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Abstract

When incorporating historical control data into the analysis of current random-

ized controlled trial data, it is critical to account for differences between the datasets.

When the cause of the difference is an unmeasured factor and adjustment for observed

covariates only is insufficient, it is desirable to use a dynamic borrowing method that

reduces the impact of heterogeneous historical controls. We propose a nonparametric

Bayesian approach for borrowing historical controls that are homogeneous with the

current control. Additionally, to emphasize the resolution of conflicts between the his-

torical controls and current control, we introduce a method based on the dependent

Dirichlet process mixture. The proposed methods can be implemented using the same

procedure, regardless of whether the outcome data comprise aggregated study-level

data or individual participant data. We also develop a novel index of similarity be-

tween the historical and current control data, based on the posterior distribution of
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the parameter of interest. We conduct a simulation study and analyze clinical trial

examples to evaluate the performance of the proposed methods compared to existing

methods. The proposed method based on the dependent Dirichlet process mixture

can more accurately borrow from homogeneous historical controls while reducing the

impact of heterogeneous historical controls compared to the typical Dirichlet process

mixture. The proposed methods outperform existing methods in scenarios with het-

erogeneous historical controls, in which the meta-analytic approach is ineffective.

Keywords: Bayesian method; Dirichlet process; dependent Dirichlet process; external

data; historical data

1 Introduction

Clinical trials increasingly use information from past trials (historical data) and external

data. The 21st Century Cures Act, passed in the U.S. in 2016, led the Food and Drug

Administration to provide guidelines for using existing data, and infrastructure is being

developed to support it. In clinical trials for rare diseases and those involving children, it is

often particularly difficult to enroll a sufficient number of participants, making the effective

use of historical or external data desirable (Lim et al., 2018).

Pocock (1976) focused on approaches to incorporate historical/external data, referred to

hereafter as historical control data, into the control arms of current randomized controlled

trials (RCTs). Spiegelhalter et al. (2004) classified six types of relationships between histor-

ical and current controls for the parameter of interest, assuming that the historical control

data are used following a Bayesian approach. The meta-analytic approach (Neuenschwander

et al., 2010), which has been used in actual clinical trials (Baeten et al., 2013), assumes an

“ exchangeable” relationship, in which the parameters of the historical and current controls

are exchangeable. As the meta-analytic approach is based on a random-effects meta-analysis

framework, each parameter of the historical or current control is shrunk in the direction of

the overall mean, depending on the heterogeneity of the historical and current control data
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(Röver and Friede, 2021). This shrinkage works well when all the historical control data is

homogeneous with the current control data, but it may not be effective in cases involving

conflicts between historical and current data.

For example, if a small number of heterogeneous historical control data are included in

the meta-analytic approach, the parameter of the current control will be shrunk toward the

overall mean, which is influenced by the heterogeneous historical control data. Consequently,

the degree of borrowing from the historical control data would decrease in response to the

detection of large heterogeneity (Ohigashi et al., 2024). In cases where there are both homo-

geneous and heterogeneous historical control data, it is desirable to ignore the heterogeneous

historical control data and only borrow the homogeneous historical control data (Hupf et al.,

2021). Several meta-analytic approaches to dealing with situations involving conflict have

been proposed, such as the robust meta-analytic predictive (MAP) prior method (Schmidli

et al., 2014), the Dirichlet process mixture(DPM) with MAP prior method (Hupf et al.,

2021), which introduces a non-parametric structure to account for differences in the dis-

tribution of random effects, and the self-adapting mixture with MAP prior method (Yang

et al., 2023), which avoids the effects of conflict between historical and current controls in

a supervised learning framework. However, these methods are not designed to selectively

borrow homogeneous historical control data. Extensions to deal with conflict have also been

introduced in methods that use assumptions other than an “exchangeable” relationship, but

they are likewise not designed to selectively borrow homogeneous historical control data

(Banbeta et al., 2019; Ohigashi et al., 2022, 2024).

Several factors can lead to conflict between historical and current controls, with particular

attention required for systematic differences caused by unmeasured factors (Hupf et al., 2021;

Lesaffre et al., 2024). Therefore, in this study, we introduce a novel parameter relationship

that accounts for situations in which historical controls may conflict with current controls

due to unmeasured factors, among other influences. We then propose a nonparametric

Bayesian approach that assumes this novel relationship. The proposed method, based on
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the DPM, achieves clustering according to the similarity between the historical and current

control data. Because the DPM does not require the number of clusters to be predefined,

there is no need to specify the number of conflicting historical controls in advance. To

prioritize the resolution of conflicts between the historical and current controls over conflicts

among the historical controls, we also propose a method based on the dependent DPM,

which adjusts according to whether the data represents a historical or current control. The

proposed methods possess desirable large-sample properties and ensure efficient information

borrowing from homogeneous historical controls. Moreover, these methods are flexible, as

they can be implemented using the same procedure, regardless of whether the outcome data

comprise aggregated study-level data or individual participant data, and can accommodate

either scalars or vectors for parameters that are assumed to vary across studies. Additionally,

an index can be calculated to assess the similarity between the historical and current control

data, based on the posterior distribution of the parameter of interest. This index can be

understood as “the amount of information borrowed from the kth historical control.” In

existing methods, a similar interpretation can be derived from the posterior distribution of

the power parameter in the modified power prior (Duan et al., 2006; Banbeta et al., 2019),

but this interpretation is not derived in either the meta-analytic approach or the potential

bias model (Hobbs et al., 2011; Ohigashi et al., 2022, 2024).

2 Methods

2.1 Dirichlet process mixture model for historical control borrow-

ing

Let θ denote the parameter of interest. The Dirichlet process (DP) describes a model for

a random probability distribution G in a parameter space Θ (Ferguson, 1973, 1974). Let

G be a DP with two parameters, with M being the concentration parameter and G0 being

the base measure. DP can be represented by the stick-breaking representation (Sethuraman,
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1994):

G =
∞∑

c=1

wcδθ⋆c , (1)

wc = vc
∏

c′<c

(1− vc′)

vc ∼ Beta(1,M),

where δθ is the Dirac measure at θ and θ⋆c | G0
i.i.d∼ G0. One of the characteristics of DP

is discreteness, which means that realizations from DP are discrete with a probability of 1.

The DPM extends the discrete DP to a continuous distribution by having realizations from

the DP corresponding to latent variables. DPM is often employed for clustering owing to

its ability to form a mixture distribution without the need to specify an upper limit for the

number of components (Lau and Green, 2007).

For situations in which historical control data are used, we propose a method that utilizes

DPM. Let θHk
and θCC denote the parameters of interest, e.g., the log-odds of response

rate for a binary outcome, for the kth historical and current controls, respectively. Let

yj (j = H1, . . . ,HK ,CC) denote the data, then DPM can be represented as yj | θj ∼ f(yj |

θj), θj ∼ G,G ∼ DP(M,G0). Clustering by DPM allows estimation of the number of clusters

without setting an upper limit on this number. Let θ⋆c denote the realizations from DP, where

the subscript c is the index of discrete realization. For example, if Hk and CC are assigned

to the same cluster c(= 1, 2, 3, . . .) during clustering, then θHk
= θCC = θ⋆c . This method

does not correspond to the six relationship types classified by Spiegelhalter et al. (2004),

and it can be interpreted as a combination of two of these relationship types. In this study,

we define the relationship in our proposed method as potential irrelevance, as shown in

Figure 1. This assumption can be viewed as a combination of the “irrelevance” assumption,

which posits that the parameters of the historical and current controls are unrelated, and

the “equal” assumption, which asserts that the parameters of all the historical and current
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𝜃1
∗ 𝑌CC𝑌H1

𝑌H𝐾

⋯

𝜃2
∗

𝜃3
∗

⋯

𝑌H𝑘

⋯

Figure 1: Potential irrelevance assumption.

controls are identical. As Spiegelhalter et al. (2004) also note that their classifications can

be combined, we consider this assumption to be valid. It accommodates the possibility

that some historical controls align with the current control, being in the same cluster, while

others may be irrelevant. Thus, this assumption is reasonable, and it addresses the need

to accommodate conflicts arising from systematic differences driven by unmeasured factors

(Hupf et al., 2021; Lesaffre et al., 2024).

