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We present an extensive study of quadrupole-hexadecapole correlation effects in even-even Sm
and Gd isotopes with neutron number N = 88 − 106. The calculations are performed in the
framework of the Gogny energy density functional (EDF) with the D1S parametrization and the
sdg interacting boson model (IBM). The quadrupole-hexadecapole constrained self-consistent mean-
field potential energy surface is mapped onto the expectation value of the sdg-boson Hamiltonian.
This procedure determines the parameters of the sdg-IBM Hamiltonian microscopically. Calculated
excitation energies and transition strengths are compared to the ones obtained with a simpler
sd-IBM, as well as with the experimental data. The Gogny-EDF mapped sdg-IBM reproduces
spectroscopic properties of the studied nuclei as reasonably as in the case of the previous sdg-boson
mapping calculations that were based on the relativistic EDF, indicating that the axial quadrupole-
hexadecapole method is sound regardless of whether relativistic or nonrelativistic EDF is employed.
The mapped sdg-IBM improves some of the results in lighter Sm and Gd isotopes compared to
the mapped sd-IBM, implying the existence of significant hexadecapole correlations in those nuclei.
For those nuclei with N ≥ 94, hexadecapole effects are minor, and the only significant difference
between the two boson models can be found in the description of E0 monopole transitions.

I. INTRODUCTION

The importance of studying deformations in nuclei and
their effects on various nuclear properties, e.g. excitation
energies and transition strengths, has been recognized
for decades [1, 2]. The most commonly present and ex-
tensively studied nuclear deformation is of quadrupole
type, and their effects on the positive-parity states are
well known. The higher-order correlations which affect
the positive-parity states, the hexadecapole correlations,
have been significantly less studied, due to their effects
often being overshadowed by large quadrupole correla-
tions. Nevertheless, the presence of hexadecapole corre-
lations has been found in a wide range of nuclei [3, 4],
and the main effect of such correlations is the appearance
of the 4+ band in the low-lying excitation energy spec-
tra of some even-even nuclei, with an enhanced B(E4)
transition strength from the 4+ band head state to the
0+ ground state. Hexadecapole correlations have also
been found to be important in describing certain nuclear
reactions and decays. [4–6].

The interacting boson model (IBM) [7] is one of the
most commonly employed models for studying how nu-
clear deformations affect low-lying spectra [8]. The main
assumption of the model is that a nucleus can be ap-
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proximated as a system consisting of a core, represented
by the closest doubly-magic nucleus, and the valence nu-
cleons, which form collectives pairs (or bosons). Inter-
actions among valence bosons give rise to the low-lying
spectra and transitions. In the simplest version of the
model, the sd-IBM-1, the nucleons primarily couple into
s (Jπ = 0+) and d (Jπ = 2+) bosons, and the neutron
and proton bosons are assumed to be identical [7]. One
particular extension of the simple sd-IBM is the inclu-
sion of g bosons (Jπ = 4+), allowing for the study of
hexadecapole collectivity in nuclei. The importance of g
bosons in describing low-lying collective states has been
extensively studied [8–15]. In recent years, a method
has been developed, which is to derive the parameters
of the IBM Hamiltonian from self-consistent mean-field
(SCMF) calculations based on a microscopic energy den-
sity functional (EDF) [16]. The method provides low-
energy collective energy spectra and reduced transition
probabilities, and has been successfully applied to study
quadrupole [16–19], octupole [20, 21], and, recently, hex-
adecapole correlations [22, 23]. In this paper, we present
an extension of Refs. [22, 23] by studying the low-energy
quadrupole and hexadecapole collective states of even-
even rare-earth isotopes 150−168Sm and 152−170Gd, rang-
ing from transitional to highly deformed nuclei, based on
the Gogny force [24]. The present calculation employs
parametrization D1S [25] of the Gogny interaction, which
has already been extensively employed [26, 27]. The com-
bination of the Gogny EDFs with the IBM through the
mapping procedure has been considered and shown to be
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valid to describe a number of nuclear structure phenom-
ena, including coexistence of quadrupole shapes (e.g.,
Refs. [28, 29]) and octupole correlations (e.g., Refs. [30–
33]).

