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Abstract
The Oja depth (simplicial volume depth) is one of the classical statistical
techniques for measuring the central tendency of data in multivariate space.
Despite the widespread emergence of object data like images, texts, matrices
or graphs, a well-developed and suitable version of Oja depth for object data
is lacking. To address this shortcoming, in this study we propose a novel
measure of statistical depth, the metric Oja depth applicable to any object
data. Then, we develop two competing strategies for optimizing metric depth
functions, i.e., finding the deepest objects with respect to them. Finally, we
compare the performance of the metric Oja depth with three other depth
functions (half-space, lens, and spatial) in diverse data scenarios.

Keywords:
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1. Introduction

1.1. Background
Nowadays, data is being generated in high volumes, at high speeds, and

with great diversity. In fact, it can be stated that with the advent of big data,
we have entered a new phase of data analysis. A key aspect of modern data
analysis is that we no longer deal exclusively with data existing in Euclidean
spaces. Instead, data are currently taking on more complex formats, such as
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images, graphs, matrices, etc., all of which reside in non-Euclidean spaces
and are collectively known as object data. Methods targeted towards object
data, accordingly known as object data analysis or metric statistics [5], are
currently bountiful in statistical literature, see, e.g., [6, 36, 38, 39].

As with any data, in order to achieve a better understanding of object data
or to implement both simple and advanced machine learning algorithms on ob-
ject data, it is essential to take some initial steps. These involve data cleaning
and performing exploratory data analysis on the raw data. Exploratory data
analysis can take various forms: calculating descriptive statistics, dimension
reduction, detecting outliers etc. are all examples of exploratory data analysis.
However, despite being straightforward and well-studied in the context of
Euclidean data, these tasks can be surprisingly difficult in the context of
object data, due to the lack of even basic mathematical operations such as
addition. In this work, we focus on one of the most fundamental exploratory
statistical tasks, location/mean/average estimation, in the context of object
data. As our methodological tool of choice, we use depth functions, one of the
lesser-known yet powerful and data-driven tools in exploratory data analysis,
which we review next.

In statistical analysis, measuring the extent to which an observation is
centralized or outlying within the data distribution plays a fundamental
role. Subsequently, various statistical measures have been developed for this
purpose and the history of this concept can be traced back to the early
1900s, to the concept of Mahalanobis distance. In fact, this distance serves
as a classic method for quantifying how outlying a point is. In contrast to
Mahalanobis distance and similar quantities, depth functions operate precisely
in the opposite direction and measure the centrality, or depth, of a point
with respect to a distribution (outlyingness and centrality are two contrasting
concepts). In mathematical terms, for a point x and a probability distribution
P , a depth function D assigns to x a non-negative value D(x, P ) which
quantifies the centrality of x with respect to the probability distribution P .
A higher depth value indicates that x is located closer to the center of the
data, while a lower depth indicates that this point is more outlying within
the distribution. Going beyond the previous heuristic explanation, an ideal
depth function is typically required to satisfy a certain collection of properties,
see [40].

The foundation for depth functions was originally introduced in 1975 by
Tukey who proposed his seminal half-space depth for multivariate data to rank
observations and reveal features of the underlying data distribution [32]. Apart
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Author Year Depth function Has a metric version
Mahalanobis [18] 1936 Mahalanobis depth (distance) No
Tukey [32] 1975 Half-space/location/Tukey depth Yes [4]
Barnett, Eddy [1, 7] 1976, 1981 Convex hull peeling /onion depth No
Liu; Zuo & Serfling [16, 40] 1992, 2000 Projection depth No
Liu [15] 1990 Simplicial depth No
Oja, Zuo & Serfling [23] 1983, 2000 Simplicial volume depth/Oja depth Yes, in the current paper
Koshevoy & Mosler [14] 1997 Zonoid depth No
Vardi & Zhang, Serfling [33, 29] 2000, 2002 Spatial depth Yes [35]
Liu & Modarres [17] 2011 Lens depth Yes [3, 12]
Yang & Modarres [37] 2018 β-skeleton depths No

Table 1: List of depth functions and whether a metric version of them exists.

from the half-space depth, numerous depth functions for data in Euclidean
space have been proposed. For instance, the convex hull peeling depth (onion
depth) [1, 7] or Simplicial volume depth (Oja depth) [23] and several others,
see Table 1 and the comprehensive addressing in [20].

In recent years, object/metric versions of various depth functions (see the
final column of Table 1) have been proposed to analyze samples of object data
living in an arbitary metric space (X , d). That is, these new depth functions
are such that given an object X ∈ X and a distribution P taking values in
X , the depth D(X; P ) describes how central the object X is w.r.t. P , much
in the same way as for the Euclidean depths earlier. Two key properties of
these extensions is that (a) they depend on the data only through the metric
d, making them applicable to any form of object data, regardless in which
specific metric space they live, and (b) if (X , d) is chosen to be a Euclidean
space, then the original Euclidean version of the depth is recovered, showing
that these metric depth functions are indeed “true” generalization of their
classical counterparts. A metric version of the lens depth was developed in
[3, 12], the metric half-space depth was proposed in [4] and the metric spatial
depth in [35].

Most of the depth functions in Table 1, in particular all three that have
object versions, are robust [19], meaning that their performance is not skewed
by the presence of possible outliers. The same is not true for location
estimation procedures in general. For example, the Fréchet mean [11] which is
a generalization of the concept of average and a classical estimator of location
for object data, is not robust, but is instead affected greatly by data outliers.
Despite the popularity of Fréchet mean and similar tools, in this work we
concentrate solely on robust methods. This is because object data is very
diverse and recognizing any possible outliers in them can, as such, be very
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difficult. Hence, to ensure that our analyses stay reliable, we find it imperative
to develop robust methods, which automatically protect us against outliers
regardless of their exact type and whether we recognize them or not.

1.2. Our Contributions
As stated earlier, our focus in this work is on the robust location estimation

of object data using depth functions. The main contributions of this work in
this regard are as follows.

(i) We propose a new depth function for object data, the metric Oja
depth. As with the metric generalizations of the other depth functions, the
metric Oja depth is applicable to any object data and reverts back to the
original Oja depth in Euclidean spaces. Like its competitors, it is also robust.
Interestingly, the generalization process of Oja depth actually leads to several
metric versions of it, indexed by a integer-valued dimension parameter p, see
Section 3 for details, where we also derive several theoretical properties of
the metric Oja depth that help interpreting it.

