
Deep Learning-based Code Reviews:
A Paradigm Shift or a Double-Edged Sword?

Rosalia Tufano†*, Alberto Martin-Lopez†*, Ahmad Tayeb‡, Ozren Dabić†, Sonia Haiduc‡, Gabriele Bavota†

†Software Institute – USI Università della Svizzera italiana, Switzerland
‡Florida State University, United States

{rosalia.tufano, alberto.martin, gabriele.bavota}@usi.ch, {atayeb2, shaiduc}@fsu.edu, dabic.ozren@gmail.com

Abstract—Several techniques have been proposed to (partially)
automate code review. Early support consisted in recommending
the most suited reviewer for a given change or in prioritizing
the review tasks. With the advent of deep learning in software
engineering, the level of automation has been pushed to new
heights, with approaches able to provide feedback on source
code in natural language as a human reviewer would do. Also,
recent work documented open source projects adopting Large
Language Models (LLMs) as co-reviewers. Although the research
in this field is very active, little is known about the actual impact
of including automatically generated code reviews in the code
review process. While there are many aspects worth investigating
(e.g., is knowledge transfer between developers affected?), in
this work we focus on three of them: (i) review quality, i.e.,
the reviewer’s ability to identify issues in the code; (ii) review
cost, i.e., the time spent reviewing the code; and (iii) reviewer’s
confidence, i.e., how confident is the reviewer about the provided
feedback. We run a controlled experiment with 29 professional
developers who reviewed different programs with/without the
support of an automatically generated code review. During the
experiment we monitored the reviewers’ activities, for over 50
hours of recorded code reviews. We show that reviewers consider
valid most of the issues automatically identified by the LLM and
that the availability of an automated review as a starting point
strongly influences their behavior: Reviewers tend to focus on the
code locations indicated by the LLM rather than searching for
additional issues in other parts of the code. The reviewers who
started from an automated review identified a higher number
of low-severity issues while, however, not identifying more high-
severity issues as compared to a completely manual process.
Finally, the automated support did not result in saved time and
did not increase the reviewers’ confidence.

Index Terms—Code review, Controlled Experiment

I. INTRODUCTION

Code review is an essential activity in both industrial and
open source projects. Its benefits have long been recognized
and studied and include improved code quality and a reduced
incidence of bugs, among others [1]–[5]. However, code
review can also be time consuming and costly [6], and over the
past decade, researchers have been studying ways to reduce the
cost of this activity while maintaining its benefits. Some early
efforts included recommending the most suitable reviewer for
a given change [7]–[10], predicting the defectiveness of a patch
before or after being reviewed [11], [12], and classifying the
usefulness of review comments [13], [14].

Over the last few years, along with the rise of Deep Learning
(DL), came a new wave of approaches aimed at reducing the

*Equal contributor. Author order determined by coin flip.

costs of code review by exploiting DL techniques to automate
the code review process. These approaches have been able to
provide natural language review comments about source code
similar to what a software developer would provide [15]–[17].
Moreover, recent work reported open source projects adopting
Large Language Models (LLMs) as co-reviewers [18].

Given the tremendous potential shown by LLMs in helping
developers with various software engineering tasks [19]–[22],
it seems natural to involve them also in the code review pro-
cess, with the goal of reducing developer effort and software
cost. However, little is known about the actual impact of
including automatically generated code reviews in the code
review process. For example, it is hard to anticipate how
using automated code reviews as a starting point could impact
the knowledge transfer between developers or the quality of
the final code review, or if using automated reviews could
lead to biases or blind spots in developers’ analysis of the
code, if it leads to a lower code review cost, etc. Studying
the impact of all these factors goes beyond the scope of a
single paper. However, we aim to make the first steps in
this direction by focusing on three specific aspects, namely:
(i) code review quality, i.e., a reviewer’s ability to identify
issues in the code; (ii) code review cost, i.e., the time spent by
developers reviewing the code; and (iii) reviewer’s confidence,
i.e., how confident the reviewer is about the provided feedback.

To determine the impact that using automated code reviews
can have on these three aspects, we present a controlled exper-
iment involving 29 developers. The participants performed a
total of 72 reviews across six projects written either in Python
or Java in which we injected quality issues representative of
problems usually found during code review [23]. Participants
have been assigned to one of the two languages based on
their expertise. Each review was performed with one of three
treatments. The first, named manual code review (MCR), as-
sumes no availability of an automatically generated review as
starting point, thus reflecting the classic code review scenario.
The second, named automated code review (ACR), provides
reviewers with a review automatically generated by ChatGPT
Plus [24], which they can use as a starting point for their final
reviews (e.g., they could discard generated comments, rephrase
them, or complement the set of identified issues).

This scenario is representative of the current state of the
art in automated code review [18]. The third, named compre-
hensive code review (CCR), aims at simulating a hypothetical

ar
X

iv
:2

41
1.

11
40

1v
2

 [
cs

.S
E

]
 2

0
N

ov
 2

02
4

scenario in which tools for the automated generation of code
reviews reached a whole new level where they can correctly
identify all the important issues in the code. To simulate this
scenario, we provide participants with a code review correctly
pointing to all issues we injected, presenting it as automatically
generated. The latter scenario, while not realistic nowadays
given the current technology, allows us to observe the extent
to which reviewers would trust an automated tool by adopting
its suggestions and the impact it would have on reviewing
time. Our main findings can be summarized as follows:

1) Reviewers considered valid most of the issues identified
by ChatGPT Plus. On average, 89% of the issues auto-
matically identified by the LLM have been kept by the
reviewers in their final review.

2) The availability of an automated review as a starting
point strongly influences the reviewer’s behavior. Review-
ers mostly focused on the code locations pointed out in
the automatically generated review they were provided
with (this holds for both ACR and CCR treatments).
While we observed substantial variability in the code
locations commented on by reviewers who inspected a
program manually, the ones who started from an au-
tomated review tended to focus on the code locations
already provided in it.

3) The automated code review generated by the LLM does
not help in identifying more high-severity issues as com-
pared to a completely manual process. We only observed
a significant difference in the number of low-severity
issues in the code (in favor of the treatment adopting
the ChatGPT-based review).

4) Even assuming an excellent support in terms of auto-
mated review (CCR treatment), reviewers do not save time
with respect to a fully manual process. This is due to the
fact that they need to interpret the automatically generated
comments and check for their correctness in the code.

5) Providing reviewers with automatically generated reviews
(both in the ACR and CCR treatment) does not impact
their confidence, which is comparable to that observed
in the MCR treatment. This might be due to the fact that
the provided review does not help in better understanding
the program, but only highlights potential issues.

Study material and data are publicly available [25].

II. STUDY DESIGN

The goal of the study is to assess the impact that having
access to automatically generated code reviews has on the code
review process. More specifically, we aim to understand how
the availability of an automated code review affects the quality
of the final review written by the reviewer, the time they spend
reviewing the code, and their confidence about the submitted
review. Note that our study focuses on a scenario in which the
output of the DL-based approach is provided to the reviewer
as a support for the review writing.

However, these tools could also be seen as a possible
support for the contributor, i.e., a first feedback loop before
submitting the code for the actual (human) review (see e.g.,

[26]). While this work focuses on the perspective of reviewers
and the bias they may be subject to when using automated
code reviews, future work could certainly investigate the
contributors’ perspective (i.e., do automated reviews affect the
quality of the code reviewed by humans?).

The study addresses the following research questions (RQ):
RQ0: Is there a statistically significant difference in the

characteristics of the code reviews written by developers
with/without automated support? This preliminary RQ aims
at quantitatively comparing the code reviews submitted by
developers with/without access to automatically generated
reviews. We analyze various aspects including the number
of issues reported, the length of the code review (number of
sentences), and the problematic code locations identified (e.g.,
number of different lines in which issues have been found).

RQ1: To what extent does having access to automated code
reviews increase the likelihood of identifying code quality
issues? We inject quality issues in the code of our software
projects and assess the extent to which participants were able
to identify them with/without the support of automated code
review. Since we manually inspect all 72 code reviews written
by developers, we also analyze, discuss, and compare among
the different treatments the additional quality issues that were
not injected by us, but were found by participants.

RQ2: To what extent does the availability of automated code
reviews save time during the review process? We compare the
amount of time spent by reviewers with/without the support
of automated code review. In particular, we analyze the time
spent: (i) to complete the review task, i.e., overall time;
(ii) inspecting the code; and (iii) writing the actual review.

