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This is a pedagogical review for the possible connection between the stochastic quantization in physics and the diffu-
sion models in machine learning. For machine-learning applications, the denoising diffusion model has been established
as a successful technique, which is formulated in terms of the stochastic differential equation (SDE). In this review, we
focus on an SDE approach used in the score-based generative modeling. Interestingly, the evolution of the probability
distribution is equivalently described by a particular class of SDEs, and in a particular limit, the stochastic noises can be
eliminated. Then, we turn to a similar mathematical formulation in quantum physics, that is, the stochastic quantization.
We make a brief overview on the stochastic quantization using a simple toy model of the one-dimensional integration.
The analogy between the diffusion model and the stochastic quantization is clearly seen in this concrete example. Fi-
nally, we discuss how the sign problem arises in the toy model with complex parameters. The origin of the difficulty is
understood based on the Lefschetz thimble analysis. We point out that the SDE is not invariant under the variable change
which induces a kernel and a special choice of the kernel guided by the Lefschetz thimble analysis can reduce the sign
problem.

1. Introduction
Generative modeling is widely used for practical applica-

tions, among which denoising diffusion probabilistic models
(DDPMs)1) based on physical processes of non-equilibrium
dynamics2) appear to be a physics-friendly formulation with
the Langevin equation or the stochastic differential equation
(SDE). In particular, the approach with score matching3–5)

further extends a physics intuition for denoising processes.
The interesting observation is that the reverse of the stochastic
noising process also follows the SDE once the score matching
is achieved. For a proof of the reverse process in the language
of physics, see a recent work.6)

The denoising process allows for sampling of generated
data. It is shown7) that a wider class of diffusion processes
can lead to the equivalent distribution of sampling data, which
even include an ordinary differential equation (ODE) that is
fully deterministic. Clearly, such a deterministic formulation
of denoising diffusion implicit models (DDIMs)7) can per-
form sampling much faster. To understand the equivalence,
as we will review later, the crucial point is that the proba-
bility of samples governed by the Langevin equation should
evolve with the Fokker-Planck equation. Therefore, if the
same Fokker-Planck equation is derived from a class of SDEs
with free parameters, in principle, the generated data should
exhibit the same quality.

In this review, we pay attention to an analogy between the
diffusion model and the stochastic quantization in physics8)

and discuss a potential interplay. It should be noted that the
idea to accelerate configuration generation in lattice field the-
ory has been tested within the generative diffusion model.9)

Then, it has been clearly recognized that the diffusion model
can be interpreted as the probability evolution in the stochas-
tic quantization.

In physics, the quantum effect is often called “fluctuation”
and in the quantization procedure such quantum fluctuations
are integrated out. Then, one may naturally be tempted to as-
sociate a Brownian-type motion with the quantum effect. The

reformulation of the Schrödinger equation in terms of classi-
cal noises is dated back to a seminal work10) more than half
a century ago. In general, however, it is impossible to map
all the quantum effect to classical fluctuations unless an extra
dimension along the quantum axis is introduced, which un-
derlies a general idea of holographic principle. Such a duality
between a quantum theory in d dimensions and a classical the-
ory in (d + 1) dimensions is not limited to the gauge-gravity
correspondence, but many useful examples can be found in
various contexts, such as the renormalization group flow. The
stochastic quantization belongs to this category of machinery
to quantize theories with classical variables with the quantum
axis in an extra dimension.

The key equation in the stochastic quantization is the
SDE and the mathematical structures are quite similar to the
DDPMs. Thus, it is an intriguing direction of research to think
about the mutual interplay between two approaches. Such an
attempt has been just launched recently,9) and this article is
expected to serve as a starting point for further productive in-
teractions of two formulations in different communities.

2. A Review of Denoising Diffusion Probabilistic Models
We make a brief review of the DDPMs, especially the

score-matching modeling according to the standard litera-
ture.5) The forward noising diffusion is described by the fol-
lowing Langevin equation or the SDE:

dxt = f (xt, t)dt + g(t) dwt . (1)

Here, f (xt, t) represents the drift term and g(t) is the diffusion
coefficient. In general g(t) can take a matrix structure but we
treat it as a one-component function for simplicity. The last
term involves a stochastic variable dwt that is the Wiener pro-
cess. Importantly, both f (xt, t) and g(t) are time-dependent so
that the distribution of xt converges to the normal distribu-
tion after all. In the physics notation, a more familiar form of
Eq. (1) would be

ẋt = f (xt, t) + g(t) ξt . (2)
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Here, dwt = ξtdt and dw2
t = dt symbolically in the Itô calcu-

lus, and ẋt represents the time-derivative of xt. We note that t
will turn out to be a fictitious time in later discussions about
the stochastic quantization.

It is convenient to establish a relation between the SDE
and the evolution equation for the probability distribution
that xt follows. The evolution equation is known as the
Fokker-Planck-Kolmogorov (FPK) equation, which is com-
monly called just the Fokker-Planck equation in physics or
the forward Kolmogorov equation in stochastic theory. The
explanation we summarize below is based on the argument
in the review8) in which the Stratonovich calculus is assume
to use the ordinary chain rule. To see the correspondence
to the Fokker-Planck equation, we consider the average of
some function A(xt) with respect to the noise ξt as denoted
in physics by

⟨A(xt)⟩ :=
∫

Dξ A(xt) exp
(
−

1
2

∫
||ξt ||

2dt
)
, (3)

where xt is a solution of Eq. (2) and thus ξt dependence is
implicitly implemented through xt. Using this, we can also
introduce the probability pt(x) from

⟨A(xt)⟩ =:
∫

dx A(x)pt(x) . (4)

