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Recently, two dark matter direct detection experiments have announced the first indica-
tions of nuclear recoils from solar 8B neutrinos via coherent elastic neutrino-nucleus scatter-
ing (CEνNS) with xenon nuclei. These results constitute a turning point, not only for dark
matter searches that are now entering the neutrino fog, but they also bring out new opportu-
nities to exploit dark matter facilities as neutrino detectors. We investigate the implications
of recent data from the PandaX-4T and XENONnT experiments on both Standard Model
physics and new neutrino interactions. We first extract information on the weak mixing an-
gle at low momentum transfer. Then, following a phenomenological approach, we consider
Lorentz-invariant interactions (scalar, vector, axial-vector, and tensor) between neutrinos,
quarks and charged leptons. Furthermore, we study the U(1)B−L scenario as a concrete
example of a new anomaly-free vector interaction. We find that despite the low statistics of
these first experimental results, the inferred bounds are in some cases already competitive.
For the scope of this work we also compute new bounds on some of the interactions using
CEνNS data from COHERENT and electron recoil data from XENONnT, LUX-ZEPLIN,
PandaX-4T, and TEXONO. It seems clear that while direct detection experiments continue
to take data, more precise measurements will be available, thus allowing to test new neutrino
interactions at the same level or even improving over dedicated neutrino facilities.
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I. INTRODUCTION

Coherent elastic neutrino-nucleus scattering (CEνNS) is a neutral-current process in which a low-
energy neutrino scatters off an entire nucleus [1]. Its first theoretical prediction and the principles
for its detection date back to the 1970s and 1980s [2, 3]. One main feature of CEνNS is that its
Standard Model (SM) cross section is large compared to other neutrino scattering cross sections, as
it is coherently enhanced being proportional to the number of nucleons squared. On the other hand,
its experimental detection faces technological difficulties, as it requires the observation of nuclear
recoils of very low energy. For this reason, this process evaded detection during many decades
until its first observation by the COHERENT Collaboration [4], using an intense spallation source
producing neutrinos from pions decaying at rest. Further observations and evidence using different
targets [5–7] or a reactor source [8] have provided valuable information on the CEνNS cross section
and its dependence on N2.

The possibility that CEνNS detectors could be used as dark matter (DM) [9] detectors was
pointed out by Goodman and Witten [10], anticipating the same experimental challenges. An
intense experimental program [11, 12] has followed this early suggestion, culminating in current
ton-scale DM direct detection experiments. The latest generation of low-threshold dual-phase liquid
xenon (LXe) detectors, including the XENONnT [13], LUX-ZEPLIN (LZ) [14], and PandaX-4T [15]
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experiments, has reached impressive sensitivities, although without indicating any conclusive ev-
idence of DM detection. As a by-product, the increase in target size has allowed these facilities
to be sensitive to fluxes of astrophysical neutrinos. As anticipated, the improvement in the en-
ergy threshold at these experiments has now led to detectable rates of 8B solar neutrinos inducing
CEνNS [16–18]. Neutrino backgrounds from natural [19] and artificial [20] sources do pose a chal-
lenge for DM searches in the form of a neutrino fog [21], but at the same time they provide new
opportunities to probe the neutrino sector [22–40].

A steady increase in sensitivity has allowed the XENONnT [41] and PandaX-4T [42] Collabora-
tions to recently report their first indications of nuclear recoils from solar 8B neutrinos via CEνNS.
With the present exposures reached in these experiments, the background-only hypothesis is disfa-
vored with a statistical significance of 2.73σ in the case of XENONnT and 2.64σ for PandaX-4T.
These results update previous searches by the same Collaborations [43, 44] and constitute the
first indication of nuclear recoils from solar neutrinos and the first CEνNS observation on a xenon
target. Assuming that no new physics is present, these results also provide a measurement of the
8B solar neutrino flux component which is in agreement with theoretical predictions [45] and with
results from dedicated neutrino experiments [46–49]. These successful experimental results have
immediately motivated new phenomenological studies, aiming at probing new physics in the form
of non-standard neutrino interactions (NSI) [50, 51], light mediators [52] and also the determination
of the weak mixing angle at low momentum transfer [53].

