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Spin polarization and spin transport are common phenomena in many quantum systems.

Relativistic spin hydrodynamics provides an effective low-energy framework to describe

these processes in quantum many-body systems. The fundamental symmetry underlying

relativistic spin hydrodynamics is angular momentum conservation, which naturally leads

to inter-conversion between spin and orbital angular momenta. This inter-conversion is a

key feature of relativistic spin hydrodynamics, closely related to entropy production and in-

troducing ambiguity in the construction of constitutive relations. In this article, we present

a pedagogical introduction to relativistic spin hydrodynamics. We demonstrate how to de-

rive the constitutive relations by applying local thermodynamic laws and explore several

distinctive aspects of spin hydrodynamics. These include the pseudo-gauge ambiguity, the

behavior of the system in the presence of strong vorticity, and the challenges of modeling

the freeze-out of spin in heavy-ion collisions. We also outline some future prospects for spin

hydrodynamics.

I. INTRODUCTION

Spin is a fundamental property of particles arising from quantum mechanics, playing a central

role in numerous phenomena within the quantum regime. As a form of angular momentum, spin

naturally couples to rotation, allowing it to become polarized by rotational motion. Similarly, for
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a charged particle with nonzero spin, or a neutral particle with a non-trivial charge form factor,

spin can couple to an external magnetic field as well. Additionally, for a particle in motion (i.e.,

with finite momentum), its spin may couple to acceleration, electric fields, or gradients of external

potentials, such as a chemical potential and temperature. In the case of massless particles, the spin

state is specified by its helicity state, meaning it is intrinsically slaved to the particle’s motion. As

a result, spin can be manipulated by rotating fields, magnetic fields, electric fields, and a number of

other external influences. Conversely, detecting the spin of a particle provides invaluable insights

into the environment or the underlying dynamics of the system.

In heavy-ion collision physics, the primary interest lies in the creation of deconfined quark-

gluon matter, commonly referred to as the quark-gluon plasma (QGP) [1]. To uncover the prop-

erties of QGP in heavy-ion collision experiments, it is essential to design specific hadronic ob-

servables that are sensitive to particular features of the QGP. Since charged particles are typically

the easiest to detect, many observables rely on the charge of the hadrons. For instance, the to-

tal multiplicity of detected charged hadrons reflects the initial energy of the QGP. Meanwhile,

the anisotropy in the momentum-space distribution of charged hadrons corresponds to the initial

anisotropy in the spatial distribution of partons, leading to the well-known harmonic flow param-

eters [2]. By measuring these hadronic observables, we have revealed several novel properties of

the hot and dense matter created in heavy-ion collisions. One significant finding is that the QGP

must be extremely hot, with a typical temperature reaching 300-500 MeV at RHIC and LHC, in-

dicating an extremely large energy density. Additionally, the QGP medium is found to be strongly

interacting, with a very small shear viscosity to entropy density ratio η/s. This low ratio is re-

quired to explain the observed harmonic flow parameters [1]. In fact, the η/s of QGP is the lowest

among all known fluids.

Since 2017, it has been established that the spin degree of freedom can also be used to probe

the properties of the QGP [3]. This is achieved through measurements of the spin polarization

of spinful hadrons, such as hyperons and vector mesons [4–6]. Notably, it has been observed

that the Λ and Λ̄ hyperons can exhibit significant spin polarization at collision energies of tens of

GeV [3, 7–10]. Similarly, the φ and J/ψ mesons have been found to exhibit considerable spin

alignment [11, 12] 1. These discoveries open new avenues for studying QGP through the spin de-

gree of freedom. For instance, we now understand that the so-called global spin polarization (i.e.,

1 The spin alignment of a vector meson is quantified by the deviation of ρ00 from 1/3, where ρ00 is the 00-component

of the vector meson’s spin density matrix.
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the total amount of spin polarization with respect to the reaction plane) of hyperons arises from

angular momentum conservation through the formation of fluid vortices within the QGP: In non-

central heavy-ion collisions, the system possesses substantial orbital angular momentum, which

subsequently induces strong fluid vorticity in the QGP [13–15], thereby polarizing the spins of

quarks via spin-rotation coupling [16–32]. However, to fully understand the spin polarization phe-

nomena, a dynamical theory of spin polarization and spin transport in the hot medium is essential,

analogous to the necessity of a dynamical theory of the bulk medium for understanding harmonic

flows. Naturally, such a dynamical theory of spin transport could be derived from either kinetic

theory or hydrodynamic theory. In recent years, both spin kinetic theory and spin hydrodynamics

have made significant advancements. In this article, we will focus on spin hydrodynamics, while

we refer readers to Refs. [33] for a review of spin kinetic theory and to Refs. [34–41] for a review

of spin polarization phenomena in heavy-ion collisions.

