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The Schrieffer-Wolff transformation (SWT) is an important perturbative method in quantum mechanics used to
simplify Hamiltonians by decoupling low- and high-energy subspaces. Existing methods for implementing the
SWT often lack general applicability to arbitrary perturbative systems or fail to provide a closed-form solution
for the SWT generator. In this article, we present a systematic and unified framework for the SWT that addresses
these shortcomings. Specifically, we derive a closed-form solution for the SWT generator that is universally
applicable to any system that satisfies the conditions required to be perturbatively treated. Furthermore, we
extend this solution to time-dependent systems with periodic perturbations, covering all frequency regimes.
The effectiveness of this approach is then demonstrated by applying it to analyze the dispersive shift of an
anharmonic resonator coupled to a two-level system with time-dependent coupling.

I. INTRODUCTION

The Schrieffer-Wolff transformation (SWT) is a widely uti-
lized perturbation theory approach for simplifying the anal-
ysis of complex quantum systems. Unlike traditional time-
independent perturbation theory, which focuses on comput-
ing corrections to the energy levels of a system, the SWT
transforms the original Hamiltonian into an effective low-
energy Hamiltonian by eliminating interactions between dis-
parate energy subspaces. This makes the SWT particu-
larly advantageous for studying problems in condensed mat-
ter physics [1–10], quantum optics [11–15], quantum infor-
mation sciences [16–39] as well as several other fields [40–
44], where the primary interest lies in understanding the low-
energy behavior of the studied systems.

One of the key reasons for employing the SWT over other
methods of perturbation theory is its ability to retain the op-
erator structure of the Hamiltonian, thereby providing a more
physical understanding of how perturbations affect the sys-
tem. This contrasts with traditional approaches that mainly
yield shifts to the original energy levels. It is also well
known that upon second order, the SWT returns the results
obtained by regular perturbation theory approaches. Addi-
tionally, slight alterations of the generally accepted SWT [45],
seem to suggest that this equivalence could be extended to
higher orders for a variety of systems.

The implementation of the SWT has been approached
through a variety of methods [46–53], most of which aim to
construct a generator for the unitary transformation that de-
couples the high-energy and low-energy subspaces of a given
Hamiltonian. These methods can broadly be categorized into
two classes: operator-level approaches and matrix-element-
based approaches. In the operator approach, originally in-
troduced by Schrieffer and Wolff [54], the generator is typi-
cally found by solving an operator equation that relates the un-
perturbed Hamiltonian to the perturbation. This method pre-
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serves the operator structure, thus offering valuable physical
insights. However, this often relies on heuristic assumptions
that make it difficult to generalize: this is especially true for
infinite-dimensional systems where determining the generator
can be particularly challenging.

In contrast, matrix-element-based approaches systemati-
cally sum over the interactions between the states of the sys-
tem, providing a more procedural and straightforward path
to deriving the effective Hamiltonian. However, these ap-
proaches sacrifice some of the intuitive understanding pro-
vided by the operator methods, as the focus shifts from
the operator-level dynamics to the energy levels. More-
over, matrix-element methods encounter significant difficul-
ties when dealing with infinite-dimensional Hilbert spaces, as
they inherently require truncation of these spaces, which com-
promises their ability to accurately capture the system’s dy-
namics.

Despite the extensive literature on the SWT, most existing
methods fail to provide a close-form solution that is applicable
to any system. Rather, they tend to offer reformulations that
simplify the process of finding the generator in specific cases,
without addressing the need for a universally applicable so-
lution. One notable exception is the work presented in [55],
where the authors offer a general solution to the SWT genera-
tor that is applicable to a broad class of systems. However,
their approach is limited to time independent systems with
either purely bosonic or purely fermionic Hilbert spaces and
does not account for interactions between finite and infinite-
dimensional subspaces.