(ii) We study the robust estimation of the deepest point for object data
samples. That is, given a sample X1, . . . , Xn of object data whose empirical
distribution we denote by Pn, we aim to find the object X ∈ X which has the
maximal depth value D(X; Pn). This deepest point serves as the analogue of
sample mean for object data and has obvious uses in data analysis. Despite
the fundamental nature of this problem, in the earlier works on metric depths
it has been considered only by [4], and even they restricted to finding the
optimum among the sample points X1, . . . , Xn. As a more comprehensive
approach, we propose using a genetic algorithm [13] along with a coordinate
representation of the object data to estimate the deepest out-of-sample object.
We demonstrate this with the metric Oja depth, but the proposed algorithm
applies equally to any other metric depth function.

(iii) We conduct extensive simulation and real data comparisons between
our proposed depth and all of its competitors from the literature on robust
metric depths in estimating the deepest point in several object data scenarios.
As one of our main questions of interest, we investigate how much the in-sample
estimation can be improved by using the computationally expensive genetic
algorithms to achieve out-of-sample estimation. In both simulation scenarios
involving correlation matrices and points on hyperspheres, metric Oja depth
performs best, with metric half-space depth showing the weakest performance
but requiring less processing time. Applying the genetic algorithm to metric
Oja depth further improved its performance.
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We note that a prominent underlying theme in this work is the use of
computationally intensive techniques to perform statistical inference for object
data: E.g., since obtaining the null distribution for testing the equality of
the deepest points of two distributions is not feasible, we use a permutation
test to approximate this distribution in the absence of any distributional as-
sumptions. Similarly, since depth functions are computationally complex and
since a generic metric space does not carry enough structure for implementing
standard optimization, we represent the objects as approximate coordinates
and use genetic algorithms for heuristic optimization.

1.3. Contents
As shown in Table 1, three depth functions for object data have been

developed earlier in the literature, which will be briefly introduced in Section 2.
In Section 3, we provide a detailed explanation of a new metric depth function
(two versions of that) developed in this research, outlining its features within
theoretical framework. In Section 4, we evaluate and compare it with three
other depth functions, using two simulation scenarios. We also apply a genetic
algorithm to optimize out-of-sample error, and all experimental results are
presented in this section. In Section 5, we further tested our metric depth
function on real dataset to assess its performance in statistical inference,
relying on computational techniques.Finally, future recommendations and
conclusions are compiled in Section 6.

2. Review of existing metric depth functions

We next review the three existing depth functions for object data proposed
in literature. We let (Ω, F ,P) be a probability space and take (X , d) to be
a complete and separable metric space where our data (called hereafter
“objects”) resides. Further, we let P be a probability measure defined on the
Borel sets of X . Given a fixed, non-random object x ∈ X , the metric depth
functions answer the question “how central is the object x with respect to
the distribution P?”.

To tackle this quesition, [3, 12] proposed metric lens depth, defined as

DL(x) ≡ DL(x; P ) := P (d(X1, X2) > max {d(X1, x), d(X2, x)}) ,

where X1, X2 are independent random variables with the distribution P . We
note that while the notation DL(x; P ) is more transparent in the sense that it
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makes explicit the reference distribution P , we still use DL(x) in the sequel for
conciseness, leaving P implicit (but always clear from the context). Drawing
an analogy from Euclidean statistics, DL(x) essentially gives the probability
that the side corresponding to X1, X2 is the longest in a “triangle” drawn
using the objects x, X1, X2. Intuitively, the probability is small (large) if x is
located far away from (close to) the bulk of the distribution P , making DL

behave as expected from a depth function.
[4] gave a similar treatment to the classical half-space depth and defined

the metric half-space depth as

DH(x) = inf
x1,x2∈X , d(x1,x)≤d(x2,x)

P(d(X, x1) ≤ d(X, x2)).

The infimum is taken over pairs of objects x1, x2 and every such pair divides
the space H in two subsets (objects closer to x1 than x2 and vice versa).
The depth DH(x) is defined to be the smallest possible probability mass of a
subset produced in this way and containing the object x. As with the metric
lens depth, it is easy to see that, for an outlying object x, it is easy to find a
subset which contains x but has very little P -probability mass, making DH(x)
small.

A third metric depth was proposed in [35], who defined the metric spatial
depth to be

DS(x) = 1 − 1
2E

[
I(d(X1, x) ̸= 0, d(X2, x) ̸= 0)

{
d2(X1,µ)+d2(X2,µ)−d2(X1,X2)

d(X1,µ)d(X2,µ)

}]
,

where X1, X2 ∼ P are independent. The interpretation of DS(x) is trickier
than for the previous two depths, but it essentially measures how likely x and
two random objects X1, X2 are to yield equality in the triangle inequality.
The depth takes values in [0, 2] and the value 0 is reached if and only if the
probability of equality is 1 and x is never in the middle of the other two
objects, whereas to reach the value 2, x must always reside between the two
other objects. More details on interpreting the metric spatial are given in
[35].

All previous metric depth functions revert to their classical counterparts
when (X , d) is taken to be an Euclidean space. They also share some key
properties, which we summarize next. All three depths vanish at infinity
meaning that, for objects far enough away from the bulk of the distribution P ,
the depth values approach zero. All three satisfy specific forms of continuity
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(small changes in x entail small changes in the depth). Both DL and DH

are invariant to data transformations that preserve the ordering of distances.
The depths DH and DS are robust, the former in the sense of having a high
breakdown point and the latter in the sense of having a bounded influence
function. For these, and some other properties of the three depth functions,
we refer the reader to the papers [3, 12, 4, 35].

Let X1, . . . , Xn denote a random sample of objects from the distribution
P . Each of the three depth functions admits a natural sample counterpart
where the reference distribution is taken to be Pn the empirical distribution of
the sample. In the sequel, we notate these sample versions as DL,n, DH,n, DS,n.
Thus, for example, the sample metric lens depth of x is

DL,n(x) ≡ DL(x; Pn) := 1
n2

n∑
i=1

n∑
j=1

I (d(Xi, Xj) > max {d(Xi, x), d(Xj, x)}) .

We note that the computation of DL,n(x) and DS,n(x) is trivial, requiring
just two loops over the sample, but finding DH,n is much more complicated
due to the infimum. An approximative algorithm that we also use in this
paper to compute the metric half-space depth is given in [4, Algorithm 1].

To complement this collection of metric depth functions, we next define a
metric version of the Oja depth.