In this paper, we study some implications of the first CEνNS indications at DM experiments
both for SM and new physics. Following Ref. [53], we first revisit the determination of the weak
mixing angle at the O(10) MeV scale, providing also a result in terms of a combined (XENONnT
and PandaX-4T) analysis. Next, we confront new interactions between neutrinos, quarks and
charged leptons with the recent XENONnT and PandaX-4T data. We focus on Lorentz-invariant
interactions (scalar, vector, axial-vector and tensor), parameterized in a model-independent way in
the form of neutrino generalized interactions (NGIs) [54–58]. We consider both regimes of effective
operators and light mediators, since direct detection experiments have low-energy thresholds and
are hence sensitive to interactions involving light mediators [26, 59–61]. In addition, for the sake of
example, we consider a motivated, anomaly-free U(1) extension of the SM with a B-L symmetry
(B being the baryon number and L the total lepton number).

The remainder of this paper is organized as follows. In Sec. II we introduce the relevant
CEνNS cross sections, both in the SM and in the presence of NGIs. We discuss in Sec. III the
simulation details as well as the procedure followed for the statistical analysis of XENONnT and
PandaX-4T data. We present in Sec. IV our results in terms of a determination of the weak mix-
ing angle at low energy and exclusion limits on the NGI parameter space. Finally, we draw our
conclusions in Sec. V.

II. COHERENT ELASTIC NEUTRINO-NUCLEUS SCATTERING CROSS SECTIONS

In this section, we provide the relevant CEνNS cross sections, in the SM and in the presence of
NGIs, required for the calculation of the corresponding event rates.
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A. CEνNS cross section in the Standard Model

In the SM, the CEνNS differential cross section with respect to the nuclear recoil energy TN ,
neglecting TN /mN and higher order O(T 2

N ) terms, reads [2, 62]

dσνN
dTN

∣∣∣∣SM
= G2

F mN
π

(
QSM

V

)2
F 2

W (|q|2)
(

1 − mN TN
2E2

ν

− TN
Eν

)
, (1)

with GF being the Fermi constant, Eν the incoming neutrino energy, while mN is the nuclear mass
and QSM

V denotes the SM weak charge which is given by

QSM
V = gp

V Z + gn
V N , (2)

where Z (N) is the proton (neutron) number, and the proton and neutron couplings (at tree level)1

are given by gp
V = (1 − 4 sin2 θW )/2 and gn

V = −1/2, respectively. The weak charge encodes the
dependence on the weak mixing angle θW through the proton contribution. From RGE extrap-
olation, its value in the low-energy regime is expected to be sin2 θW = 0.23857(5) [64]. Nuclear
physics corrections are included in the form factor F 2

W (|q|2), to account for the finite nuclear spatial
distribution. Given the small momentum transfer involved in the CEνNS of 8B solar neutrinos, the
dependence on the form factor is small. At the scope of the numerical calculations, we rely on the
Klein-Nystrand parametrization [65]

FW (|q|2) = 3j1(|q| RA)
|q| RA

(
1

1 + |q|2 a2
k

)
, (3)

where j1(x) = sin(x)/x2 − cos(x)/x is the spherical Bessel function of order one, ak = 0.7 fm and
RA = 1.23 A1/3 indicates the root mean square (RMS) radius (in [fm]), A being the atomic mass

number. The expected magnitude of the momentum transfer is |q| =
√

2mN TN
197.327 fm−1 ∼ O(10) MeV.