The primary objective of this article is to overcome the lim-
itations of current SWT implementations by presenting a uni-
versal solution for the SWT generator that can be applied to
any perturbative system. To achieve this, we propose a unified
framework that integrates the operator and matrix-element ap-
proaches into a cohesive methodology. This approach enables
the construction of effective Hamiltonians while preserving
operator-level insights, eliminating the need for heuristic as-
sumptions or truncation of the total Hilbert space. Addition-
ally, we extend the this solution to time-dependent systems,
offering a universal formalism applicable to a wide range of
scenarios encountered in the study of quantum systems.
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II. FRAMEWORK

A. The Schrieffer-Wolff Transformation

In this section we provide an introduction to the most
widely accepted description of the SWT [56]. Due to the large
amount of literature covering the topic, we here provide only
those details required to understand our main results.

Consider a system described by a Hamiltonian H that can
be partitioned into two parts

H =
∑
i=0

H(i) +
∑
j=1

V (j), (1)

where H(0) represents the unperturbed Hamiltonian of the
system, whose solutions are known. Therefore, H(0) is as-
sumed to have a spectrum of eigenstates {|n⟩}, associated
with energies {En}, which are here assumed to contain a low-
energy susbpace (spanned by states {|L⟩}) and a high-energy
subspace (spanned by {|H⟩}). These are then coupled to ea-
chother via the perturbative interaction terms V (j) of order j.
The remaining H(i) terms in Eq. (1) can then be interpreted
as the diagonal blocks defining the preturbative dynamics of
order i, within the {|L⟩} and {|H⟩} subspaces. The objective
of the standard SWT is to construct an effective Hamiltonian
Heff that acts only within the low-energy subspace, encapsu-
lating the influence of the high-energy states without explicitly
involving them.

The transformation is constructed via a unitary operator
U = e−S , where S is an anti-Hermitian operator, S† =
−S, chosen to eliminate the coupling between the {|L⟩} and
{|H⟩} subspaces to desired order in the perturbation

∑
j V

(j).
The transformed Hamiltonian is expressed as

Heff = UHU† = e−SHeS . (2)

Using the Baker-Campbell-Haussdorf formula we expand
the exponential as the series

Heff = H+ [H, S] +
1

2
[[H, S], S] + · · · . (3)

As stated, the goal is to then choose S such that the block
off-diagonal coupling between the the {|L⟩} and {|H⟩} sub-
spaces vanishes up to desired order. It is then necessary to
split the unitary generator into its perturbation series S =∑

j=1 S
(j). With this we perform a second order transfor-

mation by writing

Heff ≈
2∑

i=0

H(i) +

2∑
j=1

V (j)+

+ [H(0), S(1)] + [H(0), S(2)] + [H(1), S(1)]+

+ [V (1), S(1)] +
1

2
[[H(0), S(1)], S(1)]. (4)

Equation (4) provides the necessary conditions for a block-
diagonalization of H up to second order. These are then usu-
ally established in two mathematically equivalent ways. The

first is to work on a operator level and solve the operator equa-
tions

[H(0), S(1)] = −V (1) ≡ P (1), (5)

[H(0), S(2)] = −V (2) − [H(1), S(1)] ≡ P (2). (6)

These equations are often solved via heuristic approaches by
first guessing the form of S(j) based on the form of the per-
turbation P (j). This method allows us to retain the opera-
tor character of the SWT approach; however, for complicated
perturbations, guessing the correct form of S(j) is often too
difficult of a task.

The second method usually adapted for solving for S(j) is
to relate it to the inverse energy difference between the low
and high-energy states, effectively capturing the perturbative
nature of the interaction. This is often achieved by consider-
ing the matrix elements ⟨L|S(j) |H⟩ of S(j). Explicitly, for a
small perturbation of order j, S(j) is computed as

⟨L|S(j) |H⟩ = ⟨L|P (j) |H⟩
EL − EH

, (7)

where ⟨L|P (j) |H⟩ represents the matrix elements of the per-
turbation of order j coupling the low-energy state |L⟩ to the
high-energy state |H⟩, while EH , EL are the corresponding
unperturbed energies. This approach for solving for S(j) is
often employed when treating complex Hamiltonians, as it al-
lows for a closed formalism to establish the matrix elements
of S(j). However, this methodology has two main issues:
firstly, this approach loses the operator character of the SWT
approach, limiting us to work with matrix elements and en-
ergy corrections of the effective Hamiltonian. Furthermore,
this technique is especially problematic when treating infinite
dimensional Hilbert spaces, as this approach requires an in-
herent truncation of the inifinite dimensional subspace.

