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THE TRUNCATED UNIVARIATE RATIONAL MOMENT PROBLEM

RAJKAMAL NAILWAL AND ALJAŽ ZALAR

ABSTRACT. Given a closed subset K in R, the rational K–truncated moment problem (K–RTMP)

asks to characterize the existence of a positive Borel measure µ, supported on K , such that a linear

functional L, defined on all rational functions of the form f

q
, where q is a fixed polynomial with all

real zeros of even order and f is any real polynomial of degree at most 2k, is an integration with

respect to µ. The case of a compact set K was solved in [Cha94], but there is no argument that en-

sures that µ vanishes on all real zeros of q. An obvious necessary condition for the solvability of the

K–RTMP is that L is nonnegative on every f satisfying f |K ≥ 0. If L is strictly positive on every

0 6= f |K ≥ 0, we add the missing argument from [Cha94] and also bound the number of atoms in

a minimal representing measure. We show by an example that nonnegativity of L is not sufficient

and add the missing conditions to the solution. We also solve the K–RTMP for unbounded K and

derive the solutions to the strong truncated Hamburger moment problem and the truncated moment

problem on the unit circle as special cases.

1. INTRODUCTION

Let R[x]≤k := {f ∈ R[x] : deg f ≤ k} stand for the set of real univariate polynomials of degree

at most k. Let K ⊆ R be a closed set in R, λ1, . . . , λp distinct real numbers with p ∈ N ∪ {0},

η1, . . . , ηr distinct positive real numbers with r ∈ N ∪ {0}, k0, . . . , kp ∈ N, ℓ1, . . . , ℓr ∈ N,

(1.1) q(x) :=

p∏

j=1

(x− λj)
2kj ·

r∏

j=1

(x2 + ηj)
ℓj ,

2k :=
∑p

j=0 2kj +
∑r

j=1 2ℓj and

(1.2) R(2k) =

{
f

q
: f ∈ R[x]≤2k

}
.

The rational K–truncated moment problem (K–RTMP) asks to characterize the existence of a

positive Borel measure µ, supported on K, such that a linear functional L : R(2k) → R has an

integral representation

(1.3) L(R) =

∫

K

R(x)dµ(x) ∀R ∈ R(2k).

If µ is such a measure, then we call it a K–representing measure (K–rm) for L. The points λj

(resp. ±i
√
ηj) are called real poles (resp. complex poles).
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2 R. NAILWAL AND A. ZALAR

Remark 1.1. An equivalent formulation of the problem [Cha94], more common in the moment

problem literature, is the following. Assume the notation above. Given sequences {γ(j)
i }2kji=0 ⊂ R

where j = 0, . . . , p and kj ∈ N ∪ {0}, and sequences {γ(p+j,s)
i }ℓji=1 where j = 1, . . . , r, s = 0, 1,

and ℓj ∈ N ∪ {0}, characterize the existence of a positive Borel measure µ, supported on K, such

that

γ
(0)
i =

∫

K

xidµ(x), i = 0, . . . , 2k0,

γ
(j)
i =

∫

K

1

(x− λj)i
dµ(x), j = 1, . . . , p, i = 1, . . . , 2kj,

γ
(p+j,0)
i =

∫

K

1

(x2 + ηj)i
dµ(x), j = 1, . . . , r, i = 1, . . . , ℓj,

γ
(p+j,1)
i =

∫

K

x

(x2 + ηj)i
dµ(x), j = 1, . . . , r, i = 1, . . . , ℓj.

(1.4)

Equivalence of the formulations (1.3) and (1.4) is due to partial fractions decomposition, i.e., every

R ∈ R(2k) can be expressed as

2k0∑

i=0

aix
i +

p∑

j=1

2kj∑

i=1

bi,j
(x− λj)i

+

r∑

j=1

ℓj∑

i=1

ci,j
(x2 + ηj)i

+

r∑

j=1

ℓj∑

i=1

di,jx

(x2 + ηj)i

for some ai, bi,j , ci,j, di,j ∈ R. △

The univariate rational moment problems for the interval (bounded or unbounded), especially

the full version without bounds on the degrees of moments (i.e., kj can be ∞ in (1.4) above)

were studied extensively by Jones, Njåstad and Thron [JTW80, JT81, JNT84, Nja85, NT86, Nja87,

Nja88]. The main approach for their results was a theory of orthogonal and quasi-orthogonal

rational functions. For any compact set K ⊂ R the K–RTMP was studied by Chandler [Cha94]

using duality with positive polynomials. The motivation for this paper was to extend Chandler’s

solution from a compact set K, in which only real poles are allowed, to an arbitrary closed set K ⊆
R, in which complex poles are also present. Apart from the fact that the K–RTMP is interesting

for its own sake, the application of the univariate reduction technique can also provide solutions

to the bivariate truncated moment problem (TMP) on some algebraic curves, where all irreducible

components are rational (see [BZ21, Section 6] for xy = 0; [Zal22a] for y2 = y and y(y − a)(y −
b) = 0, a, b ∈ R \ {0}, a 6= b; [Zal21] for y = x3 and y2 = x3; [Zal22b] for xy = 1 and xy2 = 1;

[Zal23] for y = q(x) and yq(x) = 1, q ∈ R[x]; [YZ24] for y(ay + x2 + y2) = 0, a ∈ R \ {0}, and

y(x− y2) = 0).

We also mention that versions of the multidimensional rational moment problem for linear func-

tionals on localizations of the polynomial algebra have been investigated in [PV99,CMN11,Sch16].

A technique used in [Cha94] to solve the K–RTMP is to convert the problem into the usual

TMP, which concerns the integral representability of linear functionals on univariate polynomials

of bounded degree with respect to the measure supported on K. This simplifies the problem since

univariate TMPs have been widely studied in the literature [Akh65, KN77, Ioh82, CF91], but one

must additionally characterize when the measure vanishes on all real poles of the K–RTMP. This

detail is not taken care of in [Cha94]. Our first main result closes this gap for strictly positive

functionals on K, i.e., functionals that are positive on every nonzero polynomial nonnegative on

K. We extend the result to arbitrary closed sets K, where complex poles are allowed. We formulate

the result in terms of the corresponding functional on polynomials, where at most countable closed
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set in K is to be avoided by the measure. The proof is done by applying a more general result

of di Dio and Schmüdgen (see [DS18, Proposition 2] or [Sch17, Theorem 1.30]), which holds

for strictly positive linear functionals on arbitrary finite-dimensional subspaces of the real vector

space of continuous functions on a locally compact Hausdorff space. [DS18, Corollary 6] also

provides an upper bound for the Caratheodory number, i.e., the number of atoms needed in a

minimal representing measure. Moreover, we provide a constructive proof in the case K is a closed

semialgebraic set, which also improves the upper bound on the Caratheodory number obtained

by applying [DS18, Corollary 6]. In the proof, we essentially use a result of Blekherman et al

[BKRSV20], which characterizes minimal quadrature rules for linear functionals on univariate

polynomials of bounded degree. Our second main result solves the K–RTMP for arbitrary closed

K for positive functionals that are not strictly positive, i.e., the functional can vanish on some

nonzero polynomial that is nonnegative on K. We construct a counterexample to the solution

[Cha94, Proposition 2] for compact K, which misses additional conditions except K–positivity of

the functional. Finally, we apply our main results to obtain a solution to the strong Hamburger

TMP [Zal22b] and the TMP on the unit circle [CF02].