B. CEνNS cross section with neutrino generalized interactions

One of our goals in the present work is to explore the implications of the recent XENONnT
and PandaX-4T data on new neutrino interactions. For simplicity, we adopt a phenomenolog-
ical approach and consider all possible Lorentz-invariant low-energy neutral-current interactions
parameterized through the following effective Lagrangian

L NGI
NC ⊃ GF√

2
∑

a=(S,P,V,A,T ),
ℓ=e,µ,τ

Ca (ν̄ℓΓaPLνℓ)
(
N̄ΓaN

)
, (4)

where Γa = {I, iγ5, γµ, γµγ5, σµν} (with σµν = i[γµ, γν ]/2), PL ≡ (1 − γ5)/2 is the left-handed
projector and N denotes the nucleus. The Ca are dimensionless coefficients which denote the cor-
responding neutrino-nucleus couplings for all interactions: scalar (S), pseudoscalar (P ), vector (V ),
axial-vector (A) and tensor (T ). Notice that we consider only flavor-independent interactions and
hence assume that the coupling Ca is the same for each neutrino flavor. Therefore, in the present
analysis we do not need to include neutrino oscillations, which —in addition to the interactions—
would also be modified by flavor-dependent interactions due to matter effects in the Sun, relevant
for the energies typical of 8B neutrinos.

1 At higher orders these factors become flavor-dependent; the correction to gn
V is very small, while the correction to

gp
V is quite significant [63], although the proton coupling remains very small in comparison to its neutron counter
part.
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Because of the typical momentum transfer involved in the CEνNS of solar neutrinos, we aim to
extend our phenomenological study to the case of interactions involving light mediators (i.e., with
a mass O(10) MeV). At this scope, we modify the effective-interaction couplings by introducing
an explicit dependence on the mediator mass ma arising from the propagator. Consequently, the
differential CEνNS cross sections for the NGI interactions read [66]

dσνN
dTN

∣∣∣∣S (Eν , TN ) = mN C4
S

4π(m2
S + 2mN TN )2 F 2

W (|q|2)mN TN
E2

ν

, (5)

dσνN
dTN

∣∣∣∣V (Eν , TN ) =
[
1 + κ

CV√
2GF QSM

V

(
m2

V + 2mN TN
)]2

dσνℓN
dTN

∣∣∣∣SM
(6)

dσνN
dTN

∣∣∣∣A (Eν , TN ) = 2mN
2J + 1

g4
A

(m2
A + 2mN TN )2

(
2 + mN TN

E2
ν

− 2TN
Eν

)
S̃T (|q|2) , (7)

dσνN
dTN

∣∣∣∣T (Eν , TN ) = mN
2J + 1

g4
T

(m2
T + 2mN TN )2

×
[(

2 − mN TN
E2

ν

− 2TN
Eν

)
S̃T (|q|2) +

(
1 − TN

Eν

)
S̃L(|q|2)

]
. (8)

Note that the cross section for the vector interactions depends on the specific SM extension under
consideration: κ = 1 in the universal scenario, while κ = −1/3 in the B − L model [67, 68]. The
axial-vector and tensor cross section are written directly in terms of the fundamental coupling ga,
while the couplings Ca in the scalar and vector cross sections can be related to ga at the quark
level following the procedure of DM detection [69, 70] and are given by

C2
S ≡ g2

S

Z
∑

q=u,d

mp

mq
f

(p)
Tq

+ N
∑

q=u,d

mn

mq
f

(n)
Tq

 , (9)

C2
V ≡ 3Ag2

V . (10)

Throughout this work, we assume that the new mediator a couples with equal strength to neutri-
nos, quarks and charged leptons. Under this assumption, ga is defined as ga = √

gνagqa = √
gνagℓa,

where gνa, gqa and gℓa are the couplings between the mediator and neutrinos, quarks and lep-
tons, respectively. In the previous expressions, mp and mn denote the proton and neutron masses,

respectively, and mq are the quark q masses, while f
(p)
Tq

and f
(n)
Tq

represent the quark mass contribu-
tions to the nucleon (proton and neutron) mass. Note that the expressions for the axial-vector and
tensor mediated cross sections are spin dependent. For the latter two we have explicitly extracted
their dependence on the total angular momentum, J , of the nucleus in the ground state. In the
case of xenon nuclei, only the 129Xe and 131Xe isotopes have spin different from zero (J

129Xe = 1/2
and J

131Xe = 3/2), and therefore induce non-zero axial and tensor contributions. The respective
abundances are 26.4% and 21.2%. The spin structure functions S̃κ(|q|2), where κ = L, T , ac-
count for longitudinal and transverse multipoles calculated using the Shell Model, and have been
obtained following [71] as explained in Appendix B of [66]2. The pseudoscalar interaction is not
considered in the following as it turns out to be negligible [71] for two reasons: first, its cross sec-

tion is nuclear-spin suppressed and secondly, it is proportional to
T 2

N
2E2

ν
, and hence also kinematically

suppressed.

