hence also a reflex vertex of
P . The other endpoint of s lies on the boundary of Pi. If this other endpoint were not on P , then it would
be on the interior of a segment s′ ∈ Lfixed. But then rule (R4) would have been applied to s′ and the reflex
segment of P containing s. This would have added s′ to Limpossible, contradicting that Lfixed and Limpossible
are disjoint. Thus the other endpoint of s also lies on the boundary of P , and s is a reflex segment of P .

To see that s is undecided, observe first that p does not have an incident reflex segment in Lfixed since it
is reflex in the piece Pi. Thus s ̸∈ Lfixed, and also s ̸∈ Limpossible, since otherwise rule (R2) would have added
the other reflex segment at p to Lfixed. Therefore s is undecided.

Observation 2. P has a solution to 2-CSTAB if and only if each of the pieces P1, . . . , Pℓ of P has a solution
to 2-CSTAB.

Proof. Any solution for P includes all segments of Lfixed, thereby yielding a solution for each piece. Vice
versa, assume that each piece Pi of P admits a solution Ri of reflex segments to 2-CSTAB. We show that
R := Lfixed ∪

⋃
i Ri is a solution for P . To see that R is a conforming partition, observe that it only contains

reflex segments of P by Observation 1, and assigns at least one reflex segment to each reflex vertex of P .
Since the pieces P1, . . . , Pℓ are interior-disjoint, the reflex segments in

⋃
i Ri do not intersect each other. They

do not intersect a segment of Lfixed either, by Observation 1, so R yields a conforming partition.
To show that R has stabbing number at most 2, consider any stabbing segment s of P . If s intersects

no segment of Lfixed, then it is also a stabbing segment for one piece Pi, and so will intersect at most one
segment of R. Now assume that s intersects a segment of Lfixed. Since rule (R3) was applied, all other reflex
segments of P intersected by s were added to Limpossible, so were not reflex segments of any pieces, and hence
are not used by R. Therefore, stabbing segment s intersects at most one segment of R.

It remains to show how to solve the problem for each piece efficiently. Here, our previous 2-SAT approach
comes to the rescue since the pieces are not arbitrary polygons. Specifically, since rule (R4) does not apply
to piece Pi (for i ∈ {1, . . . , ℓ}), it has no intersecting reflex segments, so it is thin. Since rule (R5) does not
apply to Pi, it has no gate. We now prove a statement that holds for any thin gate-free polygon.

Lemma 4.4. Let P be a thin rectilinear polygon that has no gate. Then every stabbing segment s intersects
at most two reflex segments.

Proof. Assume for contradiction that s intersects three reflex segments, say s intersects s1, s2, s3, in this order
and with no other reflex segments in between. See also Figure 4. Up to symmetry s is horizontal, so s1, s2, s3
are vertical, and up to renaming s1 is on the left of s2. Let p be the reflex vertex of P with s2 = vp.

Up to symmetry, the wedge-pixel ξ of p is to the left of vp and below hp. Since P is thin, pixel ξ extends
the entire length of vp, and in particular includes the point common to s and vp. Since there are no vertical
reflex segments between s1 and s2 along s, pixel ξ extends to the point common to s1 and s, and therefore
the entire length of s1. It also includes the entire length of hp. Thus the top left corner of ξ is a point q
common to s1 and hp, hence q is a reflex vertex that lies on a horizontal line with p. Since both vq and vq

bound sides of ξ, this makes pq a gate.
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s1

p

s3s

q hp

s2=vp

Figure 4: If stabbing segment s intersects three reflex segments, and no two reflex segments intersect, then
the polygon is not in general position. The upper left corner of the wedge-pixel ξ of p (and q) is shaded (in
orange).

Lemma 4.4 has two consequences:

Theorem 4.1. There exists an algorithm that, for a rectilinear n-gon P that is thin and in general position,
computes the stabbing number in O(n) time.

Proof. The stabbing number of P is 1 if P is a rectangle, and at least 2 otherwise. A polygon in general
position has no gates, hence any stabbing segment of P intersects at most three reflex segments by Lemma 4.4.
So the stabbing number of P (which is equal to the conforming stabbing number since P is thin) is either 2
or 3. Lemma 4.1 gives an algorithm to test whether it is 2 in O(n) time.

Theorem 4.2. There exists an algorithm that, for any rectilinear n-gon P , decides 2-CSTAB and provides a
solution (if any) in O(n log n) time.

Proof. Apply all rules; this takes O(n log n) time. Then compute the pieces P1, . . . , Pℓ in O(n) time. Using
Lemma 4.4 and Theorem 4.1, test in O(|Pi|) time whether a piece Pi has a solution for 2-CSTAB. By
Observation 2, this information is enough to decide 2-CSTAB for P and compute the solution in case of an
affirmative answer. Since

∑
i |Pi| ∈ O(n), the result follows.

5 Polygons with Small Treewidth
We now turn towards FPT algorithms, and in particular, study polygons with bounded treewidth. We recall
first a few definitions. A tree decomposition of a graph G = (V,E) is a tree T and an assignment β from the
nodes of T to subsets of V (called bags) with the following properties: (a) For every vertex v of G, the bags
containing v form a non-empty connected subtree of T . (b) For every edge e of G, there exists a bag that
contains both endpoints of e. The width of a tree decomposition is the maximum bag-size minus one, and the
treewidth tw(G) of G is the minimum width of a tree decomposition of G.

The treewidth has frequently been used for FPT algorithms for graph problems, but can also be used for
solving problems on polygons, see e.g. [3]. Recall that the pixelation of a polygon P is obtained by inserting
all reflex segments.

This gives rise to a planar graph (the pixelation graph GP by replacing every crossing with a new vertex
of degree 4 and every endpoint of a reflex segment on an edge of P with a vertex of degree 3 (see Figure 5(a)).
The treewidth of P is the treewidth tw(GP ) of the pixelation graph.

Our algorithm for polygons with small treewidth uses not only the pixelation graph, but also its radial
graph RP and defined as follows. The vertices of RP are the vertices of GP (we denote them by VP ), as well
as one vertex for every pixel (we denote these by ΞP ). We add an edge (ξ, v) between ξ ∈ ΞP and v ∈ VP if
and only if vertex v is incident to pixel ξ. See Figure 5(b). Using the techniques of Borradaile et al. [6], one
can easily show that RP has treewidth O(tw(GP )), since pixels are incident to four vertices of GP .

So we now show how to exploit small treewidth of RP to find the conforming stabbing number of P . To
this end, we use Courcelle’s theorem [7], which states that if a graph property can be expressed in monadic
second-order logic (MSOL) as a formula ϕ, then testing whether a graph G with a tree decomposition of
width w satisfies the property can be done in time that is linear in the number of vertices and fixed-parameter
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Figure 5: (a) A polygon P with its pixelation graph GP . (b) The radial graph RP contains the thin solid
edges. (c) One possible solution to the MSOL formula ϕ for k = 3. We only show parts of this solution:
Partition segments are dotted, bold, and red. Vertices in V (H) are bold hollow red circles (squares). Vertices
in Ξhor

i are indicated by i○.

tractable in |ϕ|+ tw(G). To express the conforming stabbing number of P via MSOL, we use the following
ideas illustrated in Figure 5(c):

• We have vertex sets V and H, with the intended meaning that these are the vertices of GP that lie on
vertical/horizontal reflex segments used by a conforming partition.
With easy formulas that only rely on adjacencies of graph RP , we can express that V and H indeed
correspond to reflex segments of the appropriate orientation, and that we have a conforming partition:
every reflex vertex of P belongs to at least one of these vertex sets, and no reflex segments intersect.
(See Appendix C for details.)

• We partition ΞP into Ξhor
1 ∪ · · · ∪ Ξhor

k , with the intended meaning that if ξ ∈ ΞP belongs to Ξhor
i , then

the horizontal stabbing segment through ξ, when traversed left-to-right, has encountered at most i
rectangles when it reaches ξ. Since we require i ≤ k, this enforces that all horizontal stabbing segments
hit at most k rectangles.
With easy formulas that only rely on adjacencies of graph RP , we can express that indices of the sets
Ξhor
i indeed express rectangle-counts. Namely, if ξ, ξ′ are two pixels that share a vertical edge (say

with ξ left), and ξ ∈ Ξhor
i , then we require ξ′ ∈ Ξhor

i+1 or ξ′ ∈ Ξhor
i depending to whether the segment

corresponding to the shared edge is in the partition or not.