RQ3: Does the availability of automated code reviews in-
crease the reviewers’ confidence? At the end of each reviewing
task, we ask reviewers to rate their confidence in the submitted
review, and we investigate if the availability of automated code
reviews has an impact on the reviewers’ confidence.

A. Context Selection

1) Participants: We used convenience sampling [27], [28]
to recruit 29 participants who (i) are currently professional
developers (28 of them) or (ii) have worked in the past as
professional developers and are now enrolled in a CS graduate
program (one of them). We did not include any CS student
without at least one year of industrial experience. Although
this limited the number of participants we could involve,
we consider industrial experience essential in any study on
code review, given its common use in industrial practice. For
simplicity, in the following we use the term “developers”
when referring to participants, even though one of them is not
currently working as a developer. We invited 82 developers
to participate in our study, asking each of them to contribute
three code reviews, each using a different treatment (details in
Section II-B).

The invitation email, available in our replication package
[25], asked them to accept the invitation if they (i) are familiar
with code review; and (ii) have experience with at least one
of the two subject programming languages (i.e., Java and

TABLE I
SUMMARY OF THE OBJECT PROGRAMS.

Project ID Language Source LoC Issues

maze-generator Java Rosetta [29] 164 1
maze-generator Python Rosetta [29] 75 2
number-conversion Java Rosetta [29] 116 4
number-conversion Python Rosetta [29] 81 2
stopwatch Java Apache [30] 528 7
stopwatch Python Translated 258 4
tic-tac-toe Java Rosetta [29] 326 2
tic-tac-toe Python Rosetta [29] 121 7
todo-list Java Artificial 206 3
todo-list Python Artificial 198 3
word-utils Java Apache [30] 509 6
word-utils Python Translated 426 7

Python). Their availability was collected using a Google form.
Only if they accepted our invitation, we asked them four
questions. The first was: “Please select the programming
languages in which you have expertise (check both of them
if you are familiar with both)”, with possible answers being
Python and Java. The information collected was used to assign
participants to the code review tasks described in Section II-A2
(i.e., to ensure that they were only allocated code review tasks
involving a programming language they were familiar with).

Then, the developers answered three questions related to
their expertise: their years of experience in programming,
their current role/position, and whether they took part in
the past in the code review process as a reviewer, as a
developer whose code was reviewed, in both roles, or in none
of them. We received an answer from 40 developers, all of
whom accepted to participate in the study. However, in the
end, only 32 completed at least one of the tasks assigned
(i.e., at least one code review). From these, we selected 29
participants for our analyses, in such a way as to have the same
number of participants per system and treatment (details in
Section II-D). On average, the 29 participants have 11.4 years
of programming experience (median=10, min=3, max=35);
three of them selected Java as programming language, six
Python, and 20 checked both languages. Finally, three of them
have not been involved in code review in the past (while still
being familiar with it), one only as a reviewer, one only as a
contributor, while 24 have covered both roles.

2) Programs: Table I shows the programs that we asked
participants to review. We considered six different projects,
each available in both programming languages, i.e., Java
and Python. Our object programs are taken from differ-
ent sources (see column “Source” in Table I). We selected
three programs (maze-generator, number-conversion

and tic-tac-toe) from Rosetta Code [29], a repository
of programming tasks written in multiple languages, includ-
ing Java and Python. Two Java programs (stopwatch and
word-utils) were taken from utility classes of the Apache
Commons Lang library [30] and then translated by the authors
into Python.

One program (todo-list) was created from scratch, for
both Java and Python. To ensure that the implementation
of the selected programs was of high quality, each of them
was reviewed by two authors of the paper. Additionally, all

programs were reviewed by a professional developer with
seven years of experience and high familiarity with both
Python and Java. The selection of the programs was guided by
two main goals: (i) to ensure code reviews are manageable in
terms of both time and complexity for our study participants;
we therefore chose programs that are relatively small in terms
of lines of code (refer to the “LoC” column in Table I); and
(ii) to avoid requiring specific domain knowledge from the
participants; for this reason we selected programs that any
seasoned developer could easily understand and review.

The chosen programs include: maze-generator, which
creates a random maze in the console based on user-specified
dimensions; number-conversion, enabling the conversion
of decimal numbers into binary, octal, hexadecimal, and
Roman numeral formats; stopwatch, a basic program that
performs stopwatch functions like start, stop, reset, and split
time; tic-tac-toe, an implementation of the corresponding
game played via command line interface (CLI) against an
agent programmed not to lose; todo-list, a CLI-based
to-do list manager supporting adding, removing, prioritizing
and listing tasks; and word-utils, a set of utility functions
offering string manipulation utilities such as capitalization,
case swapping, and abbreviation.

We then manually injected a number of quality issues in
the selected programs given that, among other things, we aim
at assessing the extent to which an automated code review
increases the chances of identifying code quality issues. The
column “Issues” in Table I shows the number of issues injected
into every program. Overall, we injected 48 issues across the
12 programs. The complete list of issues injected and their
description is available in our replication package [25] and
includes code duplication, structural defects (e.g., overly long
methods), documentation issues (e.g., mismatches with respect
to the implementation) and logic bugs, among others. We
paid attention not to inject issues which can be very easily
detected by participants (e.g., bugs that make the program
crash), since they might not represent realistic simulations of
code submitted by a developer for review. This also meant
that we did not inject a fixed number of issues per project
because we found a different number of issues to be suitable
for different programs. The injected issues are inspired by
the taxonomy of issues found in code reviews documented
by Mäntylä and Lassenius [23]. In particular, Mäntylä and
Lassenius found 77% of the issues identified by reviewers
to be related to evolvability defects (e.g., documentation is-
sues, sub-optimal implementation choices), with the remaining
23% pertaining functional issues (e.g., wrong implementation
logic). By classifying the type of issues we injected according
to the definitions given by Fregnan et al. [31], we injected:
78% (64%) evolvability issues and 22% (36%) defects in the
object Java (Python) programs.

public String toString() {
 StringBuilder builder = new StringBuilder();
 for (int row = 0; row < height; row++)
 builder.append(toString(row));
 builder.append(H_WALL_CLOSED.repeat(width))
 .append(CORNER)
 .append('\n');
 return builder.toString();
}

public String toString() {
 String result = "";
 for (int row = 0; row < height; row++)
 result += toString(row);
 result += H_WALL_CLOSED.repeat(width) + CORNER + '\n';
 return result;
}

if part and part in delimiters:
 result.append(part)
elif part and re.match(regex_pattern, part):
 result.append(part)

if part and (part in delimiters or re.match(regex_pattern, part)):
 result.append(part)

Java

Python

Fig. 1. Examples of injected issues in Java and Python. The top part of each
example represents the original code; the lower part is the code after injection.

As an additional note, the injected issues cover 73% of the
issue types in the taxonomy by Mäntylä and Lassenius [23].
For example, we did not inject visual representation issues,
since code formatting usually depends on each project’s prac-
tices. Fig. 1 shows two examples of injected issues (one
per language). The top part of each example shows the
original code, while the bottom part reflects the code after
the issue injection. The Java example represents the injection
of an issue related to performance: we replaced the use
of StringBuilder with string concatenation, creating a
degradation of performance. The Python code, on the other
hand, exemplifies the injection of a structural defect: we
introduced an unnecessary nested condition, also creating
duplicated code. Each object program also featured: (i) a main
file allowing to run it; and (ii) test cases exercising its basic
functionalities.

B. Code Review Treatments

To understand the impact of supporting developers with
code review automation, we defined three treatments. The
first, named manual code review (MCR), resembles the clas-
sic code review process performed by developers without
any automated support. The second, named automated code
review (ACR) provides the participant with a code review
automatically generated by ChatGPT Plus (i.e., GPT-4) [24].
The prompt used to create code reviews was “Provide a de-
tailed code review of the following <Java/Python> program:
<code>”. The third treatment, called comprehensive code
review (CCR), is designed to simulate the scenario where the
reviewer is provided with an “automated” code review which
correctly identifies all issues we injected. Unlike the first two
treatments, which represent realistic scenarios in industry, this
CCR treatment simulates an ideal, hypothetical scenario where
the automated code review is able to identify all quality issues
in a given code.

While this scenario is not yet fully attainable with today’s
technology, studying it can provide valuable insights into how
reviewers’ behaviors might change if they had access to a
(future) tool capable of identifying every quality issue in the
code (e.g., would they trust the tool enough to significantly
save time?). To simulate this scenario, participants in the
CCR treatment were told that the reviews were automatically
generated, even though this was not the case. More specifically,
we first manually performed the code review and made sure to
capture all the issues we injected in the review. Then, we used
ChatGPT Plus to rephrase the code reviews we wrote using the
prompt: “Rephrase the following code review comment as if
you are generating it: <comment>. The comment refers to the
following <Java/Python> code: <code>”. Note that, while
the CCR reviews include exactly n comments identifying the
n issues injected in each program, the ACR treatment may
identify comments that only address some (or none) of the
injected issues. Additionally, ACR could include comments
on other quality issues we did not introduce.