Recently, Gogny Hartree-Fock-Bogoliubov (HFB) cal-
culations were performed to compute potential energy
surfaces (PESs) have been computed with constraints on
the quadrupole and hexadecapole deformation parame-
ters [34]. In this study, we carry out the mapping pro-
cedure by using the Gogny-D1S PESs in order to ex-
amine the effects of the quadrupole-hexadecapole cou-
pling on the low-lying spectra of the considered nuclei.
Since in previous studies [22, 23], calculations were per-
formed within the framework of the constrained rela-
tivistic mean field (MDC-RMF) model [35, 36], with the
relativistic density-dependent point-coupling (DD-PC1)
functional [37, 38], this work will allow us to study how
the quadrupole-hexadecapole mapping method depends
on the choice of the EDF. On the other hand, we analyze
positive parity bands in heavy Sm and Gd isotopes as
well as the effects of hexadecapole collectivity in heavy
neutron-rich nuclei, far from the valley of stability. The
results of the calculations are compared with the ones ob-
tained with a simpler sd-IBM, as well as with the avail-
able experimental data [39].

The paper is organized as follows. The theoretical
framework, i.e., the Gogny-D1S HFB approach and the
sd-IBM and sdg-IBM, is outlined in Sec. II. Potential
energy surfaces computed with both SCMF and IBM
calculations are presented in Section III. Spectroscopic
properties, including the excitation spectra of low-lying
states, electric quadrupole, hexadecapole, and monopole
transition properties, are discussed in Sec. IV. Section V
is devoted to the concluding remarks and work perspec-
tives.

II. MODEL DESCRIPTION

In order to obtain the SCMF PES for the studied nu-
clei, the HFB equations have been solved with constraints
on the axial quadrupole Q̂20 and hexadecapole Q̂40 mo-
ment operators [34]. The axial quadrupole β20 ≡ β2 and
hexadecapole β40 ≡ β4 deformation parameters are re-
lated to the expectation values of the multipole moment
operators as [34]:

βλ =

√
4π(2λ+ 1)

3RλA

〈
Q̂λ0

〉
, (1)

where λ = 2 or 4, R = 1.2A1/3 fm and A is the nucleon
number. Details on the Gogny-D1S HFB calculations
can be found in Refs. [25, 40, 41].

In order to calculate low-lying excitation energies and
transition strengths, we have employed the sdg-IBM-1
model, referred to simply as sdg-IBM. The Hamiltonian
is built in the same way as in Ref. [23]:

Ĥ = ϵdn̂d+ϵgn̂g+κQ̂(2) ·Q̂(2)+κ(1−χ2)Q̂(4) ·Q̂(4), (2)

with n̂d = d† · d̃ and n̂g = g† · g̃ being the d- and g-boson
number operators, respectively,

Q̂(2) =(s† × d̃+ d† × s) + χ
[11√10

28
(d† × d̃)(2)

− 9

7
σ(d† × g̃ + g† × g̃)(2) +

3
√
55

14
(g† × g̃)(2)

]
(3)

being the quadrupole operator, and

Q̂(4) = s† × g̃ + g† × s (4)

being the hexadecapole operator. This Hamiltonian rep-
resents a modified version of the one used in Ref. [15],
which satisfies the conditions of three symmetry limits:
[U(6) ⊃ U(5)] ⊗ U(9), SU(3) and O(15) [42]. Here the
quadrupole-quadrupole boson interaction is taken to be
attractive, κ < 0, and a single g boson level is, to a good
approximation, above that of a d boson, ϵd < ϵg. In addi-
tion, the requirement of the SU(3) symmetry limit leads
to the constraints that −1 ≤ χ ≤ +1 and −1 ≤ χσ ≤ +1.
The parameters ϵd, ϵg, κ, χ and σ are determined

by the mapping procedure [16]. The sdg-IBM is con-
nected to the geometric model through a coherent state

[43], |ϕ⟩ ∼ (1 + β̃2d
†
0 + β̃4g

†
0)

NB |0⟩, with NB represent-
ing the number of bosons, determined by the nearest
doubly-magic nucleus, and |0⟩ representing the boson

vacuum. Note that β̃2 and β̃4 represent the axial bosonic
quadrupole and hexadecapole deformation parameters,
respectively. For Gd and Sm isotopes with N < 106, the
core is represented by the doubly magic nucleus 132Sn.
In the case of 168Sm and 170Gd, the corresponding core
is 176Sn since the neutrons occupy the upper half of the
neutron major shell N = 82− 126.

