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COMPONENTWISE LINEAR SYMBOLIC POWERS OF EDGE

IDEALS AND MINH’S CONJECTURE

ANTONINO FICARRA, SOMAYEH MORADI, TIM RÖMER

Abstract. In this paper, we study the componentwise linearity of symbolic pow-
ers of edge ideals. We propose the conjecture that all symbolic powers of the edge
ideal of a cochordal graph are componentwise linear. This conjecture is verified
for some families of cochordal graphs, including complements of block graphs and
complements of proper interval graphs. As a corollary, Minh’s conjecture is estab-
lished for such families. Moreover, we show that I(G)(2) is componentwise linear,
for any cochordal graph G.

Introduction

Let S = K[x1, . . . , xn] be the standard graded polynomial ring over a field K. By
a classical result of Cutkosky, Herzog and Trung [5], and independently Kodiyalam
[18], the regularity of powers of a graded ideal I ⊂ S is an eventually linear function.
This had a great impact on the study of homological invariants of powers of graded
ideals. A prominent trend in commutative algebra is to explicitly determine this
function for combinatorially defined monomial ideals. For instance, consider a finite
simple graph G with the vertex set V (G) = {x1, . . . , xn} and edge set E(G). The
edge ideal of G is the squarefree monomial ideal of the polynomial ring S defined as
I(G) = (xixj : {xi, xj} ∈ E(G)). Then, there exist integers k0 > 0 and c ≥ 0 such
that reg I(G)k = 2k + c for all k ≥ k0. Determining the integers k0 and c in terms
of combinatorics of G is a problem of great interest. In recent years, the study of
symbolic powers of monomial ideals, and in particular, edge ideals, has also gained
significant attention, see for instance [4, 7, 11, 17, 19, 20, 21, 22, 25, 26, 27] and the
references therein. While the regularity of symbolic powers of monomial ideals is
known to be a quasi-linear function [14, Corollary 3.3], its precise behavior remains
mysterious. In this context, N.C. Minh raised the following

Conjecture A. Let I(G) be the edge ideal of a simple graph G. Then

reg I(G)(k) = reg I(G)k,

for all k ≥ 1.

If this conjecture holds, then reg I(G)(k) would be also an eventually linear func-
tion, a result that would be both surprising and impactful. Thus far, Conjecture A
has been proved when k = 2, 3 for any graph [20], and for few families of graphs, in-
cluding bipartite graphs [30], chordal graphs [27], unicyclic graphs [25] and Cameron-
Walker graphs [26]. Note that reg I(G)k ≥ 2k for all k. Therefore, if Conjecture A is

2020 Mathematics Subject Classification. Primary 13C05, 13C14, 13C15; Secondary 05E40.
Key words and phrases. Symbolic power, componentwise linear, regularity, edge ideal.

1

http://arxiv.org/abs/2411.11537v1


true, then reg I(G)(k) ≥ 2k for all k. This naturally leads to the question: for which
graphs G does the equality reg I(G)(k) = 2k hold for all k? In particular, in this
case I(G) itself must have linear resolution. By Fröberg’s seminal work [10], this is
equivalent to G being a cochordal graph, meaning that the complementary graph
Gc of G is chordal. Moreover, an intriguing result of Herzog, Hibi and Zheng [15]
establishes that if I(G) has linear resolution, then I(G)k has linear resolution for all
k ≥ 1. This is further equivalent to I(G)k having linear quotients for all k ≥ 1.

Now, let I(G) be an edge ideal with linear resolution. In general, the symbolic
powers I(G)(k) are not equigenerated, so one cannot expect that they have linear
resolution, like in the case of the ordinary powers. However, based on several com-
putational evidence, we expect that each graded component of I(G)(k) has linear
resolution, i.e., I(G)(k) is componentwise linear. Componentwise linear ideals were
introduced in [12] by Herzog and Hibi, as those homogeneous ideals I ⊂ S whose all
graded components I〈j〉 have linear resolution. Recall that the j

th graded component
of I is the ideal generated by all homogeneous elements of degree j belonging to I.
Componentwise linear ideals are characterized by the remarkable property that their
graded Betti numbers are equal to those of their generic initial ideals [1].

These aforementioned considerations on edge ideals of cochordal graphs led us to
formulate the following

Conjecture B. Let I(G) be the edge ideal of a simple graph G. Assume that I(G)
has linear resolution. Then I(G)(k) is componentwise linear for all k ≥ 1.

It follows from Theorem 1.1 in Section 1 that for any cochordal graph G, the
highest generating degree of I(G)(k) is 2k. Since the highest generating degree of a
componentwise linear ideal I is equal to reg I [13, Corollary 8.2.14], if Conjecture B
is true, then Conjecture A is true for any cochordal graph G. Our main goal in this
paper is to address Conjectures A and B.

In Section 1, using a description of the symbolic Rees algebra of the edge ideal of
a perfect graph G due to Villarreal [32], we determine in Theorem 1.1 the generating
degrees of I(G)(m) for any perfect graph G and any positive integer m. In particular,
it turns out that the highest degree of a minimal generator of I(G)(m) is 2m, and
if G is cochordal then reg I(G)(m) ≥ reg I(G)m (see Corollary 1.2). Furthermore,
we obtain an explicit formula for the Waldschmidt constant of the edge ideal of a
perfect graph, recovering a result of Bocci et al. [4, Theorem 6.7(i)].

In Section 2, Conjecture B is proved for the graphs whose complements are one
of the following graphs:

(a) Block graphs,
(b) Proper interval graphs,
(c) G is a chordal graph with the property that any vertex in G belongs to at

most two maximal cliques of G.