Throughout this article, we use the natural units c = ~ = kB = 0 and the metric convention

ηµν = ηµν = diag(1,−1,−1,−1).

II. RELATIVISTIC HYDRODYNAMICS AS AN EFFECTIVE THEORY

Before we go into the discussion of spin hydrodynamics, let us first briefly review the general

structure of relativistic hydrodynamics from the perspective of effective field theory. Hydrody-

namic theory describes the low-energy behavior of interacting many-body systems, where only

conserved charge densities exhibit their dynamics. Since conserved charge densities do not van-

ish, they simply redistribute themselves in space according to their equations of motion (EOMs).

When expressed in a manner of spatial gradient expansion, these EOMs constitute the hydrody-

namic equations.

Let us consider the hydrodynamic theory of a system with spacetime translation symmetry and

a global U(1) symmetry. The corresponding conserved charge densities are the energy density

ε(x), momentum density πi(x), i = 1 − 3, and the U(1) charge density n(x). We want to derive

the dynamical equations for these conserved charge densities. Sometimes it is more convenient

to work with the potential variables conjugate to the charge densities. They are the temperature

T (x) (or its inverse β(x) = 1/T (x)), the fluid velocity uµ(x) normalized as uµuνηµν = 1, and

the chemical potential of n(x), µ(x). These conserved charge densities (and equivalently their

conjugates) are hydrodynamic variables in hydrodynamics. Our starting point is the conservation
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laws:

∂µΘ
µν = 0, (1)

∂µJ
µ = 0, (2)

where Θµν is the energy-momentum tensor and Jµ is theU(1) current. As an effective field theory,

we want to express Θµν and Jµ in terms of the conserved charged density (or equivalently, their

conjugates) and their various gradient orders. We assume spatial isotropy of the system, i.e., there

is no external forces breaking the SO(3) symmetry. The building blocks are the fluid velocity

uµ and various quantities that can be classified into different representations of SO(3) in the rest

frame of the fluid. Up to first order in gradients, these quantities are:

Scalar : ε, n, Dε,Dn, θ ≡ ∇ · u = ∂ · u,

Vector : Duµ, ∇µε,∇µn, ωµν ≡ −(1/2)(∇µuν −∇νuµ),

Tensor : σµν ≡ (1/2)[∇µuν +∇νuµ − (2/3)∆µνθ], (3)

whereD ≡ u ·∂ is the co-moving time derivative, θ is the expansion rate of the fluid, ∇µ = ∆µν∂
ν

is the spatial gradient operator with ∆µν ≡ ηµν − uµuν the spatial projector, σµν is the shear

tensor which is traceless, and ωµν is the vorticity tensor. Note that the co-moving time derivatives

will be eventually replaced by spatial gradients up on using the EOMs at leading order. Note

that the vorticity tensor transform the same way as a three-vector under proper three-rotations

(i.e., a three-rotation R with detR = 1) as it can be substituted by a three pseudo-vector ωµ ≡
−(1/2)ǫµνρσuνωρσ. Consequently, we can write down the most general structure decomposition
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up to O(∂) for Θµν and Jµ as follows 2:

Θµν = (a0 + bε0Dε+ bn0Dn+ bu0θ)u
µuν

+c0(u
µ∇νε+ uν∇µε) + d0(u

µ∇νn+ uν∇µn) + e0(u
µDuν + uνDuµ) + f0(u

µων + uνωµ)

+(g0 + hε0Dε+ hn0Dn+ hu0θ)∆
µν

+i0σ
µν

+j0(u
µ∇νε− uν∇µε) + k0(u

µ∇νn− uν∇µn) + l0(u
µDuν − uνDuµ) +m0(u

µων − uνωµ)