3. A new depth for object data

Before defining our novel depth concept, we first take a moment to motivate
it. For any three objects x1, x2, x3 ∈ X , we use the notation L(x1, x2, x3)
to denote the event that d(x1, x3) = d(x1, x2) + d(x2, x3). To gain some
intuition on this event, consider the following thought experiment: Assume
that “transforming” an object x ∈ X to another object y ∈ X incurs a cost
of d(x, y), i.e., the farther apart (or, more different) the two objects are,
the more costly the transformation. The triangle inequality can then be
phrased as saying that a direct transformation from one object to another can
never be more costly than going through a third object. Whereas, the event
L(x1, x2, x3) says that when transforming x1 to x3, such a “detour” through
x2 is actually free of cost. I.e., one may first transform x1 to x2 and then
transform x2 to x3, with the same total cost as going directly from x1 to
x3. For this to be possible, it is clear that x2 has to reside (in some sense)
“between” x1 and x3.
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Following the above intuition, to simplify the exposition, we use in the
following phrases such as “x2 lies in between x1 and x3” to mean that the
event L(x1, x2, x3) holds. We also introduce the union event

U(x1, x2, x3) := L(x1, x2, x3) ∪ L(x2, x3, x1) ∪ L(x3, x1, x2).

Thus, U(x1, x2, x3) means that at least one of x1, x2, x3 is located in between
the remaining two objects.

To put the previous ideas of in-betweenness to use, we next define two
matrices which are intimately connected to them. Let first x0, x1, x2, x3 ∈ X
be arbitrary objects. We denote by B3(x0, x1, x2, x3) the 3 × 3 matrix whose
(k, ℓ)-element equals

1
2

{
d2(x0, xk) + d2(x0, xℓ) − d2(xk, xℓ)

}
.

Moreover, we let B2(x0, x1, x2) denote the 2 × 2 top left principal sub-matrix
of B3(x0, x1, x2, x3). Our next result shows that the determinants of these
two matrices contain interesting information on the relations between the
four objects. The notation | · | in the result denotes the determinant.

Theorem 1. (i) We have

|B2(x0, x1, x2)| ≥ 0,

where an equality is reached if and only if the event U(x0, x1, x2) holds.

(ii) We have

|B3(x0, x1, x2, x3)| ≥ −4d2(x0, x1)d2(x0, x2)d2(x0, x3). (1)

If equality is reached in (1), then at least one of the events L(x1, x0, x2),
L(x2, x0, x3), L(x3, x0, x1) holds.

We now build measures of depth using the two matrices. Let X1, X2, X3 ∼
P be independent random objects and consider, for a fixed object x ∈ X , the
quantity

G3(x) = E
[{

|B3(x, X1, X2, X3)| + 4d2(x, X1)d2(x, X2)d2(x, X3)
}1/2

]
.

By Theorem 1, taking the square root is well-defined (we will prove that
the expectation exists shortly). Theorem 1 also implies that G3(x) measures
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the outlyingness of the object x with respect to the distribution P . That is,
if G3(x) takes a small value, then the point x must typically be located in
between pairs of objects randomly drawn from P . To convert G3(x) into a
measure of depth instead, we define

DO3(x) := 1
1 + G3(x) , (2)

where the subscript O refers to “Oja”, for reasons to be explained soon. As
computing DO3(x) is costly due to the presence of the three random objects
X1, X2, X3, we consider as an alternative also the “bivariate” version,

DO2(x) := 1
1 + E {|B2(x, X1, X2)|1/2}

, (3)

based on part (i) of Theorem 1. Intuitively, DO2(x) takes a large value if,
for random X1, X2 and the fixed object x, one of the three is typically in
between the two others. Note that this does not yet guarantee that x is deep
with respect to P as it is possible that X1 (or X2) is always the in-between
point. However, our experiments later on show that, despite this uncertainty,
DO2(x) manages to measure the depth of points very well in practice.

As mentioned above, our proposed object depth functions DO2, DO3 are
closely connected to the classical Oja depth [23] for multivariate data. For
data residing in X = Rp, the Oja depth DOja,p(x) of a point x ∈ Rp is defined
as

DOja,p(x) = 1
1 + E{V (x, X1, . . . , Xp)} ,

where X1, . . . , Xp ∼ P are i.i.d. and V (x, X1, . . . , Xp) denotes the hypervol-
ume of the simplex in Rp having the vertices x, X1, . . . , Xp. The intuitive
idea behind DOja,p is that outlying points x ∈ Rp typically lead to elongated
simplices with large volumes, yielding small depths. The following result
shows that when our data live in an Euclidean plane, then DO2 and DOja,p

exactly coincide.

Theorem 2. Let X = R2 and d be the corresponding Euclidean distance.
Then we have DO2(x) = DOja,2(x) for all x ∈ R2.

In Theorem 2, both DO2 and DOja,2 are understood to be computed with
respect the same probability distribution P . At this point it is important
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to realize that there is a fundamental difference between the two concepts.
Namely, Oja’s original intention was that, if the data resides in Rp, then
the version DOja,p of the Oja depth should be used (instead of, say DOja,2 or
DOja,p+1). In other words, the definition of the Oja depth depends non-trivially
on the dimension p of the space. Whereas, for our proposed depth DO2, its
underlying idea is that it can be used in any metric space, the definition
staying unchanged. In particular, one can compute DO2 for data in Rp (using
the definition in (3)) and, from a geometric viewpoint, this corresponds to
computing the average area of a 2-simplex defined by x ∈ Rp and X1, X2
drawn i.i.d. from P .

For DO3 the connection to the original Oja depth is not as transparent as
for DO2, as shown next.

Theorem 3. Let X = R3 and d be the corresponding Euclidean distance.
Then,

DOja,3(x) = 1
1 + E[|B3(x, X1, X2, X3)|1/2] .

Comparison of Theorem 3 to (2) reveals that, in the three-dimension
Euclidean space, DO3 and DOja,3 are equivalent apart from the extra term
4d2(x, X1)d2(x, X2)d2(x, X3). In fact, Lemma 6 in Appendix A shows that,
for Euclidean data we always have |B3(x, X1, X2, X3)| ≥ 0, meaning that the
adding of the “correction” term 4d2(x, X1)d2(x, X2)d2(x, X3) is actually not
needed in this case (to make the square root well-defined). This also means
that the smallest possible values of G3(x) (i.e., the largest possible depths
DO3(x)) cannot be reached in Euclidean spaces as in them |B3(x, X1, X2, X3)|
is always non-negative. Intuitively, this is because Euclidean spaces are too
“structured” and more centrally located point configurations can be achieved
in non-Euclidean geometries, see Section 3.2 in [35] for an example and a
similar phenomenon.