Indeed, we prove a more general result. Let G be one of the graphs in (a), (b) or
(c), and let Ass I(G) = {P1, . . . , Pm} be the set of associated primes of I(G). Then
I(G)(k) =

⋂m

i=1 P
k
i . Theorem 2.3 shows that

⋂m

i=1 P
ki
i is componentwise linear for

any positive integers k1, . . . , km. In the literature, such ideals are called intersection
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of Veronese ideals, and their componentwise linearity was first studied by Francisco
and Van Tuyl [9]. Another family of such ideals with the componentwise linear
property was given in [23, Theorem 2.4]. Theorem 2.3 presents several new such
families. We expect that for any cochordal graph G, the ideal

⋂
P∈Ass I(G) P

kP is
componentwise linear for any positive integers kP .

A monomial ideal I ⊂ S has componentwise linear quotients if I〈j〉 has linear
quotients for all j. These ideals are componentwise linear. To prove Theorem 2.3,
we show that I(G)(k) has componentwise linear quotients. A conjecture by Soleyman
Jahan and Zheng [31] states that if I has componentwise linear quotients, then I
has linear quotients. This conjecture is widely open, and has been solved only in
some special cases [2, 3, 8]. Given these facts, along with the proof of Theorem 2.3,
we expect that the following more general statement than Conjecture B holds true.

Conjecture C. Let I(G) be the edge ideal of a simple graph G. Assume that I(G)
has linear resolution. Then I(G)(k) has linear quotients for all k ≥ 1.

In Theorem 3.5, we show that Conjecture C holds for k = 2. The proof is based
on Theorem 1.1(a) and some splittings of the t-clique ideals of G.

1. The generating degrees of symbolic powers of edge ideals of

perfect graphs

In this section, the generating degrees of I(G)(m) are studied, when G is a perfect
graph. As a result, we derive an inequality in Conjecture A for cochordal graphs.
We begin the discussion with some definitions and notation. Throughout, G is a
finite simple graph. The vertex set and the edge set of G are denoted by V (G) and
E(G), respectively.

A graph G is called chordal if it has no induced cycles of length r > 3, and G
is called cochordal, if the complementary graph Gc of G is chordal. Here, Gc is
the graph with the same vertex set as G whose edges are the non-edges of G. A
graph G is called a perfect graph, if G and Gc do not contain induced odd cycles
of length r > 3. The family of perfect graphs contains for instance the families
of bipartite graphs, weakly chordal graphs (and in particular chordal graphs and
cochordal graphs) and comparability graphs of posets.

For a subset A ⊆ V (G), the induced subgraph of G on A is denoted by G[A].
A clique of G is a subset C ⊆ V (G) such that the induced subgraph G[C] is a
complete graph. A clique of size r is called an r-clique. The maximum cardinality
of the cliques of G is denoted by ω(G) and is called the clique number of G.

Villarreal in [32, Corollary 3.3] gave a description for the symbolic Rees algebra

Rs(I(G)) = S ⊕ I(G)(1)t⊕ · · · ⊕ I(G)(i)ti ⊕ · · · ⊆ S[t]

of I(G), when G is a perfect graph in terms of the cliques of G, as follows:

Rs(I(G)) = K[xF t
r : F is an (r + 1)-clique of G], (1)

where xF =
∏

xi∈F
xi.

For a positive integer r, the r-clique ideal of G was defined in [24] as

Kr(G) = (xF : F is an r-clique of G).
3



When ω(G) = 1, we have I(G) = (0). So excluding this case, in the following
theorem we assume that ω(G) ≥ 2.

Theorem 1.1. Let G be a perfect graph with the clique number ω = ω(G) ≥ 2.
Then, for all m ≥ 1,

(a) I(G)(m) =
∑

Ks1(G)Ks2(G) · · ·Ksj(G), where the sum is taken over all in-

tegers 1 ≤ j ≤ m and all integers s1, . . . , sj such that 2 ≤ si ≤ ω for all i,
and s1 + · · ·+ sj = m+ j.

(b) β0,d(I(G)(m)) 6= 0 if and only if d = m+ j with ⌈m/(ω − 1)⌉ ≤ j ≤ m.

Proof. (a) It follows from equation (1) that

I(G)(m)tm =
∑

Ks1(G)Ks2(G) · · ·Ksj(G)t(s1−1)+···+(sj−1),

where the sum is taken over all integers s1, . . . , sj ≥ 2 for some j such that (s1 −
1) + · · ·+ (sj − 1) = m. This is equivalent to s1 + · · ·+ sj = m+ j and 2 ≤ si ≤ ω
for all i, since Ksi(G) = (0) for si > ω. Moreover, from the inequalities si ≥ 2, we

obtain 2j ≤
∑j

i=1 si = m+ j and hence j ≤ m.

(b) First we prove the ‘if’ statement. Let q = ⌈m/(ω − 1)⌉, and q ≤ j ≤ m be an
integer. We need to show that I(G)(m) has a minimal generator of degree m+ j.

First we claim that there exist integers s1, . . . , sj such that 2 ≤ si ≤ ω for all
i, and s1 + · · · + sj = m + j. We prove this by induction on j. The first step of
induction is j = q. If ω − 1 divides m, then m = (ω − 1)q. Thus m + q = ωq and
hence m + q = s1 + · · · + sq, where s1 = · · · = sq = w. Now, assume that ω − 1
does not divide m. Then m = (ω − 1)(q − 1) + r, where 0 < r < ω − 1, and so
m+q = (q−1)ω+r+1 = s1+ · · ·+sq, where si = ω for 1 ≤ i ≤ q−1 and sq = r+1
with 2 ≤ sq < ω. So the claim is proved for j = q.