1.1. Reader’s guide. The paper is structured as follows. In Section 2 we introduce some further

notation, show the correspondence between the K–RTMP and the corresponding univariate K–

TMP, recall the result characterizing positive polynomials on K, the notions of localizing Hankel

matrices, the solution to the R–TMP by Curto and Fialkow, and the characterization of minimal

quadrature formulas in the nonsingular case by Blekherman et al. In Section 3 we solve the K–

TMP coming from the K–RTMP both in the nonsingular case (see Theorem 3.1) and in the singular

case (see Theorem 3.2). Example 3.4 shows that K–positivity of the functional is not sufficient for

the existence of a K–rm that avoids real poles. Finally, in Section 4 we derive the solutions to the

strong Hamburger TMP (see Corollary 4.1) and the TMP on the unit circle (see Theorem 4.4), and

give an example (see Example 4.6), which demonstrates the construction of the measure as in the

proof of Theorem 3.1.

2. PRELIMINARIES

We write R
n×m for the set of n × m real matrices. For a matrix M we call the linear span of

its columns a column space and denote it by C(M). The set of real symmetric matrices of size n
will be denoted by Sn. For a matrix A ∈ Sn the notation A ≻ 0 (resp. A � 0) means A is positive

definite (pd) (resp. positive semidefinite (psd)).

For a polynomial f ∈ R[x] we denote by Z(f) := {x ∈ R : f(x) = 0} its set of zeros.

2.1. Representing measures. Assume the notation from §1. For L : R(2k) → R we define a

corresponding linear functional L on R[x]≤2k by

(2.1) L : R[x]≤2k → R, L(f) := L(fq−1).

We call a positive Borel measure µ, supported on a closed set K ⊆ R, a K–representing measure

(K–rm) for L if and only if

L(f) =

∫

K

fdµ ∀f ∈ R[x]≤2k.

For x ∈ R, δx stands for the Dirac measure supported on x. By a finitely atomic positive

measure on R we mean a measure of the form µ =
∑ℓ

j=0 ρjδxj
, where ℓ ∈ N, each ρj > 0

and each xj ∈ R. The points xj are called atoms of the measure µ and the constants ρj the

corresponding densities.
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Let Λ ⊆ K be a set. We write

ML,K := {µ : µ is a K–representing measure for L},
ML,K := {µ : µ is a K–representing measure for L},

ML,K,Λ := {µ : µ is a K–representing measure for L with µ(Λ) = 0}.
We denote by M(fa)

L,K , M(fa)
L,K and M(fa)

L,K,Λ the subsets of ML,K , ML,K and ML,K,Λ, respectively,

containing all finitely atomic measures.

Let µ be a Borel measure supported on K. Let f be a µ-integrable functions. We denote by f ·µ
a Borel measure on K, defined by

(2.2) (f · µ)(E) :=

∫

E

fdµ

for every Borel set E ⊆ K.

Proposition 2.1. Let q be as in (1.1). The following statements hold:

(1) ML,K 6= ∅ if and only if ML,K,∪p
j=1{λj} 6= ∅.

(2) M(fa)
L,K 6= ∅ if and only if M(fa)

L,K,∪p
j=1{λj}

6= ∅.

(3) A map

Φ : ML,K,∪p
j=1{λj} → ML,K, µ 7→ q · µ,

is a bijection. The inverse of Φ is Φ−1(µ) = 1
q
· µ.

Proof. Note that (1) and (2) follow from (3). So it suffices to prove (3).

Let µ ∈ ML,K,∪p
j=1{λj} and f

q
∈ R(2k). We have

L
(f
q

)
(2.1)
= L(f) =

∫

K

fdµ =

∫

K

f

q
qdµ =

∫

K

f

q
d(q · µ),

where the third equality is well–defined since µ(Z(q)) = 0. Hence, q · µ ∈ ML,K .

Conversely, let µ ∈ ML,K and f ∈ R[x]≤2k. We have

L(f)
(2.1)
= L

(f
q

)
=

∫

K

f

q
dµ =

∫

K

f
1

q
dµ =

∫

K

fd
(1
q
· µ

)
.

Hence, 1
q
· µ ∈ ML,K,∪p

j=1{λj}. Clearly, µ({λj}) = 0 for each j otherwise
∫
K

1
q
dµ was not well–

defined. �

Remark 2.2. In [Cha94, p. 75] it is claimed that each µ ∈ ML,K yields q · µ ∈ ML,K . This is

wrong since µ({λj}) could be nonzero in some λj . The K–RTMP in [Cha94] for compact K is

solved under this claim. In the next section we solve the K–RTMP for any closed set K using

correct correspondence between measures for L and L. △

2.2. Positive polynomials. We denote by

Pos(K) := {f ∈ R[x] : f(x) ≥ 0 for all x ∈ K}
the set of all polynomials, nonnegative on K. Let

Pos≤2k(K) := Pos(K) ∩ R[x]≤2k.

We denote by
∑

R[x]2 (resp.
∑

R[x]2≤k) the set of all finite sums of squares p2 of polynomials,

where p ∈ R[x] (resp. p ∈ R[x]≤k).

We call a linear functional L : R[x]≤2k → R:
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(1) K–positive, if L(f) ≥ 0 for every f ∈ Pos≤2k(K).
(2) strictly K–positive, if it is positive and L(f) > 0 for every 0 6= f ∈ Pos≤2k(K).
(3) square–positive, if L(g) ≥ 0 for every g ∈ ∑

R[x]2≤k.

(4) singular, if L(g2) = 0 for some 0 6= g such that g2 ∈ R[x]≤2k.

2.3. Preordering and the natural description. Given a finite set S := {g1, g2, . . . , gn} or a count-

able set S := {gi}∞i=1 in R[x] and e := (e1, . . . , em) ∈ {0, 1}m, let ge stand for ge11 ge22 · · · gemm . Let

E :=

{ {0, 1}n, if S has n elements,

∪∞
j=1{0, 1}j, if S is infinite,

and

Sπ :=
{
ge : e ∈ E

}
.

The preordering generated by S in R[x] is defined by

TS :=
{ ∑

s∈Sπ

σss : σs ∈
∑

R[x]2 for each s and σs 6= 0 for finitely many s
}
.

For d ∈ N ∪ {0} we define the set

T
(d)
S :=

{ ∑

s∈Sπ

σss : σs ∈
∑

R[x]2 and deg(σss) ≤ d for each s, σs 6= 0 for finitely many s
}
.

We call T
(d)
S the degree d truncation of the preordering TS .