The 24 code reviews generated or rephrased by ChatGPT
Plus for ACR and CCR (6 projects × 2 languages × 2
treatments) are publicly available [25].

In summary, the three treatments compare the classic, man-
ual code review process (MCR) with the automation available
in practice nowadays (ACR) and a Utopian scenario we hope
to reach one day in the field (CCR).

C. Experimental Setup and Procedure

Our study is comprised of 36 different code review tasks
(6 projects × 2 languages × 3 treatments). As previously
mentioned, we asked participants to review three programs,
each with a different code review treatment. The three tasks
were all in the same programming language but related to
different projects. We provided each participant with instruc-
tions to connect, via the Remote Development plugin [32] of
Visual Studio Code (VS Code), to a server we set up with the
environment needed to run the study. We took care of installing
the versions of Java (17) and Python (3.10) needed to run any
of the object programs. Also, we installed in VS Code the
Java Extension Pack [33] and Python [34]. Once connected,
the participants could see the review tasks assigned to them
directly in the IDE without the need of installing/configuring
anything. In particular, the participants were presented with
three projects already imported in the IDE, two of which
included a code review (for the treatments automated code
review and comprehensive code review). The code review was
presented through the Code Review plugin in VS Code [35],
which also allows to mark source files with review comments,
and to modify/delete the already provided comments part of
the provided code review. All projects featured a README
file with instructions on where to find a description of the
program to review, how to use the Code Review plugin, how
to run the program and associated tests, and a reminder to rate
the confidence of their review at the end of each code review
task, by simply writing a score from 1 (very low confidence)
to 5 (very high confidence) at the end of the README file.

This was the only action required from the participants at the
end of each task. The Code Review plugin of VS Code [35]
took care of storing the final version of their code review
on our server, i.e., the code review including all comments
the participants manually wrote plus, for the ACR and CCR
treatments, the comments they decided to keep (as is or by
rephrasing/modifying them) from the provided reviews. Each
comment is linked to a file and a range of selected text (in
terms of line/column numbers).

Lastly, besides the final code review and the self-assessed
confidence, we also monitored the participants’ behavior in the
IDE using Tako [36], a VS Code plugin collecting the actions
performed in the IDE. Tako records events such as opening
and closing files and tabs, switching between them and editing
files, among others. This allows us to perform the time-based
analyses needed to answer RQ2.

D. Data Analysis

Out of the 120 reviews we assigned (40 participants × 3
treatments), 96 of them were completed by 32 participants.
As a result, we ended up with a different number of reviews
for different programs for each treatment. In order to compare
the treatments fairly, we systematically selected the highest
possible number of reviews per treatment such that all treat-
ments featured exactly the same number of reviews on exactly
the same programs (thus being comparable). We prioritized
reviews from participants who completed two (7 participants)
or three (18) tasks. This led to the selection of 72 reviews (i.e.,
24 per treatment) from 29 participants.

Two authors independently inspected each review to extract
data needed to answer our RQs which cannot be automatically
collected. At the end, they had a meeting to discuss about
differences in the extracted data and agree on the correct data
to report. The manually collected data include:

1) The total number of reported quality issues in each re-
view. This information cannot be automatically extracted
by counting the number of comments in the code review,
since each comment may point to several quality issues,
even in the same code location.

2) The number (and percentage) of injected issues identified
in the code review.

3) The number (and percentage) of quality issues identified
in the initial reviews provided to participants which have
been kept in the finally submitted code review. This metric
has only been collected for code reviews resulting from
the ACR and CCR treatments.

4) The additional quality issues (i.e., unrelated to the in-
jected ones) present in the final code review.

Out of the 72 reviews manually inspected by two authors,
they disagreed only on three reviews about the total number
of reported quality issues, and about the number of injected
issues identified. Conflicts were solved via open discussion.

We answer our RQs by comparing the code reviews output
of the three treatments. Table II reports: the dependent vari-
ables considered in each RQ, the independent variable, being
the same for all RQs (i.e., treatment), and the control variables.

TABLE II
VARIABLES USED IN OUR STUDY.

Variable Description

Dependent Variables (RQ0)

Number of reported quality issues The total number of quality issues reported in a
submitted review

Length of the code review The number of sentences in a submitted review

Covered code locations Number of lines subject of at least one review
comment

Dependent Variables (RQ1)

Is injected issue identified The participant found the injected issue

Dependent Variables (RQ2)

Total time The total time spent on the whole code review
session

Time reviewing
The time spent on the actual code to review (i.e.,
excluding the time spent writing the review, or
running the program)

Time writing The time spent writing review comments or reading
the ones already provided in the automated review

Dependent Variables (RQ3)

Confidence The confidence score provided by the participant
for the submitted review

Independent Variables

Treatment The treatment used to perform the code review (one
among MCR, ACR, CCR)

Control Variables (Experience)

Years of experience The years of experience in programming of the
participant

Involved in code review

Whether the participant has been involved in the
code review process as a reviewer, as a developer
whose code was reviewed, in both roles, or in none
of them.

Control Variables (Review task)

Programming language The language in which the code to be reviewed is
written (Java or Python)

Program The program on which the review task must be
performed

Issue type The type of the issue to spot, classified according
to the work by Fregnan et al. [31]

For RQ0, we compare: (i) the total number of reported
quality issues; (ii) the length of the code review in terms
of number of sentences; and (iii) the covered code locations,
in terms of number of lines subject of at least one review
comment (we also differentiate between code statements and
code documentation). For answering RQ1, we compare the
ability of participants to identify injected issues during code
review. In this case, a boolean dependent variable (“Is injected
issue identified”) has been used to indicate whether each of the
bugs injected in the programs under study has been identified.

Concerning RQ2, we exploit the data collected by Tako [36]
to compare: (i) the total time spent on the whole code review
session, (ii) the time spent on the actual code to review (i.e.,
excluding the time spent writing the review, or running the
program), and (iii) the time spent writing review comments or
reading the ones already provided in the automated review. Fi-
nally, for RQ3 we compare the confidence scores provided by
participants to check whether the availability of the automated
code review had an impact on the perceived confidence.

For all comparisons we use boxplots to visualize the dis-
tributions. In addition to that, we run the following statis-
tical analyses. When needed, we opted for non-parametric
tests since all our distributions are not normally distributed
(Shapiro-Wilk test).

For RQ1, we build a multivariate logistic regression model
having Is injected issue identified as the dependent variable
and treatment as independent variable with MCR set as the
reference level to more easily look at the impact of introducing
automation (i.e., ACR and CCR treatments) in the code review
process. We include all control variables listed in Table II.

Concerning the other RQs (i.e., RQ0, RQ2, and RQ3), we
use multivariate linear regression to build seven models, one
for each dependent variable in Table II. For example, to answer
RQ0, three regression models have been built, each using one
of the three dependent variables relevant for this RQ.

The independent variable is always treatment, while in terms
of control variables we use all the ones in Table II but the Issue
type. Indeed, the dependent variables used in RQ0, RQ2, and
RQ3, differently from the one used in RQ1, are meaningful
only when applied to a whole code review (e.g., the time spent
to complete the code review, the confidence of the participant
when submitting the review). Since a single review concerns
several issues usually having a different type, for these RQs
we do not consider the Issue type as control variable.

III. RESULTS AND DISCUSSION

A. RQ0: Differences in Reviews Output of Different Treatments

Fig. 2 shows boxplots comparing the final version of
the code reviews submitted by developers under the three
treatments considered in our study, i.e., manual code review
(MCR), automated code review (ACR), and comprehensive
code review (CCR). From left to right we report boxplots
comparing the number of quality issues reported in the review,
the length of the review in terms of number of sentences, the
overall line coverage of the review over the entire program
(code and comments), as well as its coverage when considering
only the source code, and only the documentation (comments).

The two leftmost boxplots show clear differences among
treatments in terms of the number of issues reported in the final
reviews and in their length. Reviews resulting from treatments
including an automated support (ACR and CCR) generally
report more issues as compared to MCR. The multivariate
regression model (Multiple R2 [37]: 0.32) — Table III —
confirms the significant role played by the ACR treatment (p
< 0.01) in the number of reported issues, with the Dunn’s
test [38] showing a statistically significant difference when
comparing ACR vs MCR (p-value = 0.0106 after Benjamini-
Hochberg correction [39]). Worth mentioning is also that
participants tended to report more quality issues for some
of the subject programs. This is expected considering that
(i) we injected a different number of quality issues in each
program, and (ii) ChatGPT identified a different number of
quality issues in the programs, influencing the number of
quality issues reported in the ACR treatment.

