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Abstract

In this paper, we consider a modified version of Smirnov operator and obtain

some Bernstein-type inequalities preserved by this operator. In particular, we prove

some compact generalizations of the well-known inequalities of Bernstein, Erdös and

Lax, Ankeny and Rivlin and others.
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1 Introduction

Let Pn denote the class of polynomials P (z) :=
∑n

j=0 ajz
j in C of degree at most n ∈ N.

Let D be the open unit disk {z ∈ C; |z| < 1}, such that D is the closure of D and B(D)
denotes its boundary.
Let P ∈ Pn, then

max
z∈B(D)

|P ′(z)| ≤ n max
z∈B(D)

|P (z)| (1)

and

max
z∈B(D)

|P (Rz)| ≤ Rn max
z∈B(D)

|P (z)|. (2)

Inequality (1) is a well-known theorem of Bernstein [4]. The inequality (2) is a simple
deduction from the maximum modulus principle. In both the inequalities, the equality
holds for P (z) = αzn, α 6= 0.
If we restrict to a class of polynomials having no zeros in D, the inequalities (1) and (2)
can be sharpened. In fact, if P (z) 6= 0 in D, then

max
z∈B(D)

|P ′(z)| ≤
n

2
max
z∈B(D)

|P (z)| (3)
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and for R > 1,

max
z∈B(D)

|P (Rz)| ≤
Rn + 1

2
max
z∈B(D)

|P (z)|. (4)

Inequality (3) was proved by Erdös and Lax [9], whereas Ankeny and Rivlin [3] used (3)
to prove (4). These inequalities were further improved by Aziz and Dawood [2], where
under the same hypothesis, it was proved that

max
z∈B(D)

|P ′(z)| ≤
n

2

{

max
z∈B(D)

|P (z)| − min
z∈B(D)

|P (z)|

}

(5)

and for R > 1

max
z∈B(D)

|P (Rz)| ≤

{

Rn + 1

2

}

max
z∈B(D)

|P (z)| −

{

Rn − 1

2

}

min
z∈B(D)

|P (z)|. (6)

The equality in (3)-(6) holds for the polynomials of the form P (z) = αzn + β, with
|α| = |β|.

In 1930 Bernstein [5] also proved the following result:

Theorem 1.1. Let P (z) be a polynomial in Pn having all zeros in D and p(z) be a poly-
nomial of degree not exceeding that of P (z). If |p(z)| ≤ |P (z)| on B(D), then

|p′(z)| ≤ |P ′(z)| for z ∈ C \ D.

The equality holds only if p = eiγP, γ ∈ R.

For z ∈ C \ D, denoting by Ω|z| the image of the disc {t ∈ C; |t| < |z|} under the
mapping φ(t) = t

1+t
, Smirnov [13] as a generalization of Theorem 1.1 proved the following:

Theorem 1.2. Let p and P be polynomails possessing conditions as in Theorem 1.1, then
for z ∈ C \ D

|Sα[p](z)| ≤ |Sα[P ](z)| (7)

for all α ∈ Ω|z|, with Sα[p](z) := zp′(z)− nαp(z), where α is a constant.

For α ∈ Ω|z| in inequality (7), the equality holds at a point z ∈ C \ D only if p =
eiγP, γ ∈ R. We note that for fixed z ∈ C \ D, Inequality (7) can be replaced by (see for
reference [7, 8])

∣

∣

∣

∣

zp′(z)− n
az

1 + az
p(z)

∣

∣

∣

∣

≤

∣

∣

∣

∣

zP ′(z)− n
az

1 + az
P (z)

∣

∣

∣

∣

,

where a is arbitrary from D. Equivalently for z ∈ C \D

|S̃a[p](z)| ≤ |S̃a[P ](z)|,

where S̃a[p](z) = (1 + az)p′(z) − nap(z) is known as modified Smirnov operator. The
modified Smirnov operator S̃a is more preferred in a sense than Smirnov operator Sα,
because the parameter a of S̃a does not depend on z unlike parameter α of Sα.