Now, let j be an integer with q < j ≤ m, and assume inductively that there exist
integers s1, . . . , sj−1, with 2 ≤ si ≤ ω, such that

∑j−1
i=1 si = m+(j−1). Since j ≤ m,

there exist 1 ≤ i ≤ j−1 such that si > 2. Otherwise,
∑j−1

i=1 si = 2(j−1) = m+(j−1).
This implies that j ≤ m = j−1, which is a contradiction. Therefore, we may assume
that sj−1 > 2. Then

m+ j =

j−1∑

i=1

si + 1 =

j−2∑

i=1

si + (sj−1 − 1) + 2 =

j∑

i=1

s′i,

where s′i = si for 1 ≤ i ≤ j − 2, s′j−1 = sj−1 − 1 and s′j = 2. We have 2 ≤ s′i ≤ ω for
all 1 ≤ i ≤ j. So the claim is proved.

Next, let q ≤ j ≤ m be an integer. We present a monomial f of degree m+ j and
show that it is a minimal generator of I(G)(m). Let 2 ≤ s1 ≤ s2 ≤ · · · ≤ sj ≤ ω be

integers such that m + j =
∑j

i=1 si. Let V (G) = {x1, . . . , xn}. Consider a minimal
monomial generator u ∈ Ksj(G). Without loss of generality, we may assume that

u =
∏sj

i=1 xi. Then {x1, . . . , xsj} forms a clique in G. Let uℓ =
∏sℓ

i=1 xi for 1 ≤ ℓ ≤ j.
Then by (a),

f = u1u2 · · ·uj ∈ Ks1(G)Ks2(G) · · ·Ksj(G) ⊆ I(G)(m).
4



We show that f is a minimal generator of I(G)(m). Suppose that this is not the case.
Then there exists a minimal monomial generator f ′ of I(G)(m) such that f ′ divides f
and deg(f ′) = m+j′ for some integer j′ < j. We have f ′ ∈ Ks′

1
(G)Ks′

2
(G) · · ·Ks′

j′
(G)

for integers 2 ≤ s′1, . . . , s
′
j′ ≤ ω with m+ j′ =

∑j′

i=1 s
′
i.

Let f = xa1
1 · · ·xan

n and f ′ = xb1
1 · · ·xbn

n . We have bi ≤ ai for all i. Moreover,
bi ≤ j′ for all i since f ′ is the product of j′ squarefree monomials. Furthermore,

f = (

s1∏

i=1

xj
i )(

s2∏

i=s1+1

xj−1
i ) · · · (

sj−1∏

i=sj−2+1

x2
i )(

sj∏

i=sj−1+1

xi), (2)

with the convention that if sh = sh+1 for some h, then
∏sh+1

i=sh+1 x
j−h
i = 1. From

equation (2) we see that ai = 0 for i > sj and ai = p, for any sj−p + 1 ≤ i ≤ sj−p+1,

where 1 ≤ p ≤ j and s0 = 0. We can write f ′ = gh where g =
∏sj−j′+1

i=1 xbi
i and

h =
∏n

i=sj−j′+1+1 x
bi
i . Then

j′∑

i=1

s′i = deg(f ′) = deg(g) + deg(h) ≤ j′sj−j′+1 +
n∑

i=sj−j′+1+1

bi. (3)

Moreover, since ai = 0 for i > sj and ai = p, for any sj−p + 1 ≤ i ≤ sj−p+1, where
1 ≤ p ≤ j, we have

n∑

i=sj−j′+1+1

bi ≤
n∑

i=sj−j′+1+1

ai

≤ (j′ − 1)(sj−j′+2 − sj−j′+1) + · · ·+ 3(sj−2 − sj−3)

+ 2(sj−1 − sj−2) + (sj − sj−1)

=

j′−1∑

ℓ=1

ℓ(sj−ℓ+1 − sj−ℓ).

(4)

We have
j′−1∑

ℓ=1

ℓ(sj−ℓ+1 − sj−ℓ) =

j′−2∑

ℓ=0

(ℓ+ 1)sj−ℓ −

j′−1∑

ℓ=1

ℓsj−ℓ =

j′−2∑

ℓ=0

sj−ℓ − (j′ − 1)sj−j′+1. (5)

From equations (3), (4) and (5), we see that

m+ j′ =

j′∑

i=1

s′i ≤ j′sj−j′+1 +

j′−2∑

ℓ=0

sj−ℓ − (j′ − 1)sj−j′+1 = sj + sj−1 + · · ·+ sj−j′+1.

Since
∑j

i=1 si = m+ j, we conclude that
∑j−j′

i=1 si ≤ m+ j− (m+ j′) = j− j′. Since
si > 0 for all i, this implies that si = 1 for all 1 ≤ i ≤ j−j′, which is a contradiction.

‘Only if’: Assume that I(G)(m) has a minimal monomial generator of degree d.
By (a), we have d = m + j for some positive integer j ≤ m. Moreover, there exist
integers s1, . . . , sj such that 2 ≤ si ≤ ω for all i, and s1 + · · ·+ sj = m + j. Then
m+ j ≤ jω. Thus m ≤ j(ω − 1), which implies that ⌈m/(ω − 1)⌉ ≤ j. �
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As a corollary of Theorem 1.1, we obtain an inequality in Conjecture A for the
family of cochordal graphs.

Corollary 1.2. Let G be a perfect graph. Then reg I(G)(m) ≥ 2m for all m ≥ 1. In
particular, if G is cochordal, then reg I(G)(m) ≥ reg I(G)m.