A set SK ⊂ R[x] is the natural description of the closed set K, if it satisfies the following

conditions:

(a) If K has the least element a ∈ R, then x− a ∈ SK .

(b) If K has the greatest element b ∈ R, then b− x ∈ SK .

(c) For every a, b ∈ K, a 6= b, if (a, b) ∩K = ∅, then (x− a)(x− b) ∈ SK .

(d) These are the only elements of SK .

Remark 2.3. The definition of the natural description coincides with the one given in [KM02, 2.3

Notes.(2)] only that we allow any closed set K, not necessarily a semialgebraic one, i.e., a union of

finitely many closed intervals. △

For a closed set K ⊆ R we write I(K) to denote the smallest closed interval containing K. Note

that I(K) \K is of the form

I(K) \K = ∪i∈Γ(ai, bi),

where {(ai, bi) : i ∈ Γ} is a family of pairwise disjoint bounded intervals and the index set Γ is at

most countable. For J ⊆ Γ we define the set

KJ = I(K) \ ∪j∈J(aj , bj)

Proposition 2.4. Let K ⊆ R be a closed set and I(K), ai, bi,Γ, KJ defined as above. Let Ω be a

set of all finite subsets of Γ. The following statements hold:

(1) Pos≤d(K) = ∪
J∈Ω

Pos≤d(KJ).

(2) T
(d)
SK

= ∪
J∈Ω

T
(d)
SKJ

.

(3) Pos≤d(K) = T
(d)
SK

.
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Proof. First we prove (1). Since K ⊆ KJ for every J ∈ Ω, the inclusion (⊇) is trivial. To prove

the inclusion (⊆) take p ∈ Pos≤d(K). Note that p is nonnegative on all but at most finitely many

intervals (ai1 , bi1), . . . , (aij , bij ), where iℓ ∈ Γ for each iℓ. This follows from the observation that if

p is negative in a point from (ai, bi), then it should have a zero on (ai, bi) in order to be nonnegative

on K. Since the degree of p is at most d, there are at most d disjoint intervals (ai, bi), where p could

have a zero. But then p ∈ Pos≤d(KJ) for J = {i1, . . . , ij}.

(2) follows by noticing that Sπ
K = ∪

J∈Ω
Sπ
KJ

.

It remains to prove (3). By [KMS05, Theorem 4.1], we have that T
(d)
SKJ

= Pos≤d(KJ) for every

J ∈ Ω. This fact, together with (1) and (2), implies (3). �

2.4. Localizing Hankel matrices. Let γ ≡ γ(2k) = (γ0, γ1, . . . , γ2k) ∈ R
2k+1 be a sequence. For

ℓ ∈ N, ℓ ≤ k, the Hankel matrix H1,γ(2ℓ) of size (ℓ+ 1)× (ℓ+ 1), with columns and rows indexed

by the monomials 1, X, . . . , Xℓ, is equal to

(2.3) H1,γ(2ℓ) := (γi+j)
ℓ
i,j=0 =




1 X X2 · · · Xℓ

1 γ0 γ1 γ2 · · · γℓ

X γ1 γ2 . .
.

. .
.

γℓ+1

X2 γ2 . .
.

. .
.

. .
. ...

...
... . .

.
. .
.

. .
.

γ2ℓ−1

Xℓ γℓ γℓ+1 · · · γ2ℓ−1 γ2ℓ




.

Convention: If γ ≡ γ(2ℓ+1) = (γ0, γ1, . . . , γ2ℓ+1) ∈ R
2ℓ+2 is of even length, then we define

H1,γ := H1,γ(2ℓ) , i.e., we omit the last coordinate.

For p(x) =
∑ℓ′

i=0 aix
i ∈ R[x], ℓ′ ≤ ℓ, we define the evaluation p(X) on the columns of the

matrix H1,γ(2ℓ) by replacing each capitalized monomial X i by the column of H1,γ(2ℓ) , indexed by

this monomial. Then p(X) is a vector from the linear span of the columns of H1,γ(2ℓ) . If this vector

is the zero one, then we say p is a column relation of H1,γ(2ℓ) .

Let H1,γ(2k) be psd and singular. Let ℓ ∈ N be the smallest number such that H1,γ(2ℓ) is singular.

Then the only column relation of H1,γ(2ℓ) is of the form Xℓ = a01 + a1X + . . . + aℓ−1X
ℓ−1 for

some ai ∈ R. The polynomial

pγ(x) = xℓ −
ℓ−1∑

i=0

aix
i ∈ R[x]≤ℓ

is called the generating polynomial of γ. Let

qi,γ(x) := xi · pγ(x), i ∈ N.

By [CF91, Theorem 2.4], all polynomials q1,γ, q2,γ , . . . , qk−deg pγ−1,γ are column relations of H1,γ(2k) ,

while qk−deg pγ ,γ being a column relation or not determines the existence of a R–rm for γ (see The-

orem 2.6 below).

The Riesz functional Lγ : R[x]≤2k → R of γ is defined by Lγ(x
i) := γi for each i. Let f ∈

R[x]≤2k. An f–localizing Hankel matrix Hf,γ of γ is a real square matrix of size s(k, f)×s(k, f),

where s(k, f) = k + 1− ⌈deg f
2

⌉, with the (i, j)–th entry equal to Lγ(fx
i+j−2). We write

f · γ := (γ
(f)
0 , γ

(f)
1 , . . . , γ

(f)
2k−deg f ), γ

(f)
i := Lγ(fx

i).
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Note that Hf,γ = H1,f ·γ . We denote the Riesz functional of f · γ by Lf,γ and call it an f–localizing

Riesz functional of γ.

For a functional L : R[x]≤2k → R the notation Lf stands for Lf,γ , where γ is a sequence

belonging to L, i.e., γi := L(xi) for each i.

Proposition 2.5. The following statements are equivalent:

(1) Lf,γ is square–positive.

(2) Lf,γ(g) ≥ 0 for every g ∈ ∑
R[x]2 such that deg(g) ≤ 2k − deg f .

(3) Hf,γ is positive semidefinite.

Proof. The equivalence (1) ⇔ (2) is clear. The equivalence (1) ⇔ (3) follows by the equality

Lf,γ(g
2) = (ĝ)THf,γ ĝ, where ĝ is a vector of coefficients of g in the order 1, x, . . . , xk−⌈deg f

2
⌉. �

2.5. Solution to the R–TMP. Let x1, . . . , xr ∈ R. We denote by V(x1,...,xr) := (xi−1
j )i,j ∈ R

r×r

the Vandermondo matrix. The following is a solution to the R–TMP.

Theorem 2.6 ([CF91, Theorems 3.9 and 3.10]). Let k ∈ N, γ = (γ0, . . . , γ2k) ∈ R
2k+1 with γ0 > 0

and Lγ : R[x]≤2k → R the Riesz functional of γ. The following statements are equivalent:

(1) MLγ ,R 6= ∅.