The parameters of the sdg-IBM are fitted so that the
PES of the IBM, EIBM(β̃2, β̃4) = ⟨ϕ| Ĥ |ϕ⟩ / ⟨ϕ|ϕ⟩, should
be approximately equal to the Gogny-HFB PES in the
vicinity of the minimum:

ESCMF(β2, β4) ≈ EIBM(β̃2, β̃4) . (5)

The relation between axial bosonic and fermionic param-
eters is assumed to be linear, β̃2 = C2β2, β̃4 = C4β4 as in
previous studies with the mapping procedure [16, 21–23].
This leaves us with 7 parameters which need to be fitted
to reproduce the SCMF PES.

For the sd-IBM calculations, we have employed the
following Hamiltonian [7]:

Ĥsd = ϵdn̂d + κQ̂(2) · Q̂(2), (6)

where the sd-IBM quadrupole operator reads:

Q̂(2) = s†d̃+ d†s+ χ
(
d† × d̃

)(2)

. (7)

The parameters ϵd, κ, χ in the sd-IBM Hamiltonian are
fixed by a 1D mapping of the Gogny-D1S PES along the
β4 = 0 line:

ESCMF(β2, β4 = 0) = Esd−IBM(β̃2), (8)
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and the relation between the bosonic and fermionic defor-
mation parameters is assumed to be linear β̃2 = Csd

2 β2.
In order to calculate transition strengths with both

the sdg-IBM and sd-IBM, the transition operators are
constructed in the same way as in Refs. [22, 23]. The
quadrupole transition operator is of the form:

T̂ (E2)sdg/sd = e
sdg/sd
2 Q̂

(2)
sdg/sd, (9)

with Q̂
(2)
sdg/sd representing the quadrupole operator of the

sdg (3) or sd (7) boson model. The hexadecapole opera-
tor is chosen, in the case of sdg-IBM, to be:

T̂
(E4)
sdg = esdg4

[
s†g̃ + g†s+ (d† × d̃)(4)

]
, (10)

while, for sd-IBM, it is constructed as:

T̂
(E4)
sd = esd4 (d† × d̃)(4). (11)

The quadrupole and hexadecapole effective charges

e
sdg/sd
2 , e

sdg/sd
4 are fitted in order to reproduce the

measured transition strengths B(E2; 2+1 → 0+1 ) and
B(E4; 4+1 → 0+1 ), from the first 2+ and 4+ states to the
ground state 0+, respectively. The monopole transition
operator [44] reads

T̂
(E0)
sdg = (enN + epZ)

(
η
n̂d

NB
+ γ

n̂g

NB

)
, (12)

for the sdg-IBM, and

T̂
(E0)
sd = (enN + epZ)η

n̂d

NB
, (13)

for the sd-IBM.
Following Ref. [44], we set neutron and proton effective

charges to the values ep = e and en = 0.5e, while the
values of parameters η and γ are taken to be η = γ =
0.75 fm2. Experimental data for energies and transition
strengths have been taken from the NNDC database [39].

III. MAPPING THE SCMF RESULTS ONTO
THE IBM SPACE

Figures 1 and 2 show the Gogny-D1S PESs obtained
for even-even Sm and Gd isotopes with neutron num-
bers within the range N = 88 − 106, up to an energy
of 2.7 MeV above the HFB ground state. The PESs for
the N = 106 isotones are not shown due to their sim-
ilarity to those of the N = 104 ones. As can be seen
from the figures, the quadrupole and hexadecapole de-
formations associated with the absolute minima of the
PESs start from the values βmin

2 = 0.2 and βmin
4 = 0.08,

respectively. They increase with neutron number until
N = 94, after which hexadecapole deformations start
decreasing, dropping to βmin

