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ENDOMORPHISM RINGS OF TOROIDAL SOLENOIDS

MARIA SABITOVA

Abstract. We study the endomorphism ring End(GA) of a subgroup GA of Qn defined
by a non-singular n×n-matrix A with integer entries. In the case when the characteristic
polynomial of A is irreducible and an extra assumption holds if n is not prime, we
show that End(GA) is commutative and can be identified with a subring of the number
field generated by an eigenvalue of A. The obtained results can be applied to studying
endomorphisms of associated toroidal solenoids and Zn-odometers. In particular, we
build a connection between toroidal solenoids and S-integer dynamical systems, provide
a formula for the number of periodic points of a toroidal solenoid endomorphism, and
show that the linear representation group of a Zn-odometer is computable.

1. Introduction

We study the endomorphism ring of a subgroup of Qn defined by a matrix with integer
entries. The group arises naturally as the character group of a toroidal solenoid. More
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2 MARIA SABITOVA

precisely, let A ∈ Mn(Z) be a non-singular n× n-matrix with integer entries. Denote

GA =
{
Akx |x ∈ Zn, k ∈ Z

}
, Zn ⊆ GA ⊆ Qn.

One can readily verify that GA is a subgroup of Qn. In [S22] and [S24], we study the
classification problem of groups GA. In particular, given two matrices A,B ∈ Mn(Z)
with integer entries, we answer the question of when the corresponding groups GA, GB

are isomorphic as abstract groups in terms of the matrices A,B. We cover the case
n = 2 in [S22] and the case of an arbitrary n in [S24]. Groups GA arise in connection
with toroidal solenoids. Toroidal solenoids defined by non-singular matrices with integer
entries were introduced by M. C. McCord in 1965 [M65]. A toroidal solenoid SA defined by
a non-singular A ∈ Mn(Z) is an n-dimensional topological abelian group. It is compact,
metrizable, and connected, but not locally connected and not path connected. Toroidal
solenoids are examples of inverse limit dynamical systems. When n = 1 and A = d,
d ∈ Z, solenoids are called d-adic solenoids or Vietoris solenoids. The first examples were
studied by L. Vietoris in 1927 for d = 2 [V27] and later in 1930 by van Dantzig for an

arbitrary d [D30]. It is known that the first Ĉech cohomology group H1(SA,Z) of SA is
isomorphic to GAt , where At is the transpose of A. On the other hand, since SA is a

compact connected abelian group, H1(SA,Z) is isomorphic to the character group ŜA of

SA. Thus ŜA
∼= GAt and, using Pontryagin duality theorem, SA

∼= ĜAt as topological

groups, where GAt is endowed with the discrete topology, the dual ĜAt is endowed with
the compact-open topology, and SA is endowed with the topology of an inverse limit.
Groups GA also arise as the first cohomology groups of constant base Zn-odometers XAt

defined by At [GPS19] and as the dimension groups of subshifts of finite type defined by
At [BS24].

In this paper, we study the endomorphism ring End(GA) of GA for an arbitrary n.
Based on our work in [S22] and [S24], we give a general criterion for a matrix with
rational entries T ∈ Mn(Q) to define an endomorphism of GA, equivalently, T (GA) ⊆ GA

(Theorem 5) as well as a more concrete description when n = 2 (Section 3.3). In the
case when the characteristic polynomial of A is irreducible and an extra assumption holds
if n is not prime, we prove that T ∈ End(GA) is either zero or T commutes with A.
Moreover, the eigenvalues of T are elements of the form aλk, where λ is an eigenvalue
of A, k ∈ Z, and a is an algebraic integer of the number field Q(λ) generated by λ
(Proposition 8). This implies that End(GA) is a commutative ring, and Aut(GA) is a
finitely generated abelian group. As a consequence, considering a toroidal solenoid SA as
a dynamical system with the automorphism σ defined by multiplication by A, it shows
that every homomorphism of SA as a topological group is a morphism of the dynamical
system (SA, σ). Other noteworthy consequences include the connection between toroidal
solenoids and S-integer dynamical systems defined in [CEW97]. It turns out that one
can consider a toroidal solenoid as a similar but more general object than an S-integer
dynamical system. The connection allows us to obtain a formula for the number of periodic
points of an endomorphism of SA similar to the one in [CEW97]. The case of n = 2 is
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covered in [HL23] for a more general class of toroidal solenoids, and our formula holds in
higher-dimensions for SA. We also apply our results to Zn-odometers. We recover results
of [CP24] in the case when n = 2 and generalize them to higher-dimensions. We also
discuss the question of [CP24] on the computability of the linear representation group of
a Zn-odometer defined by an integer matrix.

2. Notation

A,B ∈ Mn(Z) non-singular
hA ∈ Z[x] characteristic polynomial of A
GA =

{
Akx |x ∈ Zn, k ∈ Z

}
R = Z

[
1

detA

]
P = P(A) = {primes p ∈ N dividing detA}
P ′ = P ′(A) = {p ∈ P | hA ̸≡ xn (mod p)}
tp = multiplicity of zero in the reduction of hA modulo p
Qp = field of p-adic numbers
Zp = ring of p-adic integers
Fp = finite field with p elements
Qn

p = (Qp)
n = Qp × · · · ×Qp

Zn
p = (Zp)

n = Zp × · · · × Zp

GA,p = GA ⊗Z Zp

Q = algebraic closure of Q
λ = eigenvalue of A
K = Q(λ)

u =
(
u1 . . . un

)t
eigenvector of A corresponding to λ

Z[u] = {m1u1 + · · ·+mnun |m1, . . . ,mn ∈ Z}
YA(u, λ) = {m1λ

k1u1 + · · ·+mnλ
knun |m1, . . . ,mn, k1, . . . , kn ∈ Z}

{λ1, . . . , λn} = eigenvalues of A
{σ1 = id, σ2, . . . , σn} = embeddings of K into Q
M =

(
σ1(u) . . . σn(u)

)
∈ Mn(Q)

m = (detM)2 ∈ Z
OK = ring of integers of K
O×K = units of OK

p = prime ideal of OK above p
valp(x) = p-adic valuation of x ∈ K
S = a set of prime ideals of OK

OK,S = {x ∈ K | valp(x) ≥ 0 for any prime ideal p of OK not in S}
UK,S = {x ∈ K | valp(x) = 0 for any prime ideal p of OK not in S}
Sλ = all prime ideals of OK dividing λ
Kp = completion of K with respect to p
Op = ring of integers of Kp

XA,p = SpanK{generalized λ-eigenvectors of A, p |λ}
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rad(n) = product of all distinct prime divisors of n ∈ Z
(u, v) = greatest common divisor of u, v ∈ Z
SA = toroidal solenoid defined by A (47)

Ĝ = Homcont(G,T1) Pontryagin dual of a topological group G
XA = Zn-odometer defined by A (49)

N⃗(XA) = linear representation group of XA (50)

3. Endomorphisms of GA

This section presents key results on endomorphisms of GA, derived as consequences
from the proofs in [S24] that characterize isomorphisms between two groups of the form
GA, GB (B ∈ Mn(Z) is non-singular).

3.1. Localization and easy cases. Let A ∈ Mn(Z) be a non-singular n×n-matrix with
integer entries. Denote

(1) GA =
{
Akx |x ∈ Zn, k ∈ Z

}
, Zn ⊆ GA ⊆ Qn,

where x ∈ Zn is written as a column. Denote by End(GA) the endomorphism ring of GA,
consisting of all (group) homomorphisms ϕ : GA −→ GA. Denote

(2) R = R(A) = Z
[

1

detA

]
=

{
k

(detA)l

∣∣∣ k, l ∈ Z
}
.

If T ∈ End(GA), then T ∈ Mn(R). Indeed, one can check that any homomorphism from
GA to GA is given by a matrix T ∈ Mn(Q). Moreover, from the definition of GA, there
exists i ∈ N∪ {0} such that AiT ∈ Mn(Z), hence T ∈ Mn(R). Thus, End(GA) ⊆ Mn(R).
Note that Z[A,A−1] ⊆ End(GA). Let

P = P(A) = {primes p ∈ N dividing detA},

P ′ = P ′(A) = {p ∈ P |hA ̸≡ xn (mod p)} ,
where hA ∈ Z[x] is the characteristic polynomial of A.

For a prime p ∈ N, let Zp denote the ring of p-adic integers and let Qp denote the field
of p-adic numbers. Let GA,p = GA ⊗Z Zp, so that

GA,p =
{
Akx |x ∈ Zn

p , k ∈ Z
}
, Zn

p ⊆ GA,p ⊆ Qn
p .

We know that

(3) GA,p
∼= Qtp

p ⊕ Zn−tp
p

as Zp-modules, and tp equals the multiplicity of zero in the reduction of hA modulo p,
0 ≤ tp ≤ n [S22, p. 196, Prop. 3.8].

Clearly, for T ∈ Mn(Q), if T (GA) ⊆ GA, then T (GA,p) ⊆ GA,p, i.e., every T ∈ End(GA)
induces an endomorphism of GA,p. It turns out that the converse is also true.
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Lemma 1. For T ∈ Mn(Q), we have that T ∈ End(GA) if and only if T ∈ Mn(R) and
T ∈ End(GA,p) for any p ∈ P ′.

Proof. Let T ∈ Mn(Q). By above, the conditions are necessary. We now show that they
are sufficient. It follows from [F73, p. 183, Lemma 93.2] that

(4) GA =
⋂
p∈P

(Rn ∩GA,p)

(see also [S24, p. 8, Corollary 2.4] for more detail). Also, GA,p = Qn
p for any prime

p ∈ P\P ′ by (3). Thus, T (GA,p) ⊆ GA,p for any p ∈ P\P ′. Therefore, if T ∈ Mn(R) and
T ∈ End(GA,p) for any p ∈ P ′, then T ∈ End(GA) by (4). □

Lemma 2. (1) If P = ∅, equivalently, A ∈ GLn(Z), then

End(GA) = Mn(Z).

(2) If P ′ = ∅ and A ̸∈ GLn(Z), then

End(GA) = Mn(R).

Proof. Clearly, P = ∅ if and only if detA = ±1 if and only if GA = Zn, and Lemma 2 (1)
is clear. Lemma 2 (2) follows from Lemma 1. □

Thus, by Lemma 2, for the rest of the paper we assume A ̸∈ GLn(Z) and P ′ ̸= ∅.

3.2. Eigenvectors. In practice, to apply Lemma 1, one needs a basis for the decom-
position (3). In [S24], we show that a divisible part of GA,p (isomorphic to Qtp

p ) can be
described by generalized eigenvectors of A and to treat a reduced part of GA,p (isomorphic

to Zn−tp
p ) we need a characteristic of GA. For the reader’s convenience, we recall those

results and put them together in a criterion for T ∈ Mn(Q) to be an endomorphism of
GA (Theorem 5 below). We first introduce notation.

Throughout the text, Q denotes a fixed algebraic closure of Q. Let F ⊂ Q be a finite
extension of Q that contains all the eigenvalues of A. Let OF denote the ring of integers of
F . Throughout the paper, λ1, . . . , λn ∈ OF denote (not necessarily distinct) eigenvalues of
A and {u1, . . . ,un} denotes a Jordan canonical basis of A. Without loss of generality, we
can assume that each ui ∈ (OF )

n, i = 1, . . . , n. For a prime p ∈ N let p be a prime ideal of
OF above p and let XA,p denote the span over F of vectors in {u1, . . . ,un} corresponding
to eigenvalues divisible by p. Note that

dimF XA,p = tp,

where tp = tp(A) denotes the multiplicity of zero in the reduction h̄A modulo p of the
characteristic polynomial hA of A, 0 ≤ tp ≤ n. Indeed, dimF XA,p is the number of
eigenvalues (with multiplicities) of A divisible by p. One can write hA = (x−λ1) · · · (x−λn)
over OF . Considering the reduction h̄A of hA modulo p, we see that the number of
eigenvalues of A divisible by p is equal to the multiplicity tp of zero in h̄A. Equivalently,
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XA,p is generated over F by generalized λ-eigenvectors of A for any eigenvalue λ of A
divisible by p.