We next establish a few key properties of DO2(x) and DO3(x), beginning
with a moment condition that guarantees their existence.

Theorem 4. Assume that, for some a ∈ X , we have E{d(X, a)} < ∞. Then
DO2(x) and DO3(x) exist as well-defined.

Several notes about Theorem 4 are in order: (i) By “well-defined”, we
mean that the expected values used to compute DO2(x) and DO3(x) are finite.
(ii) The condition E{d(X, a)} < ∞ is analogous to requiring a univariate
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random variable to have a finite mean, making Theorem 4 perfectly in line
with the results for classical Oja depth that also require the existence of first
moments, see [21, 10]. (iii) Requiring the existence of the first moment is
quite a mild condition and less than many standard methods require. Indeed
even the Frechét mean already requires the existence of second moments. (iv)
The choice of a in Theorem 4 is completely arbitrary as, if the condition
E{d(X, a)} < ∞ holds for some a, then, by the triangle inequality, it holds
for all a ∈ X .

Below we say that a sequence of objects xn ∈ X is divergent if there
exists a ∈ X such that d(xn, a) → ∞ when n → ∞. Intuitively, a divergent
sequence of objects is such that it moves “towards infinity” eventually getting
arbitrarily far from any fixed object. It is clear that such sequences do not
exist in every metric space, for example, on the unit sphere equipped with the
arc length metric. Divergent sequences make for a natural model for outlying
observations. And since we claim DO3(x) to measure the centrality of the
object x, it is intuitive to require that DO3(xn) goes to zero for any divergent
sequence xn. This is formalized in our next result.

Theorem 5. Assume that, for some a ∈ X , we have E{d2(X, a)} < ∞. Let
xn be a divergent sequence of points in X . Then, DO3(xn) → 0 as n → ∞.

The second moment condition in Theorem 5 is used to avoid certain patho-
logical behavior, see the proof of the result. Note also that an analogous result
for DO2(x) cannot be derived. This is because, as evidenced in Theorem 1,
DO2(x) does not characterize centrality in the same sense as DO3(x) and it is
possible to have outlying objects that still obtain a large value for DO2(x).
As an extreme example of this, if (X , d) is the one-dimensional Euclidean
space, then it is simple to check that DO2(x) = 1 for all points x ∈ R.

Finally, note that both DO2 and DO3 admits the natural sample coun-
terparts, DO2,n and DO3,n, computed exactly as (3) and (2), but with the
expectations replaced with double or triple sums over the sample, respectively.
In the next section, we apply these sample depths in various object data
scenarios to showcase their usefulness.

4. Simulation examples

4.1. In-sample optimization
Throughout the examples, we abbreviate the used depth functions as

follows: MOD2, MOD3 refer to the two versions of the metric Oja depth,
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MHD denotes the metric half-space depth [4], MLD the metric lens depth
[3, 12], whereas MSD refers to the metric spatial depth [35]. In our first
experiment we evaluate and compare the performances of our proposed MOD2
and MOD3 with their three competitors from the literature, MHD, MLD,
and MSD, using simulated scenarios. We do this in the context of location
estimation. Given a sample X1, . . . , Xn ∈ X from a distribution P , each
sample depth function Dn is used to determine an in-sample estimate of
the deepest object, i.e., µ̂ := Xi0 where i0 = argmini=1,...,nDn(Xi). The
methods are then compared based on the averages, over 200 replications, of
the estimation errors d(µ̂, µ) where µ ∈ X is the true deepest object of the
data-generating distribution P . In addition to the average error, we compare
also the average computation times of the depths.

4.1.1. Correlation matrix dataset
In our first simulation, we consider the Riemannian manifold (X , d)

of p × p correlation matrices as the data space, where d(X1, X2) =
∥Log(X−1/2

1 X2X
−1/2
1 )∥F is the affine invariant Riemannian metric, see [2].

The selection of this specific form of data is motivated by several key consid-
erations. Firstly, correlation matrices are a “non-trivial” form of object data
in the sense that they do not admit a simple, interpretable transformation
to an Euclidean space (c.f. compositional data and the ilr-transformation,
see [24]). Secondly, many datasets, especially in fields such as neuroscience,
are structured as correlation matrices. A prime example is given by brain
connectivity matrices [30] where each correlation describes the strength of
connection between two brain regions.

To generate a sample X1, . . . , Xn of random correlation matrices, we first
generated random p × p variance-covariance matrices Si and then scaled
them in the usual way as Xi := diag(Si)−1/2Sidiag(Si)−1/2. The Si were
generated using the eigendecomposition form Si := UiDiU

′
i , where Ui is a

random orthogonal matrix and Di is a diagonal matrix with all positive
diagonal elements, independent of Ui. We generated Ui as uniformly random
using the function rorth in the R-package ICtest [22], see [31] for details.
This choice (uniform randomness of Ui) ensures that, in the end, we have
covariance matrices whose eigenvectors are equally likely to point in any
direction, implying that the true deepest covariance matrix of the distribution
of Si is proportional to the identity matrix, i.e., C × Ip, for some constant
C > 0. As the correlation matrices Xi are obtained from the Si by scaling
the diagonal elements to unity, this implies that the true deepest object for
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Figure 1: The average estimation errors for each of the five metric depth functions in the
correlation matrix simulation. The scale of the y-axis is logarithmic.

the Xi is µ = Ip. The diagonal matrices Di were generated as follows

Di =



exp(N (ν, 1)) 0 0 · · · 0
0 exp(N (−ν, 1)) 0 · · · 0
0 0 exp(N (−ν, 1)) · · · 0
... ... ... . . . ...
0 0 0 · · · exp(N (−ν, 1))

 ,

where N (ν, 1) denotes a normal random variable with mean ν and unit
variance. The parameter ν was determined as follows: each Xi had the
probability ε > 0 of being deemed an “outlier”, in which case we took ν = 3,
whereas the remaining 1 − ε proportion of the data (the bulk) used ν = 0.
Note that both the bulk and the outliers share the same true deepest object
(identity matrix) but the high variance of the outliers is expected to make
the estimation more difficult when ε is increased.