4 = 0.04 at N = 106. Simi-
lar to previous (mapped) IBM calculations, based on the

relativistic DD-PC1 functional [22, 23], Sm isotopes ex-
hibit larger HFB ground state β4 values as compared to
Gd isotopes. On the other hand, the ground state β2

deformations increase up to N = 94. For larger neu-
tron numbers, those quadrupole deformations decrease,
reaching the value βmin

2 = 0.32 for N = 106 isotopes.
An important thing to observe is that the PESs appear
to be ”tilted” with respect to β20 and β40 axes, indicat-
ing a strong coupling between the axial quadrupole and
hexadecapole degrees of freedom, which has already been
discussed in Ref. [34]. Note, that the results obtained for
N = 88 − 96 isotopes agree well with the ones obtained
with the DD-PC1 EDF [22, 23].

The corresponding (mapped) sdg-IBM PESs are de-
picted in Figs. 3 and 4. The mapping procedure repro-
duces basic features of the fermionic PESs such as the
position of the absolute minima, the oblate saddle points
for N = 88 nuclei as well as the overall shape of the sur-
face. The strong quadrupole-hexadecapole coupling is
well reproduced in N ≤ 100 isotopes, while in N > 100
isotopes, the coupling is predicted to be less strong. Note
that the IBM PESs are significantly flatter than the HFB
ones, due to the restricted boson (valence) space as com-
pared to the Gogny-HFB model space. This also explains
why the mapping procedure is not able to reproduce the
“elongated” shapes of the PESs for N ≥ 100 nuclei. The
1D sd-IBM mapping has also been carried out in all the
studied isotopes to reproduce some of the properties of
the ESCMF(β2, β4 = 0) curve such as the position of the
absolute minimum, the position and energy of the oblate
saddle point, and the energy of the spherical β2 = 0 con-
figuration.

The sdg- and sd-IBM parameters are shown in Figs.
5 and 6, as functions of the neutron number N . The
d-boson energy ϵd has a very similar behaviour in both
models. It decreases up to N = 100, after which it stops
decreasing, and even increases at N = 106, which cor-
responds to lower βmin

2 values. Moreover, the param-
eters κ, χ and C2 also display a similar behaviour in
both models, whereas in the sdg-IBM the χ parameter is
characterized by significantly lower absolute values, com-
pared to the sd-IBM ones. Regarding those parameters
appearing only in the sdg-IBM, the g-boson energy ϵg
takes values between ϵg = 1.1 and ϵg = 1.3 MeV. The C4

parameter decreases until N = 96, after which it starts
to increase, which corresponds to βmin

4 values becoming
lower for N ≥ 96 isotopes. Finally, with increasing neu-
tron number, the parameter σ, which accounts for the
quadrupole-hexadecapole coupling in the sdg-IBM, drops
from σ = 2.8 to σ = 1.0, which also corresponds to
a decrease in βmin

4 . This explains why the coupling is
predicted to be less strong in N > 100 isotopes by the
sdg-IBM. It should also be noted that σ decreases faster
in Gd isotopes, compared to the Sm ones, which can be
explained from the fact that βmin

4 values are smaller in
Gd isotopes with the same N .
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FIG. 1. Axially-symmetric quadrupole (β20) and hexadecapole (β40) constrained potential energy surfaces for 150−168Sm. The
energy difference between neighbouring contours is 0.1 MeV. The absolute minimum is indicated by an open triangle. Results
have been obtained with the Gogny-D1S energy density functional.

IV. RESULTS OF THE SPECTROSCOPIC
CALCULATIONS

In this section, we discuss the excitation energies and
transition strengths obtained from the diagonalization
of the IBM Hamiltonian, using the computer program
ARBMODEL [45]. The results of the sdg-IBM and sd-
IBM will be compared to illustrate the effects of g bosons.
The results obtained from both models will also be com-
pared with the available experimental data at NNDC
[39].