III. UNIVERSAL SOLUTION TO THE S GENERATOR

In this section, we derive a universal expression for the S
generator that is independent of the Hamiltonian’s complexity
and dimensionality of the system’s Hilbert space, without re-
quiring any dimensional truncation. For the sake of clarity, we
restrict our analysis to a class of Hamiltonian systems whose
total Hilbert space H can be decomposed as H = Hf ⊗ Hb,
where Hf is a finite-dimensional Hilbert space of dimension
df , and Hb is a bosonic subspace with an associated number
operator N ≡ a†a. A derivation including multiple bosonic
Hilbert spaces is provided in Appendix A. The unperturbed
time evolution of these systems is governed by a Hamiltonian
H(0), which we express in the general form

H(0) =

df−1∑
µ=0

fµ(N)σµµ, (8)

where σµν ≡ |µ⟩⟨ν| represents the projectors onto the
eigenspace with eigenstates {|µ⟩} of the finite-dimensional
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subspace of the system. The term fµ(N) is a general func-
tion of the number operator N . This formulation allows us
to describe any diagonal Hamiltonian that may include anhar-
monicities of arbitrary order, as well as systems for which the
unperturbed energies are not separable into finite and infinite
components (such as systems describing dispersive interac-
tions [57–59]).

To clarify Eq. (8), consider the simple Rabi model, for
which the unperturbed Hamiltonian is given by H(0) =
ℏΩa†a+ℏΩz

2 σz . In this model, the finite subspace eigenstates
are represented by the computational basis {|µ⟩}µ∈{0,1}, lead-
ing us to identify

fµ(N) =

{
ℏΩa†a+ ℏΩz

2 for µ = 0,

ℏΩa†a− ℏΩz

2 for µ = 1.
(9)

Furthermore, we postulate that any general hermitian (antiher-
mitian) operator O, acting on the same total Hilbert space as
H(0), can be reformulated as

O =

df−1∑
µν=0

∑
∆≥0

g(∆)
µν (N)a∆σµν ± h.c., (10)

where the index ∆ labels the subspace within the bosonic
Hilbert space on which the term g

(∆)
µν (N)a∆ acts. Extend-

ing this to the Rabi model example, we have an interaction
term V = g(a† + a)σx. Expressing this perturbation in the
form of Eq. (10), we identify ∆ ∈ {1}, and thus

g(1)µν (N) =

{
g for µ ̸= ν,

0 for µ = ν.
(11)

From the expression
[
H(0), S(j)

]
= P (j), where P (j) is

a perturbation of order j represented by an hermitian op-
erator (see Sec. II A), and using the commutation relation
a∆f(N) = f(N + ∆)a∆, we arrive at a general expression
for the anti-hermitian generator S(j)

s(∆)
µν (N) = − 1

ω
(∆)
µν

g(∆)
µν (N), (12)

where s
(∆)
µν (N) (g(∆)

µν (N)) implicity contains the information
of the pertubation order of S(j) (P (j)) and where

ω(∆)
µν ≡ fν(N +∆)− fµ(N). (13)

Equation (12) represents the main result of this letter, as it
provides a systematic method to compute the generator for
any perturbative unitary transformation without resorting to
heuristic approaches or requiring any truncation of the total
Hilbert space. To highlight the significance of this result, note
that Eq. (12) can be used to recover the solution to all the dif-
ferent methods proposed in [46–55] as a specific application
to the studied systems.