(2) There exist γ2k+1, γ2k+2 ∈ R such that H1,γ(2k+2) is positive semidefinite.

(3) One of the following statements holds:

(a) H1,γ(2k) is positive definite.

(b) H1,γ(2k) is positive semidefinite and if pγ is the generating polynomial of γ, then the

polynomial xk−deg pγ · pγ(x) is a column relation of H1,γ(2k) .

(c) Lγ is square–positive and if 0 6= p ∈ R[x] is a polynomial of the lowest degree such

that p2 ∈ kerLγ , then x2k−2 deg p · p2 ∈ kerLγ .

Moreover, if MLγ ,R 6= ∅, then:

(i) If H1,γ(2k) is singular, then MLγ ,R =
{∑r

i=1 ρiδxi

}
, where x1, . . . , xr are the roots of pγ

and (ρi)
r
i=0 = V −1

(x1,...,xr)
(γi)

r−1
i=0 . In this case there are unique γ2k+1, γ2k+2 ∈ R such that

H1,γ(2k+2) is positive semidefinite.

(ii) If H1,γ(2k) is invertible, then there are infinitely many (k + 1)–atomic measures in MLγ ,R.

They are obtained by choosing γ2k+1 ∈ R arbitrarily, defining

γ2k+2 :=
(
(γi)

2k+1
i=k+1

)T
(H1,γ(2k))−1(γi)

2k+1
i=k+1

and using (i) for γ̃ := (γ0, . . . , γ2k+1, γ2k+2) ∈ R
2k+3.

The following result characterizes the existence of a (k + 1)–atomic measure for a sequence

γ ∈ R
2k+1 with H1,γ ≻ 0, having one prescribed atom in the support.

Theorem 2.7 ([BKRSV20, Theorem 4]). Let k ∈ N and γ = (γ0, . . . , γ2k) ∈ R
2k+1 be a sequence

such that H1,γ is positive definite. The following statements are equivalent:

(1) There exists a (k+1)–atomic R–representing measure for γ with one of the atoms equal to

x1.

(2) x1H1,γ(2k−2) −Hx,γ is invertible.

Moreover, if the equivalent statements (1) and (2) hold, then the other k atoms except x1 are

precisely the solutions to g(x) = 0, where

g(x) := detG(x1,x), G(x1,x2) = x1x2H1,γ(2k−2) − (x1 + x2)Hx,γ +Hx2,γ.



8 R. NAILWAL AND A. ZALAR

3. SOLUTION TO THE K–RTMP

Let K ⊆ R be a closed set, Γ ⊆ R at most countable closed set and L : R[x]≤2k → R a linear

functional. In this section we characterize when L has a K–rm vanishing on Λ, i.e., ML,K,Λ 6= ∅.

By Proposition 2.1, this in particular solves the K–RTMP for L on R(2k), defined by (1.2). The

case of nonsingular L is covered by Theorem 3.1, while the case of singular L by Theorem 3.2.

Example 3.4 shows that the solution [Cha94, Proposition 2] for a compact set K is missing addi-

tional conditions from Theorem 3.2 other than K–positivity of L.

We use ∂K and int(K) to denote the topological boundary and the interior of the set K, respec-

tively. Let iso(K) be the set of isolated points of K. We use card(V ) to denote the cardinality of

the set V . A closed set K ⊆ R is semialgebraic, if it is of the form

K := {x ∈ R : p1(x) ≥ 0, . . . , pm(x) ≥ 0}
for some p1, . . . , pm ∈ R[x].

By Proposition 2.1, solving K–RTMP, defined in §1, is equivalent to solving the K–TMP for

L, defined by (2.1), where the measure must vanish on all real poles. In this section we solve the

K–TMP for L, where the measure has to vanish on a given closed set, which is at most countable.

The following is the solution to the nonsingular case of the K–TMP for L.

Theorem 3.1 (Nonsingular case). Let K ⊆ R be a closed set and Λ ⊂ R be a finite or a countable

closed set such that Λ∩ iso(K) = ∅. Let L : R[x]≤2k → R be a linear functional and L|
T

(2k)
SK

\{0}
>

0, where SK is the natural description of K. Then there exist a r–atomic measure µ ∈ M(fa)
L,K,Λ

with k + 1 ≤ r ≤ 2k + 1.

Moreover, assume that K is closed and semialgebraic and write card(∂K) = 2ℓ1 + ℓ2, ℓ1 ∈
N ∪ {0}, ℓ2 ∈ {0, 1}. Then r is at most:

i) k + 1, if K ∈ {R, [a,∞), (−∞, a]} for some a ∈ R.

ii) k + ℓ1 + 1, if K is bounded and has a non-empty interior.

iii) k + ℓ1 + ℓ2 + 1, if K is bounded only from one side.

iv) k + ℓ1 + 2, if K is unbounded from both sides.

Proof. Since Λ ∩ iso(K) = ∅, it follows that Pos≤2k(K) = Pos≤2k(K \ Λ). By Proposition 2.4,

the assumption L|
T

(2k)
SK

\{0}
> 0 implies that L|Pos≤2k(K)\{0} > 0. Since Λ is closed, K \ Λ is locally

compact Hausdorff space. By [DS18, Proposition 2 and Corollary 6] (or [Sch17, Theorem 1.30]),

L has a r–atomic K–rm µ such that µ(Λ) = 0 and r ∈ {k + 1, . . . , 2k + 1}. This proves the first

part of the theorem.

Let us prove the moreover part. Assume first that the assumptions of ii) hold, i.e., K is bounded,

closed, semialgebraic set with a non-empty interior.

Claim 1: It suffices to prove ii) under the assumption Λ ∩ ∂K = ∅.

Proof of Claim 1. Let K1 := ∂K \ iso(K). Since Pos≤2k(K) = Pos≤2k(K \ K1), there is

µ ∈ M(fa)
L,K,Λ∪K1

by the first part of the theorem, in particular supp(µ) ⊆ K \ (Λ ∪ K1). Let
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a := min(K), b := max(K). Note that

K = [a0, a1] ∪ [a2, a3] ∪ · · · ∪ [a2m−2, a2m−1] ∪ [a2m, a2m+1],

where m ∈ N ∪ {0}, a0 := a, a2m+1 := b and a2i ≤ a2i+1 < a2i+2 for i = 0, . . . , m − 1 and

a2m ≤ a2m+1. We possibly shorten each interval [a2i, a2i+1] to [ã2i, ã2i+1] ⊆ [a2i, a2i+1] such that

K̃ := [ã0, ã1] ∪ [ã2, ã3] ∪ · · · ∪ [ã2m−2, ã2m−1] ∪ [ã2m, ã2m+1]

has the following properties:

(1) K̃ contains all atoms of µ,

(2) supp(µ) ∩ int(K) = supp(µ) ∩ int(K̃)

(3) supp(µ) ∩ iso(K) = supp(µ) ∩ iso(K̃),

(4) Λ ∩ ∂K̃ = ∅,

(5) card(∂K̃) = card(∂K).