2 Note that for the axial-vector interaction the longitudinal contribution is negligible in the CEνNS case [71], contrary
to the upscattering scenario studied in [66].
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III. STATISTICAL ANALYSIS

We now proceed to discuss the implementation of the statistical analysis. We analyze the ex-
perimental data presented in Refs. [41, 42]. Both experiments utilize a dual-phase time-projection-
chamber (TPC), and produce both scintillation photons (S1 signal) and ionization electrons (S2
signal). In the case of PandaX-4T two data sets were analyzed by the Collaboration, one corre-
sponding to a paired S1 and S2 signal and one using only S2 (referred to as US2). In this paper, we
use only the second data set (US2), since not enough information is provided by the experimental
Collaboration for an accurate reproduction of the paired data.

The differential event rate is obtained by a convolution of the neutrino flux with the CEνNS cross
section

dRX,P

dTN
= AX,P(TN )

∫
dEν

dϕ

dEν

dσνN
dTN

, (11)

where
dσνN
dTN

refers to any of the expressions in Eq. (1) or Eqs. (5)–(8), and AX,P(TN ) is the

experiment-dependent efficiency (X stands for XENONnT and P for PandaX-4T) which has been
extracted from Refs. [41, 72] and Ref. [42] for XENONnT and PandaX-4T, respectively. The flux

of 8B solar neutrinos,
dϕ

dEν
, is taken from Refs. [73, 74] with the normalization defined in Ref. [45]

(5.46 × 106 cm−2 s−1). The data in Refs. [41, 42] is presented in bins of S2 (number of electrons,
Ne−) in the case of XENONnT (PandaX-4T). Therefore, the events per bin are given by

RX,P
i = ciEX,P

∫
i

dRX,P

dnX,P dnX,P , (12)

where the integral is performed over the size of bin i, while nX = S2 and nP = Ne− for the
case of XENONnT and PandaX-4T, respectively. Following the Collaborations, for XENONnT
we consider 3 bins in the range [120, 500] photoelectrons (PE), while for PandaX-4T we consider
8 bins in the range [4, 8] Ne− 3. Note that our simulations do not account for resolution effects
since no information about them is provided in the experimental papers. However, even without
smearing, we are able to reproduce reasonably well the predicted event rates. Even under the
same conditions (e.g. same assumptions on flux normalizations), we need to include the correction
factors ci in Eq. (12) in order to match our predictions with the best fit spectra presented in the
experimental papers, see the first panel of Fig. 2 in Ref. [41] for XENONnT and the upper panel
of Fig. 5 in Ref. [42] for PandaX-4T. These factors can be seen as effective efficiencies, included
because we are performing a simplified analysis compared to what is done by the Collaborations.
Indeed, we only use information on S2, while the experimental analyses rely on many more variables
that are fitted simultaneously in a correlated way. The inclusion of these factors has nonetheless
little effect on the NGI analyses, while in the case of the SM analyses it helped to better reproduce
the results from the experimental Collaborations. Going back to Eq. (12), EX,P is the exposure
at each experiment, i.e., 3.51 t×y for XENONnT and 1.04 t×y for PandaX-4T (US2), while the
differential event rates are expressed through a change of variables according to

dRX,P

dnX,P = dRX,P

dTN

dTN
dnX,P . (13)

3 These values correspond to a nuclear recoil energy range of [0.97, 5.10] keV in the case of XENONnT and [0.66,
1.19] keV for PandaX-4T.
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In the case of XENONnT, the translation between nuclear recoil energy and the S2 signal is carried
out through

nX = S2 = TN QX
y (TN )g2 , (14)

where g2 = 16.9 PE/electron and the charge yield QX
y (TN ) is taken from Ref. [75]. For PandaX-4T

we use instead

nP = Ne− = TN QP
y (TN ) , (15)

with the charge yield QP
y (TN ) given in Ref. [42].