We can set scalars and vectors for the parameters of interest θj. For instance, when

individual participant data with outcome y and p-dimensional covariates x are available,

and where the first component is an intercept, a linear model y = xβ + ε may be set. If

the coefficients of the covariates are common across studies but the intercept β0 may differ

between studies, we set θj = {β0,j} for the DPM method. If the coefficients, including the

intercept, may differ between studies, we set θj = {βj}. If both the coefficients and error

variance σ2 may differ between studies, we set θj = {βj, σ
2
j}.

Hupf et al. (2021) proposed a method for applying DPM to historical control borrowing,

but it is based on a non-parametric structure to account for differences in the distribution

of random effects. Notably, when only a single historical control dataset is available, the

posterior distribution of the DPM method reduces to the posterior distribution of a robust

mixture prior (Callegaro et al., 2023).
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2.2 Dependent DPM model for historical control borrowing

When incorporating historical controls during the design phase of a current study, it is

crucial to recognize that the historical and current data may differ due to unmeasured factors

(Lesaffre et al., 2024). To address this, we extend the DPM to be sensitive to unexpected

differences between historical controls and current control. We employ the dependent DP

(DDP), an extension that relates predictors to DP (Quintana et al., 2022). DDP is defined

as an extension of the stick-breaking representation of DP. By marginalizing DDP for all

possible predictor values, we can recover the DP-distributed random measures (Quintana

et al., 2022).

Although there are various extensions of DDP, we employ a single-atoms DDP because

all the atoms θ⋆c are linked to observed data (Quintana et al., 2022). Let s be a predictor

related to DP, then DDP is constructed as follows:

Gx =
∞∑

c=1

{
vc(s)

∏

c′<c

(1− vc′(s))

}
δθ⋆c ,

where vc(s) denotes the weight that depends on s and affects the mixture component wc of

DP. However, the Dirac measure δθ is independent of s and is common to all s, which is why

this is known as the “single-atoms” approach. Using this DDP, the prior probability model

for partitioning changes according to the value of s. This is important for reflecting the

implicit partitioning of the historical and current controls. Gutiérrez et al. (2016) realized

a time-dependent DP with a Markov chain structure for the time-dependent stick-breaking

process, using time as a predictor, and applied it in the analysis of air quality data.

For situations in which historical controls are used, we propose a dependent DPM

(DDPM) method that uses a predictor as an indicator variable to distinguish between the
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historical and current controls, as follows:

yj ∼ f(yj | θj), j = H1, . . . ,HK ,CC

θj ∼





GH, j ∈ {H1, . . . ,HK}

GCC, j = CC

GH =
∞∑

c=1

w(H)
c δθ⋆c ,

GCC =
∞∑

c=1

w(CC)
c δθ⋆c

where G(·) is a random probability measure for historical or current controls and w
(·)
c rep-

resents the weight of the stick-breaking representation for historical or current controls. To

preserve the stick-breaking structure 1 at the marginal level, let w
(·)
c be the realization of

W
(·)
c , where

W
(·)
1 = V

(·)
1 , W (·)

c = V (·)
c

∏

c′<c

(
1− V (·)

c

)
.

Each component W
(CC)
c depends on the corresponding component of W

(H)
c as follows:

V (H)
c ∼ Beta(1,M) (2)

V (CC)
c | V (H)

c =





V
(CC)
c ∼ Beta(1,M), with probability ϕ

V
(CC)
c = V

(H)
c with probability 1− ϕ

where ϕ ∈ [0, 1]. Thus, each stick-breaking component is updated with uncorrelated values

from Beta(1,M) with a probability ϕ. This construction ensures that G(·) is the DP. The

parameter ϕ controls the correlation between the historical and current controls of each

weight and the overall correlation between GH and GCC.

Furthermore, in this study, we assign a prior distribution to the concentration parameter
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M of DP. This is necessary to obtain the desired statistical properties in Subsection 2.3.

The gamma distribution is assigned as the first choice of prior distribution for M , and Gibbs

sampling, proposed by Escobar and West (1995), is performed.

Similar to the DPM method, the DDPM method is highly flexible, allowing the construc-

tion of a mixture distribution without the need to specify an upper limit for the number of

components. Additionally, scalars and vectors can be assigned to the parameters of interest

θj, as in the DPM method.

2.2.1 Posterior computation

To describe the Markov chain Monte Carlo algorithm, we assume for simplicity that all

studies provide available summary statistics that follow yj ∼ f(yj | θj). Specifically, we

construct a Gibbs sampler algorithm incorporating slice sampling steps, as described in

Walker (2007), to achieve the infinite dimensionality inherent to DDP. We consider the

augmented model given by

fG(·)(yj, u
(·)
j , zj) = I

(
u
(·)
j < w(·)

zj

)
f(yj | θzj),

where z denotes the allocation variable of y and u(·) is a uniform random variate within

(0, w
(·)
zj ). Therefore, the augmented likelihood is expressed as:

LV,θ =





∏

j∈(H1,...,HK)

I
(
u
(H)
j < w(H)

zj

)
f(yj | θzj)



× I

(
u
(CC)
CC < w(CC)

zCC

)
f(yCC | θzCC

),

where V = {(v(H)
1 , v

(H)
2 , . . .), (v

(CC)
1 , v

(CC)
2 , . . .)} denote the infinite collection of observations

for the historical and current controls of the stick-breaking components (2).

The main variables v
(·)
c , θ⋆c , zj, and u

(·)
j are sampled at each step using the Gibbs sampler

algorithm. Similarly, M is sampled using the Gibbs sampler algorithm if a gamma distri-

bution is assigned to the prior of M . However, an independent Metropolis–Hasting sampler
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algorithm is necessary for ϕ because the posterior distribution for ϕ is not available in a

closed form. The algorithms for all posterior inferences and the model, applicable when

individual participant data are available, are detailed in the Supplementary materials.

As a by-product of the posterior computation, we can obtain samples from the posterior

distribution of the latent variable zj. The number of times zj = zj′ in the posterior sample

corresponds to the number of times study j was assigned to the same cluster as study j′,

and is often used as an indicator to evaluate the similarity between studies (Müller et al.,

2015). However, our focus is on the similarity between the current control and each historical

control, defining Pr(zCC = zHk
| D) as the “Similarity and Borrowing Index (SBI),” which

will be evaluated in Section 4.

2.3 Statistical properties

The proposed methods exhibit two desirable large-sample properties. The proof is provided

in the Supplementary materials. First, when the number of historical controls is large, we

obtain the following consistency result.

Theorem 1 The proposed methods achieve consistency in the number of clusters when his-

torical and current control data are generated from a finite mixture.

As demonstrated in Theorem 1 in Ascolani et al. (2023), if the prior distribution for

the concentration parameter M satisfies certain conditions, the posterior of the number of

clusters is consistent with the true number of clusters. In other words, it assigns historical

and current controls to the same cluster if they are in the same cluster in the actual data-

generating structure and appropriately categorizes historical controls in different clusters as

irrelevant. Second, when the sample size of each study is large, we obtain the following

consistency result.

Theorem 2 When the sample size of each study is large, the posterior distributions of θCC

and θHk
converge to the same true value if the current control and the kth historical control
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are congruent, and to distinct values if the current control and the kth historical control are

incongruent.

This theorem is derived from the properties of posterior consistency and the posterior

distribution of DP. Consequently, when the sample size is large, the results align with the

estimates obtained from RCT data alone.

3 Simulation study

3.1 For summary statistics

3.1.1 Settings

We evaluate the performance of the proposed and existing methods using simulation studies.

We consider a current trial, as well as eight historical trials, with 20 and 40 participants for

the current control and treatment groups, respectively, and 60 participants for the historical

controls. The outcome is binary, and the number of responses is generated from a binomial

distribution. In the first scenario, there is no between-trial heterogeneity. The common

response rate of the historical and current controls, πj, is 50%. Therefore, either assumption

is acceptable for use in this scenario. In the second scenario, the between-trial heterogeneity

is large. The log odds of the response rates of the historical and current controls follow a

normal distribution with mean 0 and variance 0.52, logit (πj) ∼ N(0, 0.52). Spiegelhalter

et al. (2004) and Neuenschwander et al. (2010) suggested that in practice, between-trial

heterogeneity, in terms of standard deviation (SD), often lies between 0.1 and 0.5 on the

log-odds scale. Approximating this heterogeneity, the SD of the response rate yields 12.5%.