To prove Claim 1 it only remains to prove that L|Pos≤2k(K̃)\{0} > 0. Since K̃ contains all atoms

of µ, it follows that L|Pos≤2k(K̃)\{0} ≥ 0. Assume that there exists p ∈ Pos≤2k(K̃) \ {0} such that

L(p) = 0. Let p0 be obtained from p by moving each zero of p on [ai, ãi] or [ãi, ai] to ai together

with multiplicity, i.e., every factor (x − α)t of p where α ∈ (ai, ãi] or α ∈ [ãi, ai) and t is largest

possible, is replaced by (x − ai)
t. By construction, 0 6= p0 ∈ Pos≤2k(K) and L(p0) = 0 (since

supp(µ) ⊆ Z(p0)), which is a contradiction. This proves Claim 1. �

By Claim 1, we may assume that Λ ∩ ∂K = ∅. Let Sπ
K,odd and Sπ

K,even stand for all f ∈ Sπ
K of

odd and even degree, respectively. Denoting by ⊕ the direct sum of matrices, we define a linear

matrix function

L(x, y) := L1(x)⊕ L2(x, y),

where

L1(x) :=
⊕

f∈Sπ
K,odd

Hf,(γ,x) and L2(x, y) :=
⊕

f∈Sπ
K,even

Hf,(γ,x,y).

Let us write

S≻
L :=

{
(x, y) ∈ R

2 : L(x, y) ≻ 0
}

(resp. S�
L :=

{
(x, y) ∈ R

2 : L(x, y) � 0
}
).

Let prx : R2 → R be the projection to the first coordinate, i.e., prx(x, y) = x.

Claim 2: prx
(
S�
L

)
is an interval with a non-empty interior.

Proof of Claim 2. Define γ := (γ0, γ1, . . . , γ2k), where γi = L(xi) for each i. By the first part of

the proof we have that M(fa)
L,K,Λ 6= ∅. Hence, γ has an infinite extension

(3.1) (γ, γ2k+1, γ2k+2, . . .)

generated by moments of some measure µ ∈ M(fa)
L,K,Λ. We have that

Hf,(γ,γ2k+1,...γ2k+2ℓ) = H1,f ·(γ,γ2k+1,...γ2k+2ℓ) � 0

for each f ∈ Sπ
K and every ℓ ∈ N. In particular, L(γ2k+1, γ2k+2) � 0. Hence, the sets S�

L and

prx
(
S�
L

)
are non-empty.
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Since prx
(
S�
L

)
is a projection of S�

L , it is convex and hence an interval. It remains to prove that

prx
(
S�
L

)
is not a singleton. Assume on the contrary that

(3.2) prx
(
S�
L

)
= {x0} for some x0 ∈ R.

Then γ2k+1 in (3.1) is uniquely determined and equal to x0. We separate two cases according to the

existence of f ∈ Sπ
K,odd such that Hf,(γ,x0) is singular.

Case 1: There exists f ∈ Sπ
K,odd such that Hf,(γ,x0) = H1,f ·(γ,x0) is singular.

It follows by Theorem 2.6 that each γ2k+i in (3.1) is uniquely determined by γ. But then

(3.3) card(ML,K,Λ) = card(M(fa)
L,K,Λ) = 1.

For t ∈ K \ Λ let evt : R[x] → R be a functional defined on each xi by evt(x
i) := ti. Due

to finite dimensionality there exists ǫt > 0 such that (L − ǫt evt)|T (2k)
SK

\{0}
> 0. It follows that

M(fa)
L−ǫt evt,K,Λ 6= ∅ by the first part of the theorem. Hence, any t ∈ K \ Λ is in the support of some

measure from M(fa)
L,K,Λ. Therefore card(ML,K,Λ) = ∞, which is in contradiction with (3.3). So in

this case (3.2) cannot hold.

Case 2: For all f ∈ Sπ
K,odd we have that Hf,(γ,x0) ≻ 0.

Let us write

S≻
L2

:=
{
(x, y) ∈ R

2 : L2(x, y) ≻ 0
}

(resp. S�
L2

:=
{
(x, y) ∈ R

2 : L2(x, y) � 0
}
).

Note that

(x0, y) ∈ S�
L2

⇔ Hf,(γ,x0,y) � 0 for all f ∈ Sπ
K,even,

(x0, y) ∈ S≻
L2

⇔ Hf,(γ,x0,y) ≻ 0 for all f ∈ Sπ
K,even.

By the form of Hf,(γ,x0,y), the solution set of Hf,(γ,x0,y) ≻ 0 is an open interval of the form (a,∞)
or (−∞, a) for some a ∈ R and the solution set of Hf,(γ,x0,y) � 0 is then either [a,∞) or (−∞, a].

Therefore S�
L2

:= {(x0, y0)} is either a singleton or pry
(
S�
L2

)
:= [y1, y2] is an interval with a non-

empty interior, where pry : R2 → R is the projection to the second coordinate, i.e., pry(x, y) = y.

In the first case there exists f ∈ Sπ
K,even such that Hf,(γ,x0,y0) is singular and by the same reasoning

as in Case 1 above, the equalities (3.3) should hold, which leads to a contradiction. In the second

case pry
(
S≻
L2

)
= (y1, y2) and there is (x0, y) ∈ S≻

L2
. But then (x1, y) ∈ S≻

L for some x1 close

enough to (x0, y), which is a contradiction with (3.2).

This proves the Claim 2. �

Fix f ∈ Sπ
K,even and x0 from the interior of prx

(
S�
L

)
. Let yf,x0 ∈ R be such that Hf,(γ,x0,yf,x0 )

�
0 and Hf,(γ,x0,yf,x0)

6≻ 0. Namely, yf,x0 is uniquely determined by the equality

(3.4) L̃(fx2k+2−deg f) = vT (Hf,γ)
−1v

as the moment of x2k+2, where

v =
(
Lf,(γ,x0)(x

i)
)2k+1−deg f

i=k+1−deg f/2

and L̃ : R[x]≤2k+2 → R is the extension of L(γ,x0) : R[x]≤2k+1 → R. By Theorem 2.7, the gen-

erating polynomial pf ·(γ,x0,yf,x0)
has one of λ ∈ Λ as its root only for countably many choices x0.
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Thus, as f runs over the set Sπ
K only countably many x0 are such that the generating polynomial

pf ·(γ,x0,yf,x0)
has one of λ ∈ Λ as a root. So there exists x̃ in the interior of prx

(
S�
L

)
such that none

of the generating polynomials pf ·(γ,x̃,yf,x̃) has some λ ∈ Λ as a root. Choosing this x̃ and the small-

est yf,x̃ over all f ∈ Sπ
even gives γ̃ = (γ, x̃, yf,x̃) such that Lγ̃ is K–positive. Moreover, if there are

more choices of f , we choose one of the lowest degree. By [Tch57, Théorème II, p. 129], we have

that MLγ̃ ,K 6= ∅. Since Lf,γ̃ is singular, Theorem 2.6 implies that the K–rm ν for Lf ·γ̃ is unique

and supported on Z(pf ·(γ,x̃,yf,x̃)). Since for every µ ∈ MLγ̃ ,K we have that f · µ ∈ MLf ·γ̃ ,K (see

(2.2)), it follows that f ·µ = ν. Hence, supp(µ) ⊆ Z(f)∪Z(pf ·(γ,x̃,yf,x̃)). If Z(f) 6⊆ supp(µ), then

there exists f̃ ∈ Sπ of lower degree than f , such that Lf̃ ,γ̃ is also singular (since f̃ · µ ∈ ML
f̃·γ̃,K

).