The right-hand size of the above is often denoted as Ept [A(x)].
We note that the t-dependence is incorporated only in pt(·) and
x is just the integration variable. Now, our task is to find an
equation to describe the time-evolution of pt(x) that is con-
sistent with Eq. (2). The time derivative of ⟨A(xt)⟩ is immedi-
ately given by∫

dx A(x) ṗt(x) =
〈
∂A(xt)
∂xt

· ẋt

〉
=

〈
∂A(xt)
∂xt

·
(
f (xt, t) + g(t) ξt

)〉
. (5)

From the definition (3), we can see:〈
∂A(xt)
∂xt

· ξt

〉
=

〈
∂

∂ξt
·
∂A(xt)
∂xt

〉
=

〈
∂xt

∂ξt

∂2A(xt)
∂x2

t

〉
. (6)

Here, we used the integration by part so that ξt comes down
from the exponential function. Using ∂xt/∂ξt = g(t)/2, where
1/2 appears from θ(0) = 1/2 with the Heavisite step function,
we arrive at∫

dx A(x) ṗt(x)

=

∫
dx A(x)

∂

∂x
·

(
− f (x, t) +

g(t)2

2
∂

∂x

)
pt(x) . (7)

The above is a heuristic argument for physicists, while a more
secure derivation utilizes the Itô’s formula. In any case, be-
cause this expression should hold for any function A(x), we
conclude the following Fokker-Planck equation:

ṗt(x) = −∇ ·
[

f (x, t) pt(x) −
g(t)2

2
∇pt(x)

]
. (8)

Here, we use ∇ instead of ∂/∂x for notational brevity. It is
clear that the Langevin equation (2) and the Fokker-Planck
equation (8) have equivalent physical contents. Nevertheless,
solving the Fokker-Planck equation numerically demands
huge computational costs, and the Langevin equation is more

tractable. We comment that the Fokker-Planck equation ap-
pears in a wide range of physical systems including even
the high-energy scattering process of quarks and gluons,11)

for which the Fokker-Planck equation in non-Abelian group
space called the JIMWLK equation is an established theo-
retical tool. It is impossibly difficult to solve such a compli-
cated functional equation, but the equivalent rewriting to the
Langevin equation paves a path for feasible numerical simu-
lations.12, 13) We leave this comment with a hope that the gen-
erative modeling could be useful even for such resummation
programs in high-energy small-x physics.

The Fokker-Planck equation tells us a condition for the
drift and the noise terms. If we naı̈vely disturb xt with noise,
the distribution of xt may simply spread widely. To make
the reverse process well organized, we require an asymp-
totic form at t → ∞ to take the normal distribution, i.e.,
pt→∞(x) ∝ e−||x||

2/(2σ2). We can plug this form of the normal
distribution into the Fokker-Planck equation, and then we can
deduce the condition; we should choose f (x, t) and g(t) such
that limt→∞ f (x, t)/g(t)2 = −x/(2σ2). For the normal distri-
bution with σ2 = 1, the simple choice of time-dependent co-
efficients, i.e., the SDE schedulings is:

f (x, t) = f (t) x = −
β

2
t x , g(t) =

√
βt . (9)

Technically, it is notable that the drift term, f (x, t), is a linear
function of x, i.e., it is affine. This choice enables us to de-
rive some useful analytical formulas. We can arbitrarily take
β which just controls the scale of time evolution. In this work,
we fix β = 20 following the convention.6) The important fea-
ture of the affine drift term is that the mean, m(t), and the vari-
ance,σ(t)2, of the conditional probability, pt|0(x|x0), is solved.
From the Fokker-Planck equation (8), it is straightforward to
derive the following differential equations:

ṁ = E[ f (x, t)] = f (t) m , (10)

σ̇2 = 2E[ f (x, t) · (x − m)] + g(t)2 = 2 f (t)σ2 + g(t)2 . (11)

The solution of above two equations is found to be

m = α(t) x0 , σ(t)2 = α(t)2
∫ t

0

g(ξ)2

α(ξ)2 dξ , (12)

where

α(t) = e
∫ t

0 f (ξ)dξ . (13)

These expressions will appear in the loss function in what fol-
lows below.

From now, we shall continue the explanation by taking a
concrete example. From the analogy to the stochastic quan-
tization as we discuss later, we set up the simplest one-
dimensional problem such that the probability distribution is
given by a double-well potential form, i.e.,

p0(x) = Z−1(a, b) e−S (x;a,b) , S (x; a, b) = ax2+bx4 . (14)

We assume a, b ∈ R for the moment, and when we analyze
the sign problem later, we will generalize them to complex
numbers. The normalization is Z(a, b) =

∫
dx e−S (x;a,b) which

converges for b > 0 or a > 0 if b = 0. This integral is ex-
pressed in terms of special functions, if a > 0 and b > 0,

2
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Fig. 1. Randomly sampled 4000 points according to the given p0(x) with
a = −4 and b = 1 that is shown by the solid line. The histogram is plotted
from x = −2 to +2 with the bin size equally divided by 100 intervals.

as

Z(a, b) =
1
2

√
a
b

ezK1/4(z) (15)

with z = a2/(8b). Interestingly, the above expression holds for
complex a and b as long as Rea > 0 and Reb > 0.

In this study we rather consider a bit more nontrivial case
with a < 0. To make our analyses concrete, we specifically
choose a = −4 and b = 1 to visualize the symmetry-breaking-
type potential.

In this toy model the true distribution p0(x) is already
known in Eq. (14), and let us explain the step-by-step pro-
cedures in the score-based diffusion model.