+n0ǫ
µνρσuρ∇σε+ o0ǫ

µνρσuρ∇σn+ p0ǫ
µνρσuρDuσ + q0ω

µν

+O(∂2), (4)

Jµ = (A0 +Bε
0Dε+Bn

0Dn+Bu
0 θ)u

µ + C0∇µε+D0∇µn + E0Du
µ + F0ω

µ +O(∂2), (5)

with all the coefficients (playing roles of the Wilson coefficients in effective field theory, as the

short-distance physics are encoded in these coefficients) functions of ε and n. They are con-

structed by decomposing first with respect to uµ and then with respect to different representation

of SO(3). In these decompositions, the terms with f0, m0, n0, o0, p0 in Θµν and F0 in Jµ as co-

efficients transform differently from Θµν and Jµ under parity (P), respectively, meaning that they

can appear only when the system contains parity violating contents. Under time reversal trans-

formation (T), all the terms of first-order gradients on the right-hand sides of Θµν and Jµ except

for terms with coefficients f0, m0, n0, o0, p0, F0 transform differently from Θµν and Jµ, respec-

tively. This means that these terms must be dissipative (that is to say, these terms are responsible

for entropy generation in the fluid), while terms with coefficients f0, m0, n0, o0, p0, F0 can appear

without generating entropy, i.e., they could arise in ideal hydrodynamics despite they are at first

order in gradients. The terms with coefficients f0, m0, n0, o0, p0, F0 are thus especially interest-

ing. In fact, some of them have been intensively studied and it was found that they contain very

rich quantum phenomena (usually dubbed chiral anomalous transports) closely related to chiral

anomaly of the system if the underlying physics is governed by quantum gauge theory. Recently,

such chiral anomalous transports have been an active subjects in condensed matter physics, as-

trophysics, and heavy-ion collision physics; see Refs. [37, 42–46] for recently reviews with a

focus on heavy-ion collision physics. Similarly, we could also examine the balance of right-

hand and left-hand sides of Eqs. (4)-(5) under charge conjugation (C) transformation. The terms

2 One can start without including the co-moving time-derivative terms as those terms are eventually replaced by the

spatial gradients up on using leading-order hydrodynamic EOMs. But we keep them to make the discussions more

transparent.
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with coefficients bn0 , d0, h
n
0 , k0, o0, A0, B

ε
0, B

u
0 , C0, E0, F0 must vanish if there is no environmental

charge-conjugation violation (Naturally, the presence of a nonzero charge density n violates the C

symmetry and allows these terms to present). The antisymmetric terms in Θµν are also particularly

interesting. To reveal their meaning, we consider the angular momentum conservation law:

∂µM
µνρ = 0, (6)

where Mµνρ is the angular momentum tensor

Mµνρ = xνΘµρ − xρΘµν + Σµνρ, (7)

with Σµνρ the spin tensor. We can re-write Eq. (6) in the following form:

∂µΣ
µνρ = Θρν −Θνρ. (8)

Thus the antisymmetric part of Θµν provide a source for the generation of spin (one may more

clearly see this by integrating Eq. (8) over space). This will be the focus of this article and we will

come back to it from the next section. In the rest of this section, for the purpose of demonstrating

the construction of the hydrodynamic theory, we will simply assume that the system does not

possess a spin tenor, so that Θµν is symmetric, Θµν = Θνµ, and will assume that there is no

environmental parity violation, so that terms with coefficients f0, m0, n0, o0, p0, F0 must vanish.

Thus, the most general decomposition of Θµν and Jµ up to the first order in gradients into different

components with respect to uµ, and subsequently, for the components orthogonal to uµ, with

respect to different irreducible tensor structures under SO(3) are as follows:

Θµν = (a0 + bε0Dε+ bn0Dn+ bu0θ)u
µuν

+c0(u
µ∇νε+ uν∇µε) + d0(u

µ∇νn+ uν∇µn) + e0(u
µDuν + uνDuµ)

+(g0 + hε0Dε+ hn0Dn+ hu0θ)∆
µν

+i0σ
µν

+O(∂2), (9)