Proof. By Theorem 1.1(b), we have β0,2m(I(G)(m)) 6= 0, which proves the first state-
ment. Noting that any cochordal graph is a perfect graph, the second statement
follows from the first statement and [15, Theorem 3.2], where it is shown that for a
cochordal graph G, the ideal I(G)m has linear resolution. �

In the following example, for the given graph G, we present some minimal mono-
mial generators of the 6th symbolic power of I(G) in each degree m + j, where
⌈m/(ω − 1)⌉ ≤ j ≤ m.

Example 1.3. Let G be the graph depicted below.

x4

x1

x7

x2

x3x5

x6

G

Since G and Gc have no induced odd cycles of length r > 4, it follows that G
is a perfect graph. Note that ω = ω(G) = 3. Consider the ideal I = I(G)(6).
Then it follows from Theorem 1.1 that β0,d(I) 6= 0 if and only if d = 6 + j, where
3 = ⌈m/(ω−1)⌉ ≤ j ≤ m = 6. Hence, the minimal generators of I appear in degrees
9, 10, 11 and 12. Let d = 9. As the proof of Theorem 1.1 suggests, we may write 9 =
3+3+3, and choose a clique of size 3 in G, say {x2, x3, x7}. Hence, u = (x2x3x7)

3 is a
minimal generator of I of degree 9. Similarly, 10 = 2+2+3+3, and (x2x3)

2(x2x3x7)
2

is a minimal generator of degree 10. The monomials (x2x3)
4(x2x3x7) and (x2x3)

6

are minimal generators of I of degrees 11 and 12.

For a homogeneous ideal I ⊂ S, let α(I) denote the initial degree of I, that is
the minimum integer d such that Id 6= 0. The Waldschmidt constant of I is then
defined to be α̂(I) = limm→∞ α(I(m))/m. The following corollary of Theorem 1.1
recovers [4, Theorem 6.7(i)].

Corollary 1.4. Let G be a perfect graph with the clique number ω = ω(G) ≥ 2, and
let I = I(G). Then, α̂(I) = ω/(ω − 1).

Proof. By Theorem 1.1, α(I(G)(m)) = m+ ⌈m/(ω − 1)⌉ = ⌈mω/(ω − 1)⌉. Thus

α̂(I) = lim
m→∞

⌈mω/(ω − 1)⌉

m
=

ω

ω − 1
.

�
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2. Componentwise linearity of symbolic powers of edge ideals

This section focuses on resolving Conjecture B for several classes of graphs. To
set the stage for the main result, we provide a brief review of some key concepts.

A vertex x of a graph G is called a simplicial vertex of G if its (open) neighborhood
NG(x) = {y ∈ V (G) : {x, y} ∈ E(G)} is a clique of G. A perfect elimination

ordering of G is an ordering x1 > · · · > xn on the vertex set of G such that xi is a
simplicial vertex of the induced subgraph Gi = G[{xi, xi+1, . . . , xn}] for all i. By a
classical result due to Dirac [6], G is a chordal graph, if and only if, G has a perfect
elimination ordering.

A graph G is called a proper interval graph, if there exists a labeling {x1, . . . , xn}
on the vertex set of G such that for any i < j < k, {xi, xk} ∈ E(G) implies that
{xi, xj} ∈ E(G) and {xj , xk} ∈ E(G). It can be seen that x1 > . . . > xn is a perfect
elimination ordering of G. Hence, any proper interval graph is chordal.

A cut vertex of a connected graph G is a vertex x ∈ V (G) such that G \ x is not
connected. A block of a graph G is a maximal induced subgraph B of G with the
property that it is connected and contains no cut vertex. A graph G is called a block

graph if all of its blocks are cliques of G. For instance, any forest is a block graph.
In the sequel we use the following characterization of block graphs, for which we
refer to [16].

Proposition 2.1. A graph G is a block graph if and only if G is chordal and any

two maximal cliques of G have at most one vertex in common.

Here is a typical example of a block graph.

For an integer n, we set [n] = {1, 2, . . . , n}. Given a non-empty subset A of [n]
and a monomial u = xa1

1 · · ·xan
n ∈ S, we set PA = (xi : i ∈ A) and uA =

∏
i∈A xai

i .
The following simple lemma will be used several times.

Lemma 2.2. Let A1, . . . , Am be non-empty subsets of [n], k1, . . . , km be positive in-

tegers and let u = xa1
1 · · ·xan

n ∈ S be a monomial of degree d. Then, u ∈
⋂m

i=1 P
ki
[n]\Ai

if and only if

deg(uAi
) ≤ d− ki, for all 1 ≤ i ≤ m.

7



Proof. We have u ∈ P ki
[n]\Ai

if and only if
∑

j∈[n]\Ai
aj ≥ ki. Since

∑
j∈[n]\Ai

aj = d−∑
j∈Ai

aj, the previous inequality holds if and only if deg(uAi
) =

∑
j∈Ai

aj ≤ d− ki.
�

Recall that an independent set of G is a subset A of V (G) such that no two
vertices of A are adjacent in G. The set of all independent sets of G is a simplicial
complex ∆G, called the independence complex of G. A vertex cover of G is a subset
C ⊆ V (G) which intersects each edge of G. A minimal set with such property is
called a minimal vertex cover of G.

As customary, if ∆ is a simplicial complex, we denote by F(∆) the set consisting
of the facets of ∆. Then

I(G)(k) =
⋂

A∈F(∆G)

P k
[n]\A.

Indeed, PC ∈ Ass I(G) if and only if C is a minimal vertex cover of G, which
means that C = [n] \A for a maximal independent set A ∈ F(∆G). Notice that any
maximal independent set A ∈ F(∆G) is a maximal clique of Gc. We will use this
basic fact several times.