It is also important to emphasize that Eq. (12) applies to
perturbative approaches that extend beyond the conventional

SWT. As discussed in Sec. II A, the traditional SWT can only
block-diagonalize two subspaces. When three or more sub-
spaces are present, the conventional SWT generally cannot
achieve block-diagonalization of the effective Hamiltonian.
However, modifications of the SWT have been proposed in the
literature to achieve multi-block diagonalization as well as full
diagonalization of effective Hamiltonians [45]. In these cases,
modifications to the SWT involve introducing new defining
equations for the perturbative orders S(j) of S. In our formu-
lation, such defining equations are represented by the opera-
tors P (j), which we have kept general throughout the deriva-
tion. Therefore, Eq. (12) is applicable to any implementation
of the SWT, provided the defining equations for S(j) are prop-
erly established.

As a last remark, note that Eq. (13) can be undersdood as
encoding the transition frequencies between the states cou-
pled by the perturbation P (j). In this regard, it is important to
highlight that the expression for ω∆

µν provides a clear connec-
tion between the insights presented in [60] and those in [49].
In particular note that in the absence of anharmonicities (i.e.
fµ(N) = c0 + c1N , for ci being a constant factor), Eq. (13)
takes on the role of the eigenvalues of the g∆µν(N)a∆σµν

eigenoperator.

A. Time Dependence

In many cases, the Schrieffer-Wolff (SW) transformation
is applied to systems with time-dependent perturbations [61–
69]. In such scenarios, the generator S becomes time-
dependent, denoted as S(t). Consequently, the SWT takes
the form of a time-dependent unitary rotation

Heff(t) = e−S(t)H(t)eS(t) + iℏ
∂e−S(t)

∂t
eS(t). (14)

Compared to Eq. (2), this equation introduces a new term in-
volving the time derivative of the unitary transformation. This
term can be expanded as [68]

∂e−S(t)

∂t
eS(t) = −

∞∑
l=0

1

(l + 1)!

[
∂S(t)

∂t
, S(t)

](l)
. (15)

Two distinct cases emerge depending on the nature of the
time dependence of S(j)(t). The first case occurs when the

rate of change ∂S(j)(t)
∂t is of higher perturbative order than

S(j)(t). In such cases, Eq. (12) remains largely unmodified,
except that s(∆)

µν (N) and g
(∆)
µν (N) become time-dependent,

i.e., s
(∆)
µν (N) → s

(∆)
µν (N, t) and g

(∆)
µν (N) → g

(∆)
µν (N, t).

However, for many systems of interest, this may not be the
case. In such systems, the defining equation for the generator,
Eq. (12), becomes the first-order inhomogeneous differential
equation

s(∆)
µν (N, t) = − 1

ω
(∆)
µν

[
g(∆)
µν (N, t) + iℏ

∂s
(∆)
µν (N, t)

∂t

]
. (16)
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For periodic time-dependent perturbations, g(∆)
µν (N, t) can

be expanded as the Fourier series

g(∆)
µν (N, t) ≡ gk(N, t) =

∞∑
n=−∞

gnk (N)einΩkt, (17)

where Ωk is the fundamental frequency of the perturbation.
Note that from here on, the indices µ, ν and ∆ will be con-
tracted to the index k to preserve clarity of the expressions.
By ensuring that Eq. (14) preserves the system’s macromo-
tion [66], the solution to Eq. (16) is given by

sk(N, t) = −
∞∑

n=−∞

g
(n)
k (N)einΩkt

ωk − nℏΩk
. (18)

The above equation constitutes the second main result of
this paper. Similar to Eq. (12), the computation of Eq. (18)
provides a systematic method for handling perturbations in
time-periodically driven systems. Furthermore, with Eq. (18)
we gain additional insights regarding the treatment of per-
turbative time dependent interactions. For time independent
SWTs the only requirement is to ensure the perturbation to be
much smaller than the energy difference of the coupled states
(see Eq. (7)). However, Eq. (18) indicates that for periodic
perturbations, whose Fourier series contains no static compo-
nent, the above mentioned requirement changes to |g(n)k | ≪
|ωk − nℏΩk|.