Jµ = (A0 +Bε
0Dε+Bn

0Dn+Bu
0 θ)u

µ + C0∇µε+D0∇µn+ E0Du
µ +O(∂2). (10)

Up to this point, the expressions (9)-(10) are merely a parametrization of Θµν and Jµ, and

such a parametrization is ambiguous at O(∂) order (and higher orders in gradients). To see this,
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we consider to re-express Θµν and Jµ in terms of a redefinition of the hydrodynamic variables

ε′, n′, u′µ which differ from ε, n, uµ by O(∂)-order shifts:

ε′ = ε+ δε, n′ = n + δn, u′µ = uµ + δuµ, (11)

where δε, δn, δuµ are order-O(∂) quantities and uµδu
µ = O(∂2) so that u′2 = 1 is kept at O(∂).

In terms of the primed variables, we have

Θµν =

[

a′0 −
(

∂a0
∂ε

δε+
∂a0
∂n

δn

)

+ bε0Dε+ bn0Dn+ bu0θ

]

u′µu′ν

+c0(u
µ∇νε+ uν∇µε) + d0(u

µ∇νn+ uν∇µn) + e0(u
µDuν + uνDuµ) + (g0 − a0)(δu

µuν + uµδuν)

+

[

g′0 −
(

∂g0
∂ε

δε+
∂g0
∂n

δn

)

+ hε0Dε+ hn0Dn+ hu0θ

]

∆′µν

+i0σ
µν +O(∂2), (12)

Jµ =

[

A′
0 −

(

∂A0

∂ε
δε+

∂A0

∂n
δn

)

+Bε
0Dε+Bn

0Dn+Bu
0 θ

]

u′µ

−A0δu
µ + C0∇µε+D0∇µn+ E0Du

µ

+O(∂2), (13)

where a′0 = a0(ε
′, n′) and similarly for g′0, A

′
0 and all the second order terms are omitted. By

observing the expressions in the three square brackets, one can realize that, by suitably choosing

δε and δn, one can eliminate the first-order terms in two of the three square brackets. For example,

one can solve out δε and δn by requiring the first-order terms in the square brackets in Θµν to

vanish. But it is much more convenient to eliminate the first-order terms in the coefficients of

u′µu′ν in Θµν and u′µ in Jµ. Similarly, by suitably choosing δuµ, one can eliminate either the

second line in Θµν (such a choice is called Landau-Lifshitz frame for uµ) or the second line in Jµ

(such a choice is called Eckart frame for uµ). Therefore, we could always choose the following

simpler forms for Θµν and Jµ (Landau-Lifshitz frame):

Θµν = a0u
µuν + (g0 + hε0Dε+ hn0Dn+ hu0θ)∆

µν + i0σ
µν +O(∂2), (14)

Jµ = A0u
µ + C0∇µε+D0∇µn + E0Du

µ +O(∂2). (15)

Contracting with uµ, we can identify that a0 = uµuνΘ
µν which is the local energy density ε and

A0 = u · J which is the local U(1) charge density n. [Sometimes, this is also considered as the

matching condition because this means that uµuνΘ
µν = uµuνΘ

µν
(0) and uµJ

µ = uµJ
µ
(0) with Θµν

(0)

and Jµ
(0) the zeroth order energy-momentum tensor and charge current.]
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Let us first consider the zeroth order terms which, as we have already discussed, correspond to

ideal hydrodynamics:

Θµν
(0) = εuµuν + g0∆

µν , (16)

Jµ
(0) = nuµ. (17)

In the rest frame of the fluid, uµ = (1, 0), it becomes Θµν
(0) = diag(ε,−g0,−g0,−g0) which

identifies −g0 to be the thermodynamic pressure P . At zeroth order, the conservation laws read

(ε+ P )Duµ −∇µP = 0, (18)

Dε+ (ε+ P )θ = 0, (19)

Dn+ nθ = 0. (20)

To close these equations, we need to know the thermodynamic relation among P, ε, n, that is, the

equation of state, P = P (ε, n).