A homogeneous ideal I ⊂ S is called componentwise linear, if the ideal

I〈d〉 = (f ∈ I, f is homogeneous of degree d)

has linear resolution for any positive integer d. A useful approach to show that an
ideal is componentwise linear is to show that it has (componentwise) linear quotients.
Indeed, ideals with (componentwise) linear quotients are componentwise linear [13,
Theorem 8.2.15]. Recall that a monomial ideal I has linear quotients if the minimal
generators of I can be ordered as u1, . . . , us such that for each i = 2, . . . , s, the ideal
(u1, . . . , ui−1) : (ui) is generated by variables. In the following, for two monomials u
and v, we set u : v = u/ gcd(u, v). Notice that (u1, . . . , ui−1) : (ui) = (uj : ui | 1 ≤
j ≤ i− 1).

Theorem 2.3. Let G be one of the following graphs:

(a) Complement of a block graph,

(b) Complement of a proper interval graph,

(c) G is a cochordal graph with the property that any vertex in G belongs to at

most two maximal independent sets of G.

Then
⋂

A∈F(∆G) P
kA
[n]\A is componentwise linear, for any positive integers kA. In par-

ticular, I(G)(k) is componentwise linear for all k.

Proof. Let J =
⋂

A∈F(∆G) P
kA
[n]\A. We show that J〈d〉 has linear quotients for all d,

which will imply that J〈d〉 has linear resolution. If J〈d〉 = 0, there is nothing to
prove. So we assume that J〈d〉 6= 0. Under any of the assumptions (a), (b) or (c),
the graph G is cochordal. Let x1 > · · · > xn be a perfect elimination order of Gc,
and consider the lex order > on J〈d〉 induced by this order. Let u = xa1

1 · · ·xan
n and

v = xb1
1 · · ·xbn

n be two generators of J〈d〉 of degree d, with u > v. Let i be the integer
with ai > bi and aj = bj for j < i. By assumption xi is a simplicial vertex of the

8



graph Hi = Gc[{xi, xi+1, . . . , xn}]. Notice that since u and v have the same degree,
there exists an integer ℓ > i such that bℓ > 0. We set

L = {xℓ ∈ NHi
(xi) : bℓ > 0}.

Clearly, L ⊆ {xi+1, . . . , xn}. First assume that L = ∅. Let t be an integer > i
such that bt > 0. We set w = xiv/xt. Obviously, w > v, w : v = xi and xi

divides u : v. Since degw = d, it remains to show that w ∈ J . By Lemma 2.2,
deg(uA) ≤ d−kA and deg(vA) ≤ d−kA, for any A ∈ F(∆G). Using Lemma 2.2 once
again, we need to show that deg(wA) ≤ d−kA for any A ∈ F(∆G). Let A ∈ F(∆G).
If xi /∈ A, then deg(wA) ≤ deg(vA) ≤ d − kA. Suppose now that xi ∈ A. Since
A is a maximal clique of Gc, it follows that A ∩ {xi+1, . . . , xn} ⊆ NHi

(xi). Let
w = xc1

1 · · ·xcn
n . Then cj = bj for j < i, and ci = bi + 1 ≤ ai. Moreover, from the

inclusion A ∩ {xi+1, . . . , xn} ⊆ NHi
(xi) and that L = ∅, it follows that cj = 0 for

any j > i with xj ∈ A. Therefore, deg(wA) ≤ deg(uA) ≤ d− kA, as desired.
Now, suppose that L is non-empty. Let t be the minimal integer such that xt ∈ L.

We set w = xiv/xt. Write w = xc1
1 · · ·xcn

n . We have

cj =





bi + 1 if j = i,

bt − 1 if j = t,

bj otherwise.

(6)

We need to show that deg(wA) ≤ d − kA for any A ∈ F(∆G). Let A ∈ F(∆G).
If xi /∈ A, then as before, deg(wA) ≤ deg(vA) ≤ d− kA. Now, suppose that xi ∈ A.
Next we discuss each of the cases (a), (b) and (c).

(a) Since ∅ 6= L ⊆ NHi
(xi), we have |NHi

[xi]| ≥ 2, where NHi
[xi] = NHi

(xi)∪{xi}.
By Proposition 2.1, for any other maximal clique B 6= A of Gc which contains xi we
have A ∩B = {xi}. Therefore, NHi

[xi] is contained in precisely one maximal clique
C of Gc. Let C ′ = C \ NHi

(xi) and let B 6= C be an arbitrary maximal clique of
Gc containing xi. We claim that C ′, B ⊆ {x1, . . . , xi}. Indeed, if xj ∈ C ′ for some
j > i, then xj ∈ NHi

(xi), which is impossible. Similarly, if xj ∈ B for some j > i,
then xj ∈ NHi

(xi) and {xi, xj} ∈ B ∩ C which is not possible by Proposition 2.1.
Now, we show that deg(wA) ≤ d − kA. First assume that A = C. Notice that

xt ∈ NHi
(xi) ⊆ C. Then by (6) we have deg(wC) = deg(vC) ≤ d − kC . Otherwise,

if A 6= C, then as was shown above, A ⊆ {x1, . . . , xi}. Since cj = bj = aj for j < i
and ci = bi + 1 ≤ ai, by (6) we have deg(wA) ≤ deg(uA) ≤ d− kA.

(b) If xt /∈ A, then xj /∈ A for any j > t, since Gc is a proper interval graph and
i < t < j. In other words, A ⊆ {xj : i−s ≤ j ≤ t−1} for some non-negative integer
s. We have cℓ = aℓ for any ℓ < i, and ci = bi+1 ≤ ai. Moreover, by the choice of t it
follows that for any xℓ ∈ A with ℓ > i, cℓ = bℓ = 0. So deg(wA) ≤ deg(uA) ≤ d−kA.
If xt ∈ A, then deg(wA) = (bi + 1) + (bt − 1) + deg(wA\{xi,xt}) = deg(vA) ≤ d− kA.