Let p ∈ N be a prime and let a ∈ Zp, a =
∑∞

i=0 aip
i, ∀ai ∈ {0, 1, . . . , p− 1}. For k ≥ 1,

we denote

a(k) = a0 + a1p+ · · ·+ ak−1p
k−1 ∈ Z.

Similarly, for x =
(
x1 . . . xn

)
∈ Zn

p , x1, . . . , xn ∈ Zp, and k ≥ 1, we denote

x(k) =
(
x
(k)
1 . . . x

(k)
n

)
∈ Zn.

Finally, for x ∈ Zn
p , we denote

p−∞x = {p−kx(k) | k ∈ N} ⊂ Qn.

Lemma 3. There exists a basis {f1, . . . , fn} of Zn such that for any p ∈ P ′ there are
αpij ∈ Zp, i ∈ {1, . . . , tp}, j ∈ {tp + 1, . . . , n}, and GA is generated over Z by

{f1, . . . , fn, q−∞f1, . . . , q−∞fn, p−∞xpi | p ∈ P ′, q ∈ P\P ′, 1 ≤ i ≤ tp},

where

xpi = fi +
n∑

j=tp+1

αpijfj.

Definition 4. Let {f1, . . . , fn} and αpij ∈ Zp be as in Lemma 3. The set

M(A; f1, . . . , fn) = {αpij ∈ Zp | p ∈ P ′, 1 ≤ i ≤ tp < j ≤ n}

is called a characteristic of GA relative to the ordered basis {f1, . . . , fn} [GM81].

By conjugating A by a matrix S ∈ GLn(Z), without loss of generality, we can assume
that we have a characteristic ofGA relative to the standard basis {e1, . . . , en} [S24, Lemma
3.8]. The next theorem gives a necessary and sufficient criterion for T ∈ Mn(Q) to be an
endomorphism of GA, equivalently, T (GA) ⊆ GA. The proof follows easily from the proof
of [S24, Theorem 4.3], which gives a criterion for when T (GA) = GB for a non-singular
B ∈ Mn(Z). Theorem 5 works well in practice, since there is an algorithm to produce
a characteristic of GA out of generalized eigenvectors of A (see [S24, Remark 4.5] and
[GM81]).

Theorem 5. Let A ∈ Mn(Z) be non-singular, P ′ ̸= ∅, let F ⊂ Q be any finite extension
of Q that contains all the eigenvalues of A, and assume GA has a characteristic

M(A; e1, . . . , en) = {αpij ∈ Zp | p ∈ P ′, 1 ≤ i ≤ tp(A) < j ≤ n}.

For T ∈ Mn(Q), we have that T (GA) ⊆ GA if and only if T ∈ Mn(R), for any p ∈ P ′ and
a prime ideal p of OF above p we have that

(5) T (XA,p) ⊆ XA,p,
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and any j-th column
(
γ1j . . . γnj

)
of T , j ∈ {tp + 1, . . . , n}, satisfies

(6) γkj −
tp∑
i=1

γijαpik ∈ Zp for any k ∈ {tp + 1, . . . , n}.

3.3. 2-dimensional case. For n ∈ Z, n ̸= ±1, let rad(n) ∈ N be the product of all
distinct prime divisors p ∈ N of n.

If n = 2, then there are three cases distinguished in [S22]:

(a) the characteristic polynomial hA ∈ Z[x] of A is irreducible (equivalently, A has no
rational eigenvalues),

(b) hA is reducible (equivalently, A has eigenvalues λ1, λ2 ∈ Z), rad(λ1) does not divide
rad(λ2), and rad(λ2) does not divide rad(λ1),

(c) hA is reducible and every prime dividing one eigenvalue divides the other, e.g.,
rad(λ2) divides rad(λ1) (denoted by rad(λ2) | rad(λ1)).

Case (a) is treated in Section 4.1 below.

Case (b). Note that if n = 2 and P ′ ̸= ∅, then detA ̸= ±1, A has distinct eigenvalues
λ1, λ2 ∈ Z, and hence A is diagonalizable over Q. Moreover, there exists S ∈ GL2(Z)
such that SAS−1 =MΛM−1, where

(7) Λ =

(
λ1 0
0 λ2

)
, M =

(
1 u
0 v

)
, λ1, λ2, u, v ∈ Z, (u, v) = 1, v | (λ1 − λ2),

where (u, v) = 1 means that u, v are coprime [S22, Corollary A.2]. Since S(GA) = GSAS−1 ,
i.e., GA, GSAS−1 are isomorphic, without loss of generality, we can assume that A itself
is upper-triangular and has the form A =MΛM−1.

Theorem 6. Assume A = MΛM−1, where M,Λ are given by (7), and P ′ ̸= ∅. Assume
case (b), i.e., rad(λ1) does not divide rad(λ2), and rad(λ2) does not divide rad(λ1). Then
T ∈ End(GA) if and only if

(8) T =MXM−1, X = diag
(
x1 x2

)
,

where xi ∈ Z[λ−1i ], i = 1, 2, and x1−x2

v
∈ R. In particular, End(GA) is commutative,

isomorphic to a subring of Z[λ−11 ]×Z[λ−12 ], and lies inside the centralizer of A in M2(R).

Proof. Assume T ∈ End(GA). Note that tp = 1 for any p ∈ P ′. Thus, in the notation of
Section 3.2, F = Q, p = p, and XA,p is a one-dimensional vector space over Q generated by
an eigenvector u of A corresponding to an eigenvalue λ. Thus, (5) states that T (u) = xu,
for some x ∈ Q. In case (b), there exists a prime p ∈ N dividing λ2 that does not divide
λ1 and there exists a prime q ∈ N dividing λ1 that does not divide λ2, i.e., p, q ∈ P ′.
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Applying (5) to F = Q, p = p and p = q, we get that T (u1) = x1u1, T (u2) = x2u2

for eigenvectors u1,u2 of A corresponding to λ1, λ2, respectively, and x1, x2 ∈ Q. Hence,
T = MXM−1, where X = diag

(
x1 x2

)
∈ M2(Q). We will use Lemma 1 to show that

the remaining conditions hold. One can easily check that for T and M given by (8)
and (7), respectively, we have that T ∈ M2(R) if and only if x1, x2,

x1−x2

v
∈ R. Also,

T ∈ End(GA,p) if and only if for any m ∈ N ∪ {0} there exists km ∈ N ∪ {0} with

(9) AkmTA−m ∈ M2(Zp).

Here,

AkmTA−m =M

(
x1λ

km−m
1 0
0 x2λ

km−m
2

)
M−1.

Note that any p ∈ P ′ does not divide λ1−λ2 and, therefore,M ∈ GL2(Zp). Thus, (9) holds

if and only if x1λ
km−m
1 , x2λ

km−m
2 ∈ Zp, p ∈ P ′, which, together with x1, x2 ∈ R, implies

that xi ∈ Z[λ−1i ], i = 1, 2. Similarly, one shows that (8) is sufficient for T ∈ End(GA). □

Case (c) is different from cases (a) and (b) in the sense that for T ∈ End(GA), we have
that T (u) is not an eigenvector of A for every eigenvector u of A. Namely, there exists
p ∈ P ′ dividing λ1 and hence (5) applied to F = Q, p = p states that T (u1) = x1u1 for
an eigenvector u1 of A corresponding to λ1. However, T (u2) is not necessarily a multiple
of u2 for an eigenvector u2 of A corresponding to λ2.

Theorem 7. Assume A = MΛM−1, where M,Λ are given by (7), and P ′ ̸= ∅. Assume
case (c), i.e., rad(λ2) | rad(λ1). Then T ∈ End(GA) if and only if

(10) T =

(
x y
0 z

)
∈ M2(R), z ∈ Z[λ−12 ].

In particular, End(GA) is not commutative and does not lie inside the centralizer of A in
M2(R).

Proof. Let T ∈ End(GA). Assume rad(λ2) | rad(λ1). Note that any p ∈ P ′ divides λ1 and
does not divide λ2. Then (5) applied to F = Q, p = p states that T (e1) = x1e1 for some
x1 ∈ Q, since A is upper-triangular and e1 is an eigenvector of A corresponding to λ1 (by
assumption). Therefore, T is also upper-triangular. Let

(11) T =

(
x y
0 z

)
.

As in the proof of Theorem 6, T ∈ M2(R) and (9) holds for T given by (11) and any
p ∈ P ′. Taking into account that λ2 is a unit in Zp and M ∈ GL2(Zp), this implies
z ∈ Z[λ−12 ]. Similarly, one shows that (10) is sufficient for T ∈ End(GA). □
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4. Irreducible characteristic polynomial

For an eigenvalue λ ∈ Q of A let K = Q(λ) and let Sλ consist of all prime ideals of the
ring of integers OK of K dividing λ. (Note that λ ∈ OK .) We denote by OK,λ the ring of
Sλ-integers, i.e.,

(12) OK,λ = {x ∈ K | valp(x) ≥ 0 for any prime ideal p of OK not in Sλ} = OK

[
λ−1

]
and

UK,Sλ = {x ∈ K | valp(x) = 0 for any prime ideal p of OK not in Sλ}
is the group of Sλ-units. In particular, R = OQ,P .

In the next proposition, we consider the generic case when the characteristic polynomial
hA ∈ Z[x] of A is irreducible. We also add an extra assumption that there exists a prime
p ∈ N such that n and tp are coprime, denoted by (n, tp) = 1. It turns out that if
(n, tp) = 1, then T (u) is a multiple of u for any T ∈ End(GA) and any eigenvector u of
A. In particular, End(GA) is commutative. If (n, tp) ̸= 1 for any p ∈ P ′, then this is not
necessarily true (see Example 5 below with a non-commutative End(GA)).

Proposition 8. Assume A ∈ Mn(Z) is non-singular with an irreducible characteristic
polynomial hA ∈ Z[x] and P ′ ̸= ∅. Assume, in addition, that there exists a prime p ∈ N
with (n, tp) = 1. Then there is a ring embedding ı = ı(A, λ) : End(GA) ↪→ OK,λ, which
induces a group embedding ı : Aut(GA) ↪→ UK,Sλ.

Proof. Let T ∈ End(GA) be arbitrary. It follows from [S24] that either T = 0 or T
is non-singular and preserves eigenspaces, i.e., Tu,u ∈ Kn are both eigenvectors of A
corresponding to the same eigenvalue λ. We provide a comprehensive overview of the
argument, both for the sake of completeness and because the results in [S24] are presented
for isomorphisms from GA to GB, rather than endomorphisms. Here, B ∈ Mn(Z) is
another non-singular matrix. Nevertheless, the same principles apply. Let p ∈ P ′. By
(3), GA,p

∼= Qtp
p ⊕ Zn−tp

p as Zp-modules, 0 < tp < n. In [S24, Lemma 4.1], we show that
after appropriate extension of scalars, the Zp-divisible part Dp(A) of GA,p = GA ⊗Z Zp is
generated by eigenvectors of A corresponding to eigenvalues divisible by a prime ideal p
above p. Let F be a finite Galois extension of Q containing all the eigenvalues of A, e.g.,
F is the splitting field of the characteristic polynomial hA of A;

Q ⊂ K = Q(λ) ⊆ F ⊂ Q.