But this is a contradiction with the choice of f , whence supp(µ) = Z(f) ∪ Z(pf ·(γ,x̃,yf,x̃)). Note

that the size of this union is deg(f)+deg pf ·(γ,x̃,yf,x̃), which is at most 2ℓ1+(2k−2ℓ1
2

+1) = k+ℓ1+1.

This proves ii) of the moreover part.

Let us now prove i) of the moreover part. Note that ℓ1 = 0, Sπ
K,even = {1} and

Sπ
K,odd =






∅, if K = R,
x− a, if K = [a,∞),
a− x, if K = (−∞, a].

The proof is now verbatim the same to the proof of part ii).

Next we prove iii) of the moreover part. Assume that K is bounded from above and b :=

max(K). By the first part of the theorem there exists µ ∈ M(fa)
L,K,Λ. Then the support of µ is

contained in [a, b] for some a ∈ int(K) \ Λ and a /∈ supp(µ). Let K̃ := K ∩ [a, b]. Note

that ∂K̃ ⊆ ∂K ∪ {a}, card(∂K̃) ≤ 2ℓ1 + ℓ2 + 1 and L is strictly K̃–positive. Indeed, since

supp(µ) ⊆ K̃, L is clearly K̃–positive. It remains to show that it is strictly K̃–positive. If L(p) = 0
for some 0 6= p|K̃ ≥ 0, then p = p1p2 with supp(µ) ⊆ Z(p1) ⊂ (a,∞) and Z(p2) ⊆ (−∞, a].
From Z(p1) ⊂ (a,∞) it follows that p1 has a constant sign on (−∞, a] and from Z(p2) ⊆ (−∞, a]

it follows that p2 has a constant sign on (a,∞). From p|K̃ ≥ 0 and a constant sign of p2 on K̃, it

follows that p1 has constant sign on K̃. Multiplying p1 with −1 if necessary we can assume that

p1|K̃ ≥ 0. Also L(p1) = 0, because supp(µ) ⊆ Z(p1). Since p1 does not change sign on both

K̃ and on (−∞, a], a ∈ K̃ and p1(a) 6= 0, it follows that p1 does not change the sign on K. But

then L(p1) = 0 for 0 6= p1|K ≥ 0 and L is not strictly K–positive, which is a contradiction. By

ii), part iii) for K bounded from above follows. If K is bounded from below, the proof is analogous.

Finally we prove iv) of the moreover part. The proof is analogous to the proof of iii) above only

that b 6= max(K) but merely a, b ∈ int(K) \ (Λ ∪ supp(µ)), and hence card(∂K̃) ≤ 2(ℓ1 + 1) +
ℓ2. �

The following is the solution to the singular case of the K–TMP for L.

Theorem 3.2 (Singular case). Let K ⊆ R be a closed set and Λ ⊂ R be a finite or a countable

closed set such that Λ∩ iso(K) = ∅. Let L : R[x]≤2k → R be a linear functional with L|
T

(2k)
SK

\{0}
6>

0, where SK is the natural description of K. The following statements are equivalent:

(1) ML,K,Λ 6= ∅.

(2) M(fa)
L,K,Λ 6= ∅.
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(3) The following statements hold:

(a) L|
T

(2k)
SK

\{0}
≥ 0.

(b) If:

(i) f0 ∈ Sπ is a polynomial of the lowest degree in Sπ such that Lf0 is singular,

(ii) 0 6= pf0 is a polynomial of the lowest degree such that p2f0 ∈ kerLf0 ,

then

(3.5) Z(f0pf0) ∩ Λ = ∅.
(c) If K is unbounded, then

(3.6) xdp2f0 ∈ kerLf0 ,

where f0, pf0 are as in (3b) and d := 2k − deg(f0p
2
f0
).

Moreover, if M(fa)
L,K,Λ 6= ∅, then the representing measure µ for L is unique and

supp(µ) = Z(f0) ∪ Z(pf0).

Proof. The nontrivial part is to prove (3) ⇒ (2). Let K1 = K \ Λ. Since Λ ∩ iso(K) = ∅,

it follows that Pos(K) = Pos(K1). Since L|
T

(2k)
SK

≥ 0, it follows by [CF08, Theorem 2.4] that

L1 := L|R[x]≤2k−1
has a K–rm. We will prove that card(ML1,K) = 1. Let µ ∈ ML1,K . Since by

assumption 0 = Lf0(p
2
f0
), it follows by K–positivity of L that

0 = Lf0(pf0) = (L1)f0(pf0) =

∫

K

f0pf0dµ,

whence supp(µ) ⊆ Z(f0) ∪ Z(pf0). If supp(µ) 6= Z(f0) ∪ Z(pf0), then either Z(f0) 6⊆ supp(µ)
or Z(pf0) 6⊆ supp(µ). In the first case there exists f1 ∈ Sπ of lower degree than f0, such that

Lf1 is also singular, which is a contradiction. In the second case there exists p of lower degree

than pf0 , such that Lf0(p
2) = 0, which is a contradiction. Hence, supp(µ) = Z(f0) ∪ Z(pf0) and

µ ∈ ML1,K is uniquely determined. By (3.5), it follows that µ ∈ M(fa)
L1,K,Λ. We separate 3 cases

according to K and deg f0.

• If K is compact, then, by [Tch57, Théorème II, p. 129], L has a K–rm and hence µ must

also represents L(x2k).

• If K is unbounded, then (3.6) ensures L(x2k) is also a moment of µ, whence µ ∈ M(fa)
L,K,Λ.

This concludes the proof of the theorem. �

Remark 3.3. (1) A special case of Theorems 3.1 and 3.2 for compact K with finite Λ, which

comes from L (see (1.3)) with only real poles allowed and k0 = 0, is [Cha94, Proposition

2]. In states that ML,K,Λ 6= ∅ is equivalent to L|
T

(2k)
SK

≥ 0. However, by Example 3.4 below

this equivalence does not hold. In the proof of [Cha94, Proposition 2] it is only proved that

L being K–positive implies that ML,K 6= ∅. But by Proposition 2.1 above more is needed,

namely ML,K,Λ 6= ∅.