The final reviews of the ACR treatment identified, on
average, 11.8 issues (median=10.5), against the 9.6 of CCR
(median=9) and the 7.7 of MCR (median=7.5). Such a result
could be explained in part by the fact that reviewers kept most
of the issues already present in the automated (ACR) and in
the comprehensive (CCR) code review.

Indeed, the ACR and CCR reviews we provided to partic-
ipants featured on average 8.8 (median=9) and 4 (median=4)
issues reported, respectively, and reviewers kept on average 7.1
(median=7.5) and 4.0 (median=4) of these issues, respectively.
This leads to a first outcome of our study: Reviewers
considered as valid most of the issues identified by ChatGPT
Plus (by keeping them in their final review).

The fact that ACR and CCR reviews contained issues that
reviewers kept in most cases had an impact on the final length
of the submitted reviews, with ACR and CCR reviews being
longer than those in the MCR treatment (see Fig. 2).

The regression model in Table III (Multiple R2: 0.44)
reports a significant impact of the ACR treatment (p < 0.001),
with the Dunn’s test [38] confirming the statistically significant
difference in length when comparing reviews output of the
ACR and CCR treatments (p-value = 0.0046) and those output
of ACR and MCR (p-value = 0.0001) — p-values adjusted
with Benjamini-Hochberg correction [39].

To get a better understanding of the magnitude of such
differences, the final reviews in the MCR treatment include,
on average, 16.3 sentences (median=11.5) compared to the
27.79 (median=27) in the final reviews of the ACR treatment.
Interestingly, as our results show, a more verbose review does
not necessarily mean a review that covers more code locations.
The three rightmost boxplots in Fig. 2 illustrate this phe-
nomenon: there is no clear difference in the coverage (overall,
on code, and on comments) between the final reviews of the
three treatments (as also confirmed by the regression model
in Table III). Moreover, the reviews written by participants
without automated support had a higher variability in terms of
the lines commented on by the different reviewers, while those
starting from automated reviews tended to stay focused on
the lines of code highlighted in the provided reviews. This is
illustrated in the Venn diagram in Fig. 3, which shows the total
number of different lines covered by all reviews belonging to
each treatment. As observed, MCR reviews covered a total of
484 distinct lines and 263 of these lines were unique to MCR,
i.e., not covered by the ACR nor CCR final reviews. This was
followed by CCR reviews, which covered 407 lines, 186 of
which were unique to final reviews within this treatment, and
lastly ACR reviews, covering 371 distinct lines, 181 of which
being found only in ACR reviews.

Fig. 4 shows an example of the code lines cov-
ered by three participant reviews (clear gray, gray, black)
from the ACR (left) and MCR (right) treatments for the
number-conversion program in Java. Each rectangle de-
notes a single issue identified in the reviews, possibly span-
ning multiple lines (thicker rectangles). Red rectangles denote
issues covering unique code locations (among the three re-
views of that treatment). While for the ACR treatment there
were only three issues from two reviewers covering unique
locations, for the MCR treatment, all three reviewers found a
total of eight issues covering unique code lines, not covered
in the other reviews. These findings result in two additional
takeaways of our study.

Le
ng

th
 o

f t
he

 c
od

e
re

vi
ew

 (s
en

te
nc

es
)

N
um

be
r o

f r
ep

or
te

d
qu

al
ity

 is
su

es

O
ve

ra
ll

lin
e

co
ve

ra
ge

 (%
)

C
od

e
co

ve
ra

ge
 (%

)

D
oc

um
en

ta
tio

n
co

ve
ra

ge
 (%

)

MCR ACR CCR MCR ACR CCR MCR ACR CCR MCR ACR CCR MCR ACR CCR

Fig. 2. RQ0: Characteristics of the final code reviews under the three treatments.

TABLE III
RQ0 : MULTIVARIATE LINEAR REGRESSION MODELS (ESTIMATE, STD. ERROR, SIGNIFICANCE).

N. of reported quality iss. Length of the code review Covered code locations
Estim. S.E. Sig. Estim. S.E. Sig. Estim. S.E. Sig.

Intercept 2.460 3.962 4.122 8.439 -17.611 35.131
ACR 4.269 1.331 ** 11.862 2.836 *** 5.297 11.806
CCR 1.770 1.338 2.549 2.850 -0.798 11.867
Years of experience -0.032 0.071 -0.098 0.151 0.582 0.632
Involved in code review: Contributor & Reviewer 5.357 3.532 11.386 7.522 17.010 31.316
Involved in code review: None 1.486 3.794 5.473 8.081 51.388 33.642
Involved in code review: Reviewer 3.252 4.273 -1.952 9.101 28.911 37.886
Programming language: Python -1.734 1.134 -2.514 2.416 3.215 10.058
Program: number-conversion 0.437 1.649 -0.344 3.513 18.580 14.626
Program: stopwatch 3.648 1.811 * 13.404 3.859 *** 30.209 16.064
Program: tic-tac-toe 5.426 2.106 * 13.041 4.486 ** 11.427 18.676
Program: todo-list 3.448 2.230 5.860 4.750 13.780 19.773
Program: word-utils 0.554 1.809 2.591 3.854 21.437 16.046

Sig. codes: ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05

MCR

ACR CCR

78
56 87

56

263

181 186

8.6%
6.2% 9.6%

6.2%

29%

19.9% 20.5%

Fig. 3. RQ0: Number of distinct lines covered (i.e., commented on by
participants) in the final reviews of the three treatments and their overlap.

1

10

20

30

40

50

60

70

80

90

100

110

116
ACR reviews NCR reviews

C
od

e
lin

es

Legend:
Review 1
Review 2
Review 3
Issue in unique
code location

ACR reviews MCR reviews

Fig. 4. Example of distinct code lines covered by different reviews.

First, reviews obtained with the support of automated
tools might be more expensive to process for the contributor
(i.e., the developer submitting the code for review), since they
are significantly more verbose as opposed to those manually
written, while commenting on a similar amount of code lines.

MCR

ACR

CCR

MCR

ACR

CCR

Number of injected issue identified

% of injected issue identified

Fig. 5. RQ1: Number and percentage of identified injected issues.

This might indicate an additional cost on the contributor’s
side, which complements the analysis we will present in RQ2

when assessing the time spent by reviewers under the three
treatments. Second, the availability of an automated review
influences the reviewer’s behavior, who will mostly focus on
the code locations commented on in the provided review.
This also results in a lower variability in the types of issues
identified by reviewers for the same program.

B. RQ1: Impact on Quality Issues Found

Fig. 5 shows boxplots with the number (top) and percentage
(bottom) of injected issues identified in the final reviews
of the three treatments. Table IV reports the results of the
logistic regression model using the Is injected bug identified
as dependent variable. As expected, the final reviews submitted
under the CCR treatment usually report 100% of injected
issues, as these were already present in the review initially
provided to them and kept in the final review (with the logistic
regression confirming the significant influence of CCR on the
odds of identifying the injected bug).

TABLE IV
RQ1 : LOGISTIC REGRESSION MODEL.

Estim. S.E. Sig.

Intercept 1.371 1.581
ACR -0.004 0.351
CCR 4.710 0.792 ***
Years of experience -0.017 0.022
Involved in code review: Contributor & Reviewer 0.308 0.906
Involved in code review: None 0.143 0.850
Involved in code review: Reviewer 0.437 0.977
Programming language: Python -0.589 0.403
Program: number-conversion 0.788 0.768
Program: stopwatch -1.380 0.727
Program: tic-tac-toe -0.084 0.865
Program: todo-list 1.298 1.049
Program: word-utils -2.029 0.706 **
Issue Type: Evolv. → Docum. → Textual -1.032 1.088
Issue Type: Evolv. → Structure → Org. -0.814 1.198
Issue Type: Evolv. → Structure → Solution App. 0.014 1.112
Issue Type: Funct. → Check -0.649 1.144
Issue Type: Funct. → Interface -1.546 1.263
Issue Type: Funct. → Logic -1.838 1.583

Sig. codes: ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05

More interestingly, the final ACR reviews submitted by
participants uncovered a median of 50% of the injected issues,
i.e., the same amount uncovered in the MCR reviews, which
were written from scratch by participants, despite the fact
that the automated reviews initially provided in the ACR
treatment already reported, on average, 42% of the injected
issues. This unveils a few important findings of our study:
 the current state of the art in terms of automated code review
does not lead to a higher number of injected issues being
identified compared to fully manual code reviews. This is due
to two factors. First, ChatGPT produced reviews in which
more than half of the injected issues, on average, were not
identified. Second, the exposure that developers had to these
automated reviews before writing their final review seems to
have biased their behavior, leading to them barely identifying
any additional injected issues compared to the ones already
included in the automated review. These findings should act
as a clear warning sign for companies interested in adopting
automated support in code review. A possibility to consider
is to provide the automated review only once the reviewer
already submits their comments, thus not being biased by the
ones already provided.