Thus, meta-analytic approaches that rely on the “exchangeable” assumption are appropriate

in this scenario, as they directly model between-trial variance.

In the third, fourth, and fifth scenarios, to assess the influence of heterogeneous historical

controls, several historical controls follow a distribution different from that of the current
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control. In the third scenario, the number of heterogeneous historical controls is two. The

response rate of the homogeneous historical and current controls is 50% and that of the

heterogeneous historical and current controls is 20%. In the fourth scenario, the number of

heterogeneous historical controls is four, and the response rates are the same as in the third

scenario. In the fifth scenario, the number of heterogeneous historical controls increases to

eight, while the response rates remain unchanged. In scenarios with the null hypothesis,

the response rate to the current treatment, πCT, is 50%. In scenarios with the alternative

hypothesis, πCT is 74.52%, and the power reaches 50% based on the chi-square test for the

current trial, assuming a response rate of 50% for the current control. Because the overall

means are influenced by the heterogeneous historical controls in these scenarios, methods

based on the “exchangeable” assumption are not appropriate.

We compare the DPM and DDPM using the following methods: (1) Current data (CD)

analysis, which uses only current RCT data with πCC, πCT ∼ Beta(0.5, 0.5); (2) Pooled data

(PD) analysis, which pools current and historical controls with π(CC+H) ∼ Beta(0.5, 0.5);

(3) A MAP prior method (Schmidli et al., 2014) that generates a predictive prior for πCC

based on historical controls, with a non-informative prior, N(0, 102), for the overall mean

and a weakly informative prior for the between-trial standard deviation, with a half-normal

distribution with variance 1, using the RBesT package (Weber et al., 2021); (4) A DPM with

MAP prior (DPM-MAP) method (Hupf et al., 2021) that generates a predictive prior similar

to the MAP method; however, it assumes that the between-trial variance follows DPM,

whose base distribution is half-normal distribution with variance 1 and a fixed concentration

parameter 1; (5) A self-adapting mixture prior to the MAP prior (SAM-MAP) method

(Yang et al., 2023), which is an empirical Bayesian approach. In the SAM-MAP method,

the clinically significant difference parameter is 0.1, which is often used as the non-inferiority

margin for non-inferiority trials in which the response variable is binary, using the SAMprior

package. In the DPM and DDPM methods we assign a beta distribution Beta(0.5, 0.5)

for the base distribution. For the concentration parameter M , we assign a gamma prior,
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M ∼ Gamma(1, scale=5). In the Supplementary materials, we show the results for the other

hyperparameter settings for M . In DDPM, we assign a beta distribution ϕ ∼ Beta(2, 2) for

ϕ, following Gutiérrez et al. (2016).

We calculate the bias of the mean of the posterior distribution of the treatment effect as

πCT−πCC. We also calculate the frequentist type I error rate and power when the treatment

effect is considered statistically significant and the posterior probability Pr(πCT − πCC > 0 |

D) is greater than 0.975. To assess the average number of historical controls incorporated

by each method, except for CD and PD, we also calculate the mean of the effective historical

sample size (EHSS) (Hobbs et al., 2013; Wiesenfarth and Calderazzo, 2020; Bennett et al.,

2021). The EHSS is the posterior ESS minus the sample size of the current control, and

the posterior ESS is calculated using the ELIR method (Kaizer and Kittelson, 2020). The

posterior distribution of πCC is approximated by three beta distributions using the mixfit

function in the RBesT package, and the ess function is used to obtain the posterior ESS

using the ELIR method. We also calculate the root mean square error, mean posterior SD,

and coverage probability of the posterior distribution of the treatment effect πCT − πCC.

We use Stan via the cmdstanr version 0.4.0 package for the DPM-MAP method and R

version 4.2.3 for Linux on the supercomputer system of the Institute of Statistical Math-

ematics, Tokyo, Japan. We generate more than 10000 datasets and present the results of

10000 iterations that reach the convergence criteria described above. The Supplementary

materials contain all the results.

3.1.2 Results

Table 1 shows the bias, frequentist type I error rate, power, and mean of the EHSS. In

scenario 1, the biases for all methods are near zero, and the type I error rates for all methods

remain approximately 2.5%. The power for DPM and DDPM are higher than those for

the three methods using MAP in scenario 1, in which no between-trial heterogeneity is

observed (although it does not approach PD). In scenario 2, in which the “exchangeable”
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assumption holds, the type I error rates for DPM and DDPM increase, whereas those for

the meta-analytic approaches remain close to 2.5%. The power for MAP and DPM-MAP

exceeds that for CD. In scenarios 3, 4, and 5, in which the “exchangeable” assumption fails

due to existing heterogeneous historical controls, the biases for SAM-MAP remain small.

In scenarios 3 and 4, the biases for DPM and DDPM are smaller than those for MAP and

DPM-MAP. In contrast, in scenario 5, only the bias for DDPM is smaller than those for

MAP and DPM-MAP. The type I error rates for DPM and DDPM significantly increase in

scenarios 4 and 5 because the biases of DPM and DDPM are increased.

The power for SAM-MAP in scenarios 2 to 5 is nearly identical to that for CD. This

shows that SAM-MAP does not borrow information from the historical controls. This is

supported by the mean EHSS results for SAM-MAP. In DPM and DDPM, the differences in

the mean EHSS between scenarios 1 and 4 are almost equal to the number of participants in

the heterogeneous historical controls (60 × 4); thus, the heterogeneous historical controls can

be identified. Conversely, the result observed in scenario 4 cannot be replicated in scenario

5 because the small sample size precludes the application of Theorem 2.

3.2 For individual participant data

3.2.1 Settings

We evaluate the performance of the proposed and existing methods using simulation studies

in situations where individual participant data is available as historical and current data. We

use the following settings based on a case of Alzheimer’s disease, which is the motivational

data of Qi et al. (2022). We consider a current trial and five historical trials with 60 par-

ticipants in the current control and treatment groups and 100 participants in the historical

controls. We generate agej,i from N(µage,j, 8
2), where µage,j is drawn from Unif(71, 77) to

represent the mean age in the jth study. Similarly, sexj,i is generated from Bernoulli(πF,j),

where πF,j is drawn from Unif(0.5, 0.6) to represent the proportion of females in the jth

study.

14



Table 1: Bias of the posterior mean of the posterior distribution of treatment effect πCT −
πCC(%), type I error rate (%), power (%), and mean effective historical sample size in the
simulation study for summary statistics.

Method Sce 1 Sce 2 Sce 3 Sce 4 Sce 5

Bias
CD −0.78 −1.58 −0.85 −1.51 −0.17
PD −0.63 −1.63 6.50 13.71 28.14
MAP −0.67 −1.56 1.81 2.87 17.28
DPM-MAP −0.69 −1.56 0.91 2.98 9.65
SAM-MAP −1.61 −2.36 −0.59 −1.29 −0.15
DPM −0.65 −1.51 0.74 1.42 12.07
DDPM −0.66 −1.52 0.89 1.25 9.47

Type I error rate (%)
CD 2.33 2.60 2.61 2.53 2.84
PD 2.65 13.86 14.81 44.44 96.66
MAP 1.65 2.80 3.17 4.17 36.91
DPM-MAP 1.49 2.59 2.45 4.34 15.11
SAM-MAP 1.31 2.07 2.53 2.53 2.84
DPM 2.24 3.90 2.60 3.44 25.80
DDPM 2.14 3.83 2.85 3.54 19.20

Power (%)
CD 47.2 46.5 46.9 44.3 49.1
PD 87.9 74.9 98.1 99.9 100.0
MAP 78.4 57.0 63.9 64.2 95.2
DPM-MAP 70.4 55.6 64.9 64.2 69.5
SAM-MAP 55.1 47.2 49.6 44.7 49.1
DPM 84.0 60.2 78.7 75.6 63.8
DDPM 82.4 59.9 78.2 75.5 59.4