First, we sample points from p0(x), which corresponds to
sampling image data for the training. Although we already
have p0(x) in the present exercise, we usually do not know
what p0(x) looks like. We can collect the data for the training
purpose, assuming the existence of some probability distribu-
tion that rules the data. At first glance, it may sound like an
unmanageable task, but amazingly, the model can be trained
efficiently with the given training data. This is a vital feature
for the practical usage. In Fig. 1, we show the example of ran-
dom sampling according to x ∼ p0.

These sampled points, {xi}, give the initial values; xi,t=0 =

xi, and the SDE leads to xi,t for later time. We shall inte-
grate the SDE up to t = T . For sufficiently large T , it is
expected that xi,T ∼ N(0, 1); remember that f (x, t) and g(t)
were chosen in such a way. The non-trivial question is how
pt(x) should behave in the intermediate time region. In prin-
ciple, the Fokker-Planck equation (8) uniquely solves pt(x)
for a given initial condition. However, it is generally difficult
to solve pt(x) as it is, and we can translate the problem into
the optimization problem of the score function,

st(x; θ) ≈ ∇ ln pt(x) , (16)

where θ denotes fitting parameters to approximate pt(x).
Thus, in the DDPM, the loss function is the deviation of st

from ∇ ln pt. The L2-norm yields the loss function as follows:

L(θ) = Ept

[
||st(x; θ) − ∇ ln pt(x)||2

]
. (17)

In the case of the Implicit Score Matching (ISM), we can eval-

uate this loss function only with {xi} through the following
rewriting:

LISM(θ) =
∫

dxt pt(x)
(
s2

t − 2st ·
∇pt

pt

)
+ (const.)

= 2Ept

[
|| 12 s2

t + ∇ · st ||
2
]
+ (const.) (18)

Here, (const.) represents the terms involving not st but pt only
which are independent of θ. From the first to the second line,
the integration by part is performed to move ∇ onto st. In
this final form, remarkably, there is no explicit pt(x) in the
function itself but it appears in the weight. Thus, this expecta-
tion value is well approximated by the training data {xi} under
the assumption that the training data obey pt(x). On the other
hand, in the method referred to as the Denoising Score Match-
ing (DSM), the loss function is given by

LDSM(θ) =
1
N

N∑
i=1

||st(xi,t; θ) − ∇ ln pt|0(xi,t |xi,0)||

=
1
N

N∑
i=1

∣∣∣∣∣∣∣∣st(xi,t; θ) +
xi,t − α(t)xi,0

σ(t)2

∣∣∣∣∣∣∣∣ , (19)

where the explicit solution of pt|0(xi,t |xi,0) is used with m
and σ(t)2 in Eq. (12). This is again trainable with {xi,t}. This
form (19) is more advantageous than Eq. (18) because of the
lack of the gradient.

The python code for two-dimensional numerical simula-
tions in the preceding work6) is provided in public, and we
adapted the code for our one-dimensional simulations. We
employ a neural network to represent st(x) as defined in the
original code. Specifically, in the previous literature,6) the
choice of the neural network is [x, t] → (Dense(128) →
Swish)3 → Dense(1) → st(x). Here, Swish is a function
also called SiLU given by x/(1 + e−x) that looks like ReLU
but has no vanishing gradient. Since our current problem is
one-dimensional, one might think that far simpler neural net-
works could work fine, but we numerically found that the per-
formance was not satisfactory if we reduced the layer size.
We then train the model from t = t0 = 0.01 to t = T = 1
with ∆t = (T − t0)/Nt where Nt = 103. We choose the loss
function in Eq. (19) and take the batch size as N = 32.
For the training, the epoch number is 300. In our present
problem, p0(x) is set by hand, and the corresponding one-
dimensional score is ∂x ln p0(x) = −2ax − 4bx3. Figure 2
shows the trained score functions at t = t0, 0.1, 0.2, respec-
tively, together with the exact answer. We can confirm that
s0(x) at t = t0 well approximates ∂x ln p0(x). From the im-
posed condition, limt→∞ f (x, t)/g(t)2 = −x/(2σ2), we see that
st→∞(x) = −x asymptotically. Actually, in Fig. 2, the score
function st(x) at t = 0.2 is already close to this asymptotic
behavior of st→∞(x) = −x.

Once st(x) is trained well, the denoising or the reverse pro-
cess is described by the following SDE:

ẋt = f (xt, t) − g(t)2st(xt; θ) + g(t) ξ̄t , (20)

where t decreases from t = T to t = t0. Figure 3 shows ran-
domly sampled 30 trajectories with initial xi,T ∼ N(0, 1).

The physical meaning is transparent; ln pt is regarded as a
negative potential energy and ∂x ln pt is thus a force. There-
fore, in the x-region with st(x) > 0, the particle at xi,t tends

3
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Fig. 2. Trained score functions at t = t0, 0.1, 0.2, respectively, with the
exact answer, ∂x ln p0(x) = −2ax − 4bx3, overlaid by the dashed line.

0.01.0 0.5
time t

Fig. 3. Randomly sampled 30 trajectories for the reverse process to recover
the original probability distribution (depicted by the green shaded region)
from the normal distribution (depicted by the brown shaded region).

to move to the positive-x direction, while in the x-region with
st(x) < 0, the tendency is opposite. As a consequence, the
distribution becomes denser near x0 with st(x0) ≈ 0 when
∂xst(x0) < 0, and the distribution is diluted around x0 with
st(x0) ≈ 0 when ∂xst(x0) > 0. In this way, one can easily as-
sociate st(x) in Fig. 2 with the two-peak structure of p0(x) in
Fig. 1.