A. Excitation energies

Figure 7 shows the excitation energies corresponding
to the yrast band states with even spin Jπ = 2+ to 14+.
As expected, the sdg-IBM improves the description of the
excitation energies of higher-spin states with Jπ = 12+

and 14+ in transitional N = 88 nuclei. For Sm nuclei,
the sdg-IBM gives a better description of the energy lev-
els up to N = 92 than the sd-IBM. This can be explained
by the fact that large amounts of g-boson contributions
are present in the higher-spin states, as indeed, the ex-
pectation value of the g-boson number operator ⟨n̂g⟩ is
greater or equal to 1 in those isotopes with N ≤ 92.
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FIG. 2. The same as in Fig. 1, but for 152−170Gd.

Note that for Sm isotopes with N ≤ 92, the βmin
4 values

are larger compared to those for Gd isotopes with the
same N . For the N > 92 isotopes, there is no significant
difference between both models concerning the descrip-
tion of the ground state bands. This is not surprising,
since as the number of valence nucleons increases for de-
formed nuclei even the sd-IBM is good enough to provide
an accurate description of the yrast-band levels. In any
case, in general the sdg-IBM does provide some signifi-
cant improvements in the description of the yrast band,
compared to the simpler sd-IBM.

Figure 8 depicts the excitation energies of the 0+2 , 2
+
3

and 4+3 states, which are associated with the Kπ = 0+

band in the present study. The sdg-IBM predicts a sig-
nificantly low-lying 4+3 level for N = 88 isotopes. This

agrees better with the experimental data than in the cor-
responding sd-IBM results. For other isotopes, there is
no significant difference between the two models, as they
both predict similar energies for all three states. Overall,
the sdg-IBM does not improve the description of the 0+

band significantly.

Figure 9 shows the excitation energies of the 2+2 , 3
+
1 ,

and 4+2 states, which can be identified as members of
the γ-vibrational band in the present calculation. Both
models predict similar energies for Sm and Gd isotopes.
Those energies mostly agree well with the experimental
data. The description of the γ-vibrational band could be
improved by including both three-body terms [19] and
the γ degree of freedom at the HFB level. However, such
an extension is beyond the scope of this paper. Work
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FIG. 3. The same as in Fig. 1, but for the mapped sdg-IBM potential energy surfaces of 150−168Sm.

along these lines will be reported in future publications.

B. Transition strengths

1. E2 transitions

Figure 10 shows the B(E2; J → J − 2) transition
strengths in the ground state bands of the well deformed
N = 90 and 92 isotones. These nuclei are specifically
considered, since there are experimental data on E2 tran-
sitions. In Sm isotopes, the sdg-IBM significantly im-
proves the description of B(E2) transition strengths for
Jπ ≥ 6+. However, for 154Gd, the sdg-IBM predicts
B(E2) strengths significantly larger than the sd-IBM,

which are however still smaller than the measured val-
ues. The discrepancy points towards some missing cor-
relations other than the hexadecapole ones, that could
also contribute to the B(E2) strengths. Due to the large
experimental error bars, in 156Gd it is not possible to con-
clude whether sdg-IBM improves the description of the
E2 transitions in the yrast band or not. The fact that
the sdg-IBM predicts larger B(E2) transition strengths
than the sd-IBM can be attributed to the large values of
the parameter σ (see Fig. 5). In the case of 152,154Sm
and 154Gd the value σ = 2.8 leads to a significant con-
tribution to the B(E2) transition strengths arising, from

the
[
d† × g̃ + g† × d̃

](2)
part of the quadrupole Q̂(2) op-

erator of Eq.(3). Moreover, the σ = 2.1 value obtained
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FIG. 4. The same as in Fig. 1, but for the mapped sdg-IBM potential energy surfaces of 152−170Gd.

for 156Gd leads to similar sdg-IBM and sd-IBM B(E2)
strengths. Note that the σ values for 154,156Gd are larger
than those previously obtained [23] using microscopic in-
put from the relativistic DD-PC1 EDF.