Mean EHSS
MAP 123.2 21.8 10.4 7.1 65.0
DPM-MAP 62.8 17.9 16.5 7.5 20.1
SAM-MAP 36.6 6.2 2.5 1.5 1.3
DPM 373.9 115.8 197.7 129.3 192.7
DDPM 394.5 130.0 210.2 143.5 174.2

Abbreviations: CD, current data analysis; PD, pooled data analysis; MAP, meta-analytic
predictive prior method; DPM-MAP, Dirichlet process mixture-meta-analytic predictive
prior method; SAM-MAP, self-adapting mixture-meta-analytic predictive prior method;
DPM, Dirichlet process mixture method; DDPM, dependent Dirichlet process mixture
method; EHSS, effective historical sample size.
Note: The five scenarios are defined as follows: Sce 1, no between-trial heterogeneity; Sce
2, large between-trial heterogeneity; Sce 3, two heterogeneous historical controls exist;
Sce 4, four heterogeneous historical controls exist; Sce 5, eight heterogeneous historical
controls exist.
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We consider four scenarios for the mean baseline Alzheimer’s Disease Assessment Scale

- Cognitive (ADAS-cog) in the jth study. In the first scenario, there is no between-trial

heterogeneity; the baseline ADAS-cog is generated from a common normal distribution with

a mean of µbase,j = 24. In the second scenario, there is large between-trial heterogeneity,

with µbase,j generated from N(24, 32). Thus, meta-analytic approaches that rely on the “ex-

changeable” assumption are appropriate in this scenario, as they directly model between-trial

variance. In the third and fourth scenarios some of the historical controls follow distributions

distinct from the current control, exploring the impact of heterogeneous historical controls.

In the third scenario, one historical control is heterogeneous, with µbase,j set to 30, while

the homogeneous historical and current controls have µbase,j = 24. This setup mirrors the

motivational data in Qi et al. (2022). In the fourth scenario, two historical controls are

heterogeneous, maintaining the same means as in the third scenario. Because the overall

means are influenced by the heterogeneous historical controls in scenarios 3 and 4, methods

based on the “exchangeable” assumption are not appropriate. For each scenario, basej,i is

generated from N(µbase,j, 8
2).

The primary outcome Yj,i is a change in ADAS-cog, a score of cognitive function, after

12 months. We generate this primary outcome as follows:

Yj,i = 5 + 0.2 (agej,i − 50) + 1.0 sexj,i + 1.0 basej,i + γTRTj,i + εj,i, εj,i ∼ N(0, 1),

where TRTj,i is a treatment indicator equal to zero for the control group and one for the

treatment group.

We compare the DPM and DDPM using the following methods: (1) CD analysis, which

only uses current RCT data with β ∼ N(0, 10002I) and σ2 ∼ invGamma(0.01, 0.01); (2) PD

analysis, which pools current and historical controls; (3) An exchangeable (EX) method (Han

et al., 2017) that assumes partial exchangeability for the intercept of the jth study β0,j, which

is applicable when the current and historical controls are exchangeable after accounting for
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the baseline covariates, with β0,H1 , . . . β0,H5 , β0,C ∼ N(µ, τ 2), µ ∼ N(0, 1002), τ ∼ halfN(5).

In DPM and DDPM, we assume that the coefficients of the covariates differ between each

study and assign the non-informative prior, β ∼ N(0, 10002) for the base distribution. For

common error variance, we assign the non-informative prior σ2 ∼ invGamma(0.01, 0.01). For

the other parameters in DPM and DDPM, we assign prior distributions, as in Subsection

3.1.1, M ∼ Gamma(1, scale=5) and ϕ ∼ Beta(2, 2). To assess the performance of each

method in situations where the between-trial heterogeneity or presence of heterogeneous

historical controls arise from an unmeasured factor, we treat the baseline ADAS-cog as an

unmeasured factor and exclude it from the analytical model.

We calculate the bias of the posterior mean of the posterior distribution of treatment

effect βTRT. We also calculate the frequentist type I error rate and power when the treatment

effect is considered statistically significant and the posterior probability Pr(βTRT < 0 | D)

is greater than 0.975. To assess the average number of historical controls incorporated by

DPM and DDPM, we calculate the mean of the posterior mean of the number of historical

controls assigned to the same cluster as the current control. We also calculate the root mean

square error, mean posterior SD, and coverage probability of the posterior distribution of

treatment effect.

We use Stan via the cmdstanr package (version 0.4.0) for the EX method, and R version

4.2.3 for Linux on the supercomputer system of the Institute of Statistical Mathematics,

Tokyo, Japan. We generate more than 2000 datasets and present the results of 2000 iterations

that reach the convergence criteria described above. Results not included in the main text

are included in the Supplementary materials.

3.2.2 Results

Table 2 lists the bias, frequentist type I error rate, power, and mean of the number of

historical controls in the same cluster.

In scenario 1, the biases for all methods are near zero, and the type I error rates for all
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methods remain below approximately 2.5%. Both DPM and DDPM achieve power compa-

rable to PD and borrow all the historical controls. This is supported by the posterior mean

of the number of historical controls assigned to the same cluster as the current control. How-

ever, the power for EX in scenario 1 does not reach PD, indicating that EX does not actively

borrow from the historical controls, even in the absence of between-trial heterogeneity. In

scenario 2, in which the “exchangeable” assumption holds, the type I error rates for DPM

and DDPM significantly increase, while that for EX remains below approximately 2.5% due

to its alignment with the true model. In scenarios 3 and 4, in which the “exchangeable”

assumption fails due to existing heterogeneous historical controls, the biases and type I error

rates for EX are larger than those for DPM and DDPM. The posterior mean of the number

of historical controls shows that DPM and DDPM can identify the heterogeneous historical

controls in scenarios 3 and 4.

4 Case study

In this section, we describe the application of the proposed and existing methods to a clinical

trial. This example is from a phase II proof-of-concept trial for the treatment of ankylosing

spondylitis (AS) using secukinumab Baeten et al. (2013). The outcome is binary (achieve-

ment of a 20% response according to the SpondyloArthritis International Society criteria for

improvement). Table 3 presents these data. To analyze the data, we use the same methods

and settings as those used in the simulation study. Analysis of the AS study is presented

as Case 1. As in the simulation study, to investigate model behavior when heterogeneous

historical controls exist, a case in which the number of responses in Study 3 is modified from

19 to 31, defined as Case 2, is analyzed. Hence, the response rate for Study 3 in Case 2 is

60.8%.

Table 4 summarizes the posterior distributions of the treatment effect (the difference

between the response rates of the secukinumab and placebo groups) estimated using the
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Table 2: Bias of the posterior mean of the posterior distribution of treatment effect βTRT,
type I error rate (%), power (%), and mean of the posterior mean of the number of historical
controls assigned to the same cluster in the simulation study for individual participant data.

Method Sce 1 Sce 2 Sce 3 Sce 4

Bias
CD 0.06 −0.03 −0.03 −0.07
PD 0.03 −0.15 −1.08 −2.18
EX 0.03 −0.04 −0.17 −0.26
DPM 0.03 −0.09 −0.08 −0.05
DDPM 0.03 −0.05 −0.05 −0.05

Type I error rate (%)
CD 2.70 2.65 2.35 2.45
PD 2.20 22.60 14.80 44.30
EX 1.50 2.70 2.55 3.10
DPM 2.00 12.95 4.00 2.25
DDPM 2.10 10.95 3.40 2.05

Power (%)
CD 48.8 51.3 53.5 54.9
PD 76.9 62.1 95.7 99.7
EX 65.4 55.3 60.8 61.4
DPM 77.0 64.7 78.6 76.8
DDPM 76.5 64.5 77.5 77.0

Mean of no. HCs in same cluster
DPM 5.00 3.41 4.10 3.02
DDPM 4.98 3.08 4.06 3.01

Abbreviations: CD, current data analysis; PD, pooled data analysis; EX, exchangeable
method that assumes partial exchangeability for the intercept; DPM, Dirichlet process
mixture method; DDPM, dependent Dirichlet process mixture method; no. HCs in same
cluster, posterior mean of the number of historical controls in the same cluster.
Note: The four scenarios are defined as follows: Sce 1, no between-trial heterogeneity; Sce
2, large between-trial heterogeneity; Sce 3, one heterogeneous historical control exists;
Sce 4, two heterogeneous historical controls exist.
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Table 3: Observed sample sizes, number of responses, and response rate in ankylosing
spondylitis examples for Cases 1 (original dataset) and 2 (modified dataset).