Now, we are ready to alter the SDE with a free parameter.
The Fokker-Planck equation corresponding to the SDE (20)
is immediately deduced from the above-mentioned derivation
of the Fokker-Planck equation as

ṗt(x) = −∇ ·
[(

f (x, t)−g(t)2st(x)
)
pt(x)+

g(t)2

2
∇pt(x)

]
. (21)

Here, we dropped θ to simplify the notation. We can split the
last term as

g(t)2

2
∇pt(x) =

λ2g(t)2

2
∇pt(x) +

1 − λ2

2
g(t)2
∇pt(x) . (22)

The latter term is further rewritten as

1 − λ2

2
g(t)2
∇pt(x) =

1 − λ2

2
g(t)2(∇ ln pt(x)) pt(x) . (23)

Because this final form is proportional to pt(x), we can regard

0.00.20.40.60.81.0
time t

3

2

1

0

1

2

3

x
i,
t

Fig. 4. Deterministic trajectories of the solutions of the ODE (26) with the
same initial values as chosen in Fig. 3.

it as a part of the term involving f (x, t) − g(t)2 st(x). Then,
we can read the corresponding SDE back from the rewritten
Fokker-Planck equation, yielding

ẋt = f (xt, t)−g(t)2
(
st(xt)−

1 − λ2

2
∇ ln pt(xt)

)
+λ g(t) ξ̄t . (24)

If the learning is ideally perfect to realize st(x) = ∇ ln pt(x),
we can replace ∇ ln pt(xt) in the above SDE with st(xt). After
all, with this replacement, we arrive at the following class of
SDEs with a free parameter λ:

ẋt = f (xt, t) −
1 + λ2

2
g(t)2st(xt; θ) + λ g(t) ξ̄t . (25)

Interestingly, if we choose λ = 0, then the stochastic noise is
completely removed from the differential equation; that is, we
can perform the sampling procedure using the deterministic
equation:7)

ẋt = f (xt, t) −
1
2

g(t)2st(xt; θ) . (26)

Without noises, the solutions of the ODE behave smoothly, as
shown by the red lines in Fig. 4. We note that the red lines
start with the initial values, {xi,T }, chosen to be the same as in
Fig. 3.

Now, it is important to note that the time-dependence in
st(xt) should be properly adjusted within the finite time inter-
val (0,T ]. For example, if we continue solving Eq. (26) until
equilibration is achieved, then ẋt = 0 at t → −∞ leads to the
condition, st(xt) = 2 f (xt)/g(t)2|t→−∞ = xt/σ

2. Hence, all of
{xi,t} eventually converges to discrete points where the condi-
tion is satisfied. Also, if we skip the training procedure and
simply plug s0(x) in Eq. (26), the solution of Eq. (26) does
not follow p0(x). At the same time, these features imply that
the convergence of the ODE solution to follow p0(x) could
be even more improved with refinement of f (xt, t) and g(t),
though we do not discuss this possibility in this review.

3. A Review of Stochastic Quantization
In physics, among many, a direct analogue of the frame-

work of the diffusion model is found in the theory of stochas-
tic quantization. Let us suppose that we have a 0-dimensional
field-theoretical model, that is, a partition function given by
a one-dimensional integral. To make a connection to the pre-

4
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vious section about the DDPMs based on Eq. (14), we shall
take the following model:

Z(a, b) =
∫

dϕ e−S (ϕ;a,b) , S (ϕ; a, b) = aϕ2 + bϕ4 . (27)

Then, as a matter of fact, we are going to solve the same
problem as in the previous section using a different language
and convention. Here, ϕ has no coordinate dependence for
simplicity, but the generalization to a more realistic physical
model is straightforward. This model is useful as a prototype
of the quantum field-theoretical problem. If ϕ has only t de-
pendence, then the (0+1) dimensional model can be regarded
as the quantum mechanical system.

For Rea < 0 which is physically more interesting than
Rea > 0, the analytical expression of the partition function is
slightly changed from Eq. (15). We can compute the nonzero
expectation values of physical observables as

⟨ϕ2n⟩c = (−1)n ∂
n

∂an ln Z(a, b) . (28)

In particular, for (a, b) = (−4, 1), we can find the analytical
expression for ⟨ϕ2⟩c:

⟨ϕ2⟩c =
9
8
+

I3/4(z) + I5/4(z) + 1
8 I1/4(z) − 1

8 I−1/4(z)
I1/4(z) + I−1/4(z)

. (29)

We note that this setup with Rea < 0 corresponds to a phys-
ical system with spontaneous symmetry breaking. Precisely
speaking, there is no spontaneous symmetry breaking unless
the degrees of freedom are infinitely large, and yet, we can
see a bifurcation in numerical simulations.

Since the problem is as elementary as one-dimensional in-
tegral, the numerical integration is not difficult at all. This
situation will be totally changed once the sign problem oc-
curs as we will address later. For our present analysis with
(a, b) = (−4, 1), we can easily figure out the first two expecta-
tion values, for example, as

⟨ϕ2⟩c ≈ 1.83534 , ⟨ϕ4⟩c ≈ 0.552211 . (30)

We could continue the calculations to higher powers if nec-
essary, but for the purpose of benchmark test, these first two
expectation values should suffice.