Having fixed ν, the simulation has three parameters, the contamina-
tion proportion ε = 0.05, 0.30, dimension p = 3, 5, 10 and sample size
n = 10, 20, 30, 40, 50, 60, leading to a total of 36 different cases. Note that
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n was deliberately chosen as low, since object data scenarios typically have
much smaller sample sizes than in standard Euclidean data analysis. The
results of this simulation are shown in Figure 1, grouped by ε and p. As
is clearly observed, in all six subfigures, as the sample size n increases, the
estimation error gradually decreases. These results provide evidence that the
estimators are consistent and adhere to the law of large numbers. Moreover,
the complexity of the data space grows as the dimension p of the matrices
increases, leading to a decline in accuracy and meaning that the estimation
error experiences an upward trend from p = 3 to p = 10. It is worth noticing
that increasing the percentage of outliers from 5% to 30% did not lead to
significant changes in the results, and the estimation error is only slightly
higher when we have more outlier points, showing that the performance of the
estimators remains stable, indicating that the estimators are indeed robust.

An alternative version of Figure 1 where the results are shown relative to
MSD is presented in Appendix B and allows for better comparing the results
of the methods within one subplot. Moving to a more detailed analysis, it can
be seen that in all cases, MOD2 (red dashed-dotted line) and MOD3 (black
dashed line) demonstrated the best performance, respectively, while MHD
(blue dashed line) showed the weakest performance. The metric spatial depth
was the third most efficient method and close to the Oja depths in performance.
From the timing results given in Figure 2 we observe that neither p nor ε affect
the running time. This is because the distance matrix D from which the depths
are computed remains an n × n matrix for any values of p and ϵ, meaning
that only the increase in sample size has caused the increase in computation
time in the plot. This effect is typical in object data analysis where most
methods operate solely on the inter-object distances. Additionally, MOD2
and MOD3 have a relatively high time cost (the computational complexity
of the metric Oja depth 3D is asymptotically of the order O(n4)), meaning
that these depths essentially offer improved performance at the cost of speed.
Whereas, MSD shows the best performance in terms of time efficiency.

4.1.2. Hypersphere dataset
In this experiment, we generated samples of points on a p-dimensional

unit hypersphere X , which is a higher-dimensional generalization of the unit
circle in R2. As a metric d, we used the usual arc length distance. Each
point Xi was simulated by generating the p-dimensional random vector Zi

from Np(λ1p, Ip), where 1p is a vector of ones and λ ̸= 0, and then taking
Xi := Zi/∥Zi∥. By symmetry, this strategy leads to the deepest object always

14



p 
=

 3

p 
=

 5

p 
=

 1
0

O
ut

lie
r 

ra
te

 =
 5

%
O

ut
lie

r 
ra

te
 =

 3
0%

20 40 60 20 40 60 20 40 60

1e−02

1e+00

1e+02

1e−02

1e+00

1e+02

Sample size

R
un

ni
ng

 ti
m

e

Metric Half−space depth Metric Spatial depth Metric Lens depth Metric Oja depth 2D Metric Oja depth 3D

Figure 2: The running times (in seconds) of each metric depth function in the correlation
matrix simulation. The scale of the y-axis is logarithmic.

being equal to µ = sign(λ)(1/
√

p)1p and the absolute value of the parameter
λ controls the spread of the points; the larger the value of |λ|, the more closely
the points are concentrated around the deepest point. For the outliers we
used λ = −1 and for the bulk λ = 5, meaning that the two distributions have
their deepest points on the opposite sides of the hypersphere, see Figure 3 for
an illustration in the case p = 3.

The simulation thus has three parameters, ε, p, n, and we use for them
the same values as in the earlier simulation. As shown in Figure 4 and its
relative version presented in Appendix B, the performance of each metric
depth function on the hypersphere dataset is very similar to their performance
on the correlation data. However, there is a slight difference: when the rate
of outliers increases, MOD2 performs better than MOD3. This difference was
not as noticeable in the earlier correlation data and indicates that MOD2
tolerates outliers better than MOD3. We have omitted the timing results
for the sphere simulation as they were visually almost identical to Figure 2,
again demonstrating that in object data analysis the actual data type rarely
affects computational details.

Based on the results of the two simulation experiments, we make two
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(a) λbulk = 5 , λoutlier = −1 (b) λbulk = 40 , λoutlier = −10

Figure 3: A visualization of the distribution of points generated with different λ-values on
a 3-dimensional hypersphere, i.e., when p = 3: (a) represents the case where λ for the bulk
is 5, and the λ for the outliers is -1 and (b) shows the case where λ for the bulk is 40, and
the λ for the outliers is -10. Essentially, the larger λbulk is, the easier it becomes for depth
functions to estimate deepest point.

recommendations. If n is large and computational time is at a premium,
MSD is an attractive choice, considering it did not have a large difference
in performance compared to MOD2 and MOD3 in Figure 1. Whereas, if
n is small or computational time is not an issue, then the most accurate
estimation can be expected from MOD2 and MOD3, which gave the best
performance in all scenarios considered. Finally, we note that, while the
absolute differences between the leading methods are not that large, even a
small decrease in the error can be significant in the context of the very small
sample sizes encountered commonly with object data. In the next section we
then show how more drastic improvements can be achieved with the expense
of added computational resources.

4.2. Out-of-sample optimization
The in-sample optimization studied in the previous section might come

across as an overly naive approach, but in many metric spaces it is the best
one can do, the lack of Euclidean structure preventing the use of standard
optimization algorithms. However, despite being non-Euclidean, some met-
ric spaces admit coordinate representations/encodings in Euclidean spaces,
e.g., unit spheres (stereographic projection), the positive definite manifold
(Cholesky decomposition) and the space of L2-functions (Karhunen-Loève ex-
pansion, assuming we truncate it). In these cases, the full Euclidean non-linear
optimization machinery can be brought forth to find the deepest point.
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Figure 4: The average estimation errors for each of the five metric depth functions in the
hypersphere simulation. The scale of the y-axis is logarithmic.