2. Hexadecapole transitions

The B(E4; 4+n → 0+1 ) (n = 1, 2, 3, 4) reduced transi-
tion probabilities obtained in the mapped calculations
are plotted in Fig. 11, as functions of the nucleon num-
ber A in order to avoid overlapping between the data for

Sm and Gd isotopes. The e
sdg/sd
4 effective charges are fit-

ted to the experimental B(E4; 4+1 → 0+1 ) values [39, 46–
48]. Results for B(E4; 4+1 → 0+1 ) strengths are plotted

in panels (a) and (b) of the figure, while B(E4) values
from non-yrast 4+n (with n = 2, 3, 4) to the 0+ ground
states are shown in panels (c)-(h). The 4+2 state typi-
cally belongs to the γ-vibrational band, where g bosons
do not play a significant role. Thus both models predict
weak E4 transitions in this case. Large sdg-IBM B(E4)
values are obtained for the 4+3 states in 150Sm and 152Gd.
The strong E4 transition, predicted for the 4+4 state in
154Gd, agrees well with the experimental identification
of this state as a band head of the K = 4+ band [39].
On the other hand, the sd-IBM gives negligibly small
B(E4) reduced transition probabilities. This indicates a
significant difference between the sdg-IBM and the sim-
pler sd-IBM. Nevertheless, experimental data on B(E4)
strengths in rare-earth nuclei are still required to under-
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FIG. 5. Parameters of the sdg - IBM Hamiltonian Eq.(2), as functions of the neutron number N .

FIG. 6. Parameters of the sd - IBM Hamiltonian Eq.(6), as functions of the neutron number N .

stand whether the sdg-IBM describes them better.

3. Monopole transitions

Figure 12 shows the monopole strengths ρ2(E0; 0+i →
0+j ), with i = 2, 3 and j = 1, 2, as functions of the neu-
tron number N . In N ≤ 92 isotopes, both models yield
similar values of monopole strengths. As can be seen

from the figure, ρ2(E0; 0+3 → 0+2 ) vanishes for N > 92.
The sdg-IBM predicts a much sharper decrease (increase)
of ρ2(E0; 0+2 → 0+1 ) [ρ2(E0; 0+3 → 0+1 )], with increasing
neutron number, than the sd-IBM.

One can see from Figs. 12(a) and (c) that for those Sm
and Gd nuclei with N ≥ 92, the sdg-IBM predicts the
monopole strengths ρ2(E0; 0+2 → 0+1 ) and ρ2(E0; 0+3 →
0+1 ) to be more or less similar to eath other, whereas
in the sd-IBM these monopole transition strengths are
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FIG. 7. Excitation energies of the yrast band states up to
spin Jπ = 14+ as functions of the neutron number N within
the mapped sdg-IBM (left column) and sd-IBM (right col-
umn), represented by solid symbols connected by solid lines.
Experimental data are taken from Ref. [39], and are depicted
as open symbols connected by dotted lines.

FIG. 8. The same as in Fig. 7, but for the excitation energies
of 0+2 , 2

+
3 , and 4+3 states.

quite at variance, that is, the ρ2(E0; 0+2 → 0+1 ) are larger
than the ρ2(E0; 0+3 → 0+1 ) by a factor of 2 to 3. In
addition, the ρ2(E0; 0+2 → 0+1 ) values obtained from the
mapped sdg-IBM are smaller than those from the sd-
IBM for neutron-rich nuclei with N ≥ 94. The reduction
of the 0+2 → 0+1 E0 transition in the case of the sdg-IBM
has been already been discussed in Ref. [44]. On the
other hand, the sdg-IBM provides larger ρ2(E0; 0+3 →
0+1 ) values for the N ≥ 94 nuclei than the sd-IBM. These

FIG. 9. The same as in Fig. 7, but for the excitation energies
of 2+2 , 3

+
1 , and 4+2 states.