Let us then consider the first-order terms which correspond to dissipative hydrodynamics. From

Eqs. (18)-(20), we notice that we could replace Dε and Dn in the first order terms by −(ε + P )θ

and −nθ and Duµ by ∇µP/(ε + P ). This allows us to re-write energy-momentum tensor and

charge current as:

Θµν = εuµuν − (P + h0θ)∆
µν + i0σ

µν +O(∂2), (21)

Jµ = nuµ + C ′
0∇µε+D′

0∇µn +O(∂2), (22)

with h0 = (ε + P )hε0 + nhn0 − hu0 , C ′
0 = C0 − E0 (∂P/∂ε)n /(ε + P ), and C0 = D0 −

E0 (∂P/∂n)ε /(ε + P ). Further constraints can be imposed from the laws of local thermody-

namics. For a fluid at rest, we have the first law of thermodynamics as

Tds+ µdn = dε, (23)

Ts+ µn = ε+ P, (24)

with s the entropy density. To proceed, we propose the covariant generalization of the second one

(the Gibbs-Duhem relation):

sµ = Pβµ +Θµνβν − αJµ, (25)

with βµ = βuµ (β = 1/T ), α = µ/T , and sµ the entropy current such that u · s = s. The

divergence of sµ (multiplied by T ) can be directly calculated,

T∂µs
µ = Θµν

(1)∇µuν − TJµ
(1)∇µα. (26)
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The second law of local thermodynamics requires that T∂µs
µ ≥ 0 for any configurations of veloc-

ity field uµ, temperature T , and chemical potential µ, which imposes the following constraints:

h0 = −ζ ≤ 0, i0 = 2η ≥ 0, Jµ
(1) = σ∇µα, (27)

where ζ and η are the bulk and shear viscosities, and σ the charge conductivity. This also shows

that the coefficients C ′
0 and D′

0 are fixed in such a way that C ′
0∇µε+D′

0∇µn = σ∇µα. The EOMs

of first-order dissipative hydrodynamics then read

(ε+ P − ζθ)Duµ −∇µ(P − ζθ) + 2η∆µ
ν∂ρσ

νρ = 0 , (28)

Dε+ (ε+ P − ζθ)θ − 2ησµνσ
µν = 0 , (29)

Dn+ nθ + σ∇2α = 0. (30)

The first equation is the relativistic Navier-Stokes equation. The above procedure can continue

to higher order in gradients and will give us higher-order hydrodynamics. We, however, will not

discuss these more complicated situation. The readers can find discussions in Refs. [47–51].

III. CONSTRUCTION OF RELATIVISTIC SPIN HYDRODYNAMICS

With the above preparation, we now discuss the construction of relativistic spin hydrody-

namics, in which the conservation of angular momentum is explicitly encoded within a (quasi)-

hydrodynamic framework. The fundamental conservation laws are energy-momentum conserva-

tion (1) and angular momentum conservation (8). Before delving into the detailed construction,

we note that if we assign the spin density Sµν = uρΣ
ρµν as a dynamic variable in our frame-

work, equation Eq. (8) means that it is generally not conserved. This reflects the fact that spin

angular momentum can be transformed into orbital angular momentum, thus disqualifying it as

a true hydrodynamic mode. Consequently, spin hydrodynamics will not be a strict hydrody-

namic theory for gapless modes. Instead, it should be categorized as quasi-hydrodynamics, where

the low-energy dynamic variables comprise true hydrodynamic modes and some gapped modes

(quasi-hydrodynamic modes) whose gap in the low-momentum region is parametrically small

compared to other microscopic modes (the hard modes of the system) [52]. This results in a spec-

trum separation; for physics at energy scales comparable to these modes, we can only consider

the quasi-hydrodynamic modes alongside the true hydrodynamic modes. The so-called general-

ized hydrodynamics [53] and Hydro+ [54] near the QCD critical point fall into this category. The
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spin hydrodynamics we are going to discuss also belongs to this type of theory. This framework

requires that spin excitations, despite being gapped, remain low-energy excitations compared to

other microscopic modes [52]. For instance, if the system contains massive fermions, the spins

of these fermions are hard to relax, because the spin-orbit coupling is inversely suppressed by the

mass of the fermions compared to typical energy transfer [55–57]. Thus, these spins are quasi-

conserved and we can formulate a quasi-hydrodynamic theory for it, which is called the spin

hydrodynamics.