Historical controls Current trial

Case Trial 1 2 3 4 5 6 7 8 (Sum) CC CT

1 Response 23 12 19 9 39 6 9 10 127 1 14
N 107 44 51 39 139 20 78 35 513 6 23
% 21.5 27.3 37.3 23.1 28.1 30.0 11.5 28.6 24.8 16.7 60.9

2 Response 23 12 31 9 39 6 9 10 149 1 14
N 107 44 51 39 139 20 78 35 513 6 23
% 21.5 27.3 60.8 23.1 28.1 30.0 11.5 28.6 29.0 16.7 60.9

above methods. The 95% CIs for the treatment effect do not contain zero for any method.

In Case 1, the posterior means of MAP, DPM-MAP, DPM, and DDPM are close to those

of PD; however, the posterior SDs of DPM and DDPM are smaller than those of MAP

and DPM-MAP. The posterior SD of DPM-MAP is larger than the posterior SD of MAP.

However, this is reversed in Case 2. This is because DPM-MAP can avoid the influence of

the heterogeneous historical control by estimating the larger variance component. In Case

2, the posterior SDs of DPM and DDPM are smaller than those of MAP and DPM-MAP.

The EHSS for SAM-MAP is extremely small in both cases and does not borrow information

from the historical controls.

As noted in Subsection 2.2.1, the proposed methods enable calculation of the frequency

with which each study is assigned to the same cluster. Table 5 provides a posterior summary

of the SBI, which is the proportion of the cluster membership variables of the historical

controls that are assigned to the same cluster as the current control in the posterior sampling.

In Case 1, the response rate for H7 is lower than those of the other historical controls, leading

to a slightly lower SBI owing to its lower similarity. In Case 2, the SBI for H3, which was

modified to exhibit a higher response rate, is notably small, demonstrating the capacity

of the proposed methods to detect heterogeneous historical controls. In both cases, the

posterior probability for DDPM is higher than that for DPM, which is consistent with the

EHSS results in Table 4. The difference in the SBI between Cases 1 and 2 arises because the
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Table 4: Summary of the posterior distributions of the treatment effect, πCT − πCC(%), for
Cases 1 (original dataset) and 2 (modified dataset).

Case 1 Case 2

Method Mean SD 95%CI EHSS Mean SD 95%CI EHSS

CD 39.1 17.4 (0.3, 68.5) 39.2 17.4 (0.7, 68.5)
PD 35.7 9.9 (15.5, 54.1) 33.4 10.0 (13.2, 52.1)
MAP 36.5 11.9 (12.2, 58.8) 37.1 36.4 14.2 (7.1, 62.3) 10.9
DPM-MAP 36.4 12.4 (11.3, 60.0) 26.4 36.9 13.4 (9.5, 61.7) 15.2
SAM-MAP 37.9 15.3 (4.8, 65.7) 8.5 37.7 16.1 (3.1, 66.0) 3.0
DPM 35.8 11.2 (13.6, 57.6) 173.9 36.6 12.2 (11.2, 59.2) 138.7
DDPM 36.1 11.2 (13.9, 58.1) 220.5 36.8 12.3 (10.7, 59.3) 163.4

Abbreviations: SD, standard deviation; CI, credible interval; CD, current data anal-
ysis; PD, pooled data analysis; MAP, meta-analytic predictive prior method; DPM-
MAP, Dirichlet process mixture-meta-analytic predictive prior method; SAM-MAP, self-
adapting mixture-meta-analytic predictive prior method; DPM, Dirichlet process mixture
method; DDPM, dependent Dirichlet process mixture method.

number of studies with response rates homogeneous with the current control decreased from

seven to six. This reduction lowers the accuracy of parameter estimation for the relevant

cluster, which in turn impacts clustering accuracy and decreases the proportion of cases in

the same cluster.

5 Discussion

In this study, we propose methods that incorporate historical controls based on nonparamet-

ric Bayesian approach. When the “exchangeability” assumption fails due to heterogeneous

historical controls, the proposed methods mitigates their influence. This functionality is

particularly noticeable with DDPM compared to DPM in cases with a finite sample size.

Such scenarios often arise owing to unmeasured factors, and because these factors cannot

be identified before obtaining the current data, understanding the operating characteristics

in these situations is crucial for choosing an appropriate dynamic borrowing method (Hupf

et al., 2021; Lesaffre et al., 2024).

The proposed methods are adaptable to various data formats because they process each
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Table 5: Posterior proportion (%) of the cluster membership variable for the historical control
zHk

allocated to the same cluster as the current control, i.e., Pr(zCC = zHk
| D), for Cases 1

(original dataset) and 2 (modified dataset).

Method H1 H2 H3 H4 H5 H6 H7 H8

Case 1
DPM 75.8 76.6 71.4 76.3 76.6 75.6 49.6 76.2
DDPM 80.3 80.4 77.9 80.4 80.4 80.0 64.9 80.3

Case 2
DPM 70.3 69.7 1.6 69.8 68.9 68.2 45.0 69.4
DDPM 73.5 73.3 2.1 73.3 72.7 72.1 55.1 73.1

Abbreviations: DPM, Dirichlet process mixture method; DDPM, dependent Dirichlet
process mixture method.

dataset uniformly, whether the outcome data comprise aggregated study-level data or indi-

vidual participant data. This is novel because existing methods do not adjust for individual

participant covariates using the same procedure as that used for aggregated study-level data.

Additionally, the proposed SBI, which is easily interpretable as a measure of the similarity

between the current control and each historical control, can be calculated using the pro-

posed methods. While it is possible to quantitatively assess whether the current control is

similar to each historical control using the posterior distribution with the power prior, this

assessment is not feasible when using the meta-analytic approach. Although the power prior

has been extended to handle various situations, there are cases where it cannot be applied,

depending on the outcome type, the number of historical controls, and the availability of

individual participant data (van Rosmalen et al., 2018). The proposed methods are novel

because they can quantitatively evaluate similarity while incorporating historical controls

into a unified framework suitable for various situations.

In contrast to empirical Bayesian methods, the proposed methods are based on a fully

Bayesian procedure and demonstrate consistency (Robert, 2007). SAM-MAP is an empirical

Bayesian approach. When applying this method, careful consideration of the tuning param-

eters is necessary during implementation. In this study, the commonly used non-inferiority

margin served as the comparator. However, if there is a large amount of between-trial het-
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erogeneity or if heterogeneous historical controls exist, SAM-MAP refrains from borrowing

historical controls, making it difficult to achieve the desired dynamic borrowing.

When the response variable comprises other types of endpoints, such as time-to-event

data, a fully parametric model can be constructed to perform the same procedure. However,

in cases such as inference based on the partial likelihood of a Cox proportional hazards

model, the procedure may not be directly applicable, and further research is necessary.
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Including historical data in the analysis of clinical trials: Is it worth the effort? Stat

Methods Med Res 27, 3167–3182.

Walker, S. G. (2007). Sampling the Dirichlet Mixture Model with Slices. Commun Stat -

Simul Comput 36, 45–54.

Weber, S., Li, Y., Iii, J. W. S., Kakizume, T., and Schmidli, H. (2021). Applying Meta-

Analytic-Predictive Priors with the R Bayesian Evidence Synthesis Tools. J Stat Softw

100, 1–32.

Wiesenfarth, M. and Calderazzo, S. (2020). Quantification of prior impact in terms of

effective current sample size. Biometrics 76, 326–336.

Yang, P., Zhao, Y., Nie, L., Vallejo, J., and Yuan, Y. (2023). SAM: Self-adapting mixture

prior to dynamically borrow information from historical data in clinical trials. Biometrics

79, 2857–2868.

