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The no–hair theorems at work in M87∗
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Abstract

Recently, a perturbative calculation to the first post–Newtonian order has shown that the analytically worked
out Lense–Thirring precession of the orbital angular momentum of a test particle following a circular path
around a massive spinning primary is able to explain the measured features of the jet precession of the su-
permassive black hole at the centre of the giant elliptical galaxy M87. It is shown that also the hole’s mass
quadrupole moment Q2, as given by the no–hair theorems, has a dynamical effect which cannot be neglected,
as, instead, done so far in the literature. New allowed regions for the hole’s dimensionless spin parameter a∗

and the effective radius r0 of the accretion disk, assumed tightly coupled with the jet, are obtained by including
both the Lense–Thirring and the quadrupole effects in the dynamics of the effective test particle modeling the
accretion disk. One obtains that, by numerically integrating the resulting averaged equations for the rates of
change of the angles η and φ characterizing the orientation of the orbital angular momentum with a∗ = +0.98
and r0 = 14.1 gravitational radii, it is possible to reproduce, both quantitatively and qualitatively, the time series
for them recently measured with the Very Long Baseline Interferometry technique. Instead, the resulting time
series produced with a∗ = −0.95 and r0 = 16 gravitational radii turn out to be out of phase with respect to the
observationally determined ones, while maintaining the same amplitudes.

Keywords: General relativity (641); Kerr black holes (886); Supermassive black holes (1663); Galaxy accretion
disks (562); Radio jets (1347)

1. Introduction

It has recently been proven [1] that a simple perturbative calculation to the first post–Newtonian (1pN) order of the Lense–
Thirring (LT) effect on the orbit of a test particle moving about a massive spinning object is able to reproduce, both qualitatively
and quantitatively, several features of the jet precession in the supermassive black hole (SMBH) M87∗ recently measured with the
Very Long Baseline Interferometry (VLBI) technique [2]. Aim of this paper is to show that, actually, also the mass quadrupole
moment1 of M87∗, neglected so far in the literature, should be fully taken into account in the dynamics of the accretion disk,
assumed tightly coupled with the jet [6, 7, 8]. The imprints of the precession of the latter on the SMBH-accretion disk system
was recently investigated in [8]. The introduction of the hole’s quadrupole does not spoil the agreement between the perturbative
analytical calculation and the characteristics measured in [2], yielding to different allowed regions for the hole’s spin parameter
and the radius of the effective circular orbit modeling the precessing disk. As a result, the celebrated “no–hair” (NH) theorems
[9, 10, 11] receive a strong support.

According to the latter ones, the mass and the spin moments M` and J ` of degree ` of a rotating BH [12], whose external
spacetime is described by the Kerr metric [13, 14], are connected by the relation

M` + iJ ` = M
(
i

J
cM

)`
, (1)

where i :=
√
−1 is the imaginary unit, c is the speed of light, and M and J are the hole’s mass and spin angular momentum,

respectively. From Equation (1), it turns out that the odd mass moments and even spin moments are identically zero. In particular,
the hole’s mass moment M0 of degree ` = 0 is its mass, while its spin dipole moment J of degree ` = 1 is its spin angular
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1 The possible impact of electric charge was recently investigated [3] in the framework of the Kerr–Newman metric [4, 5] as well.

ar
X

iv
:2

41
1.

11
29

2v
1 

 [
gr

-q
c]

  1
8 

N
ov

 2
02

4

http://orcid.org/0000-0003-4949-2694
mailto: lorenzo.iorio@libero.it


L. Iorio

momentum. For a Kerr BH, it is [15]

J = χ
M2G

c
, |χ| ≤ 1, (2)

where G is the Newtonian constant of gravitation. Furthermore, the mass quadrupole momentM2 of degree ` = 2, renamed Q2,
is

Q2 = −
J2

c2M
. (3)

If |χ| > 1, a naked singularity [16, 17] without a horizon would occur, implying the possibility of causality violations because of
closed timelike curves. Although not yet proven, the cosmic censorship conjecture [18, 19] states that naked singularities may
not be formed via the gravitational collapse of a material body. The dimensionless parameter χ can also be viewed as the second
characteristic length2 J/ (cM) occurring in the Kerr metric [13, 14] measured in units of the gravitational radius Rg := GM/c2.
In BH studies, χ is often denoted with a, which is the same symbol usually adopted in celestial mechanics and astrodynamics to
denote the semimajor axis of a generally elliptical orbit of a test particle.