Let p be a prime ideal of the ring of integers OF of F above p. Denote by Σ the set of all
distinct eigenvalues of A and let P denote the set of all λ ∈ Σ divisible by p. Since hA is
irreducible, the cardinalities are |Σ| = n and |P | = tp. Denote

UP = ⊕λ∈P SpanF (u(λ)),

where u(λ) ∈ F n is an eigenvector of A corresponding to λ. Thus, UP is the span of
all eigenvectors of A corresponding to eigenvalues divisible by p and UP = XA,p in the
notation of Section 3.2. An endomorphism T of GA induces a Zp-module endomorphism
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of GA,p and therefore, T (Dp(A)) ⊆ Dp(A). This implies T (UP ) ⊆ UP . Thus, there exists
a non-empty subset S ⊆ Σ with the smallest cardinality satisfying T (US) ⊆ US. Denote
G = Gal(Q/Q). It is not hard to see that for any R, V ⊆ Σ and σ ∈ G we have

UR ∩ UV = UR∩V , σ(UR) = Uσ(R).(13)

Assume T (UN) ⊆ UN for some non-empty N ⊆ Σ and let σ ∈ G. Since T is defined
over Q, using properties (13), we have T (Uσ(N)) ⊆ Uσ(N). Hence, T (US ∩σ(N)) ⊆ US ∩σ(N).
Since S is the smallest with this property, either S ∩ σ(N) = S or S ∩ σ(N) = ∅.
Equivalently, σ(S) ∩ N = σ(S) or σ(S) ∩ N = ∅. In particular, taking N = τ(S) for
an arbitrary τ ∈ G, either σ(S) = τ(S) or σ(S) ∩ τ(S) = ∅. Moreover, since hA is
irreducible, G acts transitively on Σ. This implies that N is a disjoint union of orbits
σ(S) of S, σ ∈ G, and, furthermore, there exists a subset H ⊆ G depending on N such
that

(14) N =
⊔
σ∈H

σ(S), |N | = |H| · |S|.

Clearly, T (UN) ⊆ UN holds for N = Σ and also for N = P . Thus, by (14), |S| divides
both n and tp. By assumption, (n, tp) = 1 and hence |S| = 1. Therefore, there exists an

eigenvector u (corresponding to an eigenvalue λ) ofA such that T (u) = xu for some x ∈ Q.
For a fixed eigenvalue λ, we can choose u ∈ Kn, K = Q(λ), and hence x ∈ K. Multiplying
u by an appropriate integer, without loss of generality, we can assume u ∈ (OK)

n. Since
hA is irreducible, G acts transitively on the set of all eigenvalues of A, i.e., there exist
σ1, . . . , σn ∈ G, σ1 = id, such that A =MΛM−1, where

(15) Λ = diag
(
σ1(λ) . . . σn(λ)

)
, M =

(
σ1(u) . . . σn(u)

)
with each σi(u) written as a column, i ∈ {1, . . . , n}. Then

(16) T =MXM−1, X = diag
(
σ1(x) . . . σn(x)

)
.

Thus, if λ is fixed, then T is completely determined by x ∈ K. A different choice of λ,
e.g., σ(λ) for some σ ∈ G, will result in σ(x). We fix an eigenvalue λ of A and let M
be given by (15). Define ı : End(GA) −→ K via ı(T ) = x, T ∈ End(GA). By above, ı
is an injective ring homomorphism. Note that M ∈ Mn(OF ). By [NT91, p. 4, Theorem
2], there exists a finite extension L ⊂ Q of F and P ∈ GLn(OL) such that PM is upper-
triangular. From the definition of GA, there exists i ∈ N ∪ {0} such that AiT ∈ Mn(Z).
In particular, λix ∈ OL ∩K = OK and hence x ∈ OK [λ

−1] = OK,λ. □

It is well-known that UK,S is a finitely generated abelian group. Therefore, by Propo-
sition 8, Aut(GA) is also finitely-generated.

Corollary 9. Under the assumptions of Proposition 8, End(GA) is a commutative ring,
and Aut(GA) is a finitely generated abelian group.
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Clearly, Ai ∈ End(GA) for any i ∈ Z. Since ı(Ai) = λi, this implies that Z[λ±1] =
Z[λ, 1

λ
] ⊆ ı(End(GA)) and ı(End(GA)) (equivalently, End(GA)) is a Z[λ±1]-module (equiv-

alently, a Z[t±1]-module via λ 7→ t, t is a variable). Thus,

Z[λ±1] ⊆ ı(End(GA)) ⊆ OK,λ = OK [λ
−1].

Moreover, under the assumptions of Proposition 8, End(GA) is a finitely-generated Z[λ±1]-
module. Indeed, we have that

Z[λ] ⊆ Y ⊆ OK , Y = ı(End(GA)) ∩ OK .

It is well-known that both OK , Z[λ] are finitely-generated Z-modules of rank n and
therefore so is Y . Let s = [Y : Z[λ]], and let γ1, . . . , γs ∈ Y be representatives of Y/Z[λ].
Let T ∈ End(GA), ı(T ) = x ∈ OK,λ, so that y = λix ∈ OK for some i ∈ N ∪ {0}. Hence,
y ∈ Y and y = γ + a for some γ ∈ {γ1, . . . , γs} and a ∈ Z[λ]. Then,

x = λ−iy = γλ−i + aλ−i, aλ−i ∈ Z[λ±1],
i.e., 1, γ1, . . . , γs generate ı(End(GA)) over Z[λ±1]. This proves the following

Corollary 10. Under the assumptions of Proposition 8, ı(End(GA)) (equivalently, End(GA))
is a finitely-generated Z[λ±1]-module. If OK = Z[λ], then

ı(End(GA)) = Z[λ±1] = OK,λ.

Corollary 11. Under the assumptions of Proposition 8,

End(GA)⊗Z Q ∼= Q(λ).

4.1. 2-dimensional case. The approach in the proof of Proposition 8 can be made more
precise. We demonstrate it in the case n = 2. Assume A ∈ M2(Z) is non-singular with
an irreducible characteristic polynomial hA ∈ Z[x] and λ ∈ Q is a root of hA. Also, let
P ′ ̸= ∅, equivalently, there exists a prime p ∈ N that divides detA and does not divide
TrA. In the notation of the proof of Proposition 8, we have that

A =M

(
λ 0
0 σ(λ)

)
M−1, M =

(
u σ(u)

)
,

X =

(
x 0
0 σ(x)

)
, T (x) =MXM−1,(17)

where u ∈ (OK)
2 is an eigenvector of A corresponding to λ written as a column, K = Q(λ)

is a quadratic extension of Q, x ∈ K, and σ ∈ Gal(K/Q) is the only non-trivial element.
Moreover, there exist a finite extension L of K and P ∈ GL2(OL) such that

(18) PM =

(
1 u
0 v

)
, PTP−1 =

(
x w
0 σ(x)

)
, w(x) =

u(σ(x)− x)

v
,

where u, v ∈ OL, σ(λ)− λ = vv′ for some v′ ∈ OL, and the ideal generated by u and v in
OL is OL, denoted by (u, v) = OL. This follows from the fact that for any number field
K there exists a finite extension L of K such that every ideal of OK becomes principal
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in OL (see e.g., [NT91, p. 4, Theorem 2] and [S22, Corollary A.2]). In particular, if OK

is a principal ideal domain, then one can take L = K. Denote by S ′ the set of all prime
ideals of OL lying above all primes in P .

Proposition 12. Assume A ∈ M2(Z) is non-singular with an irreducible characteristic
polynomial hA ∈ Z[x] and P ′ ̸= ∅. Then

(19) ı(End(GA)) = {x ∈ OK,λ |T (x) =MXM−1 ∈ M2(R)}.

Let [OK : Z[λ]] = l1l2, where l1, l2 ∈ N, rad(l1) divides detA, (l2, detA) = 1. Let

K = Q(
√
d), where d ∈ Z is square-free, and let {1, ω} be the integral basis of OK with

ω = (1 +
√
d)/2 if d ≡ 1 (mod 4) and ω =

√
d otherwise. Then ı(End(GA)) is generated

over Z[λ±1] by {1, αω}, where α ∈ N divides l2. In particular, α is the smallest natural
number such that

(20)
α(σ(ω)− ω)

v
∈ OL,S′ .

Proof. Let x ∈ OK,λ and let T =MXM−1, where M and X are given by (17). It follows
from the definition of OK,λ that x = yλ−i for some y ∈ OK and i ∈ N ∪ {0}. Moreover,
T = T (x) ∈ End(GA) if and only if T ∈ M2(R). Indeed, the necessary part follows
from Section 3.1. To prove the sufficient part, By Lemma 1, it is enough to show that
T ∈ End(GA,p) for any p ∈ P ′. For any p ∈ P ′ there exists a prime ideal p of OL above
p such that p divides λ and p does not divide σ(λ). Let Lp denote the completion of L
with respect to p with its ring of integers Op. We have that T (GA,p) ⊆ GA,p if and only
if T (GA,p ⊗Zp Op) ⊆ GA,p ⊗Zp Op if and only if PTP−1V ⊆ V with V = P (GA,p ⊗Zp Op).
Note that

V =
{
(PAP−1)kx |x ∈ O2

p , k ∈ Z
}
=

{(
α β

)t |α ∈ Lp, β ∈ Op

}
= Lp ⊕Op,

since P ∈ GL2(OL). Now it is clear that PTP−1V ⊆ V , since PTP−1 has the form (18)
and σ(x) = σ(y)σ(λ)−i ∈ Op. Indeed, σ(y) ∈ OK , OK ↪→ OL ↪→ Op and σ(λ) is a unit
in Op, since p does not divide σ(λ). This shows that T defined by (17) with x ∈ OK,λ

belongs to End(GA) if and only if T ∈ M2(R), i.e., (19) holds.

We have that x = yλ−i, y ∈ OK , and hence y = a + bω for a, b ∈ Z. Since Z[λ±1] ⊆
ı(End(GA)), x ∈ ı(End(GA)) if and only if bω ∈ ı(End(GA)) if and only if T (bω) ∈ M2(R)
by (19) if and only if w(bω) ∈ OL,S′ by (18) if and only if

(21)
b(σ(ω)− ω)

v
∈ OL,S′ ,

since (u, v) = OL by assumption. It is well-known and one can also easily check that
σ(λ)− λ = ±[OK : Z[λ]](σ(ω)− ω). Since v divides σ(λ)− λ by (18) and l1 is a unit in
OL,S′ , (21) holds for b = l2. Also, the set

I = {b ∈ Z | bω ∈ ı(End(GA))}
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is an ideal of Z, l2 ∈ I, and therefore I = (α) is generated by the smallest α ∈ N such
that α ∈ I. In particular, α divides l2. □

Corollary 13. Assume A ∈ M2(Z) is non-singular with an irreducible characteristic
polynomial hA ∈ Z[x] and P ′ ̸= ∅. If rad[OK : Z[λ]] divides detA, then

ı(End(GA)) = OK,λ.

Proof. If rad[OK : Z[λ]] divides detA, then in the notation of Proposition 12, l2 = 1 and
hence α = 1. Then, by Proposition 12,

ı(End(GA)) =
{
c+ dω | c, d ∈ Z[λ±1]

}
= OK,λ.

□

Remark 14. Note that if D = m2 · d is the discriminant of hA, where m ∈ N and d ∈ Z is
square-free, then

[OK : Z[λ]] =

{
m, d ≡ 1 (mod 4)
m
2
, otherwise.

Example 1. In this example we show that the endomorphism ring ofGA does not determine
GA up to an isomorphism, i.e., there exist A,B ∈ Mn(Z) such that End(GA) ∼= End(GB)
as rings, but GA ̸∼= GB as groups. Consider a quadratic number field K = Q(λ) defined
by a root λ ∈ Q of an irreducible polynomial h = x2 − x + 13 [LMFDB, Number field
2.0.51.1]. Since the class group of K has order 2, there are two GL2(Z)-conjugacy classes
of matrices [A], [B], A,B ∈ M2(Z), with A corresponding to the trivial ideal OK and B
corresponding to the non-trivial ideal I = Z[3, λ+ 1], a generator of the class group. For
example,

A =

(
0 1

−13 1

)
, B =

(
−1 3
−5 2

)
.