To formalize the earlier, assume that there exists a bijective map f : X →
S where S ⊆ Rq for some q. Then, the problem of finding the deepest object
of a sample X1, . . . , Xn ∈ X can be formulated as

max
v∈S

Dn(f−1(v)), (4)

where Dn is some metric depth function w.r.t. the sample and v is an
Euclidean vector. After finding the optimizer v0, it can be mapped to X
simply as f(v0). Since the map v 7→ Dn(f−1(v)) is highly non-convex, the
use of any standard optimizer, e.g., gradient descent, is likely infeasible. As
such, we propose using a genetic algorithm (GA) for the purpose. Genetic
algorithm is a non-linear optimization procedure where a “population” of
solution candidates is evolved through multiple generations. The “fittest”
candidates (i.e., the ones having the largest value for the objective function)
of each generation are combined and randomly mutated in order to produce
the next, hopefully still fitter generation, see [13] for details and a systematic
literature review on GA. Genetic algorithms have been earlier applied in
descriptive statistical methodology particularly in the context of projection
pursuit, see, e.g., [8].
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We employed here the implementation provided by the R-package GA
[27, 28], configuring the algorithm with the following tuning parameters: a
population size of 500 and a maximum of 30 iterations. The initial values were
set using the principal component representations of the top five in-sample
deepest points. Additionally, the search space was defined with a width of 0.10
for each dimension. Even with a reasonable amount of iterations, the resulting
computational cost of GA is very heavy and, for demonstration purposes, we
apply the GA in this example only to a single depth function, chosen to be
MOD2 now. To further alleviate computational burden, we apply a dimension
reduction via PCA to the representations in the space S to map them to
an r-dimensional space with r ≪ q. As training data for the dimension
reduction, we use the images f(X1), . . . , f(Xn) of the sample. As part of the
next simulation, we investigate the trade-off between computational burden
and accuracy related to the choice of r. As data, we generate a sample of
correlation matrices similarly as described in Section 4.1, meaning the (X , d)
is now the manifold of positive definite matrices having unit diagonal. We
define the map f such that f(Xi) is the vector of length p(p + 1)/2 containing
the non-zero elements in the Cholesky decomposition of Xi. As the genetic
algorithm can produce solutions lying outside of the set S (that is, solutions
which are covariance matrices, but not correlation matrices), we manually
scale the final optimizer f(v0) into a proper correlation matrix.

In this simulation, the matrix dimension p was set to 5, and the contamina-
tion proportion ε was fixed to 30%. The sample size, as in previous simulations
in Sections 4.1.1 and 4.1.2, was considered to be n = 10, 20, 30, 40, 50, 60.
A new parameter introduced in this simulation was the number of prin-
cipal components, determined by three proportions PEL = 0.25, 0.5, 0.75
of the f(Xi) vector length. Thus, the number of principal components is
r = PEL(p(p + 1))/2. The whole simulation was repeated 200 times and in
each replication the aforementioned 18 cases were considered. Moreover, we
computed the in-sample estimator of the deepest object as a rival method to
compare its performance to GA as well. As observed in Figure 5 (left), the
use of a genetic algorithm combined with dimension reduction (represented by
the purple, green, and blue lines, which correspond to 0.75, 0.5, and 0.25 of
the length of the Cholesky decomposition vector considered as the number of
principal components, respectively) has significantly contributed to reducing
the estimation error compared to using only thein-sample estimator, which is
indicated by the red line.

The next noteworthy point is that using a larger number of principal

18



0.4

0.6

0.8

1.0

20 40 60
Sample Size

E
st

im
at

io
n 

E
rr

or

1e−02

1e−01

1e+00

1e+01

1e+02

20 40 60
Sample Size

E
st

im
at

io
n 

tim
e 

in
 s

ec

0.25 0.5 0.75 In−Sample Estimator

Figure 5: Left: The average estimation errors for each of the functions in the GA simulation.
All methods are based on MOD2. Right: The running times (in seconds) of each function
in the GA simulation. The scale of the y-axis is logarithmic.

components will yield the best results. However, if the dimension reduction
is too significant (e.g., 0.25), it may result in the loss of substantial useful
information from the data. On the other hand, if the reduction is moderate
(e.g., 0.5), the necessary information might be retained in some cases, while
in others, important information could mistakenly be discarded. Additionally,
considering the time cost, as shown in the right side of Figure 5, despite
the substantial computational burden imposed by using genetic algorithms,
we observe that with increasing sample size, even without using GA, the
in-sample estimator tends to follow a similar trend.

5. Real data example

In this section, we aim to evaluate the performance of the proposed
depth functions using real data. The secondary aim of this experiment is
to demonstrate how the depth functions, whose analytically complex form
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prevents theoretical inferential results, can still be used for statistical inference
via relying on computational techniques. For this purpose, the Canadian
Weather data were utilized, see [26]. This data set contains the average
daily temperatures of 35 Canadian provinces over a year and, as is standard,
we smoothed them into periodic functional data Xi(t), i = 1, . . . , 35, t =
0, . . . , 365, using a 100-element Fourier basis in the R-package fda [25].

The 35 stations each belong to one of four geographic regions: Arctic,
Continental, Pacific, and Atlantic. Based on the geographic locations of
these regions, we hypothesize that the temperatures in the coastal areas,
i.e., the Atlantic and Pacific, should be similar, while the temperatures in
the northern (Arctic) and central southern (Continental) regions of Canada
should be colder and differ from the previous two. This is visually confirmed
in Figure 6 (left), where the Atlantic and Pacific regions are generally warmer
throughout the year, while the Arctic and Continental regions are colder. We
thus divide the n = 35 stations into two groups — the eastern and western
coastal areas, and the northern and central southern areas — and our research
question is: Is there a significant difference in the typical temperature curves
between these two groups?

We next study this question by treating the curves as objects in a metric
space (X , d) where d is the Lp-distance for some value of p ∈ [1, ∞], im-
plemented in R in the package fda.usc [9]. According to Figure 6 (right),
which shows the deepest in-sample curves of these two groups as determined
by MOD3 with L2-distance as the metric, it appears that there is indeed a
difference in their yearly behaviours. However, to confirm this, we next con-
duct a permutation test for determining whether the difference in the deepest
curves in the two groups is statistically significant. Letting f1, f2 ∈ X denote
the deepest in-sample curves of the two groups, we use as our test statistic
the Lp-distance between them, t = d(f1, f2). To simulate the distribution
of t under the null hypothesis (i.e., assuming no difference between the two
groups), we randomly permute the group labels of the n = 35 curves and
compute the test statistic value. This reshuffling was done a total of 5000
times, yielding t∗

1, . . . , t∗
5000, using which the p-value of the test is computed

as #{t ≤ t∗
i }/5000.