The organization of the paper is as follows. Section 2 offers a review of the perturbative analytical model of the LT and mass
quadrupole effects, expressed in terms of the both the Keplerian orbital elements and in vectorial form, for a generic orientation
of the primary’s spin axis in space. In Section 3, the previous results are successfully applied to the measured precession of the
jet of M87∗, assumed strongly coupled with that of the accretion disk. Section 4 summarizes the findings and offers conclusions.

2. The analytical model for the orbital precessions

The inclination I and the longitude of the ascending node Ω define the orientation of the orbital plane in space. Their LT rates
of change averaged over one orbital revolution and valid for an arbitrary orientation of the primary’s spin axis k̂ turn out to be

İLT =
2GJ

(
k̂ · l̂

)
c2a3 (

1 − e2)3/2 , (4)

Ω̇LT =
2GJ csc I

(
k̂ · m̂

)
c2a3 (

1 − e2)3/2 , (5)

where, for a Kerr BH, J is given by Equation (2). Furthermore, a and e are the orbit’s semimajor axis and eccentricity, respectively.
The unit vectors l̂ and m̂, which lie in the orbital plane and are mutually orthogonal, are defined as [20, 21, 22, 23]

l̂ := {cosΩ, sinΩ, 0} , (6)

m̂ := {− cos I sinΩ, cos I cos Ω, sin I} . (7)

Equations (4)–(5) were worked out with a perturbative calculation to the 1pN order by means of the equations for the rates of
change of the Keplerian orbital elements in Gaussian or Lagrange form [20, 21, 24, 25, 26, 27, 28, 22, 23].

The mean rates of changes of the same orbital elements caused by the oblateness of a massive primary, valid for a generic
orientation of k̂, can be calculated with the same approach obtaining [23]

İQ2 = −
3
2

nKJ2

(
R
p

)2 (
k̂ · ĥ

) (
k̂ · l̂

)
, (8)

Ω̇Q2 = −
3
2

nKJ2 csc I
(

R
p

)2 (
k̂ · ĥ

) (
k̂ · m̂

)
. (9)

In Equations (8)–(9), nK :=
√

GM/a3 is the Keplerian mean motion, p := a
(
1 − e2

)
is the semilatus rectum, the unit vector ĥ,

directed along the orbital angular momentum and orthogonal to both l̂ and m̂ in such a way that l̂ × m̂ = ĥ holds, is defined as
[20, 21, 22, 23]

ĥ := {sin I sinΩ,− sin I cosΩ, cos I} , (10)

2 Sometimes, the symbol a is used for J/ (cM) itself, in which case it is dimensionally a length.
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R is the equatorial radius of the primary, and J2 is its dimensionless mass quadrupole moment. The latter one must be expressed
in terms of its dimensional counterpart Q2 having dimensions of a mass times a length squared as

J2 := −
Q2

MR2 , (11)

which, for a Kerr BH, is given by Equation (3).
The resulting NH orbital rates are

İNH = İLT + İQ2 , (12)

Ω̇NH = Ω̇LT + Ω̇Q2 . (13)

Equations (4)–(10) can be used to express the precession of the unit vector ĥ of the orbital angular momentum in a compact
form as

dĥ
dt

=
∂ĥ
∂I

İNH +
∂ĥ
∂Ω
Ω̇NH = ΩNH

d × ĥ. (14)

In it, the precession velocity vector ΩNH
d is

ΩNH
d = ΩLT

d +Ω
Q2
d , (15)

where

ΩLT
d =

2GJ

c2a3 (
1 − e2)3/2 k̂, (16)

Ω
Q2
d = −

3
2

nKJ2

(
R
p

)2 (
k̂ · ĥ

)
k̂. (17)

From Equations (15)–(17), it can be noted that the orbital angular momentum precesses around the primary’s spin axis. Such
results are in agreement with [29, 30], where the term accounting also for the simultaneous precession of the Laplace–Runge–
Lenz vector [31, 32], of no interest here, was included in the total precessional velocity.