The overall predicted number of events in a given bin i is eventually given by

NX,P
i = RX,P

i +
∑

k

Bk
i , (16)

where the spectra of the background components Bk
i are taken from Refs. [42, 72]. Regarding the

experimental data measured by the two Collaborations, DX,P
k , XENONnT has observed

∑
k DX

k =
37 events, accounting for both ionization and scintillation signals. In the case of PandaX-4T, 3
(332) events are observed for the paired (US2) signals. Our predictions are hence compared with
the data DX,P

k using

χ2
X,P = min

α,β⃗

{
2
(∑

k

NX,P
k − DX,P

k + DX,P
k ln

(
DX,P

k /NX,P
k

))
+ (α/σα)2 +

∑
i

(βi/σβi
)2
}

, (17)

where α is a nuisance parameter with σα = 12% uncertainty accounting for the 8B flux prediction,
and β⃗ and σβi

are the remaining nuisance parameters and uncertainties of the experiments. All
nuisance parameters are included as normalization factors on the components in Eq. (16). In
the case of XENONnT we include an uncertainty of 5% on our signal prediction related to the
fiducial volume. In addition, the background components receive the following uncertainties: a 4.8%
uncertainty for accidental coincidence (AC), a 50% uncertainty for the neutron-related background
and a 100% uncertainty for the electron recoil (ER) background, both being subleading compared
to AC. For PandaX-4T we use a 22% uncertainty on the signal prediction due to data selection
and interaction modelling. We further include uncertainties of 31% and 23% for the cathode
and micro-discharges (MD) background components. Finally, let us note that we also perform a
combined analysis of XENONnT and PandaX-4T data. In this case, the correlated uncertainty on
the neutrino flux is included only once.

In Fig. 1 we demonstrate the distributions of signal and background events as a function of the
number of ionized electrons, for PandaX-4T (left panel) and XENONnT (right panel). In the case of
PandaX-4T, the green histogram represents the radioactivity on the cathode electrode (CE) while
the micro-discharging background is summed over the cathode background in yellow. The magenta
histogram finally accounts for the CEνNS prediction plus both the CE and MD backgrounds, as
given by the experimental Collaboration. Our total prediction is given as a blue line, and has to
be compared to the magenta histogram. Experimental data are also shown together with their
error bars. In the case of XENONnT, the CEνNS signal is represented in light green on top of the
backgrounds, indicated by light purple (AC) and light blue (electron recoil). The neutron recoil
background is barely visible in the plot, but it is also included.

IV. RESULTS

In this section we present the results of our analyses first concerning SM physics (8B solar
neutrino flux and a determination of the weak mixing angle) in Sec. IVA and then for new light
mediators in Sec. IVB.
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FIG. 1: Distribution of signal and background fitted events for PandaX-4T (left panel) and
XENONnT (right panel). The colored histograms are given in the experimental papers, while the
blue lines are our predictions of CEνNS plus background events for the two analyses. The
measured events together with the error bars are also shown for each experiment.

A. SM physics: weak mixing angle and 8B flux

The experimental results announced by the XENONnT and PandaX-4T Collaborations allow for
a measurement of the 8B solar neutrino flux through its CEνNS-induced signal. Both Collaborations
claim agreement with the standard solar model prediction and with other dedicated solar neutrino
experiments, indicating a constraint of Φ8B