FIG. 10. B(E2) transition strengths in the ground state band
of the well-deformed N = 90 (first row) and N = 92 (sec-
ond row) isotopes as functions of spin J , computed with the
mapped sdg-IBM (solid curves) and sd-IBM (dotted curves).
The experimental data, represented by solid circles, are taken
from Ref. [39].

quantitative differences in the predicted ρ2(E0) values
between the two sets of the IBM calculations represent
the most significant difference between the sdg-IBM and
sd-IBM in the neutron-rich Sm and Gd isotopes with
N ≥ 94. As in the case of the hexadecapole transitions,
experimental information about the monopole transitions
is limited. It is therefore not possible to tell whether the
sdg-IBM represents an improvement over the simpler sd-
IBM in this respect.
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FIG. 11. B(E4; 4+n → 0+1 ) (n = 1, 2, 3, 4) transition strengths
as functions of the mass number A, computed with the
mapped sdg-IBM (left column) and sd-IBM (right column).
Experimental data, indicated by solid circles in the plots, are
taken from Refs. [39, 46–48].

V. SUMMARY

We have presented an extensive analysis of the
quadrupole-hexadecapole collectivity in even-even rare-
earth isotopes 150−168Sm and 152−170Gd, and the effects
of hexadecapole correlations on low-lying excitation en-
ergies and transition strengths. The calculations were
performed in the framework of the Gogny D1S EDF and
the sdg-IBM and sd-IBM. The calculated results for the
excitation spectra were shown to be in good agreement
with the experimental data at the same level of accu-
racy as our previous mapped sdg-IBM studies based on
the relativistic EDF [22, 23]. We have thus found that
the quadrupole-hexadecapole mapping method does not
significantly depend on the choice of the EDF.

The mapped sdg-IBM improves the description of the
high-spin yrast states in the nuclei with N = 88, as well
as in the Sm isotopes with N = 90 and 92. In heav-

FIG. 12. ρ2(E0; 0+i → 0+j ) values as functions of the neu-
tron number N for Sm and Gd isotopes, computed with the
mapped sdg-IBM (left column) and sd-IBM (right column).
Experimental values, plotted as solid circles, are taken from
Refs. [39, 49].

ier rare-earth nuclei, the contribution of g bosons to the
ground state band is insignificant. In the case of the ex-
cited K = 0+ and γ-vibrational bands, the sdg-IBM re-
sults did not differ significantly from the sd-IBM ones,
with only some minor improvements of the 4+3 states
of the K = 0+ band at N = 88 in the sdg-IBM. In
well-deformed N = 90 and 92 nuclei, the sdg-IBM pre-
dicts stronger B(E2) transition strengths for the yrast
states with spin Jπ ≥ 6+, which is in good agreement
with the experimental data. The effect is more visible
in 152,154Sm, for which pronounced hexadecapole mean-
field minima were found in the PESs. The choice of the
Gogny D1S EDF seems to lead to somewhat stronger
yrast band B(E2) values compared to the ones obtained
with the relativistic DD-PC1 EDF. The existence of the
K = 4+ band with an enhanced B(E4; 4+ → 0+) tran-
sition to the ground state is predicted by the sdg-IBM
in 150Sm and 152,154Gd. In heavier isotopes, such bands
are also predicted, however, the bandhead in those nuclei
is predicted to be a higher-lying 4+n≥5 state. Regarding
monopole strengths, the sdg-IBM predicts lower values of
ρ2(E0; 0+2 → 0+1 ) and larger values of ρ2(E0; 0+3 → 0+1 )
in neutron-rich isotopes with N ≥ 94, than the sd-IBM.
This is in good agreement with previous theoretical cal-
culations, and represents the most pronounced hexade-
capole correlation effect on the low-lying spectra in very
neutron-rich Sm and Gd isotopes. Due to the lack of ex-
perimental data on such transitions, it remains to be seen
whether the sdg-IBM correctly predicts the behaviour of
monopole transitions in those isotopes.

Now that the mapping method has been shown to be
adequate for describing the quadrupole-hexadecapole col-
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lectivity in nuclei, regardless of the choice of the EDF, the
method can be extended to include even-odd and odd-
odd nuclei. The method should also be applied to heav-
ier rare-earth nuclei up to W and Os nuclei, where more
experimental data on E4 transitions are available, and
to explore possible hexadecapole correlations in other re-
gions of the nuclear chart such as actinides. The method
could also be extended to include proton and neutron
degrees of freedom (i.e., sdg-IBM-2), which become rele-
vant to describe phenomena like mixed-symmetry states
and scissor modes.
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[37] T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 78,
034318 (2008).
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