Supporting data

The Supplementary materials are available online. Code for implementing the proposed

methods is available as the R package ddp4hc at GitHub: https://github.com/tom-ohigashi/

ddp4hc.

27



Supplementary Materials for “Nonparametric Bayesian method for

dynamic borrowing of historical control data”

Tomohiro Ohigashi1, Kazushi Maruo2, Takashi Sozu1, and Masahiko Gosho2

1Department of Information and Computer Technology, Faculty of Engineering, Tokyo

University of Science, Tokyo, Japan

2Department of Biostatistics, Institute of Medicine, University of Tsukuba, Tsukuba, Japan

S1 Step-by-step Sampling Procedures for Dirichlet process mix-

ture method

For simplicity, we show the posterior sampling procedure when the outcome data y are aggregated

study-level data. We construct a Gibbs sampler algorithm with slice sampling proposed by Walker

(2007). We consider an augmented model for study j (= H1, . . . ,HK ,CC) given by

f(yj , uj | w, θ) =
∞∑

c=1

wcp(uj | wc)p(yj | θc),

where uj is a uniform random variable on (0, wc). Let zj is the allocation variable of yj , the

augmented model is given by

f(yj , zj = c, uj | w, θ) = p(yj | θc)I(c ∈ A(uj | w)),

where A(uj | w) = {c : wc > uj}. The joint likelihood is given by

f(y, u, z) =
∏

j

p(yj | θzj )I(uj < wzj ).

The full conditional distributions are described as follows:
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- (Sampling of θ⋆c ) For the parameter θ⋆c of the cth cluster, we obtain

p(θ⋆c | . . .) ∝ g0(θ
⋆
c )

∏

zj=c

p(yj | θc)

where g0(θ
⋆
c ) denotes the base measure, as in Walker (2007). If the c th cluster is empty, we

also obtain

p(θ⋆c | . . .) ∝ g0(θc).

- (Sampling of uj) For j (= H1, . . . ,HK ,CC), the full conditional distribution of uj is given by

Unif(0, wzj ).

- (Sampling of w) The variable w is constructed from v and illustrates the sampling procedure

for v. For the parameter vc(c = 1, . . . , r), we obtain

p(vc | . . .) ∝ p(vc)
∏

j

I(uj < wzj )

= p(vc)
∏

j

I


vzj

∏

ℓ<zj

(1− vℓ) > uj


 .

Let c∗ denote the maximum number of cluster numbership of zj . Consequently, for c > c∗,

the full conditional distribution of vc is given by Beta(1,M).

- (Sampling of zj) For j (= H1, . . . ,HK ,CC), the full conditional distribution of the cluster

membership variable zj is given by

Pr(zj = c | . . .) ∝ I(c ∈ Aw(uj))p(yj | θzj ),

where the range of c is defined as the minimum value of c∗ that satisfies the following condition:

c∗∑

c=1

wc > 1− u∗,

with u∗ = minuH1 , . . . , uHK
, uCC.
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- (Sampling of M) The concentration parameter M is updated as in Escobar and West (1995)

assuming a gamma prior Ga(a, b).

S2 Step-by-step Sampling Procedures for dependent Dirichlet pro-

cess mixture method

As in Section S1, we show the posterior sampling procedure when the outcome data y are aggregated

study-level data, for simplicity. The joint likelihood is given by

f(y, u, z | w(H),w(CC),θ) =
∏

j∈(H1,...,HK)

I(uj < w(H)
zj )p(yj | θzj )

× I(uCC < w(CC)
zCC

)p(yCC | θzCC)

Next, we present the sampling procedure for the newly introduced variable ϕ in the DDPM method

and w
(H)
zj , w

(CC)
zj , which follows a different sampling procedure from that in the DPM method.

The full conditional distributions are described as follows:

- (Sampling of w) To update the weights, we need to update the stick-breaking components;

to this end, denote by p
(CC)
c the transition density P(V

(CC)
c ∈ A | V (H)

c ) correspounding to

the cth processs. Hence, it is seen that

p(v(·)c | . . .) ∝
{
p(CC)
c Beta(v(H)

c ; 1,M)I(j ∈ H) + p(CC)
c I(j ∈ CC)

}
× v(·)n

(·)
c

c (1− v(·)c )m
(·)
c

where Beta(·; a, b) denotes the density of a Beta distirbution and

n(·)
c :=

∑

j

I(zj = c), m(·)
c :=

∑

j

I(zj > c).

For the weights for historical controls, we obtain

p(v(H)
c ) = M ×

ϕM(1− v
(CC)
j )M−1

B(1 + n
(H)
j ,M +m

(H)
j )

Beta(v
(H)
j ; 1 + n

(H)
j ,M +m

(H)
j )

+M × (1− ϕ)(1− v
(CC)
j )M−1(v

(CC)
j )n

(H)
j (1− v

(CC)
j )m

(H)
j I(v

(H)
j = v

(CC)
j ),
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with B(a, b) = Γ(a+ b)/(Γ(a)Γ(b)). For the weights for current control, we also obtain

p(v(CC)
c ) =

ϕM(1− 0)M−1

B(1 + n
(CC)
j ,M +m

(CC)
j )

× Beta(v
(CC)
j ; 1 + n

(CC)
j ,M +m

(CC)
j )

+ (1− ϕ)(1− 0)M−1(v
(H)
j )n

(CC)
j (1− v

(H)
j )m

(CC)
j I(v

(CC)
j = v

(H)
j ).

- (Sampling of ϕ) The posterior distribution for ϕ is not available in closed form, thus a

Metropolis–Hasting step is needed (Gutiérrez et al., 2016). As procedure in Gutiérrez et al.

(2016), we use a truncated normal distribution as a proposal for ϕ, that is , at iteration s,

ϕ∗ ∼ N(ϕ∗ | ϕs−1, c)I[0,1]. Then set:

ϕs =





ϕ∗ with probabilitymin(r, 1)

ϕs−1 otherwise

and

r =
p(ϕ∗ | y)/N(ϕ∗ | ϕs−1, c)I[0,1]

p(ϕs−1 | y)/N(ϕs−1 | ϕ∗, c)I[0,1]
,

with p(ϕ⋄ | y) is given by

p(ϕ⋄ | y) ∝ ϕ⋄(γ−1)(1− ϕ⋄)(ν−1)
∏

j

∏

c

w⋄
cp(yj | θc)

and w⋄
j are the weights sampled using ϕ⋄.
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S3 Proof of theorem

S3.1 Proof of theorem 1

As demonstrated in Theorem 1 in Ascolani et al. (2023), if the prior distribution for the concen-

tration parameter M satisfies assumptions 1–3 in Ascolani et al. (2023), then as the number of

historical controls increases, the posterior of the number of clusters is consistent with the true

number of clusters.

S3.2 Proof of theorem 2

As stated in Theorem 6.2 of Ghosal and van der Vaart (2017), if the probability measure un-

der the prior distribution is positive, the posterior distribution for each study’s parameter θj(j =

H1, . . . ,HK ,CC) converges to the true parameter as nj → ∞. In other words, the posterior distri-

bution converges to the Dirac measure concentrated on the true parameter.

Meanwhile, the conditional posterior distribution of DPM is expressed as:

p(θj | θ−j) ∝
r−∑

j′=1

n−
j′δθ⋆−

j′
(θj) +MG0, (θj)

where θ−j denotes θ without the jth element θj , r
− is the number of unique values in θ−j and θ⋆−j′

is the j′th unique element. Based on this, the posterior distribution converges to the Dirac measure

concentrated on the true parameter as nj → ∞. Consequently, the posterior distributions of θCC

and θHk
converge to the same true value if the current control and the kth historical control are

congruent, and to distinct values if the current control and the kth historical control are incongruent.
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S4 Results of simulation study for summary statistics

Table S1: Bias of the posterior mean of the posterior distribution of treatment effect πCT−πCC(%)
in the simulation study for summary statistics. In DPM and DDPM methods, the numbers in
parentheses indicate the shape and scale parameters of the gamma distribution for the concentration
parameter M .