3. Application to M87∗

In the following, the spin axis of M87∗ will be parameterized as

k̂ =
{
sin θ sin ηp,− sin θ cos ηp, cos θ

}
, (18)

where [2]

θ = 17.21◦, (19)

ηp = 288.47◦. (20)

By considering the total NH precession velocity, given by Equations (15)–(17), as a function of a∗ and the effective radius r0 of
the precessing accretion disk, it is possible to plot its absolute value by imposing the condition that its graph is comprised within
the upper an lower measured values of the absolute value of the measured precession velocity [2]∣∣∣ωexp

p

∣∣∣ = 0.56 ± 0.02 rad yr−1, (21)

i.e.,
0.54 rad yr−1 ≤

∣∣∣ΩNH
d (a∗, r0)

∣∣∣ ≤ 0.58 rad yr−1. (22)

The sets of the values of a∗ and r0 satisfying the condition of Equation (22) form allowed regions in the {a∗, r0} plane depicted
in pale yellow in Figure 1. In it, also the permitted regions obtained by considering solely the LT effect are shown in pale blue
as well [1]. It turns out that both the LT and the LT + Q2 regions overlap in the no–rotation limit |a∗| → 0, as expected. Instead,

3



L. Iorio

-1.0 -0.5 0.0 0.5 1.0
8

10

12

14

16

a✶

r 0
(R
g)

LT
LT+Q2

Figure 1. Entire allowed regions in the {a∗, r0} plane corresponding to the condition that the graphs of
∣∣∣ΩLT

d (a∗, r0)
∣∣∣ and

∣∣∣ΩNH
d (a∗, r0)

∣∣∣ remain
confined between the upper and lower experimentally allowed values of

∣∣∣ωexp
p

∣∣∣, i.e., 0.54 rad yr−1
≤

∣∣∣ΩLT
d (a∗, r0)

∣∣∣ , ∣∣∣ΩNH
d (a∗, r0)

∣∣∣ ≤ 0.58 rad yr−1.
The minimum value for r0 has been taken from the largest expected radius of the TISCO orbit for ψjet ' 0◦, as per Figure 1 of [33].

they separate when the hole’s spin parameter tends to unity. While both the allowed branches are equal and symmetric with
respect to the a∗ = 0 axis in the LT–only case, the inclusion of the SMBH’s quadrupole breaks such a symmetry allowing for
larger values of r0 corresponding to the retrograde rotation of the hole (a∗ < 0) with respect to the prograde case (a∗ > 0). As
a general feature, for prograde hole’s rotation, Q2 generally tends to shrink the disk (right branches), while the opposite occurs
for retrograde hole’s rotation (left branches) with respect to the LT–only scenario. The minimum physically admissible value for
r0 was taken from Figure 1 of [33] which depicts the radius of the tilted3 innermost stable circular orbit (TISCO) for different
values of the spin–orbit tilt angle, called ψjet in [2] (see below for more on it). It turns out that, for slightly tilted orbits as in the
case of M87∗ (ψM87∗

jet ' 1.25◦ [2]), the radius of the TISCO is

rTISCO ' 8Rg (a∗ ' −1) , (23)

rTISCO ' 2Rg (a∗ ' 1) . (24)

Figure 2 shows two insets of Figure 1 corresponding to |a∗| . 1, in agreement with most of the constraints on it existing in the
literature [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. In such regimes, the impact of Q2 appears quite evident with respect to the
case in which only the LT effect is taken into account.

Figures 3 to 4 display the numerically integrated NH time series of the time–dependent angles η (t) and φ (t) determining the
orientation of the disk’s orbital angular momentum in space; in the language of celestial mechanics and astrodynamics, they

3 The tilt is with respect to the hole’s equator.
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Figure 2. Insets of Figure 1 for positive (upper panel) and negative (lower panel) values of the SMBH’s spin parameter close to unity. The pale
blue and pale yellow allowed regions correspond to the LT–only and LT + Q2 cases, respectively.