• Symmetrically we can force that all vertical stabbing segments hit at most k rectangles.

The length of the resulting formula is linear in k and independent of the size of graph RP . If polygon P
has n vertices, then GP has O(n2) vertices, and so does RP . Therefore, with Courcelle’s theorem, we obtain
the first FPT algorithm.

Theorem 5.1. There exists an algorithm that, for a rectilinear n-gon P with treewidth ℓ, decides k-CSTAB
in O(f(k, ℓ)n2) time, for some function f(·) that does not depend on n.

The function f(·) that falls out of Courcelle’s theorem is rather large (it could be a tower of exponents).
It is possible to decide k-CSTAB directly by doing bottom-up dynamic programming in a tree decomposition
of RP of minimum width ℓ′ (which we know to be in O(ℓ)). Each pixel needs to keep track of which of the
sets Ξhor

1 , . . . ,Ξhor
k ,Ξver

1 , . . . ,Ξver
k it belongs to, and each vertex of VP needs to keep track whether it is in V

or H. Since bags contain up to ℓ′ + 1 vertices, this gives at most k2ℓ
′+2 possible configurations per bag, and

with (not difficult but tedious to write) update-formulas one can therefore show how to solve k-CSTAB in
O(k2ℓ

′+2n2) time. We leave the details as an exercise. It is also not hard to modify the MSOL formulations
so that it permits arbitrary partitions, rather than restricting to conforming ones. In other words, k-STAB is
also fixed-parameter tractable in k + tw(GP ). Details are also left as an exercise.

Now we give a second FPT algorithm, which makes a different assumption on the polygon P . We require
P to be simple and to have no gates (the latter holds in particular if P is in general position), but in exchange

9



we no longer need to bound the treewidth. The idea for this theorem is to distinguish by the maximum
number of reflex segments intersected by a stabbing segment; if it is small then the treewidth is small and
Theorem 5.1 applies, and if it is large enough then (as one shows) the conforming stabbing number is bigger
than k. Details are in Appendix D.

Theorem 5.2. There exists an algorithm that, for a simple gate-free rectilinear n-gon P , decides k-CSTAB
in O(f ′(k)n2) time, for some function f ′(·) that does not depend on n.

6 Conclusion
In this paper, we show that computing a conforming partition of a rectilinear polygon with stabbing number
k is NP-hard for all k ≥ 4. Since the reduction uses only thin polygons, the hardness result follows even if we
omit the conforming constraint. The polygons used in our reduction have holes. Therefore, determining the
time complexity of computing an optimal (conforming) partition for simple polygons (i.e., without holes)
remains open.

On the positive side, we provide an O(n log n)-time algorithm to decide whether a polygon admits a
conforming partition with stabbing number 2. Since the problem is NP-hard already for conforming stabbing
number 4, only the case of conforming stabbing number 3 remains open. For polygons (possibly with holes)
with bounded treewidth and bounded conforming stabbing number, we give a quadratic-time algorithm to
compute the minimum stabbing number. An exciting direction would be to design fixed-parameter tractable
algorithms for simple polygons parameterized by the conforming stabbing number, which would complement
the hardness result for polygons with holes. Interestingly, for simple polygons that are in general position, we
already gave such a fixed-parameter-tractable algorithm. But we also proved that general position does not
help the case of polygons with holes: computing a conforming partition with stabbing number at most k (for
k ≥ 4) remains NP-hard for polygons in general position.

Extending all these results to higher dimensions would be interesting, even for the restricted class of
orthogonal 3D-histograms where previous results focus on minimizing the number of partitions into rectangular
boxes [4, 13].
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A Proof of Theorem 3.1
In this section, we provide a detailed proof of Theorem 3.1.

The following definition is used to shorten the writing of some frequent terms in the proofs. The vertical
(respectively horizontal) reflex segments of P on the boundary of a pixel ξ are called the verticals (respectively
horizontals) of ξ. We also use the following lemmas.

Lemma A.1. The stabbing number of a thin polygon (possibly with holes) P is equal to the conforming
stabbing number of P .

Proof. Let R be a rectangular partition of P with a Steiner point q. We show that removing q and merging
some adjacent rectangles yields a rectangular partition of P .

By definition of a thin polygon, q is not the intersection of two reflex segments of P . Thus, q is adjacent
to at least one segment r of R which is not a reflex segment of P . Now, r is necessarily a full edge (and not
only portions of an edge) shared by two rectangles of R, because otherwise, P cannot be thin. Therefore,
merging these two rectangles yields a rectangle. Repeating this process for all segments r eventually removes
the q from the partition but does not increase the stabbing number of the partition.

Lemma A.2. Let P be a polygon and ξ be a pixel of P such that ξ is the wedge-pixel of any of its corners
that is a reflex segment of P . Then a minimal conforming partition of P either includes the vertical reflex
segments of ξ (and excludes the horizontal reflex segments of ξ), or includes the horizontal reflex segments of
p (and excludes the vertical reflex segments of ξ).

Proof. If k = 2, then there is only one reflex vertex. Hence the lemma is a direct consequence of the definition
of a minimal conforming partition.

If k = 3, then ξ has two reflex vertices r, r′ on the boundary that are adjacent. If we take the reflex
segment between r, r′, then we do not need the remaining two reflex segments as the partition is minimal. If
we do not take the reflex segment between r, r′, then to cover these reflex vertices, we must take the two
other parallel reflex segments.

If k = 4, then there are four reflex vertices on the boundary of ξ. There are two ways to cover the four
reflex vertices using two reflex segments: either to take the horizontals or the verticals. If we use three reflex
segments, then at least one of them would be unnecessary for a minimal conforming partition.

A.1 The Problem RPM-3-SAT to Be Reduced
Before defining problem RPM-3-SAT, we recall some terminology. The graph of a 3-CNF formula ϕ is the
undirected bipartite graph Gϕ defined as follows. The vertex set is the disjoint union of the set of variables of
ϕ and of the set of clauses of ϕ. There is an edge between a variable x and a clause c if x is a variable of c in
ϕ.

If a 3-CNF formula ϕ is monotone, that is to say, if any clause of ϕ contains either three positive literals
or three negative literals, then a drawing D of the graph of ϕ is rectilinear planar monotone (or RPM ) if the
following holds (see e.g., Figure 6).

• The variable vertices are drawn with axis-aligned rectangles centered on the x-axis.

• The positive clauses are drawn with axis-aligned rectangles above the x-axis.

• The negative clauses are drawn with axis-aligned rectangles below the x-axis.

• The edges are drawn with open axis-aligned rectangles between the corresponding variable and clause
rectangles.

• All of the variable rectangles, clause rectangles, and edge rectangles are pairwise disjoint.

Problem 1 (RPM-3-SAT). Input: A rectilinear planar monotone drawing of a 3-CNF formula ϕ. Output:
Accept if ϕ is satisfiable. Reject otherwise.

Problem 1 is known to be NP-hard [8].
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x1 x2

x1 ∨ x2 ∨ x3

x1 ∨ x3 ∨ x4

x1 ∨ x2 ∨ x4

x1 x2

Figure 6: A RPM-3-SAT drawing of ϕ = (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4).

A.2 The Forcer Gadget for k = 4 Using Thin Polygons
Overview. A forcer gadget (Figure 7(a)) is a thin polygon similar to a 4× 4 grid, with an extension to
attach it to the rest of the polygon through an edge called connection edge. This is the only edge that is not
drawn in the bootmmost row of Figure 7(a). By an out-stab of the force gadget we denote a segment that
starts at a boundary point and leaves the forcer gadget after perpendicularly intersecting the connection
edge, e.g., the thick segment of Figure 7(c) and (d). We now give the formal details.

Details of a Forcer gadget. Let F0 be the polygon with holes defined as follows (see also Figure 7(a)).
The coordinates of the vertices of F0 in counterclockwise order along the outer boundary are:

((3, 0), (3, 1), (7, 1), (7, 8), (0, 8), (0, 1), (2, 1), (2, 0)).

The set of holes of F0 is composed of 9 squares and is described next:

{((a, b), (a+ 1, b), (a+ 1, b+ 1), (a, b+ 1)) : (a, b) ∈ {1, 3, 5} × {2, 4, 6}}.