Now, let us explain how the stochastic quantization works.
In the stochastic quantization, instead of performing the func-
tional integral, the key ingredient is the SDE along the ficti-
tious time (or the quantum axis), which is denoted by τ here.
The stochastic field variable is defined by the solution of the
SDE as

ϕ̇η(x, τ) = −
δS [ϕη]
δϕη(x, τ)

+ η(x, τ) . (31)

Generally, the field variables are functions of spacetime, x,
including both spatial and temporal coordinates. Although
our toy model has no x dependence, in the review part, we
shall keep the general notation with d-dimensional spacetime.
Here, η(x, τ) is the stochastic noise which satisfies,

⟨η(x, τ)⟩η = 0 ,

⟨η(x1, τ1)η(x2, τ2)⟩η = 2δ(d)(x1 − x2)δ(τ1 − τ2) ,
(32)

where ⟨· · · ⟩η denotes the average over the noise η(x, τ). In the

path-integral formalism, this can be represented as

⟨A[η]⟩η :=

∫
Dη A[η] exp

[
−

1
4

∫
dd x dτ η(x, τ)2

]
∫
Dη exp

[
−

1
4

∫
dd x dτ η(x, τ)2

] . (33)

Then, the quantum expectation value is obtained from the
noise expectation value at infinitely large τ:

⟨ϕ(x1) · · · ϕ(xk)⟩ = lim
τ→∞
⟨ϕη(x1, τ) · · · ϕη(xk, τ)⟩η . (34)

This is the calculation scheme in the stochastic quantization.
Alternatively, we can introduce the probability distribution

from

⟨ϕη(x1, τ) · · · ϕη(xk, τ)⟩η =:
∫
Dϕ pτ(ϕ) ϕ(x1) · · · ϕ(xk) .

(35)
We are now sufficiently experienced to write down the cor-
responding Fokker-Planck equation immediately. That is, the
identification of f = −∇ϕS [ϕ] and g(t) =

√
2 in Eq. (8) leads

to

ṗτ =
∫

dd x
δ

δϕ(x, τ)

(
δS
δϕ(x, τ)

+
δ

δϕ(x, τ)

)
pτ[ϕ] . (36)

We can introduce a trick here to deform this evolution equa-
tion with a free parameter. Then, the SDE is also modified
as

ϕ̇η(x, τ) = −
δS [ϕη]
δϕη(x, τ)

− (1− λ2)
δ

δϕη(x, τ)
ln pτ(ϕη)+ λη(x, τ) .

(37)
Here again, we can take the limit of λ = 0, so that the τ-
evolution should become deterministic. That is,

ϕ̇(x, τ) = −
δS [ϕ]
δϕ(x, τ)

−
δ

δϕ(x, τ)
ln pτ[ϕ] . (38)

Obviously, the τ-evolution of ϕ(x, τ) ceases when pτ[ϕ] ≈
e−S [ϕ]. So, once pτ[ϕ] or the derivative of ln pτ[ϕ] (which is
a counterpart of the score function) is trained, the stochas-
tic nature can be completely eliminated from the formalism.
Here again, we emphasize that the quantum nature is captured
by the entire τ-evolution of pτ[ϕ]. In this review, we will not
pursue this issue, and the interested readers can consult the
recent work; see especially Sec. 3.3 in the literature9) for the
effective action from the probability flow ODE formulation.
Although Eq. (38) is not well known in physics, it deserves
extensive investigations.

For the practical application, we need the initial condition.
In the literature, the null initial condition is the conventional
choice, i.e.,

pτ=0[ϕ] =
∏

x

δ[ϕ(x)] , (39)

but this form is not mandatory. Actually, the above choice of
the singular form is numerically inconvenient and we can bet-
ter start with a more regular form such as the normal distri-
bution. Then, Fig. 5 shows the randomly sampled trajectories
when we choose ∆τ = T/Nstep with Nstep = 210. We immedi-
ately realize that the convergence from the normal distribution
to the original distribution, p0(x), is qualitatively similar to the
behavior we have seen in Fig. 3. The quantitative differences
are caused by the absence of f (x, t) and g(t) in the standard
formulation of the stochastic quantization.
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0.0 1.00.5
τ

Fig. 5. Randomly sampled 30 trajectories in the stochastic quantization
with the initial condition given by the normal distribution.

It should be noted that a technique similar to introducing
g(t) is known in the context of the stochastic quantization.
The noise fluctuation in Eq. (33) could be regularized by a
kernel as follows,∫
Dη A[η] exp

[
−

1
4

∫
dd x η(x, τ)2

]
→

∫
DηK A[ηK] exp

[
−

1
4

∫
dd x ddy ηK(x, τ)K(x, y)ηK(y, τ)

]
.

(40)

Equivalently, η(x, τ) itself is kept as the Gaussian noise and
the (square-root of) kernel K(x, y) could be multiplied to the
SDE in Eq. (31). If we use this modified noise, the SDE
should be altered as

ϕ̇ηK (x, τ) = −
∫

ddy K(x, y)
δS [ϕηK ]
δϕηK (x, τ)

+ ηK(x, τ) . (41)

This modification is sometimes required; the naı̈ve applica-
tion of the method to fermions breaks down and it is conve-
nient to bosonize the SDE with an appropriate kernel.

Let us turn back to the discussions about Fig. 5. From the fi-
nal distribution of the stochastic trajectories, we can compute
the average values of ϕ2n. Here, we specifically evaluate:

ϕ2
c :=

1
Ntraj

Ntraj∑
i=1

ϕ2
i,T , (42)

ϕ4
c :=

1
Ntraj

Ntraj∑
i=1

ϕ4
i,T −
(
ϕ2

c

)2
, (43)

using randomly sampled Ntraj trajectories. We then compare
ϕ2

c and ϕ4
c with the exact values in Eq. (30). We expect that

these average values should converge to the exact answer as
Ntraj increases. We quantify this tendency by making plots of
ϕ2n

c as functions of Ntraj as shown in Figs. 6 and 7.
From these results in Figs. 6 and 7, as expected, we can

conclude that the average values over the trajectories certainly
approach the exact answers as Ntraj increases for sufficiently
large Nstep. Here, we fixed T and decreased ∆τ for larger Nstep.
We can alternatively increase T with fixed ∆τ.