Considering the limit of a fastly oscillating drive (i.e.
|nℏΩk| ≫ |ωk| ∀n ̸= 0), we simplify Eq. (18) as

sk(N, t) → −
g
(n=0)
k

ωk
+

∞∑
n=−∞

n ̸=0

g
(n)
k (N)einΩkt

nℏΩk
(19)

= −
g
(n=0)
k

ωk
− i

ℏ

∫ t

0

gk(N, τ)dτ, (20)

and thus, if the driving term contains no static components
(i.e. g(n=0)

k = 0), the above expression can be simplified as

S(j)(t) = − i

ℏ

∫ t

0

P (j)(τ)dτ. (21)

This represents a significant simplification of Eq. (18), as it
eliminates the need to compute the frequencies ω(∆)

µν and only
requires knowledge of the form of P (j)(t).

IV. DISPERSIVE SHIFT IN ANHARMONIC, TIME
DEPENDENT SYSTEMS

In this section, we apply the methods developed in the ear-
lier sections to analyze a system composed of a two-level sys-

tem (TLS) with frequency Ωz , coupled to an anharmonic res-
onator with frequency ΩT , characterized by an anharmonicity
α. The interaction between these two systems is mediated by
a periodic, time-dependent coupling with frequency Ω. The
unperturbed Hamiltonian H(0) and the perturbation V (t) are
given by

H0 = ℏΩTa
†a+ ℏα

(
a†a
)2

+
ℏΩz

2
σz, (22)

V (t) = g
(
eiΩta+ e−iΩta†

)
σx. (23)

Similar systems have been extensively studied in the litera-
ture [70–73]. However, the inclusion of anharmonic effects
combined with the lack of a systematic perturbative approach
would either require a suitable ansatz for S, expensive com-
putations, or otherwise a Hilbert space truncation to tackle
the problem analytically [53, 69, 74, 75]. Additionally, the
model described by Eqs. (22),(23) incorporates all the nec-
essary components to make full use of the theoretical frame-
work developed in this article, such as an anharmonicity, an
interaction between finite and infinite-dimensional systems,
as well as the influence of periodic time-dependent driving.
Therefore, the primary purpose of analyzing this system is to
demonstrate the applicability of the presented methods, rather
than to uncover new physics in this class of systems.

Here, we focus on the dispersive shift χ(N) (for N ≡
a†a) of the anharmonic resonator, which arises from its cou-
pling with the TLS in the dispersive regime g ≪ ω∆

µν −
ℏΩ,∀ µ, ν,∆. The dispersive shift χ(N) represents the reso-
lution in the energy gap between the energy of the |0⟩ and |n⟩
states of the resonator, conditioned on the state of the TLS. In
similar systems, χ(N) plays a crucial role in dispersive read-
out processes, as a larger dispersive shift enables more precise
and reliable determination of the system’s state.

To begin our analysis, we rewrite Eq. (22) and Eq. (23) in
the form of Eq. (8) and Eq. (10) respectively. We thus identify

fµ(N) =

{
ℏΩTa

†a+ ℏα
(
a†a
)2

+ ℏΩz

2 for µ = 0,

ℏΩTa
†a+ ℏα

(
a†a
)2 − ℏΩz

2 for µ = 1.
(24)

and because ∆ ∈ {1}

g(1)µν (N) =

{
geiΩt for µ ̸= ν,

0 for µ = ν.
. (25)

We then use Eq. (18) to establish S(t), such that[
H(0), S(t)

]
= −V (t) + iℏ∂S(t)

∂t . With this we then find the
effective Hamiltonian to second order

Heff = H(0) +
1

2
[V (t), S(t)] = H(0) +

g2

2
Hcorr. (26)

Here
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FIG. 1. Dispersive shift χ(N) as function of Ω. Panel 1: Without anharmonicity (i.e. α = 0), we identify the two poles of Eq. (30) with a
dashed and a solid line. Between these we note the presence of a single plateau which denotes the resolution for the absorption peaks of the
selected transitions. Panel 2: A strong anharmonicity, α = 3ΩT , separates the poles of Eq. (30) giving rise to seven separate plateaus, whose
boundaries are represented by the marked lines in the plot. Common parameters: g = 0.05ΩT , N = 2 and Ωz = 1

2
ΩT , which puts us well

within the dispersive regime conditions for almost all values of Ω. Whenever that was not the case, we omitted to plot those lines.