Both A and B share the same characteristic polynomial h with eigenvalues λ1, λ2, so
that TrA = TrB = 1, detA = detB = 13, the discriminant D = −3 · 17 is square-free,

λ1,2 = 1±
√
D

2
, R = R(A) = R(B) = {r13s | r, s ∈ Z}. Moreover, A, B are conjugated by

a matrix from GL2(Q), but there is no matrix S ∈ GL2(Z) such that A = SBS−1. By
Corollary 10 and Remark 14, ı(End(GA)) = ı(End(GB)) = OK,λ, where ı is defined by the
choice of λ (λ1 or λ2). Thus, End(GA) ∼= End(GB) as rings. However, GA ̸∼= GB as groups.
Indeed, assume GA

∼= GB. By [S22, p. 207, Corollary 6.3], GA
∼= GB if and only if there

exists T ∈ GL2(R) such that A = TBT−1, where T = MXN−1, X = diag
(
x σ(x)

)
for

some x ∈ K, A =MΛM−1, B = NΛN−1, Λ = diag
(
λ σ(λ)

)
,

M =

(
1 1
λ σ(λ)

)
, N =

(
3 3

λ+ 1 σ(λ) + 1

)
.

In particular, detT = NK/Q(x) ·detM ·(detN)−1 = NK/Q(x) ·3−1, where NK/Q(x) denotes
the norm of x. Since T ∈ GL2(R), detT ∈ R×, which implies

(22) NK/Q(x) = ±13k · 3, k ∈ Z.
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It is known that (13) = I1 · I2, where I1, I2 are principal ideals of OK and (3) = I2

[SageMath]. Thus, it follows from (22) that (x) = Is1 · I t2 · I for some s, t ∈ Z, which
implies that I is principal. This is a contradiction, since I has order 2 in the class group
of K and hence it is not principal. Thus, GA ̸∼= GB.

Example 2. In this example, we show that the condition “rad[OK : Z[λ]] divides detA” in
Corollary 13 is not necessary for ı(End(GA)) = OK,λ. Here, in the notation of Proposition
12, l2 ̸= 1 and α = 1. Let

A =

(
−1 3
3 2

)
, hA(x) = x2 − x− 11,

D = 32 · 5 is the discriminant of hA. Hence, by Remark 14, m = 3, d = 5, ω = 1+
√
5

2
,

λ = 1+3
√
5

2
, [OK : Z[λ]] = 3, and l2 = 3. Note that OK is a principal ideal domain, hence,

in the notation of Section 4.1, L = K,

M =

(
1 1
ω σ(ω)

)
, PM =

(
1 1
0 σ(ω)− ω

)
, P ∈ GL2(OK),

and v = σ(ω)− ω. Thus, (20) holds for α = 1 and ı(End(GA)) = OK,λ = OK [λ
−1].

Example 3. In this example, we demonstrate how (19) can be used to determine End(GA)
for a rational canonical form A ∈ M2(Z) of a monic irreducible quadratic polynomial
hA = x2 + βx+ γ ∈ Z[x]. By Lemma 2, End(GA) = M2(Z) if γ = ±1, End(GA) = M2(R)
if γ ̸= ±1 and P ′ = ∅. Assume, P ′ ̸= ∅, equivalently, rad(γ) does not divide rad(β).
Then, Proposition 12 can be applied. Let

A =

(
0 −γ
1 −β

)
, M =

(
−γ −γ
λ σ(λ)

)
, A =M

(
λ 0
0 σ(λ)

)
M−1.

For x = bω, b ∈ Z, one can check that T (x) =MXM−1 ∈ M2(R) if and only if l2 divides
b. Therefore, by Proposition 12, ı(End(GA)) is generated by {1, l2ω} as a Z[λ±1]-module.
More precisely, if T0 =MX0M

−1 with X0 = diag
(
l2ω l2σ(ω)

)
, then

End(GA) =

{∑
i

biA
mi +

∑
j

cjA
njT0

∣∣∣ ∀ bi,mi, cj, nj ∈ Z, i, j ∈ N

}
,

where each sum has finitely many non-zero terms. Since 1 and l2ω are Z[λ±1]-dependent,
End(GA) is a finitely generated Z[λ±1]-module of rank 1.

5. Character groups, solenoids, and S-integer dynamical systems

5.1. Character groups. In this section, we describe the Pontryagin dual ĜA of GA.
Here, GA is considered as a topological group endowed with the discrete topology and

ĜA is a topological group with the underlying space consisting of continuous group ho-
momorphisms from GA to a circle T1 endowed with the compact-open topology.
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Let A ∈ Mn(Z) be non-singular and let hA ∈ Z[t] be the characteristic polynomial of
A. Let hA = h1h2 · · ·hs, where h1, . . . , hs ∈ Z[t] are irreducible of degrees n1, . . . , ns,
respectively.

Lemma 15. [S24, Lemma 8.1] GA is dense in Rn endowed with the standard topology if
and only if hi(0) ̸= ±1 for all i ∈ {1, 2, . . . , s}.

In the case when GA is not dense in Rn, by Lemma 15, there exist f1, f2 ∈ Z[t] such
that hA = f1f2 and f2(0) = ±1. Let g2 ∈ Z[t] be of maximal degree such that there
exists g1 ∈ Z[t] with hA = g1g2, g2(0) = ±1. In other words, if hA = h1h2 · · ·hs, where
h1, . . . , hs ∈ Z[t] are irreducible, hi(0) ̸= ±1 for all i ∈ {1, . . . , t} and hj(0) = ±1 for all
j ∈ {t + 1, . . . , s}, 1 ≤ t < s, then g1 = h1 · · ·ht and g2 = ht+1 · · ·hs. Then there exists
S ∈ GLn(Z) such that

(23) SAS−1 =

(
A1 ∗
0 A2

)
,

where A1 ∈ Mk(Z) has characteristic polynomial g1 and A2 ∈ Mn−k(Z) has characteristic
polynomial g2 [N72, p. 50, Thm. III.12]. Thus, GA1 is dense in Rk endowed with the
standard topology, detA2 = ±1, and GA2 = Zn−k. Thus, the natural exact sequence

0 −→ GA1 −→ GSAS−1 −→ GA2 −→ 0

splits, so that

S(GA) = GSAS−1
∼= GA1 ⊕ Zn−k, GA

∼= GA1 ⊕ Zn−k.

Therefore,

(24) ĜA
∼= ĜA1 ⊕ Ẑn−k ∼= ĜA1 ⊕ Tn−k.

Therefore, to study the character group ĜA, it is enough to consider the case when GA is

dense in Rn endowed with the standard topology. For y ∈ Rn, denote by Λ(y) ∈ R̂n the
character of Rn given by

Λ(y)(x) = e2πiy·x, x ∈ Rn,

where y ·x is the standard dot product of vectors in Rn. We consider Λ(y) as a character
of GA via the restriction. Note that if GA is endowed with the topology τ induced from

the standard topology on Rn and (GA, τ) is dense in Rn, then Rn ∼= R̂n ∼= ̂(GA, τ) with the
isomorphism given by y 7→ Λ(y), y ∈ Rn. However, if GA is endowed with the discrete

topology, then the structure of ĜA is more complicated and is given by a quotient of an
adèle ring of K (see Theorem 19 below).

In the next lemma, we give a description of ĜA for an arbitrary non-singular A ∈ Mn(Z).
For y ∈ Qn

p , we will denote by {y}p the “fractional” part of y, i.e., y = {y}p + y1, where
y1 ∈ Zn

p .
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Lemma 16. Let A ∈ Mn(Z) be non-singular and let ĜA denote the Pontryagin dual of
GA, where GA is endowed with the discrete topology. Consider the following map:

ψ : Rn × ĜA/Zn −→ ĜA, ψ(θ, χ′) = Λ(−θ)χ′, θ ∈ Rn,

where χ′ ∈ ĜA/Zn is considered as a character of GA trivial on Zn. If GA is dense in

Rn with respect to the standard topology on Rn, then the map Zn −→ ĜA/Zn given by
m 7→ Λ(m) is an embedding and ψ induces a group isomorphism

(25)
(
Rn × ĜA/Zn

)/
Zn ∼= ĜA,

where Zn is embedded into the product as m 7→ (m,Λ(m)). Moreover,

ĜA/Zn ∼=
∏

p | detA

Ztp
p ,

and for every χ′ ∈ ĜA/Zn there exist vp ∈ Zn
p , p | detA, such that

χ′(x) =
∏

p | detA

e2πi{x·vp}p .

Proof. As in [C08], for χ ∈ ĜA, let χ(e1) = e−2πiθ1 , . . . , χ(en) = e−2πiθn , where {e1, . . . , en}
is the standard basis of Rn. Define χ′ ∈ ĜA via

(26) θ =
(
θ1 . . . θn

)
∈ Rn, χ′ = Λ(θ)χ.

Then χ′ is trivial on Zn, i.e., χ′ ∈ ĜA/Zn, and hence ψ is onto. We now find the kernel
of ψ. Let χ = Λ(−θ)χ′ be trivial on GA. Then, Λ(−θ) is trivial on Zn, since χ′ is trivial
on Zn by assumption. Hence, θ ∈ Zn and χ′ = Λ(θ). Finally, if Λ(m) is trivial on GA and
GA is dense in Rn in the standard topology, then Λ(m) is trivial on Rn, since Λ(m) is a
continuous character of Rn in the standard topology. This implies that m = 0 and hence

m 7→ Λ(m) defines an embedding of Zn into ĜA/Zn.

We know that there is an isomorphism

ψA :
∏

p | detA

GA,p/Zn
p
∼−→ GA/Zn

induced by ψA(vp) = {vp}p, vp ∈ GA,p [S24, Lemma 3.2]. Let χ′ ∈ ĜA/Zn. Then

(27) ĜA/Zn ∼=
∏

p | detA

ĜA,p/Zn
p , χ′ =

∏
p | detA

χ′p, ∀χ′p ∈ ĜA,p/Zn
p .

We now fix a prime p dividing detA and describe a character χ′p. By [S22, Lemma 2.10],

GA,p/Zn
p
∼= (Qp/Zp)

tp and it is well-known that Q̂p/Zp
∼= Zp. Thus,

ĜA,p/Zn
p
∼= ̂(Qp/Zp)

tp ∼= Ztp
p .
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Tracing the maps, one can show that each character χ′p of GA,p trivial on Zn
p is determined

by vp ∈ Zn
p via

χ′p(x) = e2πi{x·vp}p , x ∈ GA,p.

□

5.2. GA as a subgroup of a number field. So far, we have considered GA as a subset
of Qn. We now show that when the characteristic polynomial of A is irreducible, one can
consider GA as a subset of a number field Q(λ), where λ ∈ Q is an eigenvalue of A.

For the rest of the section we will fix an eigenvalue λ ∈ Q of A and a corresponding
eigenvector u ∈ (Q)n. Let K = Q(λ) and, without loss of generality, we can assume that
u =

(
u1 . . . un

)
∈ (OK)

n, where OK denotes the ring of integers of K. Let Sλ consist
of (all) prime ideals of OK dividing λ. (Note that λ ∈ OK .) Recall that OK,λ denotes the
ring of Sλ-integers, i.e.,

OK,λ = {x ∈ K | valp(x) ≥ 0 for any prime ideal p of OK not in Sλ} = OK

[
λ−1

]
.

Assume hA ∈ Z[t] is irreducible. Then Gal(Q/Q) acts transitively on all the eigenvalues
λ1 = λ, . . . , λn of A, i.e., λi = σi(λ) for embeddings σ1 = id, σ2, . . . , σn ∈ Gal(Q/Q) of
K into Q. Then ui = σi(u) is an eigenvector of A corresponding to λi, i ∈ {1, . . . , n}.
For x ∈ GA, since u1 = u, . . . ,un are linearly independent over Q, x =

∑n
i=1 xiui for

some x1, . . . , xn ∈ Q. Since x ∈ Qn, σi(x) = x and hence xi = σi(x1) for all i. Note that
x1 ∈ K. Indeed, since u1 = u ∈ Kn, for any σ ∈ Gal(Q/K), we have that σ(u1) = u1,
σ(x) = x, and hence σ(x1) = x1 and x1 ∈ K. Thus, the projection µ along u defines an
injective homomorphism

(28) µ : GA ↪→ K, µ(x) = x1, x =
n∑

i=1

σi(x1u), σ1 = id .