It is rather perplexing that the convergence appears not so
fast; even in this simplest toy model, the average values with
Nstep = 210 and Ntraj = 104 are not satisfactorily close to the

10
2
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3
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4

Ntraj

1.75

1.80

1.85

1.90

1.95

φ
2 c

Nstep = 26

Nstep = 210

Fig. 6. Ensemble average of ϕ2 over randomly sampled Ntraj trajectories
with different time steps. The 1σ band is estimated from Ntraj trajectories.
The dashed black line represents the exact answer.
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0.55

0.60

0.65
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φ
4 c

Nstep = 26

Nstep = 210

Fig. 7. Ensemble average of the connected part of ϕ4 over randomly sam-
pled Ntraj trajectories with different time steps. The 1σ band is estimated from
Ntraj trajectories. The dashed black line represents the exact answer.

exact answers. To quantify this, we estimated the error bar

from σ =
√
ϕ4

c/(Ntraj − 1) as displayed by the band in Fig. 6.

For Nstep = 210 and Ntraj = 104, we find that ϕ2
c = 1.8387 ±

0.0075, while the exact answer is ≈ 1.83534, which actually
shows good agreement. In the same way, we estimated the
error bar for ϕ4

c to conclude ϕ4
c = 0.5552 ± 0.0283 for the

exact answer ≈ 0.55221. In this case, the numerical result
happens to be close to the exact answer, but the error bar is
still large and the numerical agreement seems to be accidental.

To improve the convergence problem, the common strategy
is to replace the ensemble average over trajectories with the
time average of stochastic evolution. In principle, if the time
extent is large enough, even a single trajectory should repro-
duce the correct answer in this way. Let us check how this
strategy works. We make a plot similar to Fig. 6 to demon-
strate the convergence properties of the time-averaged value.
We calculated not only ϕ2

c but also ϕ4
c, but it is sufficient

to show the comparison of ϕ2
c for the present demonstration.

Figure 8 presents the results for Ntraj = 1 and Ntraj = 10 with
the error bar estimated from fluctuations with 100 indepen-

6
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Fig. 8. Time average of the connected part of ϕ2 over Nstep time steps and
Ntraj trajectories. The 1σ band is estimated from 100 runs. The dashed black
line represents the exact answer.

dent runs. From these figures, we see that the time average
of even the single trajectory (Ntraj = 1) can approach the ex-
act answer if Nstep is large enough. Of course, the agreement
with the exact answer is more guaranteed by further taking
the ensemble average over Ntraj > 1 trajectories.

4. Sign Problem
The reinterpretation of the stochastic quantization and the

diffusion model has been considered9) which aims to improve
the efficiency to sample quantum lattice field configurations.
The applications of two seemingly different but essentially
equivalent formulations have just started recently, and further
developments should await to be revealed.

Among various possibilities, one direction more exciting
than improving the efficiency is an attempt to evade the sign
problem. As long as e−S [ϕ] is positive definite, we can give
it a meaning as the probability, pτ[ϕ] ∼ e−S [ϕ]. However, in
many interesting physical systems, e−S [ϕ] is not necessarily
positive definite. For example, the real-time evolution requires
the Minkowskian formulation in which the functional integral
involves eiS [ϕ]. Because of this complex nature, eiS [ϕ] is an os-
cillatory function and the Monte-Carlo integration algorithm
breaks down. Another example is found in fermionic systems
at finite chemical potential; see reviews.14–17)

Although the probability interpretation loses its mean-
ing, the stochastic quantization scheme still looks feasi-
ble. The only extension is that the trajectories may spread
over the complex plane; in other words, ϕη may become a
complex-valued function. This generalized stochastic quanti-
zation method is referred to as the Complex Langevin Equa-
tion (CLE) approach. Actually, the CLE application to the
Strong Interaction has a long history traced back to 1985
by a pioneering work.18) Since then, the interest in nuclear
physics was revived around 2010; see, e.g., a discussion on the
prospect of gauge-cooling technique.19) Continued and lat-
est applications include the quark-flavor number dependence
of finite-density matter20) and full real-time simulations of
strongly interacting system.21)

The problem in the CLE method is that the results may not
converge or even the converged results may not be correct.
The convergence criterion has been known; see some discus-
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Fig. 9. Comparison to the exact answer in complex parameter space. In the
present notation, the quadratic coefficients are related as αR/I = aR/I/2 and
the quartic coefficient is fixed as β = b/4 = 1. Figure is adapted from the
paper.24)

0 1 2 3 4 5
aI

2

1

0

1

2
〈 φ2〉

c

Real Part (exact)
Imaginary Part (exact)
Real Part (CLE)
Imaginary Part (CLE)

Fig. 10. CLE simulations compared to the exact numerical values as a
function of aI with aR = −4 and b = 1 fixed.

sions.22, 23)

We can introduce the sign problem into our simple toy
model. It is an intriguing question what would happen if we
generalize the model parameters on the complex plane. Here,
let us take a = aR + iaI with aR = −4 fixed and we change aI
to control the degree of complexification. Actually, this model
has been carefully studied in the paper24) with a slightly dif-
ferent notation; α = a/2 and β = b/4 in the potential coeffi-
cients and β = 1 was chosen there.24) Then, the breakdown of
the CLE method has been quantified as shown in Fig. 9 as a
function of the real and imaginary parts of α.