An rectilinear polygon F is a forcer gadget if there exists a transformation τ such that τ is the composition
of a translation with a rotation with angle in {0, π

2 , π,
3π
2 } and such that F = τ(F0). Next, we give names to

some segments of interest of F .

• The edge τ((2, 0)(3, 0)) is the connection edge of F (the only segment of the outer boundary of F0 which
is not drawn in Figure 7).

• The stabbing segment τ((2.5, 8)(2.5, 0)) is the out-stab of F (the thick segment drawn with an arrow
pointing outside F0 in Figure 7(c) and (d)).

Lemma A.3. Let F be an arbitrary forcer gadget. Then the following holds.

(a) The out-stab of F intersects at least 3 reflex segments in any conforming partition with stabbing number
at most 4 of F .

(b) The forcer gadget F admits a partition with stabbing number at most 4.
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Figure 7: (a) The generic forcer gadget F0 is shaded (in yellow). The connection segment is the only segment
of the boundary of F0 which is not solid (black). The reflex vertices are small (black) disks and the reflex
segments are dotted (in red). The pixels of the reflex vertices are numbered from 1 to 16 as defined in the
proof of Lemma A.3.
(b) The horizontals of pixels 6, 11 and verticals of pixels 7, 10 are solid (red) segments. They are one of
the two possibilities for a minimal conforming partition of F0 with stabbing number at most 4 (proof of
Lemma A.3(a)).
(c) The out-stab of F0 (thick purple) ends with an arrow pointing outside F0. The solid (red) verticals of
pixels 2, 15 and horizontals of pixels 3, 14 are in any minimal conforming partition of F0 with stabbing number
at most 4 (proof of Lemma A.3(a)).
(d) The solid (red) reflex segments form a minimal conforming partition of F0 with stabbing number at
most 4 (proof of Lemma A.3(b)).
(e) A schematic drawing of a forcer gadget used in the following figures.

Proof. It is enough to prove that (a) and (b) hold for F0 considering only minimal conforming partitions. Let
R be an arbitrary minimal conforming partition of F0 with stabbing number at most 4.

We start by naming more parts of F0. The polygon F0 forms four rows and four columns that we
number starting at row 1 for the bottom row and at column 1 is the left-most column. For each (a, b) ∈
{0, 2, 4, 6} × {1, 3, 5, 7}, the pixel (which is a wedge-pixel of some reflex vertex of F0) consisting of a unit
square with (a, b) as its lower left corner is numbered a+8b−8

2 + 1 (Figure 7(a)). Each of these pixels is the
wedge-pixel of any of its corners that is a reflex vertex of R, justifying the implicit use of Lemma A.2 in the
rest of the proof.

(a): Pixels 6, 7, 10, 11 have 2 verticals and 2 horizontals each. Thus, among pixels 6, 7, 10, 11, R includes
at most one pair of verticals per row (among rows 2, 3 of F0) and one pair of horizontals per column (among
columns 2, 3 of F0). This leaves only two options: either R includes the horizontals of pixels 6, 11 and the
verticals of pixels 7, 10 (Figure 7(b)), or R includes the horizontals of pixels 7, 10 and the verticals of pixels
6, 11.

Thus, the out-stab of F0 intersects either the horizontals of pixel 6 or of pixel 10; regardless we can not
use the horizontals of pixel 2 and therefore must use its verticals. This in turn means that we must use the
horizontals of pixel 3, which (since one of pixels 7 and 11 uses the horizontals) means that we must use the
verticals of pixel 15 and the horizontals of pixel 14 (Figure 7(c)). Therefore, column 2 of F0 has at least 3
horizontal reflex segments included in R, which proves (a).

(b): Let R0 be the minimal conforming partition of F0 whose verticals are at pixels 1, 2, 5, 7, 10, 12, 13, 14
(Figure 7(d)). There are 3 vertical (respectively horizontal) reflex segments of R0 in each row (respectively
column) of F0. Thus, R0 has stabbing number 4, thereby proving the existence of a conforming partition of
F0 with stabbing number at most 4, hence (b).

A.3 The Variable Gadget for k = 4 Using Thin Polygons
Overview. A variable gadget consists of two forcer gadgets that are connected to a polygon Figure 8(a)
such that there exist only three possible minimal conforming partitions of the gadget with stabbing number
4, e.g., Figure 8(d)-(f). The variable gadget connects to the rest of the polygon with two connection edges,
i.e., the edges omitted from the polygon boundary in Figure 8(d). The connection edge at the top is called
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the positive connection edge and the one at the bottom is called the negative connection edge. We define a
positive out-stab (negative out-stab), which is a maximal stabbing segment that perpendicularly intersects the
positive connection edge (negative connection edge). There are two conforming partitions of the gadget that
will determine the truth values of the variable (Figure 8(d)-(e)). In a false (true) configuration, exactly 3
(exactly 2) reflex segments intersect the positive out-stab, and exactly 2 (exactly 3) reflex segments intersect
the negative out-stab. We now describe the details.
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Figure 8: (a) The polygon V0 used in the construction of the variable gadget. (b) The generic variable gadget
V1 is shaded (in yellow). The squares labeled F are forcer gadgets. The connection segments are the only
segments of the boundary of V1 which are not solid (black). The reflex vertices are small (black) disks and the
reflex segments are dotted (red). The pixels are numbered from 1 to 4 as defined in the proof of Lemma A.4.
(c) The horizontals of pixels 1, 4 are solid (red) segments. They are included in any minimal conforming
partition of V1 with stabbing number at most 4.
(d) The negative (respectively positive) out-stab of V1ends with an arrow pointing downwards (respectively
upwards) outside V1. (A stabbing segments is green if it intersects 2 reflex segments, purple if it intersects 3
reflex segments.) The variable gadget V1 is set to false: R0 includes the solid (red) horizontals of pixel 2 and
verticals of pixel 3.
(e) The variable gadget V1 is set to true: R1 includes the solid (red) verticals of pixel 2 and horizontals of
pixel 3.
(f) The variable gadget V1 is undetermined: R2 includes the solid (red) horizontals of both pixel 2 and pixel 3.

Details of a Variable Gadget. Let V0 be the polygon without holes defined as follows (see Figure 8(a)).
The coordinates of the vertices of V0 in counterclockwise order along the boundary are:

((1, 0), (2, 0), (2, 8), (10, 8), (10, 9), (9, 9),

(9, 17), (8, 17), (8, 9), (0, 9), (0, 8), (1, 8)).

Let V1 be a simple polygon defined as the union of V0 with two forcer gadgets whose connection edges
are (2, 4)(2, 5) and (8, 12)(8, 13). An rectilinear polygon V is a variable gadget if there exists a horizontal
translation τ such that V = τ(V1). Next, we give names to some segments of interest of V .

• The edge τ((1, 0)(2, 0)) is the negative connection edge of V (the bottom segment of the outer boundary
of V1 which is not drawn in Figure 8).

• The edge τ((9, 17)(8, 17)) is the positive connection edge of V (the top segment of the outer boundary
of V1 which is not drawn in Figure 8).

• The stabbing segment τ((1.5, 9)(1.5, 0)) is the negative out-stab of V (the thick segment drawn with an
arrow pointing downwards outside V1 in Figure 8(d) and (e)).

• The stabbing segment τ((8.5, 8)(8.5, 17)) is the positive out-stab of V (the thick segment drawn with an
arrow pointing upwards outside V1 in Figure 8(d) and (e)).

Lemma A.4. Any variable gadget V admits exactly three minimal conforming partitions R0, R1, and R2

with stabbing number at most 4 such that the following holds (up to relabeling of R0, R1 and R2).
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• Exactly 3 reflex segments of R0 intersect the positive out-stab of V , and exactly 2 reflex segments of R0

intersect the negative out-stab of V . In this case, we say that V is set to false (Figure 8(d)).

• Exactly 2 reflex segments of R1 intersect the positive out-stab of V , and exactly 3 reflex segments of R1

intersect the negative out-stab of V . In this case, we say that V is set to true (Figure 8(e)).

• Exactly 3 reflex segments of R2 intersect the positive out-stab of V , and exactly 3 reflex segments of R2

intersect the negative out-stab of V . In this case, we say that V is undetermined (Figure 8(f)).