ν = (4.7+3.6
−2.3) × 106 cm−2 s−1 at 68% confidence level

(CL) in the case of XENONnT and Φ8B
ν = (8.4 ± 3.1) × 106 cm−2 s−1 at 68% CL for PandaX-4T,

obtained using a combined analysis of paired and US2 data. To test our statistical analysis, we also
extract the constraints on the 8B solar neutrino flux for both experiments separately, and from a
combined analysis. At this scope, we assume the flux-weighted CEνNS cross section as predicted
in the SM, fixing for this analysis sin2 θW = 0.23857. The reduced χ2-profiles are shown in the left
panel of Fig. 2: the green dashed curve corresponds to PandaX-4T, the blue dot-dashed one to
XENONnT, while the magenta plain one depicts the combined result. At 1σ CL our results read

Φ8B
ν = (7.7+7.0

−5.9) × 106 cm−2 s−1 (PandaX-4T), (18)

Φ8B
ν = (5.7+3.2

−2.8) × 106 cm−2 s−1 (XENONnT), (19)

Φ8B
ν = (6.1+2.8

−2.7) × 106 cm−2 s−1 (combined). (20)

Our result does not agree very well with the official result from PandaX-4T stated above.
However, since we use a reduced data set (only US2) a weaker result on the solar neutrino flux
could be expected. We verified, in any case, that for our best fit value the overall number of events
(we obtain 69) lies within the stated 1σ interval of the Collaboration for the US2-only analysis,
which is [42]: 92±34.

As anticipated in Sec. II, one relevant SM parameter entering the CEνNS cross section is the
weak mixing angle, sin2θW . The observation of CEνNS data at DM direct detection experiments
allow to determine this parameter at low energy, i.e., at a renormalization scale µ ≃ O(10) MeV,
corresponding to the typical momentum transfer exchanged in the process. A variation in the value
of sin2θW would affect the overall normalization of the CEνNS event rates. We perform a statistical
analysis, this time fixing Φ8B

ν = 5.46 × 106 cm−2 s−1 (but adding the associated 12% uncertainty),
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FIG. 2: Reduced χ2-profiles for the determination of the 8B solar neutrino flux (left) and of the
weak mixing angle (right) for the PandaX-4T (green dashed), XENONnT (blue dot-dashed) and
the combined (magenta plain) analyses. In the right plot, the vertical black dashed line indicates
the SM value from the RGE running in the MS renormalization scheme.

and we extract the following best fit values and 1σ uncertainties

sin2 θW = 0.30+0.16
−0.21 (PandaX-4T), (21)

sin2 θW = 0.25+0.09
−0.10 (XENONnT), (22)

sin2 θW = 0.26+0.08
−0.09 (combined). (23)

Figure 2 (right) shows the reduced χ2-profiles for the determination of the weak mixing angle, for
the two separate data sets and for the combined analysis. Moreover, we show in Fig. 3 the best fit
values together with the 1σ error bars, as a function of the renormalization scale. For comparison,
the plot additionally shows the RGE evolution in the SM (coral dashed line), calculated in the MS
renormalization scheme [76] as well as other existing constraints at different energy scales [77–81].
Let us note that a determination of sin2θW from recent direct detection data was already performed
in [53] leading to similar results in the case of XENONnT data. However, in the case of PandaX-4T
our result differs from Ref. [53]. This might be due to the fact that our Eq. (13) does not agree
with Eq. (7) in Ref. [53], since the charge yield Qy also depends on the nuclear recoil energy and
hence dTN /dn is not 1/Qy as assumed in this reference.

Complementarity with other CEνNS measurements is particularly evident, for instance those
from COHERENT CsI and liquid argon data [82], from the Dresden-II reactor experiment [83, 84],
represented in gray, and from a combination of different electroweak measurements [85]. Even
though not shown in the plot to avoid overcrowding the figure, other low-energy measurements have
been extracted from spallation source and reactor CEνNS data [63, 86, 87], also in combination with
data from atomic parity violation and parity-violating electron scattering on different nuclei [88,
89]. Sensitivities from elastic scattering off atomic electrons at IsoDAR [90], neutrino-electron
scattering events at SBND [91] and DUNE [92] further complete the picture of low-energy sin2θW

determinations. DM direct detection facilities, despite their different primary scientific goal, can
still provide valuable information on the value of the neutrino neutral-current interaction at low
energy. While the current error bars of the measurements at DM direct detection experiments are
still large compared to other determinations at higher energy scales, these novel measurements lie
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FIG. 3: Weak mixing angle running in the SM for the MS renormalization scheme (coral dashed
line) as a function of the renormalization scale. Our 1σ determinations are shown in green for
PandaX-4T, blue for XENONnT and magenta for the combined analysis. Measurements from
other experiments [64, 78–82, 84, 85] are also shown for comparison.