(c) By our assumption xi belongs to at most two maximal cliques of Gc. If A
is the only maximal clique which contains xi, then L ⊆ NHi

[xi] ⊆ A. Therefore,
xt ∈ A and hence

deg(wA) = (bi + 1) + (bt − 1) + deg(wA\{xi,xt}) = deg(vA) ≤ d− kA.
9



Now, suppose xi belongs to two maximal cliques of Gc, say A1 and A2. We may
assume that NHi

[xi] ⊆ A1. Then deg(wA1
) ≤ deg(vA1

) ≤ d− kA1
because t ∈ A1. If

A2 ∩ NHi
(xi) = ∅, then deg(wA2

) ≤ deg(uA2
) ≤ d − kA2

because A2 ⊆ {x1, . . . , xi}.
Now, suppose that A2 ∩ NHi

(xi) 6= ∅. If bℓ = 0 for all xℓ ∈ A2 ∩ NHi
(xi), then

deg(wA2
) ≤ deg(uA2

) ≤ d − kA2
. Therefore, in this case deg(wA) ≤ d − kA for

A ∈ {A1, A2}.
Finally, if bℓ > 0 for some xℓ ∈ A2∩NHi

(xi), we redefine w as w = xi(v/xt), where
t = ℓ. It follows that deg(wA) ≤ d− kA for A ∈ {A1, A2}, as desired. �

The following picture gives an example of a chordal graph G whose complement
Gc satisfies condition (c) in Theorem 2.3 but is neither a block graph nor a proper
interval graph.

Corollary 2.4. Let G be one of the graphs considered in Theorem 2.3. Then,

reg I(G)(k) = reg I(G)k = 2k for all k.

Proof. Since I(G)(k) is componentwise linear, by [13, Corollary 8.2.14], reg I(G)(k)

is equal to the highest degree of a minimal generator of I(G)(k). By Theorem 1.1,
this degree is 2k. The equality reg I(G)k = 2k holds by [15, Theorem 3.2]. �

Let G1 and G2 be graphs on disjoint vertex sets. The join of G1 and G2 is
defined as the graph G1 ∗ G2 with the vertex set V (G1) ∪ V (G2) and the edge set
E(G1)∪E(G2)∪{{x, y} : x ∈ V (G1), y ∈ V (G2)}. One can define the join operation
inductively for any finite number of graphs on disjoint vertex sets.

Corollary 2.5. Let G = G1 ∗ · · · ∗Gr, where each Gi belongs to one of the families

of graphs in Theorem 2.3. Then reg I(G)(k) = reg I(G)k = 2k for all k.

Proof. By [19, Theorem 3.2] and Corollary 2.4,

reg I(G)(k) = max{reg I(Gj)
(i) − i+ k : 1 ≤ i ≤ k, 1 ≤ j ≤ r} = 2k.

On the other hand, the graph Gc is the disjoint union of Gc
1, . . . , G

c
r. Therefore it is

chordal. Hence, [15, Theorem 3.2] implies that reg I(G)k = 2k. �

3. The second symbolic power of edge ideals

In this section, we address Conjectures B and C for the second symbolic power of
edge ideals. We prove that I(G)(2) has linear quotients if G is a cochordal graph.

To this end, let G be a cochordal graph. Since G is perfect, Theorem 1.1 implies
that

I(G)(2) = K3(G) + I(G)2. (7)
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We will need the following technical lemmas. For a monomial ideal I, the unique
set of minimal monomial generators of I is denoted by G(I).

Lemma 3.1. Let I1, . . . , It be equigenerated monomial ideals with linear quotients,

with α(Ij) = dj and d1 ≤ · · · ≤ dt. Suppose that the following property is satisfied:

(∗) For all u ∈ G(Ii) and v ∈ G(Ij) with i < j and deg(u : v) > 1, there exists a

monomial w belonging to

(I1 ∪ · · · ∪ Ij−1) ∪ {w ∈ G(Ij) : w > v in the linear quotients order of Ij}

such that deg(w : v) = 1 and w : v divides u : v.

Then I = I1 + · · ·+ It has linear quotients.

Proof. We prove the statement by induction on t ≥ 1. For t = 1, there is nothing
to prove. Let t ≥ 2. To simplify the notation, we set J = I1+ · · ·+ It−1, L = It and
I = J + L. By induction, J has linear quotients. If L ⊆ J , then I = J and there is
nothing to prove. Suppose now that L 6⊆ J . Let u1, . . . , um and v1, . . . , vℓ be linear
quotients orders of J and L, respectively. Since J is generated in degrees d1, . . . , dt−1

and L is generated in degree dt, it follows that G(I) = G(J) ∪ {vj1, . . . , vjk}, for a
certain k ≥ 1 and 1 ≤ j1 < · · · < jk ≤ ℓ. We claim that u1, . . . , um, vj1, . . . , vjk is a
linear quotients order of I. Since u1, . . . , um is already a linear quotients order, it is
enough to show that

(u1, . . . , um, vj1, . . . , vji−1
) : vji

is generated by variables for all i. For later use, let H = (u1, . . . , um, v1, . . . , vji−1).
Consider a generator vjr : vji. Then, there exists s < ji such that vs : vji = xp

and xp divides vjr : vji. If s = jq for some q, then we are done. Otherwise, vs is not
a minimal generator and there exists uh which divides vs. Then uh : vji is not one
and it divides vs : vji = xp. Hence uh : vji = xp and we are done.