Proof. It is enough to prove Lemma A.4 for V1. We start by naming more parts of V1. The segment
(0, 8.5)(10, 8.5) is the inner stab of V1 (the horizontal thick (green) segment in Figure 8(d) and (e)). The
pixel consisting of a unit square is numbered k if its lower left corner is (Figure 8(b)):

• (1, 4) and k = 1,

• (1, 8) and k = 2,

• (8, 8) and k = 3, or

• (8, 12) and k = 4.

Let R be an arbitrary minimal conforming partition of V1 with stabbing number at most 4. By Lemma A.3,
R includes the horizontals of pixels 1, 4 (Figure 8(c)).

The two remaining pixels are both intersected by the inner stab of V1. Thus, there are three cases.

Case 1: R includes the horizontals of pixel 2 and the verticals of pixel 3 which corresponds to R = R0

(Figure 8(d)).

Case 2: R includes the verticals of pixel 2 and the horizontals of pixel 3 which corresponds to R = R1

(Figure 8(e)).

Case 3: R includes the horizontals of both pixel 2 and pixel 3 which corresponds to R = R2 (Figure 8(f)).

A.4 The Split Gadget for k = 4 Using Thin Polygons
Overview. We design a split gadget to propagate the information of a variable gadget to other parts of
the polygon. A split gadget consists of three forcer gadgets which are arranged such that the value of the
maximal stabbing segment entering from a variable gadget into the split gadget can be propagated (either as
it is, or with a decreased value) to the two stabbing segments leaving the split gadget. Figure 9 illustrates a
positive split gadget that connects to a positive connection edge of a variable gadget. Symmetrically, we use a
vertically reflected configuration for a negative connection edge, which is referred to as a negative split gadget.
From the perspective of a split gadget, we can define in connection edge, left connection edge, and right
connection edge that connect the split gadget to the rest of the polygon, and the corresponding perpendicular
maximal stabbing segments as in-stab, left out-stab and right out-stab. We now discuss the details.

Details of a Split gadget. Let S0 be the polygon without holes defined as follows (Figure 9(a)). The
coordinates of the vertices of S0 in counterclockwise order along the boundary are:

((13, 0), (14, 0), (14, 9), (24, 9), (24, 20), (23, 20), (23, 10),

(6, 10), (6, 20), (5, 20), (5, 10), (4, 10), (4, 9), (13, 9)).

Let S1 be a simple polygon defined as the union of S0 with three forcer gadgets whose connection edges are
(4, 9)(5, 9), (6, 15)(6, 16), and (23, 15)(23, 16). An rectilinear polygon S is a split gadget in the two following
cases.
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Figure 9: The figure is not to scale. (a) The polygon S0. (b) The generic split gadget S1 is shaded (in yellow).
The squares labeled F are forcer gadgets. The connection segments are the only segments of the boundary of
S1 which are not solid (black). The reflex vertices are small (black) disks and the reflex segments are dotted
(in red). The pixels are numbered from 1 to 6 as defined in the proof of Lemma A.5.
(c) The verticals of pixel 1 and the horizontals of pixels 5, 6 are solid (red) segments. They are included in
any minimal conforming partition of S1 with stabbing number at most 4.
(d) The out-stabs (respectively in-stabs) of S1 ends with an arrow pointing outside (respectively inside) S1.
(A stabbing segments is green if it intersects 2 reflex segments, purple if it intersects 3 reflex segments.) The
split gadget S1 “propagates false”: R0 includes the solid (red) horizontals of pixels 2, 4 and verticals of pixel 3.
(e) The split gadget S1 “propagates true”: R1 includes the solid (red) verticals of pixel 2, 4 and horizontals of
pixel 3.
(f) One of the three cases where the value propagated by some of the out-stabs (here the right out-stab) is
decreased compared to the value propagated by the in-stab.

• If there exists a translation τ such that S = τ(S1), in which case S is called a positive split gadget.

• If there exists a transformation τ such that τ is the composition of a horizontal reflection with a
translation and such that S = τ(S1), in which case S is called a negative split gadget.

Next, we give names to some segments of interest of S.

• The edge τ((13, 0)(14, 0)) is the in connection edge of S (the bottom segment of the outer boundary of
S1 which is not drawn in Figure 9(a)).

• The edge τ((5, 20)(6, 20)) is the left connection edge of S (the top left segment of the outer boundary of
S1 which is not drawn in Figure 9(a)).

• The edge τ((23, 20)(24, 20)) is the right connection edge of S (the top right segment of the outer
boundary of S1 which is not drawn in Figure 9(a)).

• The stabbing segment τ((13.5, 0)(13.5, 10)) is the in-stab of S (the thick segment drawn with an arrow
pointing upwards inside S1 in Figure 9(d)-(f)).

• The stabbing segment τ((5.5, 9)(5.5, 20)) is the left out-stab of S (the leftmost thick segment drawn
with an arrow pointing upwards outside S1 in Figure 9(d)-(f)).

• The stabbing segment τ((23.5, 9)(23.5, 20)) is the right out-stab of S (the rightmost thick segment
drawn with an arrow pointing upwards outside S1 in Figure 9(d)-(f)).
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Lemma A.5. Let S be an arbitrary split gadget. The following holds.

(a) For every minimal conforming partition R0 of S with stabbing number at most 4 such that exactly 0
reflex segments of R intersect the in-stab of V , the following holds. Exactly 3 reflex segments of R0

intersect the left out-stab of V , and exactly 3 reflex segments of R0 intersect the right out-stab of V
(Figure 9(d)).

(b) There exists a minimal conforming partition R1 of S with stabbing number at most 4 such that exactly 1
reflex segment of R1 intersect the in-stab of V , and such that the following holds. Exactly 2 reflex
segments of R1 intersect the left out-stab of V and exactly 2 reflex segments of R1 intersect the right
out-stab of V (Figure 9(e)).

Proof. It is enough to prove Lemma A.5 for S1. We start by naming more parts of S1. The segment
(4, 9.5)(24, 9.5) is the inner stab of S1 (the horizontal thick (purple) segment in Figure 9(d) and (e)). The
pixel consisting of a unit square is numbered k if its lower left corner is (Figure 9(b)):

• (4, 9) and k = 1,

• (5, 9) and k = 2,

• (13, 9) and k = 3,

• (23, 9) and k = 4,

• (5, 15) and k = 5, or

• (23, 15) and k = 6.

Let R be an arbitrary minimal conforming partition of S1 with stabbing number at most 4. By Lemma A.3,
R includes the verticals of pixel 1 and the horizontals of pixels 5, 6 (Figure 9(c)).

Pixels 2, 3, 4 are all intersected by the inner stab of S1. Thus, we have the following two cases.

Case 1: If R includes the verticals of pixel 3, then R includes the horizontals of pixel 2, 4. Thus, in this
case, the partition R = R0 satisfies the assertion (a) of Lemma A.5 (Figure 9(d)).

Case 2: If not, R includes the horizontals of pixel 3. We then have four sub-cases corresponding
to xleft, xright ∈ {0, 1}, where xleft = 0 (respectively xright = 0) if R includes the horizontals of pixel 2
(respectively pixel 4) and xleft = 1 (respectively xright = 1) if R includes the verticals of pixel 2 (respectively
pixel 4). In the case where xleft, xright = 1, 1, the partition R = R1 satisfies the assertion (b) of Lemma A.5
(Figure 9(e)). (The case where xleft, xright = 1, 0 is show in Figure 9(f) as an example of one of the other
three cases.)

A.5 The Clause Gadget for k = 4 Using Thin Polygons
Overview. A clause gadget consists of an axis-aligned rectangle that connects to its corresponding split
gadgets or variable gadgets through three connection edges either at the bottom boundary (Figure 10(a))
or at the top boundary. The former case gives a positive clause gadget and the latter case gives a negative
clause gadget. These connection edges are referred to as left, center, and right connection edges. The gadget
is designed so that there are exactly 8 minimal conforming partitions and only one has stabbing number 4.
We now describe the details.