in a part of parameter space previously unexplored. Forthcoming data and improved statistics at
DM facilities will allow to extract the value of sin2θW at µ ≃ O(10) MeV with higher precision, in
full complementarity with dedicated CEνNS experiments.

B. Neutrino generalized interactions

Next we discuss the constraints obtained for new neutrino interactions in the presence of different
light mediators, as defined in Sec. II B. In these analyses, we have kept the value of the weak mixing
angle fixed at its SM value, sin2 θW = 0.23857 and the normalization of the 8B solar neutrino flux
Φ8B

ν = 5.46 × 106 cm−2 s−1.

The results are shown in Fig. 4, where we show the contours at 90% CL for XENONnT (upper
left panel), PandaX-4T (upper right panel), and for the combined analysis (lower panel). The
magenta, gold, red and green lines correspond to the analyses of tensor, axial, vector B-L, and
scalar interactions as introduced in Sec. II B. The light blue shaded region denotes the excluded
region in the case of universal vector interactions. We chose this format to highlight the fact that a
region in the form of a thin band remains allowed in this scenario in the case of the XENONnT and
the combined analysis. This degeneracy appears due to a destructive interference between the SM
and the new vector couplings in the weak nuclear charge. In the PandaX-4T analysis we expect this
degeneracy to appear below the currently excluded region once more statistics becomes available.
Moreover, this cancellation can not occur in the case of the B-L model, due to the particle charges
under the U(1)B−L symmetry. As expected, the bounds on the spin-dependent axial and tensor
mediators are much weaker than those for scalar and vector mediators.

In order to put our results into context, in Fig. 5 we compare our bounds with other existing
constraints on the same types of interactions. We show our constraints obtained from the combined
analysis of XENONnT + PandaX-4T (in blue, at 90% CL) for the scalar, vector universal, vector
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FIG. 4: The 90% CL exclusion limits for new neutrino generalized interactions with light
mediators obtained from the analysis of XENONnT data (upper left), PandaX-4T data (upper
right), and from the combined analysis (lower panel).

B-L and axial-vector interactions. Additionally, we show existing limits from other CEνNS data,
in particular COHERENT [82, 93], CONUS [94, 95], and CONNIE [96, 97]; from elastic neutrino-
electron scattering data at BOREXINO [98], CHARM-II [99] and TEXONO [99, 100]; from a
combined analysis of PandaX-4T, XENONnT and LZ electron recoil data [36, 101]; from beam-
dump and fixed-target experiments (including E141 [102], E137 [103], E774 [104], KEK [105],
Orsay [106–108], ν-CAL I [109–112], CHARM [113, 114], NOMAD [115], PS191 [116, 117], A1 [118]
and APEX [119]); from colliders (BaBar [120, 121] and LHCb [122]); from NA64 [123–125]. To
recast some of the bounds between the different interactions we used the DarkCast package [126,
127]. Note also that some of the bounds are a novel result in this work: we have recomputed the
COHERENT axial-vector bound following [82], however including only the analysis of CsI, since the
40Ar nucleus is even. The combined XENONnT + PandaX-4T + LZ EνES bounds for the scalar,
the universal vector and the axial-vector, not shown in [36], have also been computed specifically
for this work. Similarly, the TEXONO bound on the scalar interaction is a new result. Finally,
astrophysical and cosmological bounds are also particularly relevant for low-mass mediators. Even
though strongly model-dependent and thus requiring a tailored analysis, we indicate with Neff the
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FIG. 5: The 90% CL excluded regions for some interactions obtained from the combined analysis
of PandaX-4T and XENONnT data (blue): scalar (upper, left), axial-vector (upper, right), vector
B-L (lower, left) and universal vector (lower, right). Existing bounds from other searches are also
shown for comparison.

regions potentially in conflict with BBN [128–130] and CMB [131] and with SN1987A those in
conflict supernova [132–136] data.