Since the final reviews of ACR report the highest number
of issues without, however, identifying a higher number of
injected issues, a question arises about the relevance of the
additional issues identified in the ACR reviews. Indeed, it is
possible that additional issues reported are just as relevant as
the injected ones. To assess this, we asked two developers not
involved in the study to assess the severity of the: (i) injected
issues as documented in the reviews provided as starting point
in the CCR treatment; (ii) non injected issues automatically
identified in ACR reviews; and (iii) non injected issues man-
ually identified in MCR reviews. The two developers have 16
and 7 years of programming experience, respectively, and were
instructed to provide a severity assessment on a scale from
1=low severity to 3=high severity, with the former indicating
issues which they do not consider mandatory to address for
approving the code and the latter indicating showstoppers.

While we acknowledge the subjectivity of this assessment,
the two developers who performed it had a strong disagree-
ment (i.e., 1 vs 3) in only 5% of the inspected issues.

The weighted k agreement [40] was 0.315. The findings of
this analysis indicated that the issues we injected were the ones
assessed with the highest severity (Q1=2.0, Q2=2.0, Q3=3.0,
mean=2.2), followed by the additional ones manually iden-
tified by developers (Q1=1.0, Q2=2.0, Q3=2.0, mean=1.8),
and the additional ones recommended by ChatGPT (Q1=1.0,
Q2=2.0, Q3=2.0, mean=1.6). We also factored in the issue
severity as a further cofactor in the logistic model without,
however, observing any impact of it nor changes in the
significant variables (output of the model available in [25]).

The difference between the severity of the injected issues
and the additional ones identified either manually or auto-
matically is statistically significant (p-value < 0.01) with a
medium effect size (Mann-Whitney test [41] and the Cliff’s
delta [42]). An example of an automatically identified issue
classified as low severity by both developers is: “This method
provides an interesting feature by [. . .]. The logic is sound,
though it involves several conditionals and might benefit from
comments explaining the rationale for each case.”. In this case,
while comments are indeed missing, the code is quite self-
explanatory. On the other hand, some high-severity injected
issues were missed by ChatGPT, such as the following one,
provided in the initial review of the CCR treatment: “There is
a critical bug. For HEXADECIMAL, it erroneously uses base
8 instead of 16. It should be decimalToAnyBase(num, 16).”.

RQ1’s findings lead to the conclusion that the reviews output
of the ACR treatment identify a higher number of low-severity
issues while, however, not making a difference when it comes
to spotting high-severity issues (i.e., the ones we injected)
as compared to a full manual process. This supports our
former suggestion that, given the current state of automation,
automatically generated reviews may be considered as a useful
complement at the end of a manual review process.

C. RQ2: Impact on Review Time

Fig. 6 shows from left to right: the time (in seconds) that re-
viewers spent on the whole code review process, the time spent
on the code to review (i.e., not including running the program
or the tests), and the time writing the review comments. For
the ACR and CCR treatments, the latter also includes the time
spent reading the originally provided reviews. While we also
created multivariate linear regression models, we found that
none of the involved independent variables (treatments and
cofactors) plays a statistically significant role on any of the
time-based dependent variables. Thus, for the sake of space,
we only report these models in our replication package [25].
 This finding debunks one of the motivations for automated
code review [16], i.e., saving time for reviewers. In fact, Fig. 6
shows that reviews performed completely manually (MCR)
took less time (mean=42, median=37 minutes) than those
supported by automation in the ACR (mean=56, median=42
minutes) and CCR (mean=57, median=50 minutes) treatments.

To
ta

l t
im

e
(s

)

Ti
m

e
re

vi
ew

in
g

(s
)

Ti
m

e
w

rit
in

g
(s

)

MCR ACR CCR MCR ACR CCR MCR ACR CCR

Fig. 6. RQ2: Time spent in reviews across different treatments.

This might be due to the fact that the introduction of an
automated review, even if correct (CCR), comes with a price,
namely the reading, understanding, and double-checking of
the provided comments. This seems to be the case especially
for CCR reviews, where reviewers spent an average of 17
minutes (median=16) reading and writing reviews, compared
to an average of 12 minutes (median=11) for reviews written
from scratch (see rightmost boxplot in Fig. 6).

It is also interesting to note that the variability in the time
spent on the code to review and on the overall review process
is higher for the ACR and the CCR treatments as compared
to MCR. We presume that this is due to two factors, namely:
(i) the length of the automatically generated reviews, where the
shortest pointed to no issues (ACR review of stopwatch in
Python) while the longest pointed to 14 issues (ACR review of
maze-generator in Java); and (ii) the trust that reviewers put
in the automated support, which may vary from one reviewer
to another. Longer case studies in which developers have
time to build their opinion about the review automation tool
are needed to corroborate or contradict our findings, especially
when it comes to what we observed in terms of time spent.

TABLE V
RQ3 : LINEAR REGRESSION MODEL.

Estim. S.E. Sig.

Intercept 2.148 0.628 **
ACR 0.099 0.211
CCR 0.180 0.212
Years of experience 0.025 0.011 *
Involved in code review: Contributor & Reviewer 1.001 0.560
Involved in code review: None 1.147 0.602
Involved in code review: Reviewer 1.591 0.678 *
Programming language: Python 0.270 0.180
Program: number-conversion 0.361 0.261
Program: stopwatch -0.296 0.287
Program: tic-tac-toe 0.233 0.334
Program: todo-list -0.040 0.353
Program: word-utils -0.592 0.287 *

Sig. codes: ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05

D. RQ3: Impact on Reviewer’s Confidence

After each code review task, reviewers scored their confi-
dence in the review they submitted on a scale from 1 (very
low confidence) to 5 (very high confidence). Reviews from
the MCR treatment were scored with an average confidence
of 3.5 (median=4), those from the ACR treatment with an
average confidence of 3.7 (median=4), and those from the
CCR treatment with an average confidence of 3.8 (median=4).

Indeed, as shown in the linear regression model in Table V
(Multiple R2: 0.3445), there is no significant impact of the
treatment on the confidence score reported by reviewers. We
thus conclude that providing an automated code review
as a starting point, even one being able to identify several
high-severity issues (i.e., CCR treatment), does not have a
significant effect on the confidence of the reviewer. This might
be due to the fact that, while the automated code review
may point the reviewer to relevant code locations, it does not
help in understanding the code which, in the end, is what we
expect to mostly influence a reviewer’s confidence. Combining
automated code review with LLM-based code summarization
[43] may help in that direction.

E. Actionable Recommendations

Based on our findings, we distill the following actionable
recommendations for reviewers, designers of tools aimed at
automatically generating code reviews, and researchers.

Reviewers: We observed that the availability of an au-
tomated review strongly influences the reviewer’s behavior,
who will mostly focus on the code locations commented on
in the provided review. Also, automated reviews result in a
lower variability in the types of issues identified by different
reviewers for the same program. Based on these findings, we
recommend to adopt automated reviews as a further check
only after the manual inspection. This will not save time but
it could help in identifying additional quality issues.

Tools’ designers: While most of the issues reported by
ChatGPT have been considered valid by reviewers (i.e., kept
in the final review), we found that these issues tend to have
a quite low severity. Tools tailored for the identification of
specific high-severity quality issues would be a valuable asset.
Also, automatically generated reviews are much more verbose
than those manually written. This is a non-negligible cost that
should be considered in the design of tools, e.g., by making a
best effort to keep the generated reviews concise.

Researchers: We did not observe any time saved thanks to
the availability of automated reviews. Thus, the motivation
for introducing these tools in a code review process may
be more related to a more comprehensive code inspection
rather than to save time [16]. Also, given the strong bias
in reviewers’ behavior we identified, studies investigating the
impact on practitioners’ behavior when exploiting AI-based
tools to (semi-)automate SE tasks are very much needed.