Method Sce 1 Sce 2 Sce 3 Sce 4 Sce 5

CD −0.78 −1.58 −0.85 −1.51 −0.17
PD −0.64 −1.63 6.50 13.71 28.14
MAP −0.67 −1.56 1.81 2.87 17.28
DPM-MAP −0.70 −1.56 0.91 2.98 9.65
SAM-MAP −1.61 −2.36 −0.59 −1.29 −0.15
DPM (1, 1) −0.65 −1.51 0.74 1.42 12.07
DPM (1, 5) −0.66 −1.51 0.61 1.23 10.71
DPM (1, 10) −0.66 −1.51 0.59 1.19 10.47
DDPM (1, 1) −0.66 −1.52 0.89 1.25 9.47
DDPM (1, 5) −0.67 −1.53 0.78 1.11 8.63
DDPM (1, 10) −0.67 −1.53 0.76 1.08 8.49

Abbreviations: CD, current data analysis; PD, pooled data analysis; MAP, meta-analytic
predictive prior method; DPM-MAP, Dirichlet process mixture-meta-analytic predictive prior
method; SAM-MAP, self-adapting mixture-meta-analytic predictive prior method; DPM,
Dirichlet process mixture method; DDPM, dependent Dirichlet process mixture method.
Note: The five scenarios are defined as follows: Sce 1, no between-trial heterogeneity; Sce 2,
large between-trial heterogeneity; Sce 3, two heterogeneous historical controls exist; Sce 4, four
heterogeneous historical controls exist; Sce 5, eight heterogeneous historical controls exist.
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Table S2: Root mean square error of the posterior mean of the posterior distribution of treatment
effect πCT−πCC(%) in the simulation study for summary statistics. In DPM and DDPM methods,
the numbers in parentheses indicate the shape and scale parameters of the gamma distribution for
the concentration parameter M .

Method Sce 1 Sce 2 Sce 3 Sce 4 Sce 5

CD 12.60 12.49 12.67 12.28 12.78
PD 7.13 11.93 9.60 15.41 28.98
MAP 7.54 10.18 10.48 11.03 20.24
DPM-MAP 8.21 10.32 9.83 11.07 17.09
SAM-MAP 10.61 11.78 12.34 12.23 12.80
DPM (1, 1) 7.25 10.46 8.82 9.94 21.24
DPM (1, 5) 7.32 10.49 8.97 10.07 20.37
DPM (1, 10) 7.34 10.50 9.01 10.10 20.22
DDPM (1, 1) 7.36 10.55 9.14 9.96 19.75
DDPM (1, 5) 7.44 10.57 9.25 10.06 19.18
DDPM (1, 10) 7.45 10.58 9.27 10.08 19.08

Abbreviations: CD, current data analysis; PD, pooled data analysis; MAP, meta-analytic
predictive prior method; DPM-MAP, Dirichlet process mixture-meta-analytic predictive prior
method; SAM-MAP, self-adapting mixture-meta-analytic predictive prior method; DPM,
Dirichlet process mixture method; DDPM, dependent Dirichlet process mixture method.
Note: The five scenarios are defined as follows: Sce 1, no between-trial heterogeneity; Sce 2,
large between-trial heterogeneity; Sce 3, two heterogeneous historical controls exist; Sce 4, four
heterogeneous historical controls exist; Sce 5, eight heterogeneous historical controls exist.
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Table S3: Mean posterior standard deviation of the posterior mean of the posterior distribution
of treatment effect πCT − πCC(%) in the simulation study for summary statistics. In DPM and
DDPM methods, the numbers in parentheses indicate the shape and scale parameters of the gamma
distribution for the concentration parameter M .

Method Sce 1 Sce 2 Sce 3 Sce 4 Sce 5

CD 12.38 12.12 12.38 12.39 12.37
PD 7.03 6.94 7.03 7.01 6.92
MAP 8.48 10.64 11.19 11.55 10.49
DPM-MAP 9.45 10.83 10.81 11.53 12.58
SAM-MAP 11.26 11.75 12.18 12.36 12.37
DPM (1, 1) 7.63 10.15 9.39 10.03 13.00
DPM (1, 5) 7.84 10.35 9.63 10.27 13.18
DPM (1, 10) 7.88 10.39 9.67 10.32 13.21
DDPM (1, 1) 7.85 10.18 9.49 9.89 13.34
DDPM (1, 5) 8.03 10.33 9.68 10.10 13.39
DDPM (1, 10) 8.06 10.36 9.72 10.14 13.39

Abbreviations: CD, current data analysis; PD, pooled data analysis; MAP, meta-analytic
predictive prior method; DPM-MAP, Dirichlet process mixture-meta-analytic predictive prior
method; SAM-MAP, self-adapting mixture-meta-analytic predictive prior method; DPM,
Dirichlet process mixture method; DDPM, dependent Dirichlet process mixture method.
Note: The five scenarios are defined as follows: Sce 1, no between-trial heterogeneity; Sce 2,
large between-trial heterogeneity; Sce 3, two heterogeneous historical controls exist; Sce 4, four
heterogeneous historical controls exist; Sce 5, eight heterogeneous historical controls exist.
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Table S4: Coverage probability (%) of the posterior mean of the posterior distribution of treatment
effect in the simulation study for summary statistics. In DPM and DDPM methods, the numbers in
parentheses indicate the shape and scale parameters of the gamma distribution for the concentration
parameter M .

Method Sce 1 Sce 2 Sce 3 Sce 4 Sce 5

CD 95.11 94.31 94.80 95.43 94.72
PD 94.70 76.25 84.79 54.52 3.61
MAP 97.27 95.90 96.52 95.82 63.66
DPM-MAP 97.55 96.02 96.96 95.71 83.96
SAM-MAP 96.60 94.71 94.75 95.30 94.71
DPM (1, 1) 95.82 93.92 96.47 95.71 72.16
DPM (1, 5) 96.11 94.47 96.59 96.02 76.15
DPM (1, 10) 96.11 94.52 96.60 96.08 76.69
DDPM (1, 1) 95.91 93.91 96.24 95.56 78.81
DDPM (1, 5) 96.14 94.31 96.32 95.82 80.54
DDPM (1, 10) 96.18 94.34 96.36 95.86 80.89

Abbreviations: CD, current data analysis; PD, pooled data analysis; MAP, meta-analytic
predictive prior method; DPM-MAP, Dirichlet process mixture-meta-analytic predictive prior
method; SAM-MAP, self-adapting mixture-meta-analytic predictive prior method; DPM,
Dirichlet process mixture method; DDPM, dependent Dirichlet process mixture method.
Note: The five scenarios are defined as follows: Sce 1, no between-trial heterogeneity; Sce 2,
large between-trial heterogeneity; Sce 3, two heterogeneous historical controls exist; Sce 4, four
heterogeneous historical controls exist; Sce 5, eight heterogeneous historical controls exist.
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Table S5: Type I error rate (%) of the posterior mean of the posterior distribution of treatment
effect in the simulation study for summary statistics. In DPM and DDPM methods, the numbers in
parentheses indicate the shape and scale parameters of the gamma distribution for the concentration
parameter M .

Method Sce 1 Sce 2 Sce 3 Sce 4 Sce 5

CD 2.33 2.60 2.61 2.53 2.84
PD 2.65 13.87 14.81 44.46 96.66
MAP 1.65 2.80 3.17 4.17 36.93
DPM-MAP 1.49 2.59 2.45 4.34 15.12
SAM-MAP 1.31 2.07 2.53 2.53 2.84
DPM (1, 1) 2.24 3.90 2.60 3.45 25.81
DPM (1, 5) 2.16 3.66 2.44 3.27 22.18
DPM (1, 10) 2.12 3.59 2.43 3.28 21.53
DDPM (1, 1) 2.14 3.83 2.85 3.55 19.21
DDPM (1, 5) 2.07 3.56 2.70 3.40 17.03
DDPM (1, 10) 2.05 3.59 2.71 3.38 16.76

Abbreviations: CD, current data analysis; PD, pooled data analysis; MAP, meta-analytic
predictive prior method; DPM-MAP, Dirichlet process mixture-meta-analytic predictive prior
method; SAM-MAP, self-adapting mixture-meta-analytic predictive prior method; DPM,
Dirichlet process mixture method; DDPM, dependent Dirichlet process mixture method.
Note: The five scenarios are defined as follows: Sce 1, no between-trial heterogeneity; Sce 2,
large between-trial heterogeneity; Sce 3, two heterogeneous historical controls exist; Sce 4, four
heterogeneous historical controls exist; Sce 5, eight heterogeneous historical controls exist.
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Table S6: Power (%) of the posterior mean of the posterior distribution of treatment effect in the
simulation study for summary statistics. In DPM and DDPM methods, the numbers in parentheses
indicate the shape and scale parameters of the gamma distribution for the concentration parameter
M .