The resulting p-values for the five different depths and Lp-metrics with
p = 1, 2, 3, 4, 5, 10, 20, ∞, are shown in Figure 7 (left). These metrics measure
distinct forms of difference between the curves (i.e., the higher p is, the more
the metric Lp focuses on local properties), but all of them agree that there is
a difference between the groups at the significance level 0.05. Similarly, no
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Figure 6: Left panel: The yearly average temperatures for n = 35 Canadian weather
stations, divided into two groups according to geographical location. Right panel: the
deepest in-sample curves in each group, as determined by MOD3 with L2-distance as the
metric.

quantitative differences are observed between the five depths, although MLD
and MHD appear the least stable with respect to the change of p (assuming
that the null hypothesis is indeed false). The most consistent performance
across p is given by MOD3.

We next take the previous result of no differences as a ground truth and
continue the experiment by (a) contaminating the original data set, and (b)
performing the same test for the contaminated data set and observing which
of the depth-metric combinations still let us obtain the correct conclusion (no
differences). This experiment thus mimics the practical scenario where the
data has been partially wrongly recorded. To perform the contamination, we
randomly select k stations and swap their labels (a group 1 station becomes
group 2 station and vice versa), using two different choices, k = 7, 12.

The resulting permutation test p-values for these data are shown in Figure 7
(middle and right) and show that under medium contamination (7 out of 35
stations mislabeled), all depths except MOD2 continue to yield the correct
decision. The underlying reason for this is that MOD2 is not a “true” depth
function and does not necessarily measure centrality of its input object, see
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Figure 7: The p-value result of permutation test for each depth function across different
choices of p in Lp-norm. The test is at level α = 0.05, indicated by the horizontal dashed-
line. Left: original data. Middle: 7 swaps. Right: 12 swaps.

the discussion after formula (3). Whereas, under high contamination (12
out of 35 stations mislabeled) only MHD continues to correctly identify the
groups as distinct (for the majority of Lp-norms). This is quite a good result
as having 1/3 of the data mislabeled makes for an exceedingly difficult case,
and attributable to the excellent robustness properties of MHD, see Section
3.3. in [4]. We next inspect the stability of the p-values with respect to the
choice of the norm; in practice one typically chooses only one norm to work
with and, in this sense, having the same decision for all norms is practically
desirable. Of the depths MLD is clearly the least stable, with MOD2 also
exhibiting some unstability (but still uniform decisions across all norms).
The three other depths are more or less stable. Finally, we note that the
performance of MOD3 and MSD is almost equal in all scenarios, with the
minor exception of the L∞-case under medium contamination. In this sense,
the results align with the simulation studies in Section 4.1 where MSD was
always almost as good as MOD3.
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6. Conclusions

This study introduced two new versions of the Oja depth in non-Euclidean
spaces and compared their performance with three established metric depth
functions. Initially, we compared the performance of these five metric esti-
mators using two simulated datasets. Under these two simulation scenarios,
MOD2 and MOD3 (the two new proposed depth functions) respectively
achieved the best performance, although both were more time-consuming
than the others. Moreover, the weakest performance was observed with
the MHD. Among the remaining functions, only MSD demonstrated rela-
tively good performance after MOD2 and MOD3, and was also the fastest,
potentially making it a useful alternative for practical applications.

Next, for the first time a metaheuristic approach (Genetic Algorithm) was
employed to evaluate the introduced estimators on an unseen sample. To
save time, we only selected the MOD2 and used PCA (Principal Component
Analysis) for dimensionality reduction. With the genetic algorithm, we
observed a substantial improvement in the selected estimator’s performance
across all sample sizes, from 10 to 60, compared to its performance without
genetic algorithm. However, a notable downside is that genetic algorithm
incurs a significant computational cost.

Finally, we used a real data (Canadian weather dataset) to compare
the metric depth functions’ effectiveness in a statistical two-sample location
hypothesis test. Initially, we examined the original data, divided into two
geographically distinct groups, and used five metric depth functions (for
different p in Lp norm) to find the distance between the two deepest objects
in each group. Among all methods, MOD3 consistently produced the most
stable results across p-values, while MLD and MHD were the least stable.
For further evaluation, we intentionally misassigned a subset of data points
between groups and repeated the permutation test. In this case, MOD2 was
the only one to produce incorrect results, while the others remained accurate.
However, when the rate of misassignments increased, MHD became the only
method to maintain correct results.

In conclusion, by following the recommendations we provide, this study
can be further improved in the future. As mentioned, despite the promising
performance of the two new metric depths presented here, both functions
involve a significant time cost. By using partial U-statistics to randomly
choose which elements to include in the triple sum in the sample version of (2),
the speed of MOD3 computation can be enhanced. Additionally, to evaluate
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and compare the methods more clearly, the relative form of estimation error
could be used instead of the absolute one. Another important point that
could impact future results is the process of selecting and setting appropriate
values for the hyper-parameters (take initial values as an example) used in the
genetic algorithm. In future research, by developing meta-heuristic algorithms
tailored to non-Euclidean spaces, it will be possible to reduce or eliminate
the need for repetitive transformations between different spaces.
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Appendix A. Proofs of theoretical results

Proof of Theorem 1. Let bkℓ denote the (k, ℓ)-element of the matrix
B3(x0, x1, x2, x3). From the proof of Theorem 1 in [34] we have that
|bkℓ| ≤ d(x0, xk)d(x0, xℓ). Moreover, the two extremes satisfy: (i) bkℓ =
d(x0, xk)d(x0, xℓ) if and only if either d(x0, xk) = d(x0, xℓ) + d(xℓ, xk) or
d(x0, xℓ) = d(x0, xk) + d(xk, xℓ). (ii) bkℓ = −d(x0, xk)d(x0, xℓ) if and only if
d(xk, xℓ) = d(xk, x0) + d(x0, xℓ). Thus, in particular, |bkℓ| = d(x0, xk)d(x0, xℓ)
if and only if U(x0, xk, xℓ) is true.

Take first p = 2. In this case |B2(x0, x1, x2)| = d2(x0, x1)d2(x0, x2) − b2
12.

By the preceding paragraph, |B2(x0, x1, x2)| ≥ 0 where equality is reached
precisely under the condition claimed in the theorem statement.