We consider a charge neutral system such as the quark gluon plasma or usual electric plasma

in which some of constituent particles are spinful particles. The symmetry we are considering are

the spacetime translation symmetry and Lorentz symmetry. They lead to the energy-momentum

conservation and angular momentum conservation as given by Eq. (1) and Eq. (8). Now the

spin tensor Σµρσ plays the role of the charge current Jµ and we could write it as Σµρσ = Sρσuµ +

higher order terms with the spin density Sρσ playing similar role of charge density n in Eq. (22).

To proceed, we need to choose suitable power counting scheme for all the (quasi-)hydrodynamic

variables. If we are considering the QGP in heavy ion collisions, from the measurements of global

spin polarization of hyperons, we can know that the spin density in QGP should be small because

the hyperon spin polarization is only about a few percent. Thus, it is reasonable to assume the spin

density Sρσ to be parametrically smaller than the true hydrodynamic modes described by variables

ε and uµ. Thus, let us take the following power counting scheme:

ε, P, T, uµ ∼ O(1), (31)

Sρσ ∼ O(∂). (32)

Analogous to that chemical potential µ is conjugate to charge density n, we can introduce the spin

potential µρσ to be conjugate thermodynamically to spin density Sρσ and propose the first law for

local thermodynamics as (analogous to Eq. (23)):

Tds+ 1
2
µµνdS

µν = dε, (33)

Ts+ 1
2
µµνS

µν = ε+ P. (34)

Following the discussions about the fluid local frame, we realize that the same discussions are still

valid for the symmetric part of the energy-momentum tensor and thus we still choose the definition

of uµ such that it is the eigenvector of the symmetric part of the energy-momentum tensor, Θµν
s
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(we still call it the Landau-Lifshitz frame) 3:

Θµν
s uν = εuµ. (35)

Since the EOM for spin density involves only the antisymmetric part of the energy-momentum

tensor, Θµν
a , the symmetric part, Θµν

s , still takes the same tensor decomposition upto the first order

in gradients as Eq. (21):

Θµν
s = εuµuν − (P − ζθ)∆µν + 2ησµν +O(∂2). (36)

To determine the form of Θµν
a , we again ultilize the second law of local thermodynamics. The

covariant entropy current reads (an analogue of Eq. (25))

sµ = Pβµ +Θµνβν −
1

2
αρσΣ

µρσ, (37)

with αρσ = µρσ/T . The production rate of entropy then reads

T∂µs
µ = Θµν

s(1)∂(µuν) +Θµν
a

(

µµν + T∂[µβν]
)

+O(∂3). (38)

The semi-positiveness of the first term on the right-hand side is already guaranteed when both bulk

and shear viscosities are semi-positive. The requirement of the semi-positiveness of the second

term gives the constitutive relation for Θµν
a at O(∂) order [58]:

Θµν
a = qµuν − qνuµ + φµν , (39)

qµ = λ [β∇µT +Duµ − 2µµνuν ] , (40)

φµν = ηs∆
µρ∆νσ (µρσ − T̟ρσ) . (41)

The quantity

̟µν = (1/2) (∂νβµ − ∂µβν) (42)

is called the thermal vorticity tensor. The quantities λ and ηs must be semi-positive to guarantee the

semi-positiveness of entropy production. They are called boost heat conductivity and rotational

3 Since Sρσ is counted as O(∂) quantities, the term Sρσuµ is unchanged at O(∂) under a re-definition of uµ →

uµ + δuµ with δuµ ∼ O(∂). Therefore, Eq. (35) is automatically satisfied at O(∂) up on using the zeroth-order

EOM for uµ [58]. But when there appear other conserved charges, such as a global U(1) charge, Eq. (35) is a

proposal to fix the local rest frame of the fluid.
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viscosity, respectively [58]. With these constitutive relations, we obtain the spin hydrodynamic

equations up to O(∂2) order:

(ε+ P − ζθ)Duµ −∇µ(P − ζθ) + 2η∆µ
ν∂ρσ

νρ + q · ∂uµ −∆µ
νDq

ν − qµθ +∆µ
ρ∂νφ

νρ = 0 , (43)

Dε+ (ε+ P − ζθ)θ − 2ησµνσ
µν + ∂ · q + qµDu

µ − φµνωµν = 0 , (44)