Marden [10] introduced a differential operator B : Pn → Pn of mth order. This oper-
ator carries a polynomial p ∈ Pn into

B[p](z) = λ0p(z) + λ1
nz

2
p′(z) + ...+ λm

(nz

2

)m

pm(z),

where λ0, λ1, ..., λm are constants such that

u(z) = λ0 +

(

n

1

)

λ1z + ...+

(

n

m

)

λmz
m 6= 0, for Re(z) >

n

4
. (8)

Rahman and Schmeisser [12] considered the Marden operator for m = 2 and showed that
this operator preserves the inequalities between polynomials and accordingly proved the
following:

Theorem 1.3. Let p and P be polynomials possessing conditions as in Theorem 1.1, Then

|B[p](z)| ≤ |B[P ](z)| for z ∈ C \ D, (9)

where the constants λ0, λ1, ..., λm possess condition (8). For z ∈ C \D in (9), the equality
holds if and only if p(z) = γzn, γ 6= 0.

A variety of key papers concerning the B-operator have appeared in the literature
[11, 14].

In order to compare the Smirnov operator Sα[p](z) := zp′(z) − nαp(z) and the Rah-
man’s operator (with λ2 = 0) B[p](z) = λ0p(z) + λ1

nz
2
p′(z), we require α ∈ Ω|z| in

inequality (7) and in inequality (9) the root of the polynomial u(z) = λ0 + nλ1z should
lie in the half-plane Re(z) ≤ n

4
, that is

Re

(

−
λ0

λ1n

)

≤
n

4
.

Compare the sets of parameters in Theorem 1.2 and Theorem 1.3, we see that in Theorem
1.2, this set(coefficient near −p(z)) is A =

{

nα : α ∈ Ω|z|

}

and in Theorem 1.3, the set
of such coefficient near −p(z) is

B =

{

−
2λ0

λ1n
: Re

(

−
λ0

λ1n

)

≤
n

4

}

=
{

t : Re(t) ≤
n

2

}

.

Consider the differential inequalities from Theorem 1.2 and Theorem 1.3 for z ∈ B(D),
we have A = B. But for z ∈ C \ D we have B ⊂ A. In other words in Theorem 1.2 and
Theorem 1.3 formally the same inequality was obtained but for different set of parameters.
Moreover, the set of parameters in Theorem 1.2 is essentially wider than that of Theorem
1.3. Consequently,

B[p](z) = λ1
n

2
Sα[p](z). (10)

These facts were first observed by Ganenkova and Starkov [7].
In this paper, we prove some more general results concerning the modified Smirnov oper-
ator preserving inequalities between polynomials, which in turn yields compact general-
izations of some well-known polynomial inequalities.



2 Auxiliary Results

Before writing our main results, we prove the following lemmas which are required for
their proofs.

Lemma 1. Let P ∈ Pn, and has all zeros in D. Let a ∈ B(D) be not the exceptional value
for P , then all the zeros of S̃a[P ] lie in D.

The above lemma is due to Genenkova and starkov [7]. Also, the next lemma is due
to Aziz [1].

Lemma 2. If p(z) is a polynomial of degree n having all its zeros in |z| ≤ k, where k ≥ 0,
then for every R ≥ r and rR ≥ k2,

|p(Rz)| ≥

(

R + k

r + k

)n

|p(rz)| for z ∈ B(D).

Lemma 3. If p ∈ Pn with |p(z)| < M for z ∈ B(D), Then

|S̃a[p](z)| ≤ M|S̃a[z
n]| for z ∈ C \ D.

Proof. Since |p(z)| < M for z ∈ B(D). If λ is a complex number with |λ| > 1. Then

|p(z)| < |λMzn| for z ∈ B(D).

Since λMzn has all zeros in D, therefore by Rouche’s theorem all zeros of p(z) − λMzn

lie in D. Hence by Lemma 1, all zeros of S̃a[p(z) − λMzn] lie in D. Since S̃a is linear, it
follows that S̃a[p](z)− S̃a[λMzn] has all zeros in D.
This gives

|S̃a[p](z)| ≤ M|S̃a[z
n]| for z ∈ C \ D. (11)

Because if this is not true, then there exist some z0 ∈ C \ D such that

|S̃a[p](z0)| > M|S̃a[z0
n]|.