To prove our main result in this section, Theorem 19 below, we will need the following
lemma.

Lemma 17. Assume A ∈ Mn(Z) is non-singular with an irreducible characteristic poly-
nomial hA ∈ Z[x]. Then, OK,λ ⊆ µ(GA), where µ is given by (28).

Proof. Let x1 ∈ OK,λ and let x =
∑

i σi(x1u1). We need to show that x ∈ GA. By

construction, x ∈ Qn. Moreover, x ∈ Rn, since for any σ ∈ Gal(Q/Q) and any p ∈ Sλ,
σ(p) is a prime ideal of Q(σ(λ)) dividing σ(λ). Thus, valq σi(x1u1) ≥ 0 for any prime ideal
q of the splitting field L of hA not dividing detA. In other words, in the “denominators”
of σi(x1u1)’s there are only prime ideals dividing λi’s and hence in the denominators of
x ∈ Qn we only have primes p ∈ N dividing detA. Thus, by (4), we only need to show
that x ∈ GA,p for any p ∈ P under the embedding induced by Q ↪→ Qp.

We fix an arbitrary p ∈ P . Even though hA is irreducible over Q, it might not be
irreducible over Qp. By the definition of tp, we have hA(x) ≡ f(x)xtp (mod p), where
f ∈ Fp[x], f(0) ̸= 0. Therefore, by Hensel’s lemma, hA = h1h2, where h1, h2 ∈ Zp[t],
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h1 ≡ f (mod p), h2 ≡ xtp (mod p), and p does not divide h1(0). Let L be a finite Galois
extension of Q containing all eigenvalues of A, e.g., L is the splitting field of hA. Let q be
a prime ideal of L lying above p. Without loss of generality, we can assume that q divides
λ1 = λ, . . . , λtp in OL, so that λ1, . . . , λtp are all roots of h2 in Qp. Then, for any prime
ideal p of OK dividing λ, σi(p) is not divisible by q for any tp < i ≤ n. Indeed, clearly q
does not divide any σi(p) if p lies above a prime p′ ∈ N not equal to p. If p lies above p and
σj(p) is divisible by q for some j > tp, then q divides σj(λ) and we have a contradiction
with deg h2 = tp. This implies that xj = σj(x1) ∈ Oq for any j > tp, since x1 ∈ OK,λ

by assumption. Let x = y1 + y2, where y1 =
∑tp

i=1 σi(x1u1), y2 =
∑n

i=tp+1 σi(x1u1). Let

Gp = Gal(Qp/Qp). Since any σ ∈ Gp permutes roots of h1 (respectively, h2), we have that

σ(yi) = yi, i = 1, 2. Hence, y2 ∈ (Oq)
n∩Qn

p , since u1 ∈ OK ⊆ OL. Thus, y2 ∈ Zn
p ⊆ GA,p.

Then, y1 ∈ SpanLq
(u1, . . . ,utp)∩Qn

p , where SpanLq
(u1, . . . ,utp)∩Qn

p = Dp(A) ⊆ GA,p by

[S24, Lemma 4.1]. This shows that x ∈ GA,p for any p ∈ P . □

We now describe the image of µ inside K. Let M =
(
σ1(u) . . . σn(u)

)
∈ Mn(Q) be

as in (15), where σ1, . . . , σn are all embeddings of K into Q and σ1 = id.

Lemma 18. Assume A ∈ Mn(Z) is non-singular with an irreducible characteristic poly-

nomial hA ∈ Z[x]. Let w =
(
w1 . . . wn

)t ∈ (Q)n be the 1st column of (M t)−1, that is
w is an eigenvector of At corresponding to λ. Denote

YAt(w, λ) = {m1λ
k1w1 + · · ·+mnλ

knwn |m1, . . . ,mn, k1, . . . , kn ∈ Z}.

Then YAt(w, λ) is a Z[λ±1]-submodule of K, µ(GA) = YAt(w, λ), and GA
∼= YAt(w, λ).

Proof. By definition, w · u = 1, where we assume u ∈ Kn. Since Atw = λw and At has
integer entries, there is an eigenvector w′ ∈ Kn of At corresponding to λ. Thus, w = αw′

for some α ∈ Q. Therefore,

w · u = αw′ · u = 1.

Since w′ ·u ∈ K, this implies that α ∈ K, w ∈ Kn, and YAt(w, λ) ⊆ K. Clearly, YAt(w, λ)
is a Z[λ±1]-submodule of K. Moreover,

Z[w] = {m1w1 + · · ·+mnwn |m1, . . . ,mn ∈ Z}

is a Z[λ]-module, since At has integer entries. Then, any y ∈ YAt(w, λ) has the form
y = uλk for some u ∈ Z[w] and k ∈ Z.
Let x ∈ GA, µ(x) = x1. Then, by the definition of µ, x =

∑
i σi(x1u). It can be easily

verified that (M t)−1 =
(
σ1(w) . . . σn(w)

)
. By the definition of GA and (15), x ∈ GA if

and only if there exists k ∈ Z and m ∈ Zn such that

x = Akm =MΛkM−1m =M
(
x1 σ2(x1) . . . σn(x1)

)t
if and only if x1 ∈ YAt(w, λ). □
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Denote

(29) YA(u, λ) = {m1λ
k1u1 + · · ·+mnλ

knun |m1, . . . ,mn, k1, . . . , kn ∈ Z},

an analogue of YAt(w, λ) for A and u. Then YA(u, λ) is a Z[λ±1]-submodule of OK,λ, since
u1, . . . , un ∈ OK by assumption. Let m = (detM)2 ∈ Z be the discriminant of the lattice
Z[u]. Then we have the diagram

(30) YA(u, λ)

∼=
��

⊆ OK,λ ⊆ YAt(w, λ)

∼=
��

·m−→ YAt(mw, λ) ⊆ OK,λ

GAt GA

,

where the “down” isomorphisms are given by µ applied to GAt , GA.

5.3. Character group of GA via adèles. We will use the notation introduced in [T67].
Let S∞ denote the set of all infinite places of K. Denote

complex p ∈ S∞ Λp(ξ) = −2ℜ(ξ) ξ ∈ Kp = C
real p ∈ S∞ Λp(ξ) = −ξ ξ ∈ Kp = R
finite p Λp(ξ) = {TrKp/Qp ξ}p ξ ∈ Kp.

Recall that Sλ denotes the set of all finite places (prime ideals) of K dividing λ in OK .
Note that S∞ ∪ Sλ is a finite set. Denote

AK,λ =
∏

p∈S∞∪Sλ

Kp.

It is an object of the same nature as the adèle ring AK of K, consisting of all elements
(. . . , ηp, . . .), where p runs through all the places of K, ηp ∈ Kp for any p and ηp ∈ Op

for all but finitely many p. It is known that the character group of K endowed with the
discrete topology is isomorphic to the quotient of AK by K, where K is embedded into AK

diagonally via ξ 7→ (. . . , ξp, . . .), each ξp = ξ [T67]. From Section 5.2, if the characteristic
polynomial of A is irreducible, then GA can be considered as a subset of K via µ in (28).
Each η = (. . . , ηp, . . .) ∈ AK,λ defines a character χ of K via

(31) χ(η)(ξ) =
∏

p∈S∞∪Sλ

e2πiΛp(ηpξ), ξ ∈ K,

hence η defines a character of GA via restriction and isomorphism µ in (28):

(32) χ(η)(x) = χ(η)(x1), x1 = µ(x) ∈ K, x ∈ GA.

We have a diagonal embedding of K into AK,λ via ξ 7→ (ξ, . . . , ξ). We will denote by ξ
a general element of K, by x a general element of GA, and by x1 a general element of

µ(GA). In what follows, we will show that ĜA is isomorphic to a quotient of AK,λ by
YA(u, λ) defined by (29).
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Theorem 19. Let A ∈ Mn(Z) be non-singular with an irreducible characteristic poly-
nomial hA ∈ Z[x]. Let λ ∈ Q be an eigenvalue of A and let K = Q(λ). The map

ϕ : AK,λ → ĜA given by (. . . , ηp, . . .) 7→ χ,

(33) χ(x) =
∏

p∈S∞∪Sλ

e2πiΛp(ηpµ(x)), x ∈ GA,

is onto. Moreover, kerϕ = YA(u, λ), so that

ĜA
∼= AK,λ/YA(u, λ).

We divide the proof of Theorem 19 into parts proved in Lemmas 20 – 23 below. Namely,
ϕ is onto (Lemma 20), YA(u, λ) ⊆ kerϕ (Lemma 21), if η ∈ AK,λ is trivial on OK,λ, then
η ∈ K (Lemma 22), and kerϕ ⊆ YA(u, λ) (Lemma 23).

Lemma 20. ϕ is onto.

Proof of Lemma 20. Let S denote the set of all finite places of K dividing all p ∈ P , i.e.,
all prime ideals of OK lying above all p ∈ P as opposed to Sλ, the set of prime ideals
of OK dividing λ. Let AK,S =

∏
p∈S∞∪S Kp. Similar to (33), we also have a natural

homomorphism ψ : AK,S → ̂YAt(w, λ) ∼= ĜA given by (. . . , ηp, . . .) 7→ χ,

(34) χ(x1) =
∏

p∈S∞∪S

e2πiΛp(ηpx1), x1 ∈ YAt(w, λ)

(see Lemma 18). We now show that ψ is onto. Indeed, by Lemma 16, for any χ ∈ ĜA

there exist θ ∈ Rn and vp ∈ Zn
p , p ∈ P , such that

(35) χ(x) = e−2πix·θ
∏
p∈P

e2πi{x·vp}p , x ∈ GA.

Let n = r1 + 2r2, where r1 is the number of real roots of hA and r2 is the number of
pairs of conjugate complex roots of hA. Without loss of generality, we can assume that
S∞ = {σ1, . . . , σr1 , σr1+1, . . . , σr1+r2}. For θ ∈ Rn, denote ηp = σj(u) · θ ∈ Kp, where
p ∈ S∞ corresponds to σj, j ∈ {1, . . . , r1 + r2}. Then,

(36) e−2πix·θ =
∏

p∈S∞

e2πiΛp(ηpx1), x1 = µ(x).

Recall that x =
∑n

i=1 σi(x1u). Then

(37) {x · vp}p =
∑
p|p

{TrKp/Qp(vp · ux1)}p =
∑
p|p

Λp(ηpx1), ηp = vp · u,

which together with (36), shows that ψ given by (34) is onto. Denote

R[u] = SpanR(u1, . . . , un), Z[u] = SpanZ(u1, . . . , un), Zp[u] = Z[u]⊗Z Zp,
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where R[u] ⊂ K, Z[u] ⊂ OK , and Zp[u] ⊂ Op. We claim that R[u] ⊆ kerψ, where R[u]
is embedded diagonally into AK,S . Indeed, if η = r · u ∈ R[u], r ∈ Rn, then∑

p∈S∞∪S

Λp(ηx1) = −r · x+
∑
p∈P

{r · x}p = 0

by [T67, Lemma 4.1.5], since r · x ∈ R (i.e., r · x ∈ Q and has only primes from P in the
denominators) for any x ∈ GA. Hence,

(. . . , η, . . .) 7→ χ(x1) =
∏

p∈S∞∪S

e2πiΛp(ηx1) = 1

for any x1 ∈ YAt(w, λ). One can show that any element from AK,S is equivalent to an
element η = (. . . , ηp, . . .) from Ω1 =

∏
p∈S∞ Kp

∏
p∈P

∏
p|p Zp[u] modulo R[u], where for

each p ∈ P there exists ηp ∈ Zp[u] such that ηp = ηp for any p|p. It also follows from (37).