18



0
0

1

−1

x
y

z

x ∨ y ∨ z
−c − 1

−d − 1

−e − 1

a+1 a+b+2

1 2 3

0

0
0

0

1

0
0

1

1
0

0

1

(a) (b) (c) (d)

Figure 10: The figure is not to scale. (a) The generic clause gadget C0(a, b, c, d, e) is shaded (in yellow). The
connection segments are the only segments of the boundary of C0(a, b, c, d, e) which are not solid (black). The
reflex vertices are small (black) disks and the reflex segments are dotted (in red). The pixels are numbered
from 1 to 3 as defined in the proof of Lemma A.6.
(b) The minimal conforming partition R000 with stabbing number 5. The verticals of pixels 1, 2, 3 are
solid (red) segments. The in-stabs (respectively inner stab) of C0(a, b, c, d, e)ends with an arrow pointing
inside (respectively outside) C0(a, b, c, d, e). (An in-stab is green if it intersects 2 reflex segments, purple if it
intersects 3 reflex segments. Yet, the inner stab is green if it intersects 3 reflex segments or less, and purple
otherwise.) The clause gadget C0(a, b, c, d, e) “propagates false”: R0 includes the solid (red) horizontals of
pixels 2, 4 and verticals of pixel 3.
(c) The minimal conforming partition R001 with stabbing number 4.
(d) The minimal conforming partition R010 with stabbing number 3.

Details of a Clause Gadget. Let a, b, c, d, e be positive integers, and C0(a, b, c, d, e) be the polygon without
holes defined as follows (Figure 10). The coordinates of the vertices of C0(a, b, c, d, e) in counterclockwise
order along the boundary are:

((0, 0), (0,−c− 1), (1,−c− 1), (1,−1), (a+ 1,−1), (a+ 1,−d− 1),

(a+ 2,−d− 1), (a+ 2,−1), (a+ b+ 2,−1), (a+ b+ 2,−e− 1),

(a+ b+ 3,−e− 1), (a+ b+ 3, 0)).

An rectilinear polygon C(a, b, c, d, e) is a clause gadget in the following two cases.

• If there exists a translation τ such that C(a, b, c, d, e) = τ(C0(a, b, c, d, e)), then C(a, b, c, d, e) is a called
a positive clause gadget.

• If there exists a transformation τ such that τ is the composition of a horizontal reflection with a
translation and such that C(a, b, c, d, e) = τ(C0(a, b, c, d, e)), then C(a, b, c, d, e) is a called a negative
clause gadget.

Next, we give names to some segments of interest of C(a, b, c, d, e).

• The edge τ((0,−c− 1)(1,−c− 1)) is the left connection edge of C(a, b, c, d, e) (the bottom left segment
of the outer boundary of C0(a, b, c, d, e) which is not drawn in Figure 10).

• The edge τ((a+ 1,−d− 1)(a+ 2,−d− 1)) is the center connection edge of C(a, b, c, d, e) (the bottom
center segment of the outer boundary of C0(a, b, c, d, e) which is not drawn in Figure 10).

• The edge τ((a + b + 2,−e − 1)(a + b + 3,−e − 1)) is the right connection edge of C(a, b, c, d, e) (the
bottom right segment of the outer boundary of C0(a, b, c, d, e) which is not drawn in Figure 10).

• The stabbing segment τ((0.5, 0)(0.5,−c − 1)) is the left in-stab of C(a, b, c, d, e) (the leftmost thick
segment drawn with an arrow pointing upwards inside C0(a, b, c, d, e) in Figure 10(b), (c), (d), and (e)).

• The stabbing segment τ((a+ 1.5, 0)(a+ 1.5,−d− 1)) is the center in-stab of C(a, b, c, d, e) (the center
thick segment drawn with an arrow pointing upwards inside C0(a, b, c, d, e) in Figure 10(b), (c), (d),
and (e)).
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• The stabbing segment τ((a+ b+ 2.5, 0)(a+ b+ 2.5,−e− 1)) is the right in-stab of C(a, b, c, d, e) (the
rightmost thick segment drawn with an arrow pointing upwards inside C0(a, b, c, d, e) in Figure 10(b),
(c), (d), and (e)).

Lemma A.6. Any clause gadget C(a, b, c, d, e) admits exactly 8 minimal conforming partitions. Specifically,
these 8 minimal conforming partitions are the Rxyz such that exactly x ∈ {0, 1} (respectively y, z) reflex
segments of Rxyz intersect the left (respectively center, right) in-stab of C(a, b, c, d, e) (Figure 10(b), (c), (d),
and (e) show respectively R000,R001,R011,R111). Moreover, only R000 has stabbing number greater than 4.

Proof. It is enough to prove Lemma A.6 for C0(a, b, c, d, e). We start by naming more parts of C0(a, b, c, d, e).
The segment (0,−0.5)(a + b + 3,−0.5) is the inner stab of C0(a, b, c, d, e) (the horizontal thick (purple or
green) segment in Figure 10(b), (c), (d) and (e)). The pixel consisting of a unit square is numbered k if its
lower left corner is (Figure 10(a)):

• (0,−1) and k = 1,

• (a+ 1,−1) and k = 2, or

• (a+ b+ 2,−1) and k = 3.

Lemma A.2 applied to pixels 1, 2, 3 indeed shows that there exists exactly 8 minimal conforming partition
of C0(a, b, c, d, e) which are {Rxyz : x, y, z ∈ {0, 1}} as stated in Lemma A.6.

Given that the three pixels 1, 2, 3 all intersect the inner stab of C0(a, b, c, d, e), we check that the inner
stab of C0(a, b, c, d, e) intersects at most 4 reflex segments of the Rxyz except R000.

A.6 Proof of Theorem 3.1 When k = 4 Using Polygons in General Position
It is straightforward to observe that 4-STAB and 4-CSTAB are in NP. We now prove that the problem
4-CSTAB is NP-hard by reducing Problem 1 to 4-CSTAB in polynomial time. Our reduction uses thin
polygons, and hence by Lemma A.1, the hardness result holds for 4-STAB.

Let D,ϕ be an instance of Problem 1, that is, a rectilinear planar monotone drawing D of a 3-CNF
formula ϕ (D is shaded in Figure 2 and displayed alone in Figure 6). Let u be the number of clauses of ϕ
and v be the number of variables of ϕ. The number of variable gadgets and clause gadgets is at most u+ v.
The number of split gadgets is at most a constant factor of the number of clause gadgets. Therefore, it is
straightforward to construct the corresponding polygon P (D,ϕ), i.e., an instance of the stabbing number
problem, (Figure 2(a)) in polynomial time in u+ v.

Next, we prove that the formula ϕ is satisfiable if and only if P (D,ϕ) admits a minimal conforming
partition with stabbing number at most 4.

Assume that the polygon P (D,ϕ) admits a conforming partition with stabbing number at most 4. By
Lemma A.4, each variable gadget of P (D,ϕ) admits exactly three minimal conforming partitions with
stabbing number at most 4, one standing for true, one standing for false, and the last one being undetermined.
Because each out-stab pairs up with an in-stab and their union is a stabbing segment of P (D,ϕ), Lemma A.4,
Lemma A.5, and Lemma A.6 implies a consistent truth value assignment for all the variables, with the
convention that the variable of an undetermined variable gadget is set to true (this convention is arbitrary).
Finally, by Lemma A.6 and because the values propagated in the gadgets does not increase, the clause must
have at least one of its literals set to true.

If the formula ϕ is satisfiable, then there exists a variable assignment such that all the clauses of ϕ evaluate
to true. Here we use the constructions described in the proof of Lemma A.4, Lemma A.5, and Lemma A.6 to
obtain a minimal conforming partition of P (D,ϕ) with stabbing number at most 4.

A.7 Proof of Theorem 3.1 When k = 4 Using Polygons in General Position
To prove the NP-hardness for the polygons in general position, we use the same technique as for proving the
hardness results for thin polygons, but modify the gadgets. The functionalities of each gadget remains the
same, therefore, we only give a high-level overview of the changes.
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Forcer gadget. We use a staircase with 6 reflex vertices as the force gadget, which is shown in Figure 11(a)
and (c). We need the property that in any conforming partition of the gadget with stabbing number 4, the
maximal stabbing segment s perpendicular to the connection edge stabs 3 reflex segments. Suppose for a
contradiction that s intersects smaller than three reflex segments. Then at least four vertical reflex segments
in the partition would reach the topmost edge of the gadget implying a stabbing number higher than 4, a
contradiction. We also need the gadget to have a conforming partition with stabbing number at most 4,
which is shown in Figure 11(b).

F

(a) (b) (c)

Figure 11: (a) The generic gadget. (b) The unique conforming partition with stabbing number 4. (c) A
schematic drawing.