Choosing λ = S̃a[p](z0)

M|S̃a[z0n]
, so that |λ| > 1. With this choice of λ, we get a contradiction and

hence inequality (11) is true.

The next two Lemmas are given by Shah and Fatima [15].

Lemma 4. If p ∈ Pn, then for z ∈ C \ D

|S̃a[p](z)| + |S̃a[g](z)| ≤
{

|S̃a[En](z)|+ n|a|
}

max
z∈B(D)

|p(z)|, (12)

where g(z) = znp(1
z̄
).

Lemma 5. Let p(z) and P (z) be two polynomials such that deg p(z) ≤ deg P (z) = n. If
P (z) has all zeros in D and |p(z)| ≤ |P (z)| for z ∈ B(D), then for any complex number
β with β ∈ D and R ≥ 1, we have for z ∈ B(D)

∣

∣

∣
S̃a[p](Rz)− βS̃a[p](z)

∣

∣

∣
≤

∣

∣

∣
S̃a[P ](Rz)− βS̃a[P ](z)

∣

∣

∣
. (13)

The result is sharp and equality holds if a ∈ D is not the exceptional value for the polyno-
mial p(z) = eiγP (z), where γ ∈ R and P (z) is any polynomial having all the zeros in D

and strict inequality holds for z ∈ D, unless p(z) = eiγP (z), γ ∈ R.

We now prove the following result which is a compact generalization of inequalities
(1) and (2).



3 Main Results

Theorem 3.1. If p(z) is a polynomial of degree n, then, for every real or complex number
β, |β| ≤ 1 and R ≥ 1,

∣

∣S̃a[p](Rz)− βS̃a[p](z)
∣

∣ ≤
∣

∣Rn − β
∣

∣

∣

∣S̃a[En](z)
∣

∣ max
z∈B(D)

|p(z)| for z ∈ C \ D. (14)

Equivalently for R > 1
∣

∣(1 + az)[RP ′(Rz)− βP ′(z)]− na[P (Rz)− βP (z)]
∣

∣

≤ n|Rn − β||z|n−1 max
z∈B(D)

|p(z)| for z ∈ C \ D, (15)

where En(z) = zn. The result is sharp and holds for p(z) = γzn, γ 6= 0.

Corollary 1. For β = 0, a = 0 and R = 1, the inequality (15) reduces to

|P ′(z)| ≤ n|z|n−1 max
z∈B(D)

|P (z)| for z ∈ C \ D

which in particular gives inequality (1). The equality holds for p(z) = γzn, γ 6= 0.

Remark 1. For β = 0 and R > 1, the inequality (14) reduces to a result due to Fatima
and Shah [6].

Theorem 3.2. Let P ∈ Pn and Q(z) = znp(1
z̄
), then for every real or complex β with

|β| ≤ 1 and R > 1,

|S̃a[P ](Rz)− βS̃a[P ](z)|+ |S̃a[Q](Rz)− βS̃a[Q](z)|

≤
{

|Rn − β|S̃a[En](z) + n|1− β||a|
}

max
z∈B(D)

|p(z)| for z ∈ C \ D. (16)

Equivalently
∣

∣

∣

∣

(1 + az)[RP ′(Rz)− βP ′(z)]− na[P (Rz)− βP (z)]

+ (1 + az)[RQ′(Rz)− βQ′(z)]− na[Q(Rz)− βQ(z)]

∣

∣

∣

∣

≤
{

n|Rn − β||z|n−1 + n|1− β||a|
}

max
z∈B(D)

|p(z)| for z ∈ C \ D. (17)

Corollary 2. If P (z) is a polynomial of degree n, then for β = 1, a = 0 and R ≥ 1 in
inequality (17), we get

∣

∣

∣

∣

RP ′(Rz)− P ′(z)

∣

∣

∣

∣

+

∣

∣

∣

∣

RQ′(Rz)−Q′(z)

∣

∣

∣

∣

≤ n(Rn − 1)|z|n−1 max
z∈B(D)

|P (z)|,

where En(z) = zn. The result is best possible and the equality holds for p(z) = γzn, γ 6= 0.
Theorem 3.2 includes a result due to Rahman [12] as a special case.