IV. THREATS TO VALIDITY

Construct validity. A major challenge was the time mea-
surement in RQ2, since interruptions were possible while the
participants were performing the code reviews. We instructed
participants to not interrupt a code review task and to take
breaks only when changing treatment. Still, in the time-based
analysis we excluded 13 data points (out of 72) since it was
clear that they represented errors in the measurement when
compared to the other timings. The removed data points were
balanced across the treatments (4 for NCR, 5 for ACR, and 4
for CCR) and did not change the final outcome of our study.

Analyses reported in RQ0 and RQ1 are based on data
manually extracted from the submitted reviews (e.g., number
of issues reported in the reviews), thus involving subjectivity
risks. To partially address them, we made sure that each review
was independently inspected by two evaluators.

Internal validity. Participants who only contributed one or
two of the assigned reviews (18 out of 29 contributed three
reviews) made the study diverge from our initially planned
within-subject design. Still, we addressed the issue by only
considering 72 of the reviews we collected in our analysis,
with the goal of balancing within each treatment the number
of reviews performed on each project.

While we collected some demographic data about partici-
pants, there are several other factors that could have influenced
our findings. These include: (i) educational background; (ii)
work experience; (iii) the lack of knowledge some participants
may have about the inspected programs; (iv) no past expe-
rience of participants in using code review automation tools,
thus not being able to properly calibrate their confidence in ac-
cepting/rejecting the recommendations; and (v) possible time
constraints that participants had while performing the review
task. Our replication package [25] features a causal diagram
showing all measured and unmeasured variables which may
have played a role on the measured dependent variables.

External validity. As a design choice, we decided to only
involve in our study professional developers. This resulted in
a limited number of participants who took part to our study
(29) for a total of 24 data points (i.e., submitted review) per
treatment. We acknowledge that our study could be statistically
underpowered, thus leading to biased conclusions. For this
reason, replications are needed in order to corroborate or
contradict our preliminary observations.

Another threat to the generalizability of our findings con-
cerns the representativeness of the issues we injected as
representative of those actually found in industrial code review.
For example, concerns may arise about the triviality of the
injected issues, also considering the subject programs which,
for the sake of limiting the study time, were limited in terms
of size. Nonetheless, we took inspiration from the taxonomy
of issues found in code reviews documented by Mäntylä and
Lassenius [23], trying to inject a proportion of evolvability
and functional issues close to the one they document (i.e.,
∼3 out of 4 issues found in code review do not pertain the
visible functionality of the program). Also, our results show
that, when not running the task in the context of the CCR
treatment (i.e., a review identifying the injected issues was
available), participants were able to identify all injected issues
in only 12 out of the 48 code review tasks. This addresses
concerns about the triviality of at least identifying the issues.

V. RELATED WORK

A. Code Review Automation

Most of the prior work focused on classification tasks,
such as recommending the best suited reviewer(s) for a given
change [7]–[10], [44]–[50], classifying the sentiment of review
comments [51], [52], and their usefulness [13], [14], [53], etc.

More relevant to our work are the generative code review
tasks recently automated via DL. The two most commonly
addressed tasks in the literature are review comment generation
[15]–[17], [54] and code refinement [15], [16], [55], [56]. The
former consists in automatically generating review comments
in natural language for a given piece of code, similar to those
that a human reviewer would write. The input of the DL model
is represented by the code to review, while its output consists
of a set of natural language comments pointing to issues in
the code. In the code refinement task, the DL model takes as
input the code submitted for review and the natural language
comments written by a human reviewer. The goal of the model
is to refine the code to address the reviewer’s comments.
The evaluations of these tasks showed promising results (e.g.,
∼30% correct predictions in the code refinement task [15]),
while still pointing to the need for major improvements before
these tools can be considered for industrial adoption [57].

Given the documented evidence of ChatGPT’s adoption in
open source projects as a co-reviewer [18], in our experiment
we adopted ChatGPT as the representative for code review
automation tools supporting the comment generation task.

B. Controlled Experiments on Code Review

There are several prior controlled experiments on code
review reported in the literature. Table VI offers a brief
overview of these works and reports (i) the related reference,
(ii) the number and type of participants involved in the study
(where type can be P = practitioners, S = students, or both),
(iii) the subject programming languages, (iv) the number
of total review tasks collected (in some studies participants
performed more than one task, while in others only one),
and (v) a short description of the manipulated independent
variables and measured dependent variables. The last row
of Table VI reports the same information for our study. As
illustrated, all works focus on independent variables different
from the one tackled in our study (i.e., the presence/absence
of an automated code review). Several works [60], [62], [63]
also differ in terms of measured dependent variables, focusing
on the reviewer’s comprehension level. We discuss in the
following only the most related controlled experiments, being
the ones sharing with us the measured dependent variables.

Khandelwal et al. [61] study how the usage of gamified code
review tools can improve the usefulness of the code review
comments and the identified quality issues. The study involved
183 undergraduate students who had to write (i) a program
which, on average, was composed by ∼500 lines of code, and
(ii) reviews for 5 peer-written programs using one of five code
review tools (three being gamified and two not). This led to a
total of 183 × 5 code review tasks, which showed no impact
of gamification on the code review quality.

Hanam et al. [64] present an experiment involving 11
practitioners and students to investigate the impact of change
impact analysis on the ability of identifying bugs during code
review. Each participant performed two code review tasks, one
using a change impact analysis tool named SemCIA and one
not using it, leading to 22 code reviews collected.

TABLE VI
CONTROLLED EXPERIMENTS ON CODE REVIEW: FOR PARTICIPANTS’ TYPE, “S” INDICATES STUDENTS, “P”, PRACTITIONERS.

Reference Participants Programming #Review Independent Variable Main Dependent
Type Languages Tasks Manipulated Variables Measured

Runeson and Wohlin [58] 8 P, S C 24 Three approaches for estimating the number of
bugs in the code being reviewed

How close the approaches were in terms of
estimates after the review was performed

Tao and Kim [59] 18 S Java 36 Using/not using an approach to automatically par-
tition composite changes submitted for review

Code review correctness, Review time

Zhang et al. [60] 12 S Java 24 Using/not using an interactive approach to inspect
code changes

Comprehension level of reviewed change as-
sessed via a questionnaire

Khandelwal et al. [61] 183 S Python 915 Using a gamified/non-gamified code review tool Usefulness of code review comments, Identified
bugs/code smells

Huang et al. [62] 10 S Java 10 Using/not using a code differencing tool to simplify
the understanding of code changes

Comprehension level of reviewed change as-
sessed via a questionnaire

Huang et al. [63] 14 P, S Java 28 Providing/Not-providing reviewers with informa-
tion about the silent class in a commit (i.e., the
one triggering changes to other modified classes)

Comprehension level of reviewed change as-
sessed via a questionnaire

Hanam et al. [64] 11 P, S Javascript 22 Using/not using a tool performing change impact
analysis

Identified bugs, Review time

Spadini et al. [65] 85 P, S Java 85 Showing/not showing already existing review com-
ments to a reviewer starting their code inspection

Identified bugs

Fregnan et al. [66] 106 P, S Java 106 Manipulating the inspection order of files impacted
by a change

Identified bugs in files appearing in different
positions

Our study 29 P Java, Python 72 Three treatments providing/not providing re-
viewers an automatically generated review

Identified bugs, Review time, Reviewer’s con-
fidence

Using SemCIA participants were able to perform the code
review quickly while also identifying more bugs.

Spadini et al. [65] study how showing already existing
review comments to a reviewer starting their code inspection
influences the number of identified bugs. This experiment
involved 85 participants, including practitioners (57) and stu-
dents. The authors asked each participant to perform one code
review, for a total of 85 collected reviews. The authors show
that existing review comments can help in identifying specific
types of bugs that otherwise would have been overlooked.

Finally, Fregnan et al. [66] investigate whether the order in
which files submitted for review are presented to the reviewer
impacts the number of bugs identified in them. Surprisingly,
they found that by just changing the file position the odds
of identifying bugs in the inspected files can substantially
change, with those inspected first having higher odds. The
study has been conducted with 106 among practitioners (72)
and students. Also in this case, each participant contributed to
only one treatment, with a total of 106 reviews collected.

As highlighted in Table VI and previously mentioned, the
novelty of our work as compared to the existing literature lies
in the investigated independent variable focusing on the novel
generation of DL-based code review automation tools.

VI. CONCLUSION AND FUTURE WORK

In this study, we explored the effects of incorporating auto-
matically generated code reviews, particularly those produced
by ChatGPT Plus (GPT-4), into the code review process.