DSρσ + Sρσθ + 2Θρσ
a = 0. (45)

In this section, we present a detailed derivation of the constitutive relations up to first order

in gradients for relativistic spin hydrodynamics. For related discussions following a similar ap-

proach, see, for example, Refs.[52, 59–68]. Other methodologies for deriving and analyzing the

constitutive relations of spin hydrodynamics have also discussed in literature, including utiliz-

ing the hydrostatic partition function with constraints from the entropy current and Onsager rela-

tions [69, 70], using local equilibrium and non-equilibrium statistical operators [63, 67, 71–73],

and employing kinetic theories [66, 74–84]. Relativistic spin hydrodynamics has become a vibrant

area of research, attracting intense discussions in recent years. In the following section, we will

explore some of these developments; further insights can be found in, e.g., Refs. [85–99].

IV. DISCUSSIONS

We have developed spin hydrodynamics based on local thermodynamic laws. Spin hydrody-

namics exhibits several novel features that differ significantly from those found in conventional

relativistic hydrodynamics for other types of conservation laws (e.g., the energy-momentum con-

servation and baryon number conservation). In this section, we aim to explore and discuss some

of these intriguing characteristics.

A. Pseudo-gauge ambiguity

The definition of a conserved current is not unique. One example is the magnetization current

and dipole charge density. Let Jµ = (ρ,J) represent the conserved conduction electric current.

For a polarizable and magnetizable material, the total charge density and electric current are given

by ρ̃ = ρ+∇ ·P and J̃ = J +∇×M , respectively, where P is the electric dipole density, and

M is the magnetization density. In covariant form, we have:

J̃µ = Jµ + ∂νMµν with Mµν = −Mνµ. (46)
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Obviously, the total current J̃µ is conserved if the conduction current Jµ is conserved, and the

total electric charge remains unchanged provided the surface dipole density vanishes. A trans-

formation of a conserved current that preserves both the original conservation law and the total

conserved charge is called a pseudo-gauge transformation. The above example demonstrates

that the total current and the conduction current differ by a pseudo-gauge transformation (with

the magnetization Mµν serving as the pseudo-gauge field). This example also highlights that a

pseudo-gauge transformation is not a true gauge transformation, as it alters the physical content of

the transformed current. Further insight about the pseudo-gauge transformation can be gained by

examining the Maxwell equation:

∂µF
µν = J̃ν . (47)

One could subtract −∂ρMνρ from both sides and find

∂µH
µν = Jν , (48)

where the new field strength tensor is defined as Hµν ≡ F µν + Mµν . This demonstrates that,

without imposing additional constraints, the two sets of fields, (F µν , J̃µ) and (Hµν , Jµ), describe

the same physical laws, and one can freely choose which set to use. (If further constraints are

imposed—such as the Bianchi equation, ∂[µFµν] = 0, which is not preserved under a general

pseudo-gauge transformation—then only certain pseudo-gauges that respect the Bianchi equation

are permitted.)

Similarly, let us consider angular momentum conservation (note the analogy with Eq. (48),

where Σµνρ and Θρν −Θνρ play roles analogous to Hµν and Jµ in Eq. (48)):

∂µΣ
µνρ = Θρν −Θνρ, (49)

which is preserved under the transformation

Σµρσ → Σ̃µρσ ≡ Σµρσ − Φµρσ, (50)

Θµν → Θ̃µν ≡ Θµν +
1

2
∂λΦ

λµν , (51)

with Φλµν = −Φλνµ being an arbitrary local field. However, this transformation violates the

conservation law of the energy-momentum tensor. It can be modified into the following form:

Σµρσ → Σ̃µρσ ≡ Σµρσ − Φµρσ, (52)

Θµν → Θ̃µν ≡ Θµν +
1

2
∂λ

(

Φλµν − Φµλν − Φνλµ
)

, (53)
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which preserves both Eq. (49) and Eq. (1). Given a spacelike hypersurface Ξ, the total energy-

momentum and total angular momentum across Ξ are

P ν =

∫

dΞµΘ
µν , (54)

Mρσ =

∫

dΞµM
µρσ =

∫

dΞµ (x
ρΘµσ − xσΘµρ + Σµρσ) . (55)

One can check that P µ and Mρσ are invariant under pseudo-gauge transformation (52) and (53) if

the pseudo-gauge field Φµρσ vanishes at the boundary of Ξ 4.