We now consider the restriction of ψ from AK,S to AK,λ and show that the restriction

is also onto ̂YAt(w, λ) ∼= ĜA. This is true, because even though x1 might not be in Oq

for any prime ideal q not in Sλ, but valq x1 is bounded from below by a constant that
does not depend on x1. Indeed, by the previous paragraph, without loss of generality, we

can assume that χ ∈ ̂YAt(w, λ) is defined by η ∈ Ω1. Let L be a finite Galois extension
of Q containing all eigenvalues of A, e.g., L is the splitting field of hA. Recall that
x1 = µ(x) = aλ−k(detM)−1, where a ∈ OL, k ∈ N ∪ {0}, detM ̸= 0 ∈ OL by Lemma
18. For any prime ideal q of OL not dividing λ lying above a prime q ∈ N, there exists
kq ∈ N∪{0} such that qkq(detM)−1 ∈ Oq. Since there are finitely many prime ideals q of
OL lying above q, by taking the maximum among all kq, we can assume that there exists
kq ∈ N∪{0} such that qkq(detM)−1 ∈ Oq for any q above q. Then, pkpx1 ∈ Op for any x1
and any prime ideal p of K above p ∈ P not dividing λ, i.e., p ̸∈ Sλ. We now write each
ηp ∈ Zp[u] as ηp = ap + pkpµp for ap ∈ Z[u] and µp ∈ Zp[u]. By the Chinese Remainder
Theorem, there exists a ∈ Z[u] such that ηp − a ∈ pkpZp[u] for any p ∈ P . Then η − a

defines a character of ̂YAt(w, λ) as follows:

(38) (. . . , ηp − a, . . .) 7→ χ(x1) =
∏

p∈S∞∪S

e2πiΛp((ηp−a)x1) =
∏

p∈S∞∪Sλ

e2πiΛp((ηp−a)x1).

Indeed, Λp((ηp−a)x1) = 0 for any p not in Sλ above a prime p ∈ P , since (ηp−a)x1 ∈ Op.
This shows that every character of YAt(w, λ), equivalently, of GA, comes from an element
from AK,λ, hence ϕ is onto. □

Lemma 21. YA(u, λ) ⊆ kerϕ.

Proof. There exists k ∈ N such that λkx1 ∈ Op for any x1 ∈ Z[w] and any p ∈ Sλ. Since
multiplication by a power of λ is an isomorphism of YAt(w, λ), by precomposing every
character of YAt(w, λ) with the isomorphism, without loss of generality, we can assume
that x1 itself lies in Op, i.e., Z[w] ⊂ Op for any p ∈ Sλ. Also, since kerϕ is a Z[λ±1]-
module, it is enough to show that Z[u] ⊆ kerϕ. Let η = s · u ∈ Z[u], s ∈ Zn. By the
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proof of the previous lemma, R[u] ⊆ kerψ. Thus, for η ∈ Z[u] we have that

(39) 0 =
∑

p∈S∞∪S

Λp(ηx1) =
∑

p∈S∞∪Sλ

Λp(ηx1) +
∑
p∈P

∑
p|p, p̸∈Sλ

Λp(ηx1), ∀x1 ∈ YAt(w, λ).

Denote Tp =
∑

p|p, p̸∈Sλ Λp. From (39), it is enough to show that Tp(ηx1) = 0 for any

x1 ∈ YAt(w, λ) and p ∈ P . We have that

(40) {s · x}p =
∑
p|p

Λp(ηx1) =
∑

p|p, p∈Sλ

Λp(ηx1) + Tp(ηx1), ∀x1 ∈ YAt(w, λ).

Since x1 ∈ Z[w] if and only if x ∈ Zn, we have that {s · x}p = 0 for any x1 ∈ Z[w]. In
addition, Λp(ηx1) = 0 for any x1 ∈ Z[w] and any p ∈ Sλ, as follows from our assumption.
Therefore, from (40), Tp(ηx1) = 0 for any x1 ∈ Z[w]. Since λ is a unit in the ring
of integers of Kp for any p that does not divide λ, multiplication by λ is a Zp-module
automorphism of Zp[w], hence Tp(ηx1) = 0 for any x1 ∈ YAt(w, λ). □

Lemma 22. If η ∈ AK,λ is trivial on OK,λ, then η ∈ K.

Proof. Let η = (. . . , ηp, . . .) ∈ kerϕ, i.e.,

(41)
∑

p∈S∞∪Sλ

Λp(ηpx1) = 0, ∀x1 ∈ YAt(w, λ).

Note that (41) holds for any x1 ∈ OK,λ, since OK,λ ⊆ YAt(w, λ) by Lemma 17 and Lemma
18. By the Chinese Remainder Theorem, there exists a ∈ OK,λ such that ηp − a ∈ Op for
all p ∈ Sλ. Let ξ = η − a with ξp ∈ Op for all p ∈ Sλ. Then

(42)
∑

p∈S∞∪Sλ

Λp(ξpx1) = 0, ∀x1 ∈ OK,λ,

since a ∈ OK,λ defines a trivial character on OK,λ. Moreover, Λp(ξpx1) = 0 for any
x1 ∈ OK and p ∈ Sλ, hence

(43)
∑
p∈S∞

Λp(ξpx1) = 0, ∀x1 ∈ OK .

As in [T67], we denote by
∞
ξ the projection of ξ onto

∏
p∈S∞ Kp. Since u1, . . . , un is a

basis of K as a Q-vector space,
∞
u1, . . . ,

∞
un is a basis of

∏
p∈S∞ Kp as an n-dimensional

R-vector space. Let
∞
ξ =

∑n
i=1 αi

∞
ui for some α1, . . . , αn ∈ R. Applying (43) to each

x1 = ui ∈ OK , we get that MM tα ∈ Zn for α =
(
α1 . . . αn

)t
with M given by (15).

One can check that MM t ∈ Mn(Z) and hence α1, . . . , αn ∈ Q. Thus,
∞
ξ = (b, . . . , b) for

b =
∑n

i=1 αiui, b ∈ K. We now show that ξ = b, equivalently, ξp = 0 for any p ∈ Sλ,
so that η = ξ + a = b + a ∈ K. Indeed, there exists l ∈ N such that lb ∈ OK . Denote
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κ = l(ξ − b), so that
∞
κ = (0, . . . , 0), κp ∈ Op for any p ∈ Sλ, and∑

p∈Sλ

Λp(κpx1) = 0, ∀x1 ∈ OK,λ.

Then,
∑

p|p Λp(κpx1) = 0, equivalently,
∑

p|p TrKp/Qp(κpx1) ∈ Zp for any x1 ∈ OK,λ and
any p ∈ P . Since the image of OK,λ under the embedding K ↪→ Kp generates Kp over
Zp, we have that

∑
p|p TrKp/Qp(κpui) = 0 for any p ∈ P and i ∈ {1, . . . , n}. It gives a

system of linear equations for κp with matrix M t, which is non-singular. Therefore, each
κp = 0. □

Lemma 23. kerϕ ⊆ YA(u, λ).

Proof. Let η ∈ kerϕ. By Lemma 17 and Lemma 18, OK,λ ⊆ µ(GA), µ(GA) = YAt(w, λ),
so that η is trivial on OK,λ. Hence, by Lemma 22, η ∈ K embedded diagonally into AK,λ.
By [T67, Lemma 4.1.5], we have that

(44)
∑

p∈S∞∪Sλ

Λp(ηx1) +
∑
p∈P

∑
p|p, p̸∈Sλ

Λp(ηx1) +
∑

q ̸∈P, q|q

Λq(ηx1) = 0, ∀x1 ∈ YAt(w, λ),

where p, q are prime ideals of OK , and p, q ∈ N are prime numbers. Since η ∈ kerϕ, we
have that

∑
p∈S∞∪Sλ Λp(ηx1) = 0 for any x1 ∈ YAt(w, λ). Then from (44), for any p ∈ P

and any q ̸∈ P we have that

Tp(ηx1) ≡
∑

p|p, p̸∈Sλ

Λp(ηx1) = 0, Tq(ηx1) ≡
∑
q|q

Λq(ηx1) = 0, ∀x1 ∈ YAt(w, λ).

Since hA is irreducible by assumption, K = SpanQ(u1, . . . , un). Let η = t · u, t ∈ Qn.
Then Tq(ηx1) = {TrK/Q(ηx1)}q = {t · x}q = 0 for any x ∈ GA. Since Zn ⊆ GA, this
implies that t ∈ Rn. Note that there exists k ∈ N ∪ {0} such that

(45) λkηx1 ∈ Op, ∀x1 ∈ Z[w], ∀p ∈ Sλ.

Also, note that Tp(λ
kηx1) = 0 for any x1 ∈ YAt(w, λ), since YAt(w, λ) is a Z[λ±1]-module.

Let λkη = s ·u for some s ∈ Qn. Note that x1 ∈ Z[w] if and only if x ∈ Zn. We have that

{s · x}p =
∑
p|p

Λp(λ
kηx1) =

∑
p|p, p∈Sλ

Λp(λ
kηx1) + Tp(λ

kηx1), ∀x1 ∈ YAt(w, λ),

and therefore, {s · x}p = 0 for x ∈ Zn. This implies that s ∈ (Z(p))
n for any p ∈ P ,

where Z(p) consists of all rational numbers a/b ∈ Q such that (b, p) = 1. We now
have that λkη = s · u and η = t · u, hence s = (Ak)tt, since u1, . . . , un are linearly
independent over Q. Thus, s ∈ (R ∩p∈P Z(p))

n and therefore s ∈ Zn and λkη ∈ Z[u].
Hence, η ∈ λ−kZ[u] ⊂ YA(u, λ). This shows that kerϕ ⊆ YA(u, λ). □

We now find the fundamental domain F of the action of Γ = kerϕ on AK,λ. We will
use the result in Section 6.2 below to count the number of periodic points of a continuous
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endomorphism of toroidal solenoid SA. As in the proof of Lemma 20, every element of
AK,λ is equivalent modulo Γ to an element of

Ω =
∏
p∈S∞

Kp ×
∏
p∈P

∏
p∈Sλ, p|p

Zp[u],

so that F ⊆ Ω. Moreover, by Lemma 21, Z[u] ⊆ kerϕ and hence

(46) F = [0, 1)n ×
∏
p∈P

∏
p∈Sλ, p|p

Zp[u],

where
∏

p∈S∞ Kp is considered as an n-dimensional R-vector space with respect to the

basis
∞
u1, . . . ,

∞
un. Since F has an interior, Γ is discrete.

6. Toroidal solenoids

In this section, we apply our results concerning groups GA and their endomorphisms to
the case of toroidal solenoids. Let Tn denote a torus considered as a quotient of Rn by its
subgroup Zn. A matrix A ∈ Mn(Z) induces a map A : Tn −→ Tn, A ([x]) = [Ax], [x] ∈ Tn,
x ∈ Rn. Consider the inverse system (Mj, fj)j∈N, where fj : Mj+1 −→ Mj, Mj = Tn and
fj = A for all j ∈ N. The inverse limit SA of the system is called a (toroidal) solenoid. As
a set, SA is a subset of

∏∞
j=1Mj consisting of points (zj) ∈

∏∞
j=1Mj such that zj ∈ Mj

and fj(zj+1) = zj for ∀j ∈ N, i.e.,

(47) SA =

{
(zj) ∈

∞∏
j=1

Tn
∣∣∣ zj ∈ Tn, A(zj+1) = zj, j ∈ N

}
.