Our controlled experiment involved 29 professional devel-
opers who reviewed code in three settings: manually, having
an automated review provided by ChatGPT Plus as a starting
point, or starting from a review that was manually crafted
by the authors to capture all major issues in the code, but
rephrased by ChatGPT Plus to seem generated by it.

Reviewers generally accepted the validity of issues identi-
fied by the LLM, adopting 89% of them on average in their
final reviews. However, the presence of an automated review
influenced reviewers to concentrate on the highlighted code
locations, potentially overlooking other areas. Our findings
also indicate that using automated ChatGPT Plus reviews as
a starting point leads to less severe issues being identified
compared to manual reviews, but unveils more trivial issues.
Additionally, while automated reviews are expected to save
time, our findings show that, in practice, reviewers still had to
spend time verifying the accuracy of the automated comments,
negating any potential time savings. At the same time, having
access to automated reviews as a starting point did not lead
to changes in the confidence of reviewers.

These findings suggest that while current LLMs can play a
valuable role in identifying part of the code issues, their use
as automated co-reviewers does not necessarily improve the
efficiency or effectiveness of the code review process from
a holistic perspective. The tendency of automated reviews to
focus reviewer attention on specific areas of the code, coupled
with their limited impact on identifying high-severity issues
and inefficiency in reducing review time represent important
challenges that should be addressed in future work to allow
LLMs to become integral parts of the code review process.

ACKNOWLEDGMENT

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No. 851720) and from the Swiss National Science Foundation
(SNSF) under the project “PARSED” (grant agreement No.
219294).

REFERENCES

[1] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern code review: A case study at google,” in 40th International
Conference on Software Engineering: Software Engineering in Practice,
ICSE-SEIP, 2018, pp. 181–190.

[2] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in 35th IEEE/ACM International Conference on
Software Engineering, ICSE, 2013, pp. 712–721.

[3] R. Morales, S. McIntosh, and F. Khomh, “Do code review practices
impact design quality? a case study of the qt, vtk, and itk projects,” in
22nd IEEE International Conference on Software Analysis, Evolution
and Reengineering, SANER, 2015, pp. 171–180.

[4] G. Bavota and B. Russo, “Four eyes are better than two: On the impact
of code reviews on software quality,” in IEEE International Conference
on Software Maintenance and Evolution, ICSME, 2015, pp. 81–90.

[5] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of
code review coverage and code review participation on software quality:
A case study of the qt, vtk, and itk projects,” in 11th IEEE/ACM Working
Conference on Mining Software Repositories, MSR, 2014, pp. 192–201.

[6] A. Bosu and J. C. Carver, “Impact of peer code review on peer impres-
sion formation: A survey,” in 7th IEEE/ACM International Symposium
on Empirical Software Engineering and Measurement, ESEM, 2013, pp.
133–142.

[7] V. Balachandran, “Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommenda-
tion,” in 2013 35th International Conference on Software Engineering
(ICSE). IEEE, 2013, pp. 931–940.

[8] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida,
and K.-i. Matsumoto, “Who should review my code? a file location-
based code-reviewer recommendation approach for modern code re-
view,” in 2015 IEEE 22nd International Conference on Software Analy-
sis, Evolution, and Reengineering (SANER). IEEE, 2015, pp. 141–150.

[9] X. Xia, D. Lo, X. Wang, and X. Yang, “Who should review this
change?: Putting text and file location analyses together for more
accurate recommendations,” in 2015 IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2015, pp. 261–270.

[10] A. Ouni, R. G. Kula, and K. Inoue, “Search-based peer reviewers
recommendation in modern code review,” in 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2016, pp. 367–377.

[11] B. Soltanifar, A. Erdem, and A. Bener, “Predicting defectiveness of
software patches,” in Proceedings of the 10th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, 2016,
pp. 1–10.

[12] S. Sharma and B. Sodhi, “Using stack overflow content to assist in code
review,” Software: Practice and Experience, vol. 49, no. 8, pp. 1255–
1277, 2019.

[13] T. Pangsakulyanont, P. Thongtanunam, D. Port, and H. Iida, “Assess-
ing mcr discussion usefulness using semantic similarity,” in 2014 6th
International Workshop on Empirical Software Engineering in Practice.
IEEE, 2014, pp. 49–54.

[14] M. M. Rahman, C. K. Roy, and R. G. Kula, “Predicting usefulness of
code review comments using textual features and developer experience,”
in 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR). IEEE, 2017, pp. 215–226.

[15] L. Zhiyu, L. Shuai, G. Daya, D. Nan, J. Shailesh, J. Grant, M. Deep,
G. Jared, S. Alexey, F. Shengyu, and N. Sundaresan, “Automating
code review activities by large-scale pre-training,” in 30th ACM Joint
European Software Engineering Conference and the ACM/SIGSOFT
International Symposium on the Foundations of Software Engineering
ESEC-FSE, 2022, pp. 1035–1047.

[16] R. Tufano, S. Masiero, A. Mastropaolo, L. Pascarella, D. Poshyvanyk,
and G. Bavota, “Using pre-trained models to boost code review au-
tomation,” in 44th IEEE/ACM International Conference on Software
Engineering, ICSE, 2022, pp. 2291–2302.

[17] L. Li, L. Yang, H. Jiang, J. Yan, T. Luo, Z. Hua, G. Liang, and C. Zuo,
“Auger: automatically generating review comments with pre-training
models,” in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2022, pp. 1009–1021.

[18] R. Tufano, A. Mastropaolo, F. Pepe, O. Dabic, M. Di Penta, and
G. Bavota, “Unveiling chatgpt’s usage in open source projects: A
mining-based study,” in Proceedings of 2024 IEEE/ACM 21th Inter-

national Conference on Mining Software Repositories (MSR). IEEE,
2024, p. To Appear.

[19] Z. Liu, C. Chen, J. Wang, M. Chen, B. Wu, X. Che, D. Wang, and
Q. Wang, “Make llm a testing expert: Bringing human-like interac-
tion to mobile gui testing via functionality-aware decisions,” in 2024
IEEE/ACM 46th International Conference on Software Engineering
(ICSE), 2024, pp. 884–884.

[20] Z. Ma, A. R. Chen, D. J. Kim, T.-H. P. Chen, and S. Wang, “Llmparser:
An exploratory study on using large language models for log parsing,”
in 2024 IEEE/ACM 46th International Conference on Software Engi-
neering (ICSE), 2024, p. To appear.

[21] J. Xu, Z. Cui, Y. Zhao, X. Zhang, S. He, P. He, L. Li, Y. Kang, Q. Lin,
Y. Dang, S. Rajmohan, and D. Zhang, “Unilog: Automatic logging via
llm and in-context learning,” in Proceedings of the 46th IEEE/ACM
International Conference on Software Engineering, ser. ICSE ’24, 2024.

[22] D. Nam, A. Macvean, V. J. Hellendoorn, B. Vasilescu, and B. A. Myers,
“Using an llm to help with code understanding,” in Proceedings of the
46th IEEE/ACM International Conference on Software Engineering, ser.
ICSE ’24, 2024.

[23] M. V. Mäntylä and C. Lassenius, “What types of defects are really dis-
covered in code reviews?” IEEE Transactions on Software Engineering,
vol. 35, no. 3, pp. 430–448, 2008.

[24] “ChatGPT,” https://chat.openai.com/, accessed: 2024-02-27.
[25] “Replication package,” https://github.com/CodeReviewExperiment/

code review controlled experiment, [n.d.].
[26] M. V. et al., “Ai-assisted assessment of coding practices in modern

code review,” CoRR, vol. abs/2405.13565, 2024. [Online]. Available:
https://doi.org/10.48550/arXiv.2405.13565

[27] P. Sedgwick, “Convenience sampling,” BMJ, 2013.
[28] S. J. Stratton, “Population research: convenience sampling strategies,”

Prehospital and disaster Medicine, vol. 36, no. 4, pp. 373–374, 2021.
[29] “Rosetta Code,” https://rosettacode.org/, accessed: 2024-02-22.
[30] “Apache Commons Lang,” https://github.com/apache/commons-lang,

accessed: 2024-02-22.
[31] E. Fregnan, F. Petrulio, L. Di Geronimo, and A. Bacchelli, “What hap-

pens in my code reviews? an investigation on automatically classifying
review changes,” Empirical Software Engineering, vol. 27, no. 4, p. 89,
2022.

[32] “Remote Development - Visual Studio Marketplace,” https:
//marketplace.visualstudio.com/items?itemName=ms-vscode-remote.
vscode-remote-extensionpack, accessed: 2024-02-28.