Variable gadget. The variable gadget (Figure 12(a)) is a careful perturbation of the variable gadget that
we used previously for thin polygons. Following the previously defined variable gadget, we define the positive
and negative connection edges and their corresponding positive and negative out-stabs. This variable gadget
in general position also has exactly three minimal conforming partitions with stabbing number at most 4.
This can be verified by first observing the stabbing segments imposed by the forcer gadgets, and then using a
case analysis on the four reflex vertices between the forcer gadgets. Two of these configurations are used to
determine the truth values of the variable (Figure 12(b)-(c)), while the third one (called undetermined) is by
convention interpreted as true (Figure 12(d)). In a false (true) configuration, exactly 3 (exactly 2) reflex
segments intersect the positive out-stab, and exactly 2 (exactly 3) reflex segments intersect the negative
out-stab. Similar to the previously defined variable gadget, if a positive (negative) out-stab intersects only
two reflex segments, then it forces two vertical reflex segments inside the gadget, which enforces the negative
(positive) out-stab to intersect three reflex segments.
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Figure 12: (a) The variable gadget, with reflex segments that are forced by the forcer gadgets. (b) Reflex
segments to encode x = 1. (c) Reflex segments to encode x = 0. (d) The variable gadget is undetermined.

Split gadget. The split gadget in general position (Figure 13(a)) has the same property as the split gadget
that we built for thin polygon. This gadget is slightly different as it uses one less forcer gadet. However,
from the perspective of the split gadget, we can still define in connection edge, left connection edge, and right
connection edge that connect the split gadget to the rest of the polygon, and the corresponding perpendicular
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maximal stabbing segments as in-stab, left out-stab and right out-stab. The property that we need for this
gadget is that the value of the maximal stabbing segment entering from a variable gadget into the split gadget
is propagated (either as it is, or with a decreased value) to the two stabbing segments leaving the split gadget.

Consider first the case when the in-stab does not intersect any reflex segment, i.e., corresponds to the
value 0 (Figure 13(c)). We now show the left out-stab (similarly, the right out-stab) must propagate 0, i.e., it
will intersect 3 reflex segments. Note that the forcer gadget near the left-out stab enforces two horizontal
reflex segments. If the left-out stab does not intersect any more reflex segment (i.e., if it propagates 1), then
we must have two vertical reflex segments inside the gadget that are imposed by the out-stab. These two
vertical reflex segments together with the vertical reflex segments imposed by the in-stab implies a stabbing
number larger than 4, a contradiction.

Consider now the case when the in-stab intersects only one reflex segment (corresponding to the value 1).
We are now free to propagate either 0 or 1 through the out-stabs. These are illustrated with the partition in
Figure 13(b) and (d).
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Figure 13: (a) The split gadget, with reflex segments that are forced by the forcer gadgets. (b) A set of reflex
segments that propagates 0. (c) A set of reflex segments that propagates 1. (d) It is possible to reduce the
propagated value (but it cannot increase).

Clause gadget. A clause gadget in general position has the same properties as the one for thin polygons
(Figure 14(a)). The reflex vertices are perturbed such that a stabbing number greater than 4 would require
all in-stabs to propagate 0 values (Figure 14(b)). For any other combination of values, there exists a partition
with stabbing number at most 4 where each in-stab that propagates 1 intersects exactly one reflex segment,
and each in-stab that propagates 0 does not intersect any reflex segment. Figure 14(c) and (d) illustrate such
choices when at least one incoming value is 1.

A.8 Proof of Theorem 3.1 When k > 4

For the case when k = 5, we use the force gadget as shown in Figure 16. Similarly to the proof of Lemma A.3,
we show that the out-stab intersects at least four reflex segments in any conforming partition R with stabbing
number at most 5 of F (Figure 15). Indeed, considering only the 16 pixels which are the wedge-pixels of
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Figure 14: (a) The generic clause gadget. (b) If all incoming values are 0, then we require stabbing number 5.
(c-d) If at least one incoming value is 1, then there is a choice of reflex segments with stabbing number at
most 4.

some reflex vertex (all of which satisfy the premise of Lemma A.2), R includes the verticals of at most two
wedge-pixels per row, that is, R includes the horizontals of at least two wedge-pixels per row. Thus, in total,
R includes the horizontals of at least eight wedge-pixels. Since R includes the horizontals of at most two
wedge-pixels per column, each column has exactly four horizontal reflex segments included in R. Furthermore,
the gadget indeed admits a partition with stabbing number at most 5 (Figure 15(b)).

(a) (b)

Figure 15: (a) The forcer gadget in the context of 5-STAB. (b) A partition with stabbing number at most 5.
The out-stab is thick (in purple).

We now prove the hardness for k-CSTAB by generalizing the force gadgets. For the case when k is even,
i.e. k = 4 + 2m, where m is a positive integer, we generalize the forcer gadget for stabbing number 4 to a
forcer gadget for stabbing number k, by adding m rows and m columns, where m is a positive integer such
that k = 4 + 2m. Then we generalize the polygon P (ϕ) for stabbing number 4 to a polygon for stabbing
number k. This is done by attaching m forcer gadgets for stabbing number k to the middle of each row or
column of adjacent pixels of P (ϕ). The hardness reduction for k-CSTAB now follows the same technique that
we used to prove the hardness of 4-CSTAB. The case when k is odd is handled similarly by starting with
the hardness of 5-CSTAB. Figure 16 illustrates an instance for 5-CSTAB, which corresponds to the same
RPM-3-SAT instance that we used in the hardness proof for 4-CSTAB.

B Running Time for 2-CSTAB
In this section, we explain how to check the rules for 2-CSTAB in O(n log n) time. The main difficulty is that
we cannot afford to compute the entire pixelation graph (or equivalently, all intersections between reflex
segments), since there may be Ω(n2) intersections. Instead, it is possible to derive all required information
via orthogonal ray-shooting queries, which we define first. For such queries, we have a data structure S that
stores disjoint parallel line segments. A ray-shooting query receives as input a ray that is perpendicular to
the segments, and it reports the first segment in S that is hit by the ray, or that there is no such segment.
(Here rays are considered open at the start point, i.e., we do not report a segment that lies exactly on the
start point, but the next one afterwards.) Giyora and Kaplan [14] gave an implementation that performs
such a query in O(log |S|) time and that also permits (within the same running time) to delete segments of S
. We maintain the following ray-shooting data structures:

• Rhor stores all horizontal reflex segments, as well as segments corresponding to all horizontal edges
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Figure 16: The polygon used to reduce RPM-3-SAT to 5-STAB. (The figure is not to scale and the split
gadgets are drawn outside the variable rectangles only to fit the figure in the page.)

of P . During later iterations, we will remove from it reflex segments that have been discovered to be
impossible.

• Shor stores one representative from each equivalence class of horizontal stabbing segments, as well as
segments corresponding to all horizontal edges of P . Slightly abusing notation, we will from now on use
the term “stabbing segment” to mean “the representative of one equivalence class of stabbing segments”.
During later iterations, we will remove from Shor those stabbing segments where rule (R3) has been
applied (which means that they no longer intersect flexible segments).

• Rver and Sver are defined symmetrically for vertical segments.

Recall that reflex segments and stabbing segments are open segments. We use closed segments for the edges
of P ; with this, all segments in each data structure are disjoint and parallel as required. We can initially
populate these data structures by computing all reflex segments and all equivalence classes of stabbing
segments with line-sweeps in O(n log n) time. Along the way, we can also immediately check for applications
of rule (R5), i.e., whether a reflex segment s is a gate. If so, then s is fixed, and we add it to a list Lfixed.

Note that for any stabbing segment s, we can answer ‘is there a reflex segment that intersects s?’ with a
single ray-shooting query as follows. Assume that s is horizontal (the other case is symmetric) and perform a
ray-shooting query in Rver starting at one endpoint of s and going in the direction along s. This ray always
hits some segment because it goes inwards into P and the vertical edges of P are represented in Rver. Since
we report the first segment that the ray hits, s intersects some reflex segment if and only if we did not hit
a segment of P , and we can find this out in O(log n) time. In particular, we can therefore now detect in
O(n log n) all segments that are impossible due to rule (R4): For each reflex segment (which is a special case
of a stabbing segment), test whether it intersects some other reflex segment in O(log n) time. If so, add it to
list Limpossible.