correspond to the longitude of the ascending node Ω and the inclination I, respectively. Their signatures were theoretically
obtained by simultaneously integrating the averaged equations for the rates of change of Equations (12)–(13) by adopting the
values a∗ = +0.98, r0 = 14.1 Rg (Figure 3) and a∗ = −0.95, r0 = 16 Rg (Figure 4), contained in the pale yellow regions of the
upper and lower panels of Figure 2, respectively. It can be noted that the NH prograde signatures displayed in Figure 3 agree
well with their measured counterparts of Figure 2 (b) and Extended Data Figure 4 of [2], both qualitatively and quantitatively. It
is not the case for the NH retrograde signals of Figure 4 which, if on the one hand, retain the same sizes of those in Figure 2 (b)
and Extended Data Figure 4 of [2], on the other hand, appear to be out of phase with respect to the latter ones.

As far as the spin–orbit tilt angle ψjet is concerned, both its theoretically predicted value and its temporal evolution, calculated
by integrating Equations (12)–(13) as before, do not change with respect to their LT–only counterparts, shown in Figure 5 of [1],
which were already found to be in agreement with their measured values.

4. Summary and conclusions
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Figure 3. Upper panel: numerically produced NH time series, in ◦, for the angle η. Lower panel: numerically produced NH time series, in ◦,
for the angle φ. The values a∗ = +0.98, r0 = 14.1 Rg, contained in the pale yellow region of the upper panel of Figure 2, and M = 6.5 × 109 M�
are used for the simultaneous numerical integration of Equations (12)–(13) along with φ0 = 17.85◦, η0 = 291.7◦, retrieved from Figure 2 (b)
and Extended Data Figure 4 of [2], for the initial conditions of φ and η. The time spans and the ranges of values on the vertical axes of both
panels have the same length of those in Figure 2 and Extended Data Figure 4 of [2] for a better comparison with the latter ones.

The no–hair theorems are fully at work in M87∗. Indeed, it has been shown that not only the hole’s spin dipole moment
J through the Lense–Thirring effect but also its mass quadrupole moment Q2, both calculated according to them, are able to
explain the recently observed phenomenology of the jet precession of the supermassive black hole lurking at the centre of the
galaxy M87. The inclusion of the precession induced by Q2, calculated perturbatively as the Lense–Thirring one, yields to a
modification of the allowed regions in the parameter space spanned by the hole’s spin parameter a∗ and the effective radius r0 of
the accretion disk, assumed tightly coupled with the jet, with respect to the Lense–Thirring only case. Indeed, while neglecting
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Figure 4. Upper panel: numerically produced NH time series, in ◦, for the angle η. Lower panel: numerically produced NH time series, in ◦,
for the angle φ. The values a∗ = −0.95, r0 = 16 Rg, contained in the pale yellow region of the lower panel of Figure 2, and M = 6.5 × 109 M�
are used for the simultaneous numerical integration of Equations (12)–(13) along with φ0 = 17.85◦, η0 = 291.7◦, retrieved from Figure 2 (b)
and Extended Data Figure 4 of [2], for the initial conditions of φ and η. The time spans and the ranges of values on the vertical axes of both
panels have the same length of those in Figure 2 and Extended Data Figure 4 of [2] for a better comparison with the latter ones.

Q2 one obtains two identical permitted branches in the {a∗, r0} plane which are symmetric with respect to the a∗ = 0 axis, the
introduction of the hole’s oblateness breaks such a symmetry since the allowed branch corresponding to retrograde hole’s rotation
gives larger allowed values for r0 with respect to the prograde one. Furthermore, the presence of Q2 tends to shrink (enlarge) the
disk for prograde (retrograde) rotation with respect to the scenario in which it is omitted. The simultaneous numerical integration
of the averaged equations for the spin dipole and mass quadrupole rates of change of the angles determining the orientation of
the disk’s orbital angular momentum with a∗ = 0.98 and r0 = 14.1 gravitational radii allows to reproduce all the qualitative
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and quantitative features of the corresponding measured time series. It is not so for negative values of the hole’s spin and the
corresponding disk’s radii which return out of phase theoretical signatures with respect to the empirical ones, while maintaining
the same amplitudes. Finally, the value of the spin–orbit tilt angle between the angular momenta of the hole and the disk remains
unchanged, along with its constancy over time.
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