[33] “Extension Pack for Java - Visual Studio Marketplace,”
https://marketplace.visualstudio.com/items?itemName=vscjava.
vscode-java-pack, accessed: 2024-02-28.

[34] “Python - Visual Studio Marketplace,” https://marketplace.visualstudio.
com/items?itemName=ms-python.python, accessed: 2024-02-28.

[35] “Code Review - Visual Studio Marketplace,” https:
//marketplace.visualstudio.com/items?itemName=d-koppenhagen.
vscode-code-review, accessed: 2024-02-28.

[36] “Tako - Visual Studio Marketplace,” https://marketplace.visualstudio.
com/items?itemName=codelounge.tako, accessed: 2024-02-28.

[37] A. Hughes and D. Grawoig, Statistics, a Foundation for Analysis, ser.
Business and Economics Series. Addison-Wesley Publishing Company,
1971.

[38] O. J. Dunn, “Multiple comparisons among means,” Journal of the
American Statistical Association, vol. 56, no. 293, pp. 52–64, 1961.

[39] B. Yoav and H. Yosef, “Controlling the false discovery rate: A practical
and powerful approach to multiple testing,” Journal of the Royal
Statistical Society. Series B (Methodological), vol. 57, no. 1, pp. 289–
300, 1995.

[40] J. Cohen, Statistical power analysis for the behavioral sciences.
Lawrence Earlbaum Associates, 1988.

[41] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[42] R. J. Grissom and J. J. Kim, Effect sizes for research: A broad practical
approach, 2nd ed. Lawrence Earlbaum Associates, 2005.

[43] T. Ahmed and P. Devanbu, “Few-shot training llms for project-specific
code-summarization,” in Proceedings of the 37th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ser. ASE ’22,
2023.

[44] M. M. Rahman, C. K. Roy, and J. A. Collins, “Correct: Code reviewer
recommendation in github based on cross-project and technology expe-
rience,” in 2016 IEEE/ACM 38th International Conference on Software
Engineering Companion (ICSE-C), 2016, pp. 222–231.

https://chat.openai.com/
https://github.com/CodeReviewExperiment/code_review_controlled_experiment
https://github.com/CodeReviewExperiment/code_review_controlled_experiment
https://doi.org/10.48550/arXiv.2405.13565
https://rosettacode.org/
https://github.com/apache/commons-lang
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-pack
https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-pack
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=d-koppenhagen.vscode-code-review
https://marketplace.visualstudio.com/items?itemName=d-koppenhagen.vscode-code-review
https://marketplace.visualstudio.com/items?itemName=d-koppenhagen.vscode-code-review
https://marketplace.visualstudio.com/items?itemName=codelounge.tako
https://marketplace.visualstudio.com/items?itemName=codelounge.tako

[45] M. B. Zanjani, H. Kagdi, and C. Bird, “Automatically recommending
peer reviewers in modern code review,” IEEE Transactions on Software
Engineering, vol. 42, no. 6, pp. 530–543, 2016.

[46] S. Asthana, R. Kumar, R. Bhagwan, C. Bird, C. Bansal, C. Maddila,
S. Mehta, and B. Ashok, “Whodo: Automating reviewer suggestions
at scale,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2019. New
York, NY, USA: Association for Computing Machinery, 2019, p.
937–945. [Online]. Available: https://doi.org/10.1145/3338906.3340449

[47] J. Jiang, D. Lo, J. Zheng, X. Xia, Y. Yang, and L. Zhang, “Who
should make decision on this pull request? analyzing time-decaying
relationships and file similarities for integrator prediction,” Journal of
Systems and Software, vol. 154, pp. 196–210, 2019.

[48] E. Mirsaeedi and P. C. Rigby, “Mitigating turnover with code
review recommendation: Balancing expertise, workload, and knowledge
distribution,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ser. ICSE ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 1183–1195.
[Online]. Available: https://doi.org/10.1145/3377811.3380335

[49] A. Strand, M. Gunnarson, R. Britto, and M. Usman, “Using a context-
aware approach to recommend code reviewers: findings from an indus-
trial case study,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Software Engineering in Practice,
2020, pp. 1–10.

[50] P. Pandya and S. Tiwari, “Corms: A github and gerrit based
hybrid code reviewer recommendation approach for modern code
review,” in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2022. New York, NY, USA: Association
for Computing Machinery, 2022, p. 546–557. [Online]. Available:
https://doi.org/10.1145/3540250.3549115

[51] T. Ahmed, A. Bosu, A. Iqbal, and S. Rahimi, “Senticr: a customized
sentiment analysis tool for code review interactions,” in 2017 32nd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2017, pp. 106–111.

[52] C. D. Egelman, E. Murphy-Hill, E. Kammer, M. M. Hodges, C. Green,
C. Jaspan, and J. Lin, “Predicting developers’ negative feelings about
code review,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, 2020, pp. 174–185.

[53] M. Hasan, A. Iqbal, M. R. U. Islam, A. I. Rahman, and A. Bosu, “Using
a balanced scorecard to identify opportunities to improve code review
effectiveness: An industrial experience report,” Empirical Software En-
gineering, vol. 26, pp. 1–34, 2021.

[54] Y. Hong, C. Tantithamthavorn, P. Thongtanunam, and A. Aleti, “Com-
mentfinder: a simpler, faster, more accurate code review comments
recommendation,” in Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2022, pp. 507–519.

[55] F. Huq, M. Hasan, M. M. A. Haque, S. Mahbub, A. Iqbal, and T. Ahmed,
“Review4repair: Code review aided automatic program repairing,” In-
formation and Software Technology, vol. 143, p. 106765, 2022.

[56] R. Tufano, L. Pascarella, M. Tufano, D. Poshyvanyk, and G. Bavota,
“Towards automating code review activities,” in 43rd IEEE/ACM Inter-
national Conference on Software Engineering, ICSE, 2021, pp. 163–174.

[57] R. Tufano, O. Dabic, A. Mastropaolo, M. Ciniselli, and G. Bavota,
“Code review automation: Strengths and weaknesses of the state of the
art,” IEEE Trans. Software Eng., vol. 50, no. 2, pp. 338–353, 2024.

[58] P. Runeson and C. Wohlin, “An experimental evaluation of an
experience-based capture-recapturemethod in software code inspec-
tions,” Empirical Softw. Engg., 1998.

[59] Y. Tao and S. Kim, “Partitioning composite code changes to facilitate
code review,” in 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories. IEEE, 2015, pp. 180–190.

[60] T. Zhang, M. Song, J. Pinedo, and M. Kim, “Interactive code review
for systematic changes,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 1, 2015, pp. 111–122.

[61] S. Khandelwal, S. K. Sripada, and Y. R. Reddy, “Impact of gamification
on code review process: An experimental study,” in Proceedings of the
10th Innovations in Software Engineering Conference, ser. ISEC ’17,
2017, p. 122–126.

[62] K. Huang, B. Chen, X. Peng, D. Zhou, Y. Wang, Y. Liu, and W. Zhao,
“Cldiff: generating concise linked code differences,” in Proceedings of

the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ser. ASE ’18, 2018, p. 679–690.

[63] Y. Huang, N. Jia, X. Chen, K. Hong, and Z. Zheng, “Salient-class
location: help developers understand code change in code review,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2018, 2018, p. 770–774.

[64] Q. Hanam, A. Mesbah, and R. Holmes, “Aiding code change understand-
ing with semantic change impact analysis,” in 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2019, pp.
202–212.

[65] D. Spadini, G. Çalikli, and A. Bacchelli, “Primers or reminders? the
effects of existing review comments on code review,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
ser. ICSE ’20, 2020, p. 1171–1182.

[66] E. Fregnan, L. Braz, M. D’Ambros, G. Çalıklı, and A. Bacchelli,
“First come first served: the impact of file position on code review,”
in Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2022, 2022, p. 483–494.

https://doi.org/10.1145/3338906.3340449
https://doi.org/10.1145/3377811.3380335
https://doi.org/10.1145/3540250.3549115

	Introduction
	Study Design
	Context Selection
	Participants
	Programs

	Code Review Treatments
	Experimental Setup and Procedure
	Data Analysis

	Results and Discussion
	RQ0: Differences in Reviews Output of Different Treatments
	RQ1: Impact on Quality Issues Found
	RQ2: Impact on Review Time
	RQ3: Impact on Reviewer's Confidence
	Actionable Recommendations

	Threats to Validity
	Related Work
	Code Review Automation
	Controlled Experiments on Code Review

	Conclusion and Future Work
	References