(2) If K is unbounded and (3a) and (3b) of Theorem 3.2 are satisfied, then L|R[x]≤2k−1
has a

K–rm µ vanishing on Λ, while L(x2k) ≥
∫
K
x2kdµ. Condition (3c) characterizes when the

equality occurs in this inequality. △

The following example demonstrates that K–positivity of the functional L is not sufficient for

the existence of a rm in the K–RTMP. The Mathematica file with numerical computations can be

found on the link https://github.com/ZalarA/RTMP_univariate.

https://github.com/ZalarA/RTMP_univariate
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Example 3.4. Let K = [0, 1], λ1 = 0, λ2 = 1, R(4) =
{

f
x2(x−1)2

: f ∈ R[x]≤4

}
and L : R(4) → R

a linear functional defined by

L(1) = γ
(0)
0 :=

1

48
, L

(
1

x

)
= γ

(1)
1 :=

1

24
, L

(
1

x2

)
= γ

(1)
2 =

5

12
,

L
(

1

x− 1

)
= γ

(2)
1 := − 1

24
, L

(
1

(x− 1)2

)
= γ

(2)
2 :=

5

12
.

The corresponding functional L : R[x]≤4 → R is defined by

L(1) = 1, L(x) =
1

2
, L(x2) =

5

12
, L(x3) =

3

8
, L(x4) =

17

48
.

The localizing Hankel matrices determining whether L|
T

(4)
S[0,1]

≥ 0 holds are

H1,γ =




1 1
2

5
12

1
2

5
12

3
8

5
12

3
8

17
48


 , Hx,γ =

( 1
2

5
12

5
12

3
8

)
, H1−x,γ =

( 1
2

1
12

1
12

1
24

)
,

Hx(1−x),γ =

( 1
12

1
24

1
24

1
48

)
.

They are all psd with the eigenvalues ≈ 1.54, 0.22, 0.007 for H1,γ , ≈ 0.86, 0.016 for Hx,γ , ≈
0.51, 0.027 for H1−x,γ , and 5

48
, 0 for Hx(1−x),γ . Note that p(x) = x − 1

2
is a column relation

of Hx(1−x),γ and thus the unique measure for L consists of the atoms 0, 1, 1
2

all with densities 1
3
.

Hence, L does not have a K–rm, even though L is K–positive.

4. EXAMPLES

In this section we derive the solution to the strong Hamburger TMP (Corollary 4.1) and the TMP

on the unit circle (see Theorem 4.4), and give an example demonstrating the construction of the

minimal representing measure as in the proof of Theorem 3.1.

A special case of Theorem 3.2 is the solution to the strong truncated Hamburger moment prob-

lem.

Corollary 4.1 ([Zal22b, Theorem 3.1]). Let L be a linear functional on

R =

{
f

x2k1
: f ∈ R[x]≤2k

}
,

where k ≥ k1. Let L : R[x]≤2k → R be a linear functional defined by L(f) := L
(

f
x2k1

)
. Then L

has a R–representing measure if and only if the following stament hold:

(1) L is square–positive.

(2) If L is singular, then:

(a) The generating polynomial p of H1 does not have 0 as its root.

(b) x2k−2 deg p · p2 ∈ kerL.

Proof. Take K = R, Λ = {0} and use Theorems 3.1 and 3.2. Then SR = {1} and T
(2k)
SR

=∑
R[x]2≤k. �



14 R. NAILWAL AND A. ZALAR

A special case of Theorem 3.2 is the solution to the TMP, which can be used to solve the TMP

on the unit circle.

Corollary 4.2. Let L be a linear functional on R =
{

f
(x2+1)ℓ1

: f ∈ R[x]≤2k

}
, where k ≥ ℓ1.

Let L : R[x]≤2k → R be a linear functional defined by L(f) := L
(

f
(x2+1)ℓ1

)
. Then L has a R–

representing measure if and only if the following statements hold:

(1) L is square–positive.

(2) If L is singular and p is the generating polynomial of H1, then x2k−2 deg p · p2 ∈ kerL.

Proof. Take K = R, Λ = ∅ and use Theorems 3.1 and 3.2. Then SR = {1} and T
(2k)
SR

=
∑

R[x]2≤k.

�

Remark 4.3. If L in Corollary 4.2 is only square–positive, then as in Remark 3.3.(2), the restriction

L|R(2k−1) , where R(2k−1) =
{

f
(x2+1)ℓ1

: f ∈ R[x]≤2k−1

}
, has some R–rm µ, while L

(
x2k

(x2+1)ℓ1

)
≥

∫
R

x2k

(x2+1)ℓ1
dµ. Condition (2) in Corollary 4.2 characterizes, when the equality occurs in this in-

equality. △

Below we will use Corollary 4.2 to derive a solution to the TMP on the unit circle.

Let k ∈ N and β ≡ β(2k) = {βi,j}i,j∈Z+, 0≤i+j≤2k be a bivariate sequence of degree 2k. The

functional Lβ : R[x, y]≤2k → R , defined by

Lβ(p) :=
∑

i,j∈Z+,
0≤i+j≤2k

ai,jβi,j , where p =
∑

i,j∈Z+,
0≤i+j≤2k

ai,jx
iyj,

is called the Riesz functional of β. Lβ is called square–positive if Lβ(p
2) ≥ 0 for every p ∈

R[x, y]≤k. For p ∈ R[x, y] we denote by Z(p) = {(x, y) ∈ R
2 : p(x, y) = 0} its set of zeros.

The solution to the TMP on the unit circle is the following.

Theorem 4.4 ([CF02, Theorem 2.1]). Let p(x, y) = x2+y2−1 and β := β(2k) = (βi,j)i,j∈Z+,i+j≤2k,

where k ≥ 2. Then the following statements are equivalent:

(1) β has a Z(p)–representing measure.

(2) Lβ is square–positive and the relations β2+i,j + βi,2+j = βi,j hold for every i, j ∈ Z+ with

i+ j ≤ 2k − 2.

Proof. The non-trivial implication is (2) ⇒ (1). Due to the relations β2+i,j +βi,2+j = βi,j for every

i, j ∈ Z+ with i+ j ≤ 2k− 2, Lβ(q) = 0 for every q ∈ R[x, y]≤2k of the form q = (x2 + y2 − 1)q1
with q1 ∈ R[x, y]≤2k−2. Let x(t) = t2−1

t2+1
, y(t) = 2t

t2+1
, t ∈ R, be a rational parametrization of

Z(p), which is one-to-one and onto Z(p) \ {(1, 0)}. We have 1
t2+1

= 1
2
(1 − x(t)), t

t2+1
= 1

2
y(t)

and t2

t2+1
= 1

2
(1 + x(t)). Hence,

ti

(t2 + 1)2k
=





1
22k

(1− x(t))2k−i(y(t))i, i = 0, . . . , 2k,

1
22k

(1 + x(t))i−2k(y(t))4k−i, i = 2k + 1, . . . , 4k,

ti

(t2 + 1)k
=





1
2k
(1− x(t))k−i(y(t))i, i = 0, . . . , k,

1
2k
(1 + x(t))i−k(y(t))2k−i, i = k + 1, . . . , 2k.