As long as αR > 0, the convergence property is good and
regardless of complexification with αI , 0, the CLE can con-
verge to the correct answer of ⟨ϕ2⟩c. In the region with αR < 0,
the sign problem occurs and the CLE breaks down except for
the region with |αI| ≪ |αR| where the method is reduced to
the real stochastic quantization. In this way, as intuitively ex-
pected, we understand that the sign problem turns out to be se-
vere in the region with αR < 0 and |αI| > |αR|. Strictly speak-
ing, this conclusion is valid for ⟨ϕ2⟩c and higher-order opera-
tor expectations might be more sensitive to the sign problem.

Now, let us carry out the direct CLE simulation using the
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present setup of the toy model. We fix aR = −4 and b = 1
(which corresponds to αR = −8 and β = 4 in the previous
convention24)), and calculate the real and imaginary parts of
⟨ϕ2⟩c. The results are summarized in Fig. 10. For this simula-
tion, we chose Ntraj = 10 and Nstep = 216 and took the time-
average. Also, we used a discretization scheme with some
resummation to avoid run-away behavior of trajectories. For
technical details, see relevant discussions in the anharmonic
oscillator simulation.25)

In view of Fig. 10, the sign problem certainly gets worse
for aI ≳ |aR|. Of course, the best would be providing the solu-
tion of the sign problem, but the sign problem is known to be
NP-hard,26) and simple solutions within reasonable time scale
would be unattainable. Then, the second best would be the
identification of the difficulty in the formalism. In this con-
text, it is shown that the analysis of the Lefschetz thimble can
make it clear where the CLE may fail.27)

The idea of complexifying the path integral using the Lef-
schetz thimble was demonstrated in the seminal work,28)

which was successfully implemented for numerical simula-
tions in quantum field theories.29) Since this is nothing but the
higher-dimensional extension of the complex analysis for the
one-dimensional integral, we do not have to consider thimble
structures for the present setup of the one-dimensional prob-
lem. Let us introduce a complex variable; z = Reϕ+ iImϕ. We
can deal with the complexified action, S [ϕ]→ S [z], then. We
should find the critical points, zi, by solving the saddle-point
condition,

S ′[z]
∣∣∣
z=zσ
= 0 . (44)

In our present case with S [z] = az2 + bz4, we should get three
critical points at z = 0, z = ±

√
−a/(2b). The steepest descent

cycles are defined with a time-like variable, τ, as

Iσ :=
{

z(τ)
∣∣∣∣ dz

dτ
=
∂S
∂z
, z(τ→ −∞) = zσ

}
. (45)

The nicest feature about the steepest descent cycles is that the
phase oscillation is suppressed on it, which is almost obvious
from (d/dτ)ImS ∝ (d/dτ)(S − S ) = S ′(dz/dτ) − S

′
(dz/dτ) =

S ′S ′−S
′
S ′ = 0 . The original integral can be safely deformed

to the sum of integrals on the steepest descent cycles or the
Lefschetz thimbles. Once this rewriting is complete, it is only
the residual sign problem which causes obstacle in the numer-
ical simulation.30)

Figures 11 and 12 show the structures of the steepest de-
scents by the purple lines and the steepest ascents by the green
lines as well as the slope, S ′, indicated by small arrows (the
length of the arrows is square-root proportional to the modu-
lus of the slope). When the sign problem is minor with aI = 1,
three critical points are almost along the real axis as seen in
Fig. 11. The original integration path should be deformed into
three pieces attached to three critical points. For the calcula-
tion of ⟨ϕ2⟩c, the contribution from z = 0 is suppressed, and
the saddle-point approximation at z = ±

√
−a/(2b) leads to

⟨ϕ2⟩c ≃
−(a/b)ea2/(4b2)

1 + 2ea2/(4b2)
. (46)

If |2ea2/(4b2)| ≫ 1, then we can further simplify the above es-
timate as ⟨ϕ2⟩c ≃ −a/2 = 2 − iaI/2. This formula nicely ex-
plains the small-aI behavior of Fig. 10.
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Fig. 11. Structure of the steepest descents (purple) and the steepest ascents
(green) with the saddle points (orange dots) for aI = 1 with aR = −4 and
b = 1 fixed. The slope, S ′, is indicated by the arrows.
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Fig. 12. Same as Fig. 11 for aI = 10 with aR = −4 and b = 1 fixed.
Scattering data represent the CLE sampled points without the modified kernel
(yellow) and with the modified kernel (red).

The CLE method clearly breaks down for aI ≳ 4 as quan-
tified in Fig. 10, and the configuration of the steepest de-
scents/ascents for aI = 10 is shown in Fig. 12. At first glance,
we see no qualitative difference from Fig. 11. The saddle point
approximation for aI = 4 gives Re⟨ϕ2⟩c ≈ 0.78 and Im⟨ϕ2⟩c ≈

−2.57. So, the saddle-point approximation is not good any
more. As a matter of fact, the breakdown of the CLE method
and the deviation from the leading-order saddle-point approx-
imation are somehow related. The weight of the saddle-point
contributions at z = ±

√
−a/(2b) is |ea2/(4b2)| = e4−a2

I /4, so
that the exponent changes its sign at |aI| = 4. Thus, around
aI ∼ 4, the saddle-point approximation is no longer effective
with such a small exponent, and the relative weight between
1 from z = 0 and ea2/(4b2) from z = ±

√
−a/(2b) is flipped.