For p = 3, Sarrus’ rule and the previous inequalities give
|B3(x0, x1, x2, x3)| = b11b22b33 + 2b12b23b31 − b11b

2
23 − b22b

2
31 − b33b

2
12

≥ −2b11b22b33 + 2b12b23b31.
(A.1)

Now, 2b12b23b31 ≥ −2b11b22b33, establishing the claimed inequality. More-
over, equality is reached in 2b12b23b31 ≥ −2b11b22b33 if and only if either (a)
all of b12, b23, b31 reach their lower bounds given in the first paragraph of the
proof, or (b) two of b12, b23, b31 reach their upper bounds and one reaches
their lower bound. As reaching the lower bound for bij implies that the
corresponding event L(xi, x0, xj) holds, the proof is concluded.
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We omit the proofs of Theorems 2 and Theorems 3 as they follow instantly
from the more general Lemma 6 presented below.

Lemma 6. The Oja depth DOja,p(x) of a point x ∈ Rp can be written as

1
1 + E[{C(x, X1, . . . , Xp)}1/2] , (A.2)

where

C(x, X1, . . . , Xp) =

∣∣∣∣∣∣∣∣∣∣


k11 k12 . . . k1p

k21 k22 . . . k2p
... ... . . . ...

kp1 kp2 . . . kpp


∣∣∣∣∣∣∣∣∣∣
,

and

kmn = −1
2(∥Xn − Xm∥2 − ∥Xm − x∥2 − ∥Xn − x∥2).

Proof of Lemma 6. The squared hypervolume of the simplex in question can
be written as

V (x, X1, . . . , Xp)2 =
∣∣∣(X1 − x, . . . , Xp − x)

∣∣∣2 .

where Xj−x = (Xj1−x1, Xj2−x2, . . . , Xjp−xp)′. The squared determinant
satisfies |A|2 = |A||A| = |AT ||A| = |AT A| where we use the notation

A := (X1 − x, . . . , Xp − x) =


X11 − x1 · · · Xp1 − x1
X12 − x2 · · · Xp2 − x2

... ... ...
X1p − xp · · · Xpp − xp


Consequently,

V (x, X1, . . . , Xp)2 =

∣∣∣∣∣∣∣∣


(X1 − x)′ (X1 − x) (Xi1 − x)′ (X2 − x) . . . (X1 − x)′ (Xp − x)
(X2 − x)′ (X1 − x) (X2 − x)′ (X2 − x) . . . (X2 − x)′ (Xp − x)

...
...

. . .
...

(Xp − x)′ (X1 − x) (Xp − x)′ (X2 − x) . . . (Xp − x)′ (Xp − x)


∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣


k11 k12 . . . k1p

k21 k22 . . . k2p

...
...

. . .
...

kp1 kp2 . . . kpp


∣∣∣∣∣∣∣
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where

kmn = −1
2(∥Xn − Xm∥2 − ∥Xm − x∥2 − ∥Xn − x∥2),

concluding the proof.

Proof of Theorem 4. We prove the result only for DO3(x), the proof for DO2(x)
being exactly analogous. Denoting B := B3(x, X1, X2, X3), then the proof of
Theorem 1 in [35] shows that b2

kℓ ≤ bkkbℓℓ for all k, ℓ = 1, 2, 3. Consequently,
using Sarrus’ rule, we obtain |det(B)| ≤ 6d2(x, X1)d2(x, X2)d2(x, X3), where
we use det(·) to denote the determinant to distinguish it from the absolute
value signs. Consequently,

E{det(B) + 4d2(x, X1)d2(x, X2)d2(x, X3)}1/2 ≤
√

10[E{d(x, X1)}]3 < ∞,

where the first step uses the independence of the objects X1, X2, X3. Hence,
the claim is proven.

Proof of Theorem 5. Using the notation of the proof of our Theorem 1, the
proofs of Theorems 1 and 4 in [35] show that bkℓ/(bkkbℓℓ)1/2 = 1 + ckℓ, k ̸= ℓ,
where ckℓ is a random variable (more accurately, an n-indexed sequence of
random variables) that has |ckℓ| ≤ 2 and satisfies ckℓ = op(1) as n → ∞.
Consequently, by (A.1), we have

|B3(xn, X1, X2, X3)| + 4d2(xn, X1)d2(xn, X2)d2(xn, X3)
=5b11b22b33 + 2b12b23b31 − b11b

2
23 − b22b

2
31 − b33b

2
12

=b11b22b33{5 + 2(1 + c12)(1 + c23)(1 + c31) − (1 + c23)2 − (1 + c31)2 − (1 + c12)2}
=4b11b22b33(1 + c0),

where the random variable c0 = op(1) satisfies |c0| ≤ M for some M > 0,
uniformly in n. Taking square roots, we observe that G3(xn) = 2E{Zn(1+Yn)}
where (a) Zn = d(xn, X1)d(xn, X2)d(xn, X3) is a non-negative random variable
whose expectation exists for every n and which is, in the terminology of the
proof of Theorem 4 in [35], a D-sequence, and (b) Yn is a random variable
which is uniformly bounded in n. A simple argument reveals that the expected
value of a non-negative D-sequence satisfies E(Zn) → ∞. As such, the
claim follows once we show that [E{Zn(1 + Yn)} − E(Zn)]/E(Zn) → 0 which
is equivalent to showing that E(ZnYn)/E(Zn) = o(1). To “uncouple” the

26



dependent random variables Zn and Yn, we use the Cauchy-Schwarz inequality
to obtain {

E(ZnYn)
E(Zn)

}2

≤ E(Z2
n)

{E(Zn)}2 E(Y 2
n ).

Since E(Y 2
n ) = o(1), we thus need to show that E(Z2

n)/{E(Zn)}2 = O(1).
By the independence of X1, X2, X3, this follows once we establish that
E{d2(xn, X1)}/[E{d(xn, X1)}]2 = O(1). To see this, we write

E{d2(xn, X1)} − [E{d(xn, X1)}]2
[E{d(xn, X1)}]2

=E[{d(xn, X1) − d(xn, X2)}2]
2[E{d(xn, X1)}]2

≤ E{d(X1, X2)2}
2[E{d(xn, X1)}]2 ,

where the inequality uses the reverse triangle inequality and E{d(xn, X1)} →
∞, proving the claim.
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Figure B.8: The average estimation errors for each of the five metric depth functions in
the correlation matrix simulation relative to the corresponding error of MSD. The scale of
the y-axis is logarithmic.

Appendix B. Additional simulation plots

Figures B.8 and B.9 show the same results as given in Figures 1 and 4,
respectively, but relative to the results of MSD.
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Figure B.9: The average estimation errors for each of the five metric depth functions in
the hypersphere simulation relative to the corresponding error of MSD. The scale of the
y-axis is logarithmic.
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