Hcorr. ≡−
∑
µ̸=ν

(
1

ω
(1)
µν − ℏΩ

− 1

ω
(−1)
νµ + ℏΩ

)
σµµ +

(
− 1

ω
(−1)
01 + ℏΩ

+
1

ω
(1)
10 − ℏΩ

+
1

ω
(−1)
10 + ℏΩ

− 1

ω
(1)
01 − ℏΩ

)
a†aσz+

+

[
e2iΩt

(
1

ω
(1)
10 − ℏΩ

− 1

ω
(1)
01 − ℏΩ

)
a2 + e−2iΩt

(
1

ω
(−1)
10 + ℏΩ

− 1

ω
(−1)
01 + ℏΩ

)(
a†
)2]

σz, (27)

where

ω
(±1)
µν

ℏ
= (−1)νΩz ± ΩT ± α (2N ∓ 1) , µ ̸= ν. (28)

As mentioned, the dispersive shift χ(N) is interpreted as
the resolution in the energy gap between the energy of the |0⟩
and |n⟩ energy state of the resonator given an energy state of

the TLS

χ(N) = |(εn,0 − ε0,0)− (εn,1 − ε0,1)| , (29)

where εn,s is the energy of the |n, s⟩ state of the total system.
With Eq. (26) we recover the expression for the dispersive
shift using Eq. (29)

χ(N) =
g2

2ℏ

∣∣∣∣ −2N − 1

α+ 2αN +ΩT − Ωz − Ω
+

2N + 1

α− 2αN − ΩT +Ωz +Ω
+

2N + 1

−α+ 2αN +ΩT +Ωz − Ω
+

+
2N + 1

α+ 2αN +ΩT +Ωz − Ω
+

1

α− ΩT − Ωz +Ω
+

1

α+ΩT − Ωz − Ω
+

− 1

α− ΩT +Ωz +Ω
+

1

Ω− α− ΩT − Ωz

∣∣∣∣ . (30)

From Eq. (30) we notice eight distinct divergence values for Ω, four of which are linearly dependent on the number oper-
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FIG. 2. Dispersive shift χ(N) as function of N and Ω with a small anharmonicity of α = 0.003ΩT and g = 0.05ΩT . The primary goal of
these plots is to examine the effect of varying N and the Zeeman splitting. Panel 1: Ωz = ΩT /2. Panel 2: Ωz = ΩT . The solid lines indicate
the positions of the divergences which depend on N , while the two divergences that remain constant across all N values are represented by
dashed lines. The key difference between the two panels is that the separation between divergences is determined by 2Ωz . Additionally,
the plot shows that as N increases, the value of χ(N) on the plateau between the divergences also rises, with a more pronounced increase
occurring as Ωz decreases.

ator N . This dependence on N is strictly contingent on the
anharmonicity of Eq. (22) and will play a role in controlling
the dispersive shift χ(N). In the limit of zero anharmonicity
(i.e. α = 0), the eight poles contract into two unique diver-
gences for Ω. These can be observed in Panel 1 of Fig. 1
where we show the dispersive shift as a function of the driv-
ing frequency Ω for α = 0 and N = 2. Here the two di-
vergences enclose a single non-zero valued plateau for χ(N)
which defines the distance between the absorption peaks of the
|n = 2, 0⟩ ⇌ |n = 0, 0⟩ and |n = 2, 1⟩ ⇌ |n = 0, 1⟩ transi-
tions. Furthermore, in Panel 2 of Fig. 1 we plot χ(N) for
α = 3ΩT and N = 2. The non zero anharmonicity of the sys-
tem now splits the poles of the dispersive shift as a function of
Ω, thus leading to the formation of seven separate plateaus of
χ(N). As previously mentioned, this splitting effect is strictly
dependent on the system’s anharmonicity being non-zero.