Consider now a generator ur : vji. If deg(ur : vji) = 1, we are done. Otherwise,
if deg(ur : vji) > 1, the property (∗) implies that there exists w ∈ H such that
w : vji = xp, and xp divides ur : vji. Since H = (u1, . . . , um, vj1 , . . . , vji−1

), there
exists w′ ∈ {u1, . . . , um, vj1, . . . , vji−1

} such that w′ divides w. Then w′ : vji divides
w : vji = xp. Since w′, vji ∈ G(I), it follows that w′ : vji = xp, and this concludes
the proof. �

Lemma 3.2. Let x ∈ X be a variable, I1 ⊂ S = K[X ] and I2 ⊆ K[X \ {x}] be
monomial ideals with linear quotients such that I2 ⊆ I1. Suppose that G(xI1) ⊆ G(I).
Then I = xI1 + I2 has again linear quotients.

Proof. Let u1, . . . , um and v1, . . . , vℓ be linear quotients order of I1 and I2, respec-
tively. If I = xI1 there is nothing to prove. Otherwise, G(I) = G(xI1)∪G(I2), since
I2 ⊆ K[X \ {x}]. We claim that xu1, . . . , xum, v1, . . . , vℓ is a linear quotients order
of I. To this end, since xu1, . . . , xum is a linear quotients order, it is enough to show
that (xu1, . . . , xum, v1, . . . , vi−1) : vi is generated by variables for all i. Consider a
generator vr : vi. Then, there exists s < i such that vs : vi = xp and xp divides vr : vi
and we are done. Now, consider a generator xur : vi. From I2 ⊆ K[X \ {x}], we
know that the variable x divides xur : vi. Since vi ∈ I2 ⊆ I1, there exists w ∈ G(I1)
which divides vi. Thus xw ∈ G(I), xw : vi = x and we are done. �
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Another lemma which is required is the following

Lemma 3.3. Let I = I(G) be an edge ideal with linear quotients and let P ⊂ S be

a monomial prime ideal. Then PI has linear quotients.

Proof. Up to a relabeling, we may assume P = (x1, . . . , xt). Let u1, . . . , um be a
linear quotients order of I. We proceed by induction on m. If m = 1, x1u1, . . . , xtu1

is a linear quotients order of PI. Let m > 1 and L = (u1, . . . , um−1). Then
I = (L, um), L is again an edge ideal with linear quotients and so by induction PL
has a linear quotients order, say, v1, . . . , vh. Let xj1um, . . . , xjsum, with 1 ≤ j1 <
· · · < js ≤ t, be the monomials in G(PI) \ G(PL). We claim that

v1, . . . , vh, xj1um, . . . , xjsum (8)

is a linear quotients order of PI. Since by induction, v1, . . . , vh is a linear quotients
order of PL, it remains to show that (v1, . . . , vh, xj1um, . . . , xji−1

um) : xjium is gen-
erated by variables for all 1 ≤ i ≤ s. It is clear that xjpum : xjium = xjp is a variable
for all 1 ≤ p < i. Consider now the monomial vℓ : xjium. Then vℓ = xpuq for
some 1 ≤ p ≤ t and some 1 ≤ q < m. If deg(vℓ : xjium) = 1, there is nothing to
prove. Suppose that deg(vℓ : xjium) ≥ 2. Let uq = xrxs. Then at least one of the
variables xr and xs divides vℓ : xjium, say xr. Consider uq : um. Since I has linear
quotients, there exists k < m such that uk : um is a variable that divides uq : um,
and so uk : um divides xrxs. If uk : um = xr, then xjiuk : xjium = xr. Notice that
xjiuk ∈ G(PL). So in this case we are done. Now, assume that uk : um = xs. If xs

divides vℓ : xjium, then the same argument as before can be applied. Now, suppose
that xs does not divide vℓ : xjium. Then vℓ : xjium = xpxr. Since uk : um = xs, xs

does not divide um. These imply that ji = s and hence uk divides xjium. Therefore,
xpuk : xjium = xp divides vℓ : xjium and xpuk ∈ G(PL). �

The following remark will be needed in the proof of Theorem 3.5.

Remark 3.4. Let I = I(G) be an edge ideal with linear quotients and let P =
(xj1 , . . . , xjt) ⊂ S be a monomial prime ideal. Let u1, . . . , um be a linear quotients
order of I. Then G(PI) = {v1, . . . , vh} ⊆ {xjpuq : 1 ≤ p ≤ t, 1 ≤ q ≤ m}. Consider
the following order of monomials

xj1u1 > · · · > xjtu1 > xj1u2 > · · · > xjtu2 > · · · > xj1um > · · · > xjtum. (9)

Notice that each vℓ is equal to at least one monomial xjpuq in the above list. We call
xjpuq = vℓ the standard presentation of vℓ if xjpuq is the biggest monomial equal to
vℓ in the order (9). Then, the order (9) induces a total order > on G(PI) defined
for any vℓ, vs ∈ G(PI) by setting vℓ > vs if the standard presentation of vℓ is bigger
than the standard presentation of vs in the order (9). It follows from the proof of
Lemma 3.3 that PI has linear quotients with respect to the order >. Indeed, in
the ordering (8), one may assume by induction that v1, . . . , vh is the desired order.
Since xj1um, . . . , xjsum belong to G(PI) \ G(PL), it follows that they are standard
presentations, and so (8) is the desired linear quotients order of PI.

The following result strengthens a result by Minh et al. [20, Theorem 3.3] in the
case that G is a cochordal graph.
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Theorem 3.5. Let G be a cochordal graph. Then I(G)(2) has linear quotients. In

particular, reg I(G)(2) = reg I(G)2 = 4.