With this we have encountered all situations where rules (R4) and (R5) apply, since they only depend
only on the structure of the polygon and not on whether reflex segments are fixed or impossible. We obtained
initial lists Lfixed and Limpossible, with every segment at most once in each. Some segments may belong to
both lists (which would tell us that no solution exists), but we will not spend time to determine this yet
because it will be detected naturally later.
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Now we turn to the propagation, i.e., rules (R2) and (R3), for which we need some more data structures
and invariants.

• We store a flag with each reflex segment that is initially ‘undecided’, but may get changed to ‘impossible’
or ‘fixed’ later. A flag of ‘impossible’ or ‘fixed’ means not only that the segment was in the appropriate
list, but also that we have processed the segment in the sense that we have applied all rules that can be
applied due to its status. For example, each segment that was added to Limpossible triggers (potentially)
rule (R1) and (R2); we set its flag to ‘impossible’ once we have checked that (R1) does not apply with
the current flags, and that we have applied (R2).

• To avoid double-counting, it will be important that from now on, Rver and Rhor do not contain reflex
segments that are in Limpossible. So we parse Limpossible and remove all these segments from the data
structures; this takes O(n log n) time.

• We have a list LR3, which is initially empty but will get populated with stabbing segments during the
propagation whenever we find one where rule (R3) can be applied. To avoid double-counting, it will be
important that Sver and Shor do not contain stabbing segments that are in LR3, which clearly holds
initially.

We will do many more ray-shooting queries and other operations that take O(log n) time. To bound the
running time, we will assign each such operation to a flag-change of a reflex segment or an addition to LR3.
Since reflex segments change flags at most once, and stabbing segments are added to LR3 at most once,
therefore the total running time is O(n log n).

• We first explain how to process a segment that has been added to Limpossible; up to symmetry we
assume that it is a horizontal segment, say hp. First check the flag of hp; obviously there is nothing to
do if this is already ‘impossible’. If the flag is ‘fixed’ then hp is in both Lfixed and Limpossible and we
can abort the algorithm since there cannot be a solution.
So assume for the rest that the flag was ‘undecided’. Set it to be ‘impossible’ and look up the vertical
segment vp. If the flag of vp is ‘impossible’ then by rule (R1) there is no solution and we abort.
Otherwise, by rule (R2) segment vp should become fixed, so we add it to Lfixed if its flag was ‘undecided’.
The entire running time was O(1), which we count as overhead to the flag-change of hq.

• Now we explain how to process a segment that has been added to Lfixed. Assume up to symmetry that
the segment is horizontal, say it is hp. There is nothing to do if its flag is ‘fixed’, and we can abort the
algorithm if its flag is ‘impossible’, so assume that the flag was ‘undecided’ and set it to be ‘fixed’.
Rule (R3) applies to any stabbing segments s that intersect hp. To find such stabbing segments, perform
multiple ray-shooting queries within Sver, starting at p and in the direction of hp, then continue from
the point where a segment was hit (still in the direction of hp), and so on, until we hit a segment of
P . Say we found ℓ ≥ 0 stabbing segments, hence did ℓ+1 ray-shooting queries. Each found stabbing
segment s was not in LR3 since we removed segments of LR3 from Sver. We now add s to LR3 and
remove it from Sver; the time for this (as well as the corresponding ray-shooting query) is accounted for
by the addition of s to LR3. The last ray-shooting query is accounted for by the flag-change of hp.

• Now we explain how to handle a stabbing segment s after it was added to LR3; up to symmetry we
may assume that it is horizontal. To apply rule (R3), we first determine all reflex segments that
are intersected by s; similar to above we can find these segments (say there are ℓ of them) with ℓ+1
ray-shooting queries in Rver. Note that none of these ℓ segments is in Limpossible since we remove
segments in Limpossible from Rver. There will be one such segment that is fixed (the one that caused s
to be in LR3); we count the ray-shooting query that led to it (as well as the last ray-shooting query)
towards the addition of s to LR3. Any other segment vq that we encounter is not yet in Limpossible; we
remove it from Rver, add it to Limpossible, and the flag-change that it will undergo there later accounts
for the running time for these operations as well as the corresponding ray-shooting query.

We keep applying the above steps for as long as there are entries in one of Lfixed, Limpossible, LR3 that
have not been processed yet. At the end, we return the set Lfixed, and go to the second part of the algorithm.
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C Details of Theorem 5.1
We must give an MSOL formula for k-CSTAB, for which we first review what kinds of formulas are permitted
in this logic for graph problems. We are allowed to use variables that are vertex sets or individual vertices,
and to quantify over these variables. We are also allowed to use the usual boolean operations, as well as any
predicates that can be read in constant time from the graph. In our context, we will build a formula based
on the radial graph RP , and need the following predicates:

• ξ ∈ ΞP ? This should be true if and only if ξ is a vertex of RP that corresponds to a pixel. Via negation
this also gives us the predicate ‘v ∈ VP ?’.

• isQuadrant(v, ξ, i)? This is defined for i ∈ {1, 2, 3, 4} and should be true if and only if v ∈ VP , ξ ∈ ΞP ,
and ξ is the pixel incident to v at the ith quadrant.

• isReflex (v)? This should be true if and only if v ∈ VP is a vertex at a reflex corner of P .

Note that these predicates can clearly be read from the radial graph RG, presuming vertices and edges have
been marked suitably.

We now build a formula ϕ(RP , k) that is satisfied if and only if polygon P has a conforming partition
with stabbing number at most k.

• As sketched earlier, we have two variables V and H which are meant to be the vertices of VP that lie on
the vertical respectively horizontal segments of a conforming partition.

• Our first requirement is therefore that V ⊆ VP (formally expressed via the formula ∀v : v ∈ V ⇒ (v ∈
ΞP )). Similarly we require H ⊆ VP .

• We next require that every reflex vertex is in at least one of V and H, i.e., it must use at least one of its
reflex segments:

∀v : v ∈ VP ∧ isReflex(v) ⇒ (v ∈ H ∨ v ∈ V).

• We next need to ensure that no two reflex segments cross each other, i.e., no vertex of GP in the strict
interior of P belongs to both V and H. We can determine whether a vertex lies in the strict interior by
checking that there are four pixels that are its four quadrants, and so have:

∀v : v ∈ VP ∧

(
∃ξ1, ξ2, ξ3, ξ4 ∈ ΞP :

4∧
i=1

isQuadrant(v, ξi, i)

)
⇒ (v ̸∈ H ∨ v ̸∈ V).

• We also must ensure that H indeed encodes horizontal reflex segments. To do so, we ensure that
if a vertex belongs to H, then so do its horizontal neighbours; the requirement then propagates
along the entire horizontal segment (which is a reflex segment by definition of GP ). We can find the
horizontal neighbours by looking for an incident pixel and reading the appropriate vertex from the
quadrant-information:

∀v, ξ, v′ :v ∈ H ∧ ξ ∈ ΞP ∧ v′ ∈ VP ∧ isQuadrant(v, ξ, 1)

∧ isQuadrant(v′, ξ, 2) ⇒ v′ ∈ H

(and similarly for the other three quadrants).

• Symmetrically we can enforce that V corresponds to vertical reflex segments.

If we take the conjunction of all the above formulas, then any satisfying assignment hence encodes a
conforming partition. Note that this part of the formula has constant size, independent of k. Now we add to
the formula to enforce that each stabbing segment intersects at most k rectangles of the conforming partition:
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• As sketched earlier, we have k variables Ξhor
1 , . . . ,Ξhor

k with the intended meaning that they cover ΞP ,
andξ ∈ Ξhor

i means that the horizontal rectangle-count of ξ is at most i. By this, we mean that the
horizontal stabbing segment that goes through pixel ξ hits at most i rectangles of the conforming
partition at or to the left of ξ.

• Our first requirement is therefore that these sets cover all of ΞP :

∀ξ :ξ ∈ ΞP ⇒
(
ξ ∈ Ξhor

1 ∨ · · · ∨ f ∈ Ξhor
k

)
• Consider two pixels ξ, ξ′ that share a vertical edge, with ξ left of ξ′. If this vertical edge belongs to the

conforming partition, then we must increase the horizontal rectangle-count of ξ. The former can be
expressed by testing the vertex that is common to ξ and ξ′, and the latter can be expressed via the
indices of the sets Ξhor

1 , . . . ,Ξhor
k : Whichever one contains ξ, the one for ξ′ must have index one larger.