Endowed with the natural group structure and the induced topology from the Tychonoff
(product) topology on

∏∞
j=1 Tn, SA is an n-dimensional topological abelian group. It is

compact, metrizable, and connected, but not locally connected and not path connected.
The map σ : SA → SA induced by multiplication by A, (zj) 7→ (A(zj)) is an automorphism
of SA as a topological group, and the pair (SA, σ) is a dynamical system. The endomor-
phism ring End(SA, σ) of the dynamical system (SA, σ) consists of endomorphisms of SA

as a topological group that commute with σ. It is known that ĜAt ∼= SA. Indeed, GAt is a
direct limit of groups (At)−jZn, j ∈ N∪{0}. Here, each (At)−jZn is isomorphic to Zn and
the maps (At)−jZn → (At)−(j+1)Zn are inclusions. Applying the functor HomZ(−,T1) to
the system, we obtain the inverse limit of groups

HomZ((A
t)−jZn,T1) ∼= HomZ(Zn,T1) ∼= Tn

with the maps fj as above that defines SA. This gives an isomorphism of topological

groups ĜAt ∼= SA, where GAt is endowed with the discrete topology and ĜAt is endowed
with the compact-open topology. Moreover, since GAt is a locally compact abelian group,
it follows from the Pontryagin duality theorem that the map between the rings End(GAt)

and End(ĜAt) given by ϕ 7→ (χ 7→ χ ◦ ϕ), ϕ ∈ End(GAt), χ ∈ ĜAt , is a ring isomorphism
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between the opposite ring End(GAt)op of End(GAt) and End(ĜAt). Thus, we have a ring
isomorphism End(SA) ∼= End(GAt)op, under which σ corresponds to multiplication by At

on GAt . Therefore, End(SA, σ) is isomorphic to the subring of End(GAt)op consisting of
T ∈ Mn(Q)∩End(GAt) that commute with At. By Corollary 9, under the assumptions of
Proposition 8, End(GAt) is commutative and, in particular, every endomorphism of GAt

commutes with At. This implies that every endomorphism of SA commutes with σ and
hence is an endomorphism of the dynamical system (SA, σ). Thus, we have the following

Proposition 24. Assume A ∈ Mn(Z) is non-singular with an irreducible characteristic
polynomial, P ′ ̸= ∅, and there exists a prime p ∈ N with (n, tp) = 1. Then End(SA) is a
commutative ring and, in particular, End(SA, σ) = End(SA).

6.1. S-integer dynamical systems. In [CEW97], the authors introduce the so-called
S-integer dynamical system (X,α), a dual object to the group of S-integers OK,S in a
number field K and an element ξ ∈ OK,S . Groups of the form GA arise topologically as
character groups of toroidal solenoids. Thanks to the description of endomorphisms of
GA in Proposition 8 and the description of GA as a subset of a number field in Lemma
18, one can see a connection between toroidal solenoids and S-integer dynamical systems.

Definition 25. Let K be a number field and let S be a set of prime ideals of the ring of
integers OK of K. Let ξ ∈ K, ξ ̸= 0, ξ ∈ OK,S , where OK,S is the ring of S-integers of K
defined as

OK,S = {x ∈ K | valp(x) ≥ 0 for any prime ideal p of OK not in S}.

Let X ∼= ÔK,S be the (Pontryagin) dual to the discrete (countable) group OK,S and
let α : X → X be a continuous group endomorphism, the dual to the monomorphism
α̂ : OK,S → OK,S given by α̂(x) = ξx. A pair (X,α) = (X(K,S), α(K,S,ξ)) is called an
S-integer dynamical system [CEW97].

Assume A ∈ Mn(Z) is non-singular with an irreducible characteristic polynomial and let

λ ∈ Q be an eigenvalue of A, K = Q(λ). It is known that SA
∼= ĜAt as topological groups,

where GAt is endowed with the discrete topology. By (30), we know that GAt ∼= YA(u, λ),
where u =

(
u1 . . . un

)
∈ (OK)

n is an eigenvector of A corresponding to λ, and YA(u, λ)
is a Z[λ±1]-submodule of OK,λ given by

(48) YA(u, λ) = {m1λ
k1u1 + · · ·+mnλ

knun |m1, . . . ,mn, k1, . . . , kn ∈ Z}.

This implies that SA
∼= ̂YA(u, λ), a description of SA in the spirit of Definition 25. Assume

in addition that P ′ ̸= ∅ and that there exists a prime p ∈ N with (n, tp) = 1. Then under
the isomorphism GAt ∼= YA(u, λ) given by (28) applied to At, an endomorphism α of SA

is dual to an endomorphism α̂(y) = xy, y ∈ YA(u, λ), where x = ı(T ), T ∈ End(GAt),
via (16) and the proof of Proposition 8. Recall that OK,λ = OK [λ

−1]. It is a ring of
S-integers with S consisting of prime ideals of OK dividing λ. Thus, in general, SA

is not an S-integer dynamical system, since it corresponds to a subring YA(u, λ) of a
ring of S-integers OK,λ. However, we show below that similar results can be proved
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regarding toroidal solenoids. This suggests that there might be a more general object
that encompasses both S-integer dynamical systems and toroidal solenoids corresponding
to matrices with irreducible characteristic polynomials satisfying the condition (n, tp) = 1.

Theorem 26. Assume A ∈ Mn(Z) is non-singular with an irreducible characteristic
polynomial and P ′ ̸= ∅. Assume, in addition, that there exists a prime p ∈ N with

(n, tp) = 1. Let λ ∈ Q be an eigenvalue of A. Then SA is isomorphic to Ŷ , where Y

is a Z[λ±1]-submodule of Q generated by u1, . . . , un, where u =
(
u1 . . . un

)
∈ (Q)n is

an eigenvector of A corresponding to λ, and Y is endowed with the discreet topology. If
K = Q(λ) and u ∈ (OK)

n, then Y ⊆ OK,λ, and

SpanZ(u1, . . . , un) ⊆ Y ⊆ SpanR(u1, . . . , un),

where R = Z
[

1
detA

]
. Moreover, under the isomorphism, each endomorphism α of SA is

dual to an endomorphism α̂(y) = xy, y ∈ Y , x ∈ OK,λ, of Y .

Corollary 27. Assume A ∈ Mn(Z) is non-singular with an irreducible characteristic
polynomial and P ′ ̸= ∅. Assume, in addition, that there exists a prime p ∈ N with
(n, tp) = 1. If there exist an eigenvalue λ ∈ Q with a corresponding eigenvector u =(
u1 . . . un

)
∈ (OK)

n of A, K = Q(λ), such that SpanZ(u1, . . . , un) = Z[λ] = OK, then
(SA, α), α ∈ End(SA), is an Sλ-integer dynamical system with Sλ consisting of prime
ideals of OK dividing λ.

6.2. Ergodicity and periodic points of endomorphisms of SA. We now apply the
characterization of SA via Theorem 19 to count numbers of periodic points of a continuous
endomorphism T ∈ End(SA) of SA.

Proposition 28. Assume A ∈ Mn(Z) is non-singular with an irreducible characteristic
polynomial. Let λ ∈ Q be an eigenvalue of A, K = Q(λ). Let w =

(
w1 . . . wn

)
∈ (OK)

n

be an eigenvector of At corresponding to λ. We have an isomorphism

SA
∼= AK,λ/YAt(w, λ),

where

YAt(w, λ) = {m1λ
k1w1 + · · ·+mnλ

knwn |m1, . . . ,mn, k1, . . . , kn ∈ Z},
and YAt(w, λ) is embedded diagonally into AK,λ.

Proof. Since SA
∼= ĜAt (see the 1st paragraph of Section 6), the proposition follows from

Theorem 19 applied to At. □

Let T ∈ End(SA) be a continuous endomorphism of SA. By definition, the set Fk(T ) of
points of period k ≥ 1 of T is

Fk(T ) = {x ∈ SA |T k(x) = x}.
Lemma 29. Assume A ∈ Mn(Z) is non-singular with an irreducible characteristic poly-
nomial and P ′ ̸= ∅. Assume, in addition, that there exists a prime p ∈ N with (n, tp) = 1.
Then T ∈ End(SA) is ergodic if and only if each eigenvalue of T is not a root of unity.
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Proof. It follows from [CEW97, Theorem 4.2], Proposition 8, and Theorem 26. □

Let T : SA −→ SA be a continuous homomorphism. Since SA
∼= ĜAt as topological

groups, T induces a homomorphism (denoted by the same letter by abuse of notation)

T : ĜAt −→ ĜAt . Since GAt is locally compact with respect to the discrete topology, we

have that
̂̂
GAt ∼= GAt and the induced dual T : GAt −→ GAt is a homomorphism. By

Proposition 8, ξ = ı(T ) ∈ OK,λ.

Proposition 30. Assume A ∈ Mn(Z) is non-singular with an irreducible characteristic
polynomial and P ′ ̸= ∅. Assume, in addition, that there exists a prime p ∈ N with
(n, tp) = 1. Let T ∈ End(SA) be an ergodic continuous endomorphism of SA (see Lemma
29 above). Then the number |Fk(T )| of points of period k ≥ 1 of T is finite and

|Fk(T )| =
∏

p∈Sλ∪S∞

|ξk − 1|p, ξ = ı(T ) ∈ OK,λ.

Proof. We adapt [CEW97, Lemma 5.1] and [CEW97, Lemma 5.2] to our case. By Propo-
sition 28, Theorem 19 and (46), the fundamental domain of the action of Γ on AK,λ applied

to ĜAt , has the form

F = [0, 1)n ×
∏
p∈P

∏
p∈Sλ, p|p

Zp[w],

where w ∈ (OK)
n is an eigenvector of At corresponding to an eigenvalue λ. Let T ∈

End(GAt) be the induced dual of T (see the paragraph above the statement of the propo-
sition). By Proposition 8, T (w) = ξw for some ξ ∈ OK,λ. Thus, the induced action of T
on AK,λ is T (η) = ξη, η ∈ AK,λ. Since µ(F) ̸= 0, by [CEW97, Lemma 5.1], we have

|Fk(T )| = | ker(T k − id)| = µ((T k − id)F)/µ(F) =
∏

p∈Sλ∪S∞

|ξk − 1|p.

□

Remark 31. Our formula for |Fk(T )| in Proposition 30 is consistent with earlier results
from [HL23] and [M08]. Recall that GA is a subgroup of Qn of rank n. In [HL23], the
authors provide a formula for |Fk(T )|, when T is a continuous endomorphism of the dual

group Ĝ of a subgroup G of Q2 of rank 2. In [M08], the author presents a more general

formula for when Ĝ is a finite-dimensional compact abelian group. Our approach differs
from both works. In particular, we describe SA using an adèle ring. In [M08], the formula
involves several global fields K1, . . . , Kn, sets of finite places Pi in Ki, and ξi ∈ Ki [M08,

Theorem 1.1]. In our case of Ĝ = SA, under the assumptions in Proposition 30, the
number of global fields n is 1, with K1 = Q(λ) and P1 consisting of prime ideals of the
ring of integers of K1 that do not divide λ. The correspondence between [M08, Theorem
1.1] and Proposition 30 is established through the product formula.

Example 4. In this example, we demonstrate how Proposition 30 can be used to count
periodic points of a toroidal solenoid endomorphism when n > 2. Let n = 3, let A ∈ M3(Z)
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be a matrix with characteristic polynomial hA = x3−x2+2x−6 ∈ Z[x]. One can check that
hA is irreducible, detA = 6, P = P ′ = {2, 3}, so that the hypotheses on A in Proposition
30 hold. Let λ be a root of hA, K = Q(λ). It is known that K is not Galois over Q,
OK is a principal ideal domain, and OK = Z[λ] [LMFDB, Number field 3.1.808.1]. Also,
the ideals of OK generated by 2, 3 have the following prime decompositions: 2OK = p21p2
and 3OK = q1q2, where p1, p2, q1, q2 are prime ideals of OK . There is a choice of λ such
that λOK = p1q2, p1 = (2 − λ)OK , p2 = (5λ2 + 4λ + 17)OK , q1 = (λ2 − λ − 1)OK ,
q2 = (λ2 + λ + 3)OK [SageMath]. By Corollary 10, End(GAt) ∼= Z[λ±1]. We pick an

arbitrary element ξ = (2 + λ − λ2)λ−3 ∈ Z[λ±1]. It defines an endomorphism T̂ =
(2I + At − (At)2)(At)−3 of GAt , and its dual T is a continuous ergodic endomorphism of
SA. One can compute (ξ − 1)OK = p−21 q−32 a2, where a is a prime ideal of OK above 13
with the norm N(a) = 13. Since Sλ = {p1, q2}, by Proposition 30, the number of fixed
points of T is given by

|F1(T )| =
∏

p∈Sλ∪S∞

|ξ − 1|p = N(a)2 = 169.