Proof. Let x1 > · · · > xn be a perfect elimination order of Gc. We prove the
theorem by induction on n ≥ 2. If n = 2, then V (G) = {x1, x2}, and I(G) = (0) or
I(G) = (x1x2) and I(G)(2) = I(G)2 = (x2

1x
2
2) has linear quotients.

Suppose now n > 2. Let G1 = G \ {x1} and G2 = G[NG(x1)]. Then, by the proof
of [24, Theorem 3.2] we have

I(G)2 = (x1K1(G2))
2 + x1K1(G2)I(G1) + I(G1)

2, (10)

K3(G) = x1I(G2) +K3(G1), (11)

with I(G1) ⊆ K1(G2), K3(G1) ⊆ I(G2), and these four ideals appearing in the
inclusion relations have linear quotients.

We set P = K1(G2), and note that P is a monomial prime ideal. Then, by (7),
(10) and (11),

I(G)(2) = x1[I(G2) + x1P
2 + PI(G1)] + I(G1)

(2). (12)

Let G(P ) = V (G2) = {xj1, . . . , xjt}. We may assume that 1 ≤ j1 < · · · < jt ≤ n.
Then the linear quotient orders of PI(G1) are determined as in the Remark 3.4. On
the set G(x1P

2) we fix the lex order induced by x1 > x2 > · · · > xn. Obviously, this
is a linear quotients order of x1P

2.
Set I1 = I(G2), I2 = x1P

2, I3 = PI(G1), and L = I1 + I2 + I3. Since I1, I2, I3 are
equigenerated with linear quotients (see Lemma 3.3), by Lemma 3.1, it is enough
to show that L satisfies the property (∗). For this aim, let u ∈ G(Ih) and v ∈ G(Iℓ),
with h < ℓ, such that deg(u : v) > 1.

Suppose h = 1. Hence u = xixj ∈ I(G2) with xi > xj and xi, xj ∈ P . We have
ℓ = 2 or ℓ = 3.

Suppose ℓ = 2. Then v = x1(xpxq) ∈ x1P
2 with xp ≥ xq. Since deg(u : v) > 1,

we have u : v = u = xixj and p 6= i, j. Note that xp, xq, xi, xj ∈ G(P ) = V (G2).
If xi > xp, then w = x1(xixq) ∈ I2, and w > v in the linear quotients order of
I2. Moreover, w : v = xi divides u : v, as wanted. Otherwise, suppose xp > xi.
We claim that xpxi ∈ I(G2) or xpxj ∈ I(G2). Suppose this is not the case, then
{xp, xi}, {xp, xj} ∈ E(Gc). Since xp is a simplicial vertex of Gc[xp, xp+1, . . . , xn] and
xp > xi > xj , it would follow that {xi, xj} ∈ E(Gc), which is absurd. Therefore,
xpxi ∈ I(G2) or xpxj ∈ I(G2). If, for instance, w = xpxi ∈ I(G2), then w : v = xi

divides u : v and the property (∗) is again satisfied. Otherwise, if w = xpxj ∈ I(G2),
once again w : v = xj divides u : v and the property (∗) is satisfied.

Suppose ℓ = 3. Then v = xp(xrxs) ∈ PI(G1) with xp ∈ P and xrxs ∈ G(I(G1)).
We assume that v = xp(xrxs) is the standard presentation of v. Since deg(u : v) > 1,
then u : v = u and so p 6= i, j. If xi > xp, then w = xi(xrxs) ∈ G(PI(G1)), and w > v
in the linear quotients order of PI(G1) by Remark 3.4. Then w : v = xi divides
u : v, and the property (∗) is verified in such a case. Suppose now xp > xi > xj . As
shown before, xpxi ∈ I(G2) or xpxj ∈ I(G2). If w = xpxi ∈ I(G2), then w : v = xi

divides u : v and the property (∗) is satisfied. We proceed similarly if xpxj ∈ I(G2).
13



Suppose now h = 2. Then ℓ = 3. In this case x1 divides u : v, and v = xp(xixj)
with xp ∈ P and xixj ∈ I(G1). Since I(G1) ⊆ P , we may assume that xi ∈ P . Then
w = x1(xpxi) ∈ G(x1P

2), w : v = x1 divides u : v, and the property (∗) is satisfied.
Hence, L has linear quotients. Notice that I(G)(2) = x1L+I(G1)

(2). By induction,
I(G1)

(2) has linear quotients. Since I(G1) ⊆ P and K3(G1) ⊆ I(G2), equation (7)
implies that I(G1)

(2) ⊆ L. We claim that G(x1L) ⊆ G(I(G)(2)). Then, Lemma 3.2
implies that I(G)(2) has linear quotients, as desired.

Suppose that G(x1L) \ G(I(G)(2)) 6= ∅. Then, there exist monomials u ∈ G(x1L)
and v ∈ G(I(G1)

(2)) such that v divides u properly. Since x1L, I(G1)
(2) are generated

in degrees three and four, we have deg(u) = 4 and deg(v) = 3. Equation (12) implies
that u ∈ x2

1P
2+x1PI(G1). If u = x2

1(xpxq) with xpxq ∈ P 2, since v ∈ K[x2, . . . , xn],
then v should divide xpxq, which is not possible. Otherwise, if u ∈ x1PI(G1), then
v should divide u/x1 = xp(xixj), where xp ∈ P and xixj ∈ I(G1). Since deg(v) = 3,
from the equation I(G1)

(2) = K3(G1) + I(G1)
2 we have u/x1 = v ∈ K3(G1). Thus

u = x1v ∈ x1K3(G1) ⊆ x1I(G2), against the fact that u ∈ G(x1L). Hence G(x1L) ⊆
G(I(G)(2)), and this concludes the proof. �
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