Method Sce 1 Sce 2 Sce 3 Sce 4 Sce 5

CD 47.19 46.50 46.86 44.30 49.06
PD 87.90 74.93 98.14 99.87 100.00
MAP 78.38 56.99 63.93 64.16 95.17
DPM-MAP 70.34 55.63 64.88 64.23 69.50
SAM-MAP 55.05 47.23 49.56 44.67 49.06
DPM (1, 1) 83.95 60.19 78.70 75.62 63.78
DPM (1, 5) 82.42 58.92 76.18 72.19 61.58
DPM (1, 10) 82.34 58.62 75.64 71.58 61.20
DDPM (1, 1) 82.40 59.89 78.16 75.49 59.41
DDPM (1, 5) 80.83 58.91 76.29 72.81 58.32
DDPM (1, 10) 80.68 58.77 75.70 72.43 58.17

Abbreviations: CD, current data analysis; PD, pooled data analysis; MAP, meta-analytic
predictive prior method; DPM-MAP, Dirichlet process mixture-meta-analytic predictive prior
method; SAM-MAP, self-adapting mixture-meta-analytic predictive prior method; DPM,
Dirichlet process mixture method; DDPM, dependent Dirichlet process mixture method.
Note: The five scenarios are defined as follows: Sce 1, no between-trial heterogeneity; Sce 2,
large between-trial heterogeneity; Sce 3, two heterogeneous historical controls exist; Sce 4, four
heterogeneous historical controls exist; Sce 5, eight heterogeneous historical controls exist.
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Table S7: mean effective historical sample size of the posterior distribution of treatment effect in the
simulation study for summary statistics. In DPM and DDPM methods, the numbers in parentheses
indicate the shape and scale parameters of the gamma distribution for the concentration parameter
M .

Method Sce 1 Sce 2 Sce 3 Sce 4 Sce 5

MAP 123.2 21.8 10.4 7.1 65.0
DPM-MAP 62.9 17.9 16.5 7.5 20.1
SAM-MAP 36.6 6.2 2.5 1.5 1.3
DPM (1, 1) 373.9 115.8 197.7 129.2 192.7
DPM (1, 5) 342.8 95.2 167.2 106.7 159.5
DPM (1, 10) 336.9 91.6 161.3 102.5 154.0
DDPM (1, 1) 394.5 130.0 210.2 143.5 174.2
DDPM (1, 5) 372.8 113.7 187.7 125.1 152.0
DDPM (1, 10) 368.7 110.7 183.4 121.3 148.4

Abbreviations: MAP, meta-analytic predictive prior method; DPM-MAP, Dirichlet pro-
cess mixture-meta-analytic predictive prior method; SAM-MAP, self-adapting mixture-meta-
analytic predictive prior method; DPM, Dirichlet process mixture method; DDPM, dependent
Dirichlet process mixture method.
Note: The five scenarios are defined as follows: Sce 1, no between-trial heterogeneity; Sce 2,
large between-trial heterogeneity; Sce 3, two heterogeneous historical controls exist; Sce 4, four
heterogeneous historical controls exist; Sce 5, eight heterogeneous historical controls exist.

Table S8: Standard deviation of effective historical sample size of the posterior distribution of
treatment effect in the simulation study for summary statistics. In DPM and DDPM methods, the
numbers in parentheses indicate the shape and scale parameters of the gamma distribution for the
concentration parameter M .

Method Sce 1 Sce 2 Sce 3 Sce 4 Sce 5

MAP 43.7 25.3 5.1 3.3 47.4
DPM-MAP 21.3 13.9 6.4 3.7 21.6
SAM-MAP 22.2 9.2 1.3 0.4 0.1
DPM (1, 1) 71.7 94.3 69.5 44.6 149.1
DPM (1, 5) 79.4 83.6 65.9 42.1 137.5
DPM (1, 10) 80.7 81.7 64.9 41.3 135.3
DDPM (1, 1) 62.8 103.6 70.3 44.0 150.6
DDPM (1, 5) 69.4 95.8 68.1 43.0 140.9
DDPM (1, 10) 70.5 94.4 67.6 42.7 139.2

Abbreviations: MAP, meta-analytic predictive prior method; DPM-MAP, Dirichlet pro-
cess mixture-meta-analytic predictive prior method; SAM-MAP, self-adapting mixture-meta-
analytic predictive prior method; DPM, Dirichlet process mixture method; DDPM, dependent
Dirichlet process mixture method.
Note: The five scenarios are defined as follows: Sce 1, no between-trial heterogeneity; Sce 2,
large between-trial heterogeneity; Sce 3, two heterogeneous historical controls exist; Sce 4, four
heterogeneous historical controls exist; Sce 5, eight heterogeneous historical controls exist.
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S5 Results of simulation study for individual participant data

Table S9: Root mean square error of the posterior mean of the posterior distribution of treatment
effect βTRT in the simulation study for individual participant data.

Method Sce 1 Sce 2 Sce 3 Sce 4

CD 1.46 1.48 1.46 1.49
PD 1.11 3.06 1.53 2.43
EX 1.19 1.45 1.39 1.46
DPM 1.11 2.11 1.15 1.15
DDPM 1.11 1.92 1.14 1.14

Abbreviations: CD, current data analysis; PD, pooled data analysis; EX, exchangeable method
that assumes partial exchangeability for the intercept; DPM, Dirichlet process mixture method;
DDPM, dependent Dirichlet process mixture method.
Note: The four scenarios are defined as follows: Sce 1, no between-trial heterogeneity; Sce 2,
large between-trial heterogeneity; Sce 3, one heterogeneous historical control exists; Sce 4, two
heterogeneous historical controls exist.

Table S10: Mean posterior standard deviation of the posterior mean of the posterior distribution
of treatment effect βTRT in the simulation study for individual participant data.

Method Sce 1 Sce 2 Sce 3 Sce 4

CD 1.50 1.50 1.49 1.49
PD 1.10 1.16 1.14 1.16
EX 1.28 1.44 1.44 1.45
DPM 1.10 1.17 1.12 1.13
DDPM 1.10 1.18 1.12 1.13

Abbreviations: CD, current data analysis; PD, pooled data analysis; EX, exchangeable method
that assumes partial exchangeability for the intercept; DPM, Dirichlet process mixture method;
DDPM, dependent Dirichlet process mixture method.
Note: The four scenarios are defined as follows: Sce 1, no between-trial heterogeneity; Sce 2,
large between-trial heterogeneity; Sce 3, one heterogeneous historical control exists; Sce 4, two
heterogeneous historical controls exist.
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Table S11: Coverage probability (%) of the posterior mean of the posterior distribution of treatment
effect βTRT in the simulation study for individual participant data.

Method Sce 1 Sce 2 Sce 3 Sce 4

CD 95.8 95.3 94.9 94.8
PD 94.9 52.8 85.7 53.2
EX 96.7 94.9 95.9 94.9
DPM 95.2 71.6 94.1 94.1
DDPM 95.2 76.7 94.7 94.5

Abbreviations: CD, current data analysis; PD, pooled data analysis; EX, exchangeable method
that assumes partial exchangeability for the intercept; DPM, Dirichlet process mixture method;
DDPM, dependent Dirichlet process mixture method.
Note: The four scenarios are defined as follows: Sce 1, no between-trial heterogeneity; Sce 2,
large between-trial heterogeneity; Sce 3, one heterogeneous historical control exists; Sce 4, two
heterogeneous historical controls exist.
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