In view of Fig. 10, the CLE results can be understood if 1
in the denominator in Eq. (46) is dropped, though it should
not be dropped in reality. Indeed, this observation can be con-
firmed by the distribution of the CLE sampled points overlaid
by yellow dots on Fig. 12. It is obvious that the CLE method
fails to collect the contribution near z = 0. A more compre-
hensive analysis is found in the literature.31) If we make a
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Fig. 13. Action or potential energy for aI = 10 along Imϕ = 0, i.e., θ = 0
indicated by the blue solid (real part) and dashed (imaginary part) lines. With
the kernel, the red solid (real part) and dashed (imaginary part) lines represent
the action along arg(aϕ2) = 0, i.e., θ = −(arg a)/2.

similar scattering plot on Fig. 11, it is also the case that the
z = 0 point repels sampled data. Of course, such repulsion
around z = 0 is perfectly reasonable for aI ≈ 0, for e−S [z]

has maxima at z = ±
√
−a/(2b), while the z = 0 point corre-

sponds to the minimum, which is least favored naturally. In
terms of the Lefschetz thimble, the repulsion simply means a
small relative weight. As aI grows up, the saddle points are
aligned along the path with the phase angle by −(arg a)/2. It
has been shown that the CLE method with the rotated variable
from ϕ to ϕθ by −(arg a)/2, that is,

ϕ =: eiθϕθ , θ = −(arg a)/2 , (47)

can improve the convergence to the correct answer.24) Then,
we see aϕ2 = |a|ϕ2

θ . In fact, in the vicinity of z = 0, we draw
the action S [z] (or it could be called the potential) as a func-
tion of this rotated variable ϕθ in Fig. 13. Along this direction
of ϕθ with θ = −(arg a)/2, the imaginary part of the action is
flat and the real part shows a minimum. This makes a sharp
contrast to the θ = 0 case that the real part has a double-well
shape with a maximum at ϕ = 0. Accordingly, for the case
with θ = −(arg a)/2, the sampled points are certainly local-
ized around z ≃ 0 as seen from the red dots in Fig. 12. The
important point is that the SDE (31) is not invariant under
the variable change like Eq. (47). In fact, as we already men-
tioned, the SDE could be modified as Eq. (41) with a kernel
and the phase transformation in Eq. (47) corresponds to the
choice of the kernel as K(x, y) = e2iθδ(x− y). Surprisingly, the
choice of the variable or the kernel would affect the final nu-
merical output. In the present case with aI = 10, for example,
the correct answer is ⟨ϕ2⟩ ≈ −0.01051 − 0.04931i. The naı̈ve
application of the CLE method gives a totally wrong result,
⟨ϕ2⟩CLE ≈ (1.98058±0.02333)+(−5.06101±0.00082)i, while
the modified CLE method with the kernel results in a much
better value, ⟨ϕ2

θ⟩CLE ≈ (−0.01901 ± 0.00079) + (−0.04503 ±
0.00184)i.

5. Speculative Prospects
Now, we have seen a quite suggestive analogy between the

stochastic quantization and the diffusion model. In the most
direct application of the analogy, the diffusion models can be
utilized to generate the lattice configurations efficiently. Here,

we have put more emphasis on the dark side of the numer-
ical simulation, namely, the sign problem. Actually, for the
diffusion models too, the difficulty encountered with complex
variables is not necessarily an academic exercise. Nowadays,
“quantum” is such a fashionable keyword, and the crucial dif-
ference between quantum and classical lies in the informa-
tion of the complex phase from where the interference effect
emerges. Therefore, if one would like to quantumize the gen-
erative models, the first step would be to complexify the for-
malism. Although the complexification may not cause trou-
bles in some parameter space, the empirical rule we know
from physics realms is that the problem gets harder in the
regimes with more interesting contents. We speculate that our
knowledge about the CLE method should be useful for future
studies along these lines. In particular, we have established
good understanding of the breakdown of the method in terms
of the Lefschetz thimble and demonstrated a potential resolu-
tion by means of the optimized kernel.

A more ambitious direction of research is to solve or tame
the sign problem by means of the machine-learning tech-
niques. There are some preceding works to optimize the in-
tegration path,32, 33) for example. The analogy to the diffusion
models may pave a novel passage to tackle the sign problem.
In the CLE, the convergence problem occurs due to run-away
trajectories. In the present simulation, we used a half-implicit
method to regularize such trajectories, but in general, there
are always unstable directions in complex plane. This prob-
lem may be cured by the ODE-type evolution without any
fluctuations. In gauge theories, the gauge cooling is a tech-
nology to evade the run-away trajectories, and if the ODE re-
formulation turns out to be effective, the algorithm may be
improved. An even more radical speculation is the possibil-
ity of accessing the analytical structures of the trained score
function. The score function provides us with a mapping be-
tween the normal distribution and the probability distribution
of our interest, which is nothing but the procedure to solve
the theory in physics. The mapping is also translated into the
change from the original variables to the optimal variables in
the integral, and if the optimization imposes the condition to
suppress the phase oscillation in a way as described below
Eq. (45), the flow to de-complexify the theory may naturally
find the paths along the Lefschetz thimbles. Alternatively, the
optimized kernel could be found in the machine-learning as-
sisted algorithm.

What is speculated here may sound too optimistic, but any-
thing is not mature yet. There are many fascinating attempts in
physics, and the Lefschetz thimble is just one of them. We did
not mention here, but the stochastic quantization has a useful
mathematical structure of supersymmetry (see discussions in
the literature34)). We are making efforts to export the physics
wisdom to the diffusion models. We would like to invite inter-
ested physicists to this aspiring project and we hope that our
present review serves as an interpreter of two descriptions in
physics and machine learning.
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