It is important to note that the effective Hamiltonian has
been derived without a truncation of the bosonic subspace,
which allows us to know which divergences, and correspond-
ing plateaus, in χ(N) along the Ω domain linearly depend on
the mode number N . From Eq. (30) we also see the effects
of the Zeeman splitting of the TLS in determining the broad-
ness of the plateaus of χ(N). In particular we find four of
the plateaus to have a broadness of 2Ωz , while the remaining
have broadness 2Ωz+2α (as shown in Fig. (1)). Together with
modifying the broadness of the plateaus, the Zeeman splitting
of the TLS also plays a role in their height. By inspection of
Eq. (30), we can extract that the height of all the plateaus is
inversely proportional to Ωz , while the height of the plateaus
in between N-dependent divergences is proportional to N .

In Fig. 2 we show these features by plotting χ(N) as a func-

tion of the driving frequency Ω and N for two different values
of Ωz . We have chosen a small anharmonicity for simplic-
ity, which results in the collapse of the divergences to only
four distinct lines, shown with dashed and solid lines. First, in
both Panels we see the effect of the linear dependence on N
of the plateaus boundaries, which are represented by the poles
of Eq. (30). Moreover, we can see the linear increase in N
and the decrease in Ωz of the height of the plateau.

V. SUMMARY

In summary this article introduces a novel, systematic ap-
proach to the SWT, a perturbation theory extensively used
in quantum mechanics to simplify the study of Hamiltoni-
ans by decoupling low and high-energy subspaces. This new
methodology offers a general solution for constructing effec-
tive Hamiltonians without the need for heuristic assumptions
or the truncation of Hilbert spaces, making it applicable to
both finite, infinite-dimensional systems and their combina-
tions. The framework is also extended to accommodate time-
dependent systems, for which we derived a solution for time-
periodic perturbations.

To exemplify the utility of the approach, we have applied it
here to the case of a TLS coupled via a time-periodic term to
an anharmonic resonator. We have extracted the N-dependent
dispersive shift, demonstrating the power of the treatment to
get analytical insight.

We hope that this integrated method, combining previously
established techniques found in the literature, will prove to be
a highly versatile and effective tool for the study of otherwise
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complicated quantum mechanical systems. Additionally, ex-
ploiting the modular nature of the presented solutions, we im-
plemented these results in a systematic software library [76].
This software takes advantage of the presented general solu-
tion to be superior both in applicability and easeness of use to
existing libraries [77]
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Appendix A: Multiple bosonic subspaces

In this section, we derive a general expression for the S
generator for the scenarios in which the system’s total Hilbert

space can be decomposed asH =
⊗M−1

j=0 Hj⊗Hf , whereHj

are bosonic Hilbert spaces, while Hf is a finite Hilbert space
of dimensionality df . Following on the steps of Sec. III, we
express the unperturbed Hamiltonian H(0) for these systems
as

H(0) =

df−1∑
µ=0

fµ(N)σµµ, (A1)

where σµν ≡ |µ⟩⟨ν| represents the projectors onto the
eigenspace with eigenstates {|µ⟩} of the finite-dimensional
subspace of the system. The term fµ(N) is instead a gen-
eral function of the number operators N = (N0, N1, ..., NM )
of the bosonic subspaces comprisingH.

On the other hand, we here postulate that any general her-
mitian (antihermitian) operator O acting on H can be refor-
mulated as

O =

df−1∑
µν=0

∑
∆

g(∆)
µν (N)a∆σµν ± h.c., (A2)

where we introduced the shorthand notation

a∆ ≡
M−1⊗
j=0

a
∆j

j (A3)

for ∆j ≥ 0 being the label for the subspace within the j-th
bosonic Hilbert space on which the factor a∆j

j acts.

From the expression
[
H(0), S(j)

]
= P (j), where P (j) is

a perturbation of order j represented by an hermitian op-
erator (see Sec. II A), and using the commutation relation
a∆f(N) = f(N +∆)a∆, we arrive at a general expression
for the anti-hermitian generator S(j)

s(∆)
µν (N) = − 1

ω
(∆)
µν

g(∆)
µν (N), (A4)

where

ω∆
µν = fν(N+∆)− fµ(N). (A5)
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