Remark 2. If we take β = 0 and R = 1 in (16), then the inequality reduces to Lemma 4

∣

∣

∣
S̃a[P ](z)

∣

∣

∣
+
∣

∣

∣
S̃a[Q](z)

∣

∣

∣
≤

[

S̃a[En](z) + n|a|

]

max
z∈B(D)

|P (z)|.



Theorem 3.3. Let P ∈ Pn such that P (z) is a polynomial of degree n which does not

vanish in D and Q(z) = znp(1
z̄
), then for every real or complex β with |β| ≤ 1 and R > 1

|S̃a[P ](Rz)− βS̃a[P ](z)|

≤

{

|Rn − β|S̃a[En](z) + n|1− β||a|

2

}

max
z∈B(D)

|p(z)| for z ∈ C \ D. (18)

Equivalently

|(1 + az)[RP ′(Rz)− βP ′(z)]− na[P (Rz)− βP (z)]

≤

{

|Rn − β|n|z|n−1 + n|1− β||a|

2

}

max
z∈B(D)

|p(z)| for z ∈ C \ D, (19)

where En(z) = zn. The result is best possible and the equality holds for p(z) = γzn, γ 6= 0.

Corollary 3. For β = 0, a = 0 and R = 1, the inequality (19) reduces to

|P ′(z)| ≤
n

2
|z|n−1 max

z∈B(D)
|P (z)| for z ∈ C \ D

which in particular gives inequality (3). The equality holds for p(z) = γzn, γ 6= 0.

Remark 3. For β = 0, R = 1, the inequality (18) reduces to a result due to Shah and
Fatima [15]

|S̃a[P ](z)| ≤
1

2

{

S̃a[En](z) + n|a|
}

max
z∈B(D)

|p(z)| for z ∈ C \D.

4 Proofs of the theorems

Proof of Theorem 3.1. For R = 1, the result is trivial. Henceforth, we assume R > 1.
If

max
z∈B(D)

|p(z)| = M,

then

|p(z)| < M for z ∈ B(D).

Equivalently for every λ with |λ| > 1, we have

|p(z)| < |Mλzn| for z ∈ B(D). (20)

Therefore by Rouche’s theorem, it follows that all the zeros of F (z) = p(z) +Mλzn lie in
D. By Lemma 1, it follows that all the zeros of S̃a[F ](z) lie in D.
So, all the zeros of S̃a[F ](z) = S̃a[p(z) + Mλzn] lie in D. Therefore, all the zeros of
S̃a[p(z)] +MλS̃a[En](z) lie in D, where En(z) = zn.
Now for any β ∈ C, |β| ≤ 1, by using the application of Lemma 1, it follows that all the
zeros of

S̃a {[F ](Rz)− β[F ](z)} = (1 + az) {RF ′(Rz)− βF ′(z)} − na {F (Rz)− βF (z)}

= (1 + az)RF ′(Rz)− naF (Rz)− β {(1 + az)F ′(z)− (na)F (z)}

= S̃a[F ](Rz)− βS̃a[F ](z)



lie in D for every a such that a ∈ B(D) is not the exceptional value of F .

Since,
S̃a[F ](z) = S̃a[p](z) + λS̃a[En](z)M

and
S̃a[F ](Rz) = S̃a[p](Rz) + λRnS̃a[En](z)M.

Therefore, all the zeros of

S̃a {[F ](Rz)− β[F ](z)} = S̃a[F ](Rz)− βS̃a[F ](z)

= S̃a[p](Rz) + λRnS̃a[En](z)M − β
{

S̃a[p](z) + λS̃a[En](z)M
}

= S̃a[p](Rz)− βS̃a[p](z) + λ[Rn − |β|]S̃a[En](z)M

lie in D for R > 1, |λ| > 1.
This implies

|S̃a[p](Rz)− βS̃a[p](z)| ≤ |Rn − β||S̃a[En](z)|M for z ∈ C \ D, R > 1. (21)

If inequality (21) is not true, then there is some point z0 ∈ C \ D such that

|S̃a[p](Rz0)− βS̃a[p](z0)| > |Rn − β||S̃a[En](z0)|M for z0 ∈ C \ D, R > 1. (22)

Take

λ = −
S̃a[p](Rz0)− βS̃a[p](z0)