As can be seen, for the case of scalar-mediated processes, the constraints extracted in this work
dominate for 6 < mS < 150 MeV, improving previous results from dedicated CEνNS experiments
such as CONUS, CONNIE and COHERENT, while for mS > 150 MeV the sensitivity becomes
similar to COHERENT. It is also noteworthy that the present sensitivities are the leading ones
among the CEνNS-based measurements in the region that is not in conflict with astrophysics. For
the case of axial-vector interactions, as previously noted, the nuclear spin-suppression leads to
poor sensitivities compared to e.g., the EνES-induced constraints from TEXONO, CHARM and
Borexino as well as to those coming from a combined analysis of electron recoils at PandaX-4T,
XENONnT and LZ. However, if the axial mediator coupling to quarks is assumed to be different
from the coupling to leptons, then the present results —although very weak— are dominating
in the mass range 6 < mA < 80 MeV, while for larger masses they eventually become similar
to COHERENT. Finally, focusing on the B-L and universal vector mediator models, the present
sensitivities are not improving upon existing constraints, though being almost competitive in some
regions of the parameter space. When compared to other CEνNS constraints like COHERENT,
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XENONnT and PandaX-4T offer a slight improvement in the range 0.1 < mV < 30 MeV (0.3 <
mV < 40 MeV) in the B-L (universal vector) case, in a region that is however in tension with
astrophysical observations.

V. CONCLUSIONS AND OUTLOOK

Indications of 8B solar neutrinos inducing CEνNS at DM direct detection experiments have
recently been reported. Motivated by these results, we have analyzed the first CEνNS data collected
by the PandaX-4T and XENONnT experiments. We have performed SM and new physics analyses
showing that these data can be used to determine the weak mixing angle and to place a bound
on the solar 8B neutrino flux. The obtained constraints on the weak mixing angle lie at a low
energy scale, falling between the Dresden-II and COHERENT measurements. In addition, we have
placed bounds on the mass and coupling of several light mediators, focusing on those with scalar,
vector (universal and B-L), axial-vector, and tensor interactions. We have found that even with
these first data we can place competitive bounds in some regions of parameter space, specially
in the case of scalar and vector interactions, complementing other experimental probes including
neutrino scattering data, beam dump and collider searches. In this paper we have focused on
universal interactions, i.e., assuming equal couplings for all neutrino species, charged leptons and
quarks. In these scenarios the bound is independent of the composition of the neutrino flux at the
detector. In a future work we plan to extend the analysis including searches with non-universal
and flavor-dependent couplings. More data is expected to be released in the future, from the DM
experiments analyzed in this paper and also from the LZ experiment, which will allow us to further
improve the bounds obtained here.
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[78] Qweak Collaboration, D. Androić et al., “Precision measurement of the weak charge of the proton,”
Nature 557 no. 7704, (2018) 207–211, arXiv:1905.08283 [nucl-ex].

[79] SLAC E158 Collaboration, P. L. Anthony et al., “Precision measurement of the weak mixing angle in
Moller scattering,” Phys. Rev. Lett. 95 (2005) 081601, arXiv:hep-ex/0504049.

[80] PVDIS Collaboration, D. Wang et al., “Measurement of parity violation in electron–quark
scattering,”Nature 506 no. 7486, (2014) 67–70.

[81] NuTeV Collaboration, G. P. Zeller et al., “A Precise Determination of Electroweak Parameters in
Neutrino Nucleon Scattering,”Phys. Rev. Lett. 88 (2002) 091802, arXiv:hep-ex/0110059. [Erratum:
Phys.Rev.Lett. 90, 239902 (2003)].

[82] V. De Romeri, O. G. Miranda, D. K. Papoulias, G. Sanchez Garcia, M. Tórtola, and J. W. F. Valle,
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