∀ξ, ξ′, v :ξ ∈ ΞP ∧ ξ′ ∈ ΞP ∧ isQuadrant(v, ξ, 2) ∧ isQuadrant(v, ξ′, 1)

∧ v ∈ V ⇒

(
k−1∧
i=1

(ξ ∈ Ξhor
i ⇒ ξ′ ∈ Ξhor

i+1)

)

On the other hand, if the vertical edge does not belong to the conforming partition, then the horizontal
rectangle-count should stay the same.

∀ξ, ξ′, v :ξ ∈ ΞP ∧ ξ′ ∈ ΞP ∧ isQuadrant(v, ξ, 2) ∧ isQuadrant(v, ξ′, 1)

∧ ¬(v ∈ V) ⇒

(
k−1∧
i=1

(ξ ∈ Ξhor
i ⇒ ξ′ ∈ Ξhor

i )

)

Note that the length of this part of the formula depends linearly on k.

• Even though the above restrictions do not exactly encode what we wanted (we do not enforce a partition,
and we do not require that the horizontal rectangle-count starts at 1), it is enough to force what we
want: every horizontal stabbing segment s intersects at most k rectangles. To see this, letξ, ξ′ be the
leftmost and rightmost inner pixel intersected by s, and let a be such thatξ ∈ Ξhor

a (noting that a need
not be unique). If s intersects j segments of the partition, then the restrictions forceξ′ ∈ Ξhor

a+j ; since
this set only exists for indices up to k and a ≥ 1 therefore j ≤ k − 1 as required.

Symmetrically, we can add restrictions that force that vertical stabbing segments intersect at most k
rectangles, and hence the entire formula is satisfiable if and only if the polygon has a conforming partition
with stabbing number at most k.

D Details of Theorem 5.2
Recall that GP denotes the pixelation graph of polygon P , and that we assume here that P is simple and in
general position. We show how to solve k-CSTAB in P by applying a dichotomy argument, somewhat similar
to bidimensionality [10]. Define the length of a reflex segment s of P to be the number of inner vertices of the
pixelation graph GP that lie on s. We can compute GP and the length of all reflex segments in O(n2) time,
and now have two cases. In the first case all reflex segments have length less than ℓ := k(2k+2 − 4) + (k − 1).
(The reason for this cutoff point will be clear later; it has been chosen for ease of explanation and almost
surely could be improved.) Then every vertex v of GP is within distance ⌈ℓ/2⌉ of a vertex that lies on P ,
simply by walking along a reflex segment that defined v. Since P has no holes, therefore all vertices of GP

are within distance ⌈ℓ/2⌉ of some vertex on the outer face of GP . It follows that the so-called outerplanarity
of GP is at most ⌈ℓ/2⌉+ 1, which in turn implies that GP has treewidth O(ℓ), see [5] for details. Since ℓ
only depends on k and not on n, this means that we can then test k-CSTAB in time O(f(k,O(ℓ))n2) time by
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Theorem 5.1, which gives the result in this case. As for the other case, we argue below that then k-CSTAB
has no solution, so we simply return a negative answer. So Theorem 5.2 as proved as long as we can show the
following lemma:

Lemma D.1. Let P be a rectilinear polygon without gates that contains a reflex segment s of length at least
ℓ := k(2k+2 − 4) + (k − 1). Then any conforming partition of P has stabbing number at least k + 1.

Proof. We may assume, up to rotation, that s is horizontal. Assume for contradiction that we had a conforming
partition with stabbing number at most k, say it uses horizontal and vertical reflex segments H and V. This
conforming partition splits s into at most k pieces (one for each rectangle intersected by stabbing segment s).
With our choice of ℓ, and since at most k− 1 vertices of s lie on segments of V , one of these pieces of s has at
least 2k+2 − 4 vertices that are not on segments of V. Let R0 be a rectangle that (just barely) includes the
vertices of this piece of s, i.e., we thicken the piece in all directions by ε, where ε > 0 is so small that pixels
have width and height at least 3ε. See also Figure 17.

R0

R1

R2

R3

R4

s

p0 q0

p1 q1

p2 q2

p3 q3

Figure 17: We increasingly narrow the rectangle and raise its top side until we are left with a rectangle that
intersects at least k segments of H. . Red (thick) segments are in the partition. For space reasons we do
not show the lower half of P (which contains reflex vertices to create the remaining vertices on s.) We write
pd, qd for the vertices p, q used to determine Rd+1 from Rd.

So there are at least 2k+2 − 4 reflex segments that intersect R0. Of those, up to mirroring vertically, at
least half have their defining reflex vertex above R0; we call these the downward segments D and indicate them
with downward arrows in Figure 17. Our goal is now to define inductively rectangles Rd (for d = 0, 1, . . . )
that satisfy the following:

• Rd is non-empty and lies within P ,

• Rd intersects at least 2k+1−d − 2 downward segments,

• Rd intersects at least d segments in H,

• for d > 0, the x-range of Rd is within the x-range of Rd−1, and the y-range of Rd−1 is within the
y-range of Rd.
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We already defined R0 and one easily verifies that it satisfies all conditions since |D| ≥ 2k+1 − 2. Now
assume that we have found Rd = [ℓd, rd]× [bd, td] with the above properties. If Rd intersects no downward
segment, then 2k+1−d − 2 ≤ 0, hence d ≥ k. The left side of Rd then intersects at least d ≥ k segments of H,
hence the stabbing segment through it intersects at least k+1 rectangles of the partition, impossible.

So Rd intersects at least one downward segment. Raise the top side of Rd until we first hit a horizontal
edge pq of P (where p is left of q), and set td+1 = y(p) + ε. The goal is now to narrow the width such that
the new rectangle is left or right of pq, with the choice between these made based on which one leads to more
intersecting downward segments. Formally, let Dℓ be the (possibly empty) set of downward segments that
intersect Rd and whose x-coordinate is at most x(p). Let Dr be the set of downward segments that intersect
Rd and whose x-coordinate is at least x(q).

Assume that |Dℓ| ≥ |Dr|; the other case is similar (the new rectangle would then be right of q). No
downward segment has x-coordinate in the range (x(p), x(q)), since by choice of td+1 they would otherwise
intersect pq. So we have |Dℓ|+ |Dr| ≥ 2k+1−d − 2 and therefore |Dℓ| ≥ 2k−d − 1. Also |Dℓ| ≥ 1 since we have
downward segments that intersect Rd. This implies x(p) > ℓd, which together with the choice of pq and td+1

means that p is a reflex vertex that lies in the interior of the x-range of Rd.
Define rd+1 := x(p)− ε < rd, and keep the other sides of Rd unchanged, i.e., define Rd+1 := [ℓd, rd+1]×

[bd, td+1]. Rectangle Rd+1 by construction does not intersect pq. It also intersects no other horizontal edges
of P by choice of pq and since P has no gates (so no two horizontal edges of P are hit at the same time when
raising the top side). So Rd+1 is within P . It is non-empty because it contains by choice of ε parts of the
pixels left of p. Each segment in Dℓ intersects Rd+1, with the exception of vp, so Rd+1 intersects at least
2k−d − 2 downward segments as required. Rectangle Rd+1 intersects the same segments of H as Rd, and it
additionally intersects hp, which must be in H since vp is not in V (recall our choice of piece of s that defined
R0). So rectangle Rd+1 satisfies all conditions. We can therefore continue the process indefinitely, but this is
impossible since strictly fewer downward segments intersect the rectangles. So eventually we must run into
the above contradiction.

Unfortunately, this proof does not carry over to simple polygons where reflex vertices may align. Consider
a polygon that is essentially a rectangle, except that we attach Θ(n) teeth on the left side and Θ(n) teeth on
the top side. This has stabbing number 2, by inserting the reflex segments that cut off the teeth. But it
contains reflex segments of length Θ(n), and in fact, GP cotains a Θ(n)×Θ(n)-grid and has treewidth Θ(n).
So a dichotomy based on treewidth or length of reflex segments does not work. We conjecture that some
other approach would work, and so leave one important open problem.

Conjecture 1. Testing whether a simple polygon P has conforming stabbing number k is fixed-parameter
tractable in k.
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