(4.1)
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Let R(4k) :=
{

f(t)
(t2+1)2k

: f ∈ R[t]≤4k

}
and define the functional L : R(4k) → R by

(4.2) L
( ti

(t2 + 1)2k

)
=






1
22k

Lβ

(
(1− x)2k−iyi

)
, i = 1, . . . , 2k,

1
22k

Lβ

(
(1 + x)i−2ky4k−i

)
, i = 2k + 1, . . . , 4k.

Let L : R[t]≤4t → R be a linear functional defined by L(f) := L
(

f
(t2+1)2k

)
. Using correspondences

(4.1)–(4.2) for g ∈ R[t]≤2k, we have that

L(g2) = L
( g2

(t2 + 1)2k

)
= Lβ(p

2
1) ≥ 0

for some p1 ∈ R[x, y]≤k. Hence, L is square–positive. By Corollary 4.2 and Remark 4.3, there

exists a R–rm µ for L|R(4k−1) , where R(4k−1) :=
{

f(t)
(t2+1)2k

: f ∈ R[t]≤4k−1

}
, while

∆ := L
( t4k

(t2 + 1)2k

)
−

∫

K

t4k

(t2 + 1)2k
dµ ≥ 0.

If ∆ = 0, then the pushforward measure φ#(µ), where

φ : R → Z(p) \ {(1, 0)}, φ(t) = (x(t), y(t)),

is a Z(p)–rm for Lβ. Otherwise we add the atom (1, 0) with the density ∆ to φ#(µ) and we a get a

Z(p)–rm for Lβ . �

Remark 4.5. The proof of Theorem 4.4 is done using the solution to the trigonometric moment

problem [CF91]. △

The following example demonstrates the construction of the representing measure for a func-

tional similarly as in the proof of Theorem 3.1 (but allowing Λ ∩ ∂K 6= ∅). A minimal K–

representing measure avoiding real poles does not exist, but allowing one more atom such a mea-

sure exists. The Mathematica file with numerical computations can be found on the following link

https://github.com/ZalarA/RTMP_univariate.

Example 4.6. Let K = (−∞, 0] ∪ [1, 2] ∪ [3,∞), λ1 = 0, λ2 = 1, λ3 = 2,

R(6) =

{
f

x2(x− 1)2(x− 2)2
: f ∈ R[x]≤6

}

and L : R(6) → R a linear functional, defined by

L(1) = γ
(0)
0 :=

1539

128
, L

(
1

x

)
= γ

(1)
1 :=

−255

64
, L

(
1

x2

)
= γ

(1)
2 =

235

32
,

L
(

1

x− 1

)
= γ

(2)
1 :=

3

64
, L

(
1

(x− 1)2

)
= γ

(2)
2 :=

313

96
,

L
(

1

x− 2

)
= γ

(3)
1 :=

253

64
, L

(
1

(x− 2)2

)
= γ

(3)
2 :=

713

96
.

The corresponding functional L : R[x]≤6 → R is defined by

L(1) = 1, L(x) =
13

12
, L(x2) =

23

8
, L(x3) =

307

48
, L(x4) =

555

32
,

L(x5) =
9043

192
, L(x6) =

17203

128
.

https://github.com/ZalarA/RTMP_univariate
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Let f1(x) = x(x − 1), f2(x) = (x − 2)(x − 3) and f3 = f1f2. The localizing Hankel matrices

determining whether L|
T

(6)
SK

≥ 0 holds are

H1,γ =




1 13
12

23
8

307
48

13
12

23
8

307
48

555
32

23
8

307
48

555
32

9043
192

307
48

555
32

9043
192

17203
128


 , Hf1,γ =




43
24

169
48

1051
96

169
48

1051
96

5713
192

1051
96

5713
192

33523
384


 ,

Hf2,γ =




83
24

−71
48

251
96

−71
48

251
96

−239
192

251
96

−239
192

1139
384


 ,Hf3,γ =

( 131
32

−247
64

−247
64

539
128

)
.

They are all pd with the eigenvalues ≈ 153.6, 1.44, 0.46, 0.12 for H1,γ , ≈ 98.9, 0.85, 0.31 for Hf1,γ ,

≈ 6.74, 1.71.0.58 for Hf2,γ , and 8.01, 0.29 for Hf3,γ . Now we will check that there is no pair

(γ7, γ8) ∈ R
2, such that for the extension γ̃ = (γ, γ7, γ8) it holds that H1,γ̃ is psd and singular,

while Hf1,γ̃ , Hf2,γ̃ , Hf3,γ̃ are psd. Using Schur complements we have:

H1,γ̃ � 0 ⇔ γ8 ≥ 0 and H1,γ̃/H1,γ ≥ 0,

Hf1,γ̃ � 0 ⇔ γ8 − γ7 ≥ 0 and Hf1,γ̃/Hf11,γ ≥ 0,

Hf2,γ̃ � 0 ⇔ γ8 − 5γ7 + 6γ6 ≥ 0 and Hf2,γ̃/Hf2,γ ≥ 0,

Hf3,γ̃ � 0 ⇔ γ8 − 6γ7 + 11γ6 − 6γ5 ≥ 0 and Hf3,γ̃/Hf3,γ ≥ 0.

(4.3)

Let f0 := 1. We have that

Hf0,γ̃/Hf0,γ = γ8 −
220

591
γ2
7 +

15971773

56736
γ7 −

4733803996639

87146496
,

Hf1,γ̃/Hf1,γ = γ8 −
11

39
γ2
7 +

3154553

14976
γ7 −

6505636110821

161021952
,

Hf2,γ̃/Hf2,γ = γ8 −
376

369
γ2
7 +

13927589

17712
γ8 −

29105958864401

190439424
,

Hf3,γ̃/Hf3,γ = γ8 −
131

75
γ2
7 +

38902817

28800
γ7 −

11603048263019

44236800
.

(4.4)

Computation with Mathematica shows that there is no choice of γ7 ∈ R such that for γ8 =
max(0,H1,γ̃/H1,γ), we would have Hfi,γ̃ ≥ 0 i = 1, 2, 3. Namely, the conditions in (4.3),(4.4)

are of the form γ8 ≥ max(0, qi(γ7)), where qi(γ7) is a quadratic function in γ7 corresponding to

fi. So the question is whether there exists γ7 such that max(0, q0(γ7)) ≥ max(0, qi(γ7)) for each i.
Since this is not true, the example shows that there is no minimal representing measure for L that

would be supported on K vanishing on poles.

Choosing γ7 = 370 and γ8 = 2000 and repeating the computations above for γ9 and γ10 it turns

out that for every γ9 ∈ [−71.50, 845.19], the moment matrix Hf0 corresponding to f0 restricts γ10
the most from below among all fi, i = 0, 1, 2, 3. Hence, choosing the smallest possible γ10 for

γ9 from this interval gives a representing measure for γ supported on the zeroes of the generating

polynomial of Hf0 . At most three choices of γ9 will be such that λi is one of the zeros of the

generating polynomial, so we avoid those.
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