{Rn − β} S̃a[En](z0)M
,

such that λ ∈ C \ D and with such choice of λ we have for z0 ∈ C \ D

S̃a {[F ](Rz0)− β[F ](z0)} = 0

which is a contradiction. Hence, we get

|S̃a[p](Rz)− βS̃a[p](z)| ≤ |Rn − β||S̃a[En](z)| max
z∈B(D)

|p(z)| for z ∈ C \ D. (23)

Proof of Theorem 3.2. Let
max
z∈B(D)

|p(z)| = M

then |p(z)| ≤ M for z ∈ D. Using Rouche’s theorem, it follows that for every real or
complex number α with |α| > 1, F (z) = P (z) + αM does not vanish in D. Using the
Theorem 3.1 and lemma 5, on the polynomial F (z), we get for every real or complex
number β with |β| ≤ 1

∣

∣

∣

∣

S̃a[P (Rz)− βS̃a[P ](z) + nα(1− β)|a|M

∣

∣

∣

∣

≤

∣

∣

∣

∣

S̃a[Q](Rz)− βS̃a[Q](z) + α(Rn − β)S̃a[En](z)M

∣

∣

∣

∣

for z ∈ C \ D,



where Q(z) = znp(1
z̄
).

Choosing the argument of α in R.H.S of above inequality such that

|S̃a[Q](Rz)− βS̃a[Q](z) + α(Rn − β)S̃a[En](z)M |

= |α||(Rn − β)|S̃a[En](z)M − |S̃a[Q](Rz)− βS̃a[Q](z)|.

Therefore

|S̃a[P (Rz)− βS̃a[P ](z)| − n|α||1− β||a|M

≤ |α||Rn − β|S̃a[En](z)M − |S̃a[Q](Rz)− βS̃a[Q](z)|.

This implies

|S̃a[P (Rz)− βS̃a[P ](z)|+ |S̃a[Q](Rz)− βS̃a[Q](z)|

≤ |α|
{

|(Rn − β)|S̃a[En](z) + n|1− β||a|
}

M.

Now, letting |α| → 1, we get

|S̃a[P (Rz)− βS̃a[P ](z)|+ |S̃a[Q](Rz)− βS̃a[Q](z)|

≤
{

|(Rn − β)|S̃a[En](z) + n|1− β||a|
}

max
z∈B(D)

|p(z)| for z ∈ C \ D. (24)

Proof of Theorem 3.3. Let
max
z∈B(D)

|p(z)| = M,

then for every real or complex number β with |β| ≤ 1 and R > 1, we have from inequality
(24)

|S̃a[P (Rz)− βS̃a[P ](z)|+ |S̃a[Q](Rz) − βS̃a[Q](z)|

≤
{

|(Rn − β)|S̃a[En](z) + n|1− β||a|
}

max
z∈B(D)

|p(z)| for z ∈ C \ D. (25)

Also from the Lemma 5, we have
∣

∣

∣
S̃a[P ](Rz)− βS̃a[P ](z)

∣

∣

∣
≤

∣

∣

∣
S̃a[Q](Rz)− βS̃a[Q](z)

∣

∣

∣
. (26)

Adding
∣

∣

∣
S̃a[P ](Rz)− βS̃a[P ](z)

∣

∣

∣
on the both sides of the inequality (26), we get

2
{
∣

∣

∣
S̃a[P ](Rz)− βS̃a[P ](z)

∣

∣

∣

}

≤ |S̃a[P (Rz)− βS̃a[P ](z)|+ |S̃a[Q](Rz)− βS̃a[Q](z)|.

Using the inequality (24) in above inequality, we get

2
{
∣

∣

∣
S̃a[P ](Rz)− βS̃a[P ](z)

∣

∣

∣

}

≤
{

|(Rn − β)|S̃a[En](z) + n|1− β||a|
}

max
z∈B(D)

|p(z)|.

Therefore,

∣

∣

∣
S̃a[P ](Rz)− βS̃a[P ](z)

∣

∣

∣
≤

{

|(Rn − β)|S̃a[En](z) + n|1− β||a|

2

}

max
z∈B(D)

|p(z)|

for z ∈ C \ D.
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