Similarly, (ξ2 − 1)OK = p−41 q−62 a2b, where b is a prime ideal of OK above 229 with the
norm N(b) = −229. By Proposition 30, the number of points of period 2 of T is given by

|F2(T )| =
∏

p∈Sλ∪S∞

|ξ2 − 1|p = |N(a)2N(b)| = 169× 229.

Corollary 32. Assume A ∈ Mn(Z) is non-singular with an irreducible characteristic
polynomial and P ′ ̸= ∅. Assume, in addition, that there exists a prime p ∈ N with
(n, tp) = 1. Let T ∈ End(SA), ξ = ı(T ) ∈ OK,λ (see Proposition 8). Assume ξ is not a
root of unity. Then the growth rate of the number of periodic points exists and is given by

p+(ξ) = p−(ξ) = htop(ξ).

Here,

p+(ξ) = lim sup
k→∞

1

k
log |Fk(ξ)|, p−(ξ) = lim inf

k→∞

1

k
log |Fk(ξ)|,

and htop(ξ) is the topological entropy of ξ.

Proof. Follows from the proof of [CEW97, Theorem 6.1] and Proposition 30. □

7. Endomorphisms of Zn-odometers

Zn-odometer is a dynamical system consisting of a topological space X and an action of
the group Zn on X (by homeomorphisms). Consider a decreasing sequence of finite-index
subgroups of Zn

G = Zn ⊇ G1 ⊇ G2 ⊇ · · ·
and the natural maps πi : G/Gi+1 −→ G/Gi, i ∈ N. The associated Zn-odometer is the
inverse limit

(49) X = lim
←−

(G/Gi)

https://www.lmfdb.org/EllipticCurve/Q/11.a2
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together with the natural action of Zn. For the sequence

Gi =
{
Aix

∣∣ x ∈ Zn
}
, i ∈ N,

denote by XA the corresponding odometer. In [CP24], the authors study the linear

representation group of XA denoted by N⃗(XA). By [CP24, Lemma 2.6], N⃗(XA) consists
of T ∈ GLn(Z) (i.e., T ∈ Mn(Z) with detT = ±1) such that for any m ∈ N ∪ {0} there
exists km ∈ N ∪ {0} with

(50) A−mTAkm ∈ Mn(Z).
By taking the transpose of the condition, one can see that it is equivalent to the condition
that T t defines an endomorphism of GAt .

Lemma 33. T ∈ N⃗(XA) if and only if T t ∈ End(GAt) ∩GLn(Z).

Therefore, our results can be applied to T t. In particular, we can provide an alternate
proof of [CP24, Theorem 3.3] for the case when n = 2 and also generalize some parts of
it to an arbitrary n.

Lemma 34. Let A ∈ Mn(Z) be non-singular, let F ⊂ Q be any finite extension of Q that
contains all the eigenvalues of A, and let P ′(A) ̸= ∅. Let T ∈ GLn(Z). Then T (GA) ⊆ GA

if and only if

T (XA,p) ⊆ XA,p

for any p ∈ P ′ and a prime ideal p of OF above p.

Proof. Follows from Theorem 5, since (6) holds for any matrix T ∈ Mn(Z). □

Corollary 35. Let A ∈ Mn(Z) be non-singular, let F ⊂ Q be any finite extension of
Q that contains all the eigenvalues of A, and let P ′(A) ̸= ∅. Let T ∈ GLn(Z). Then

T ∈ N⃗(XA) if and only if

T (XAt,p) ⊆ XAt,p

for any p ∈ P ′ and a prime ideal p of OF above p.

Proof. Follows from Lemma 33 and Lemma 34. □

Proposition 36. Let A ∈ Mn(Z) be non-singular.

(1) If P(A) = ∅ or P ′(A) = ∅, then N⃗(XA) = GLn(Z).

(2) Assume P ′(A) ̸= ∅. If the characteristic polynomial hA ∈ Z[x] is irreducible and

there exists a prime p ∈ N with (n, tp) = 1, then N⃗(XA) is the centralizer of A in

GLn(Z). Moreover, N⃗(XA) is isomorphic to a subgroup of the group of units in the
ring of integers of a number field K = Q(λ) generated by an eigenvalue λ ∈ Q of A.

Therefore, as such, N⃗(XA) is a finitely generated abelian group and when n = 2 and

hA has no real roots, then N⃗(XA) is finite.
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Here, the condition P(A) = ∅ is equivalent to detA = ±1. Recall that

P ′(A) = {p ∈ P(A), hA ̸≡ xn (mod p)} .
Thus, the condition P ′(A) = ∅ in the case when n = 2 is equivalent to the fact that
every prime dividing detA also divides TrA, rad(detA) divides traceA in the notation
of [CP24]. In the case when n = 2, the conditions that the characteristic polynomial
hA ∈ Z[x] is irreducible is equivalent to the fact that A has no rational eigenvalues and
the condition that there exists a prime p ∈ N with (n, tp) = 1 holds automatically when
P ′(A) ̸= ∅.

Proof of Proposition 36. Statement (1) follows from Lemma 2. Statement (2) follows

from Proposition 8, since by above, for any T ∈ N⃗(XA), T
t ∈ End(At). Moreover, since

T ∈ GLn(Z) by the definition of N⃗(XA), in the notation of the proof of Proposition 8,
x = ı(At)(T t) is a unit in the ring of integers OK of K, i.e., x ∈ O×K . It is well-known
that the group of units O×K of OK is finitely generated and when n = 2 and hA has no
real roots, then O×K is finite. □

Recall that if n = 2, A ̸∈ GL2(Z), and P ′(A) ̸= ∅, there are three cases distinguished
in [S22]:

(a) hA ∈ Z[x] is irreducible (equivalently, A has no rational eigenvalues),

(b) hA is reducible (equivalently, A has eigenvalues λ1, λ2 ∈ Z), rad(λ1) does not divide
rad(λ2), and rad(λ2) does not divide rad(λ1),

(c) hA is reducible and every prime p ∈ N dividing one eigenvalue, divides the other,
e.g., rad(λ1) divides rad(λ2) (denoted by rad(λ1) | rad(λ2)).

Case (a) is covered by Proposition 36 (2). The remaining two cases are covered in the
next proposition (c.f., [CP24, Theorem 3.3 (b)]).

Proposition 37. Let A ∈ M2(Z) be non-singular, P(A) ̸= ∅, and P ′(A) ̸= ∅. Assume
hA is reducible. Then A has distinct eigenvalues λ1, λ2 ∈ Z.

(1) Assume that rad(λ1) does not divide rad(λ2), and rad(λ2) does not divide rad(λ1).

• If there exists a matrix M ∈ M2(Z) diagonalizing At with detM dividing 2, then

N⃗(XA) ∼= Z/2Z× Z/2Z.
• Otherwise, N⃗(XA) = {± id}.

(2) Assume rad(λ1) | rad(λ2) or rad(λ2) | rad(λ1), then N⃗(XA) is isomorphic to the
group of lower-triangular matrices in GL2(Z).

Proof. Recall that T ∈ N⃗(XA) if and only if T t ∈ End(GAt) ∩ GLn(Z) by Lemma 33.
Then (1) follows from Theorem 6 applied to At and T t. Indeed, for T t given by (8), we
have that T ∈ GL2(Z) if and only if x1 = ±1, x2 = ±1. Moreover, one can check that
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T t has integer coefficients if and only if v ∈ Z divides x1 − x2 in Z. Since x1 − x2 = 0 or
x1−x2 = ±2, if v divides 2, then N⃗(XA) ∼= Z/2Z×Z/2Z and otherwise, N⃗(XA) = {± id}.
Similarly, (2) follows from Theorem 7 applied to At and T t. □

Remark 38. In [CP24], the authors conclude that N⃗(XA) is computable when n = 2 and

pose the question whether the group N⃗(XA) is computable when n > 2. In [EHO19, p.
750, Main Algorithm 2], the authors show that the centralizer of an element in GLn(Z)
is computable. Thus, if assumptions in (1), (2) of Proposition 36 hold (the assumptions

are computable), then N⃗(XA) is also computable by Proposition 36 and [EHO19, p. 750,
Main Algorithm 2].

Example 5. [S22, Example 10]. Let A ∈ Mn(Z) be non-singular with an irreducible
characteristic polynomial hA ∈ Z[x]. By Proposition 36 (2), if there exists tp with (n, tp) =

1, then N⃗(XA) is the centralizer of A in GLn(Z) and N⃗(XA) is abelian. In this example,
we show that this is not always the case. Here n = 4 and tp = 2, so the condition
(n, tp) = 1 in Proposition 36 (2) does not hold.

Let h(x) = x4 − 2x3 + 21x2 − 20x + 5, irreducible over Q, and let λ ∈ Q be a root of
h, K = Q(λ). By [LMFDB], OK = Z[λ], K is Galois over Q, Gal(K/Q) ∼= (Z/2Z)2. Let

u =
(
1 λ λ2 λ3

)t
, A =


0 1 0 0
0 0 1 0
0 0 0 1
−5 20 −21 2

 ,

so that u is an eigenvector of A corresponding to λ, and A has characteristic polynomial
hA(x) = h(x) = x4 − 2x3 +21x2 − 20x+5. Also, detA = 5, P(A) = P ′(A) = {5}, t5 = 2.
By [SageMath], (5) = p21p

2
2, where p1, p2 are prime ideals of Z[λ], p1 = (λ), and there

exists g ∈ Gal(K/Q) of order 2 such that g(pi) = pi, i = 1, 2. In the notation of [S24,
Theorem 4.3], XA,p1 = SpanK(u, g(u)). We have that

u =
(
1 λ λ2 λ3

)t
, g(u) =

(
1 g(λ) g(λ2) g(λ3)

)t
,

where

g(λ) = −4λ3 + 6λ2 − 81λ+ 40,

g(λ2) = −4λ3 + 5λ2 − 80λ+ 20,

g(λ3) = 75λ3 − 114λ2 + 1520λ− 770.

Then g(u) = Lu, where L ∈ GL4(Z) and

L =


1 0 0 0
40 −81 6 −4
20 −80 5 −4

−770 1520 −114 75

 .
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Since g(u) is not a multiple of u (they are eigenvectors corresponding to two distinct
eigenvalues g(λ), λ, respectively), we see that u is not an eigenvector of L. Therefore,

A and L do not commute. On the other hand, L ∈ N⃗(XA). Indeed, Gal(K/Q) acts
transitively on the prime ideals p1, p2 above 5, so there exists g′ ∈ Gal(K/Q) such that
g′(p1) = p2. By above, L(XA,p1) ⊆ XA,p1 and applying g′, we get L(XA,p2) ⊆ XA,p2 . By
[S24, Theorem 4.3], L(GA) ⊆ GA. On the other hand, for any unit ξ ∈ O×K , let T = T (ξ)
be given by (15) and (16), i.e.,

(51) T =MXM−1, X = diag
(
σ1(ξ) σ2(ξ) σ3(ξ) σ4(ξ)

)
,

whereM is a matrix diagonalizing A and Gal(K/Q) = {σ1, σ2, σ3, σ4}. Then, by construc-
tion, T ∈ GL4(Q) and detT = ±1. SinceOK = Z[λ], ξ =

∑3
i=0 aiλ

i with a0, a1, a2, a3 ∈ Z.
This implies that T =

∑3
i=0 aiA

i and hence T ∈ GL4(Z) and T ∈ N⃗(XA). Therefore,

ı−1(O×K) ⊆ N⃗(XA). However, L ̸∈ ı−1(O×K) and does not commute with the image.
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