One consequence of the existence of the pseudo-gauge transformation is the freedom to choose

the symmetry properties of the spin tensor. To illustrate this, we consider an example in which we

aim to transform a general spin tensor Σµρσ = −Σµσρ into a completely antisymmetric form. We

can choose Φµρσ = Σ(µρ)σ − 1
2
Σσµρ. After applying the pseudo-gauge transformation, this yields:

Σµρσ → Σ̃µρσ =
1

2
(Σµρσ − Σρµσ + Σσµρ) , (56)

Θµν → Θ̃µν = Θµν +
1

4
∂λ

(

3Σνµλ + Σµνλ − Σλνµ
)

. (57)

Note that such-obtained Σ̃µρσ is totally antisymmetric, so we can parameterize it as

Σ̃µρσ = −ǫµρσν S̃ν , (58)

with S̃µ the corresponding spin (pseudo)vector. The spin density tensor is thus S̃µν = −ǫµνρσuρS̃σ.

The main difference between this spin density tensor and the one used in Section III is that S̃µν

contains three degrees of freedom corresponding to the three spatial spin vectors, whereas Sµν has

six degrees of freedom, with three for spatial spin and three for boost. Thus, in some cases, it

is more convenient to use Σ̃µρσ to construct the spin hydrodynamics. By following a procedure

similar to that adopted in Section III, we can derive the constitutive relations in this context. In

doing so, we decompose S̃µ into S̃µ = σµ + n5u
µ, where σµ represents the spatial spin with the

condition σ · u = 0, and n5 is a pseudoscalar field (hence the subscript 5). We also decompose

Θ̃µν into:

Θ̃µν = εuµuν − P∆µν + Θ̃µν
s(1) + q̃µuν − q̃νuµ + φ̃µν , (59)

4 This can be checked by noting that for Aλµν = −Aµλν we have
∫

dΞµ∂λA
λµν =

∫

dΞµ∂
⊥

λ Aλµν +
∫

dΞnµnλn ·

∂Aλµν =
∫

dΞµ∂
⊥

λ Aλµν with nµ the norm of Ξ and ∂⊥

λ = ∂λ − nλn · ∂. Then one can use the Gauss theorem to

transform it to an integral over the boundary of Ξ.
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where, as we did in Section III, we have assumed Landau-Lifshitz frame

Θ̃µν
s uν = εuµ, (60)

so that Θ̃µν
s(1) is purely transverse to uµ. It is important to note that, although we use the same

symbols ε, P , and uµ as in Section III, their actual values may differ since the energy-momentum

tensors and spin tensors in these two cases are different (but connected by the pseudo-gauge trans-

formations (56) and (57)). We adopt a power counting scheme similar to the one we chose in

Section III:

ε, P, T, uµ ∼ O(1), (61)

S̃µ, q̃µ, φ̃µν ∼ O(∂). (62)

Using the same form for the entropy current and first law for local thermodynamics presented in

Section III, one can then find the divergence of the entropy current to be

T∂µs
µ = Θ̃µν

s(1)∂(µuν) + Θ̃µν
a

(

µ̃µν + T∂[µβν]
)

+O(∂3). (63)

We note that in deriving this result, we have utilized the fact that contracting the equation of

motion (49) with uρ reveals that q̃µ is not an independent current, but is determined by S̃µ through

the following relation:

q̃µ = −1

2
ǫµνρσuν∇ρS̃σ. (64)

This is because, when the spin tensor is completely antisymmetric, the components responsible for

boost are gauged away, meaning that the corresponding torque for the boost in the antisymmetric

part of the energy-momentum tensor cannot be an independent current either. Due to this relation,

we find that n5 = S̃ · u is actually an O(∂3) quantity (and thus does not appear on the right-hand

side of Eq. (63)), as can be inferred from the entropy production rate. Therefore, from Eq. (63),

we derive the constitutive relations for the spin hydrodynamics with a completely antisymmetric

spin tensor as follows [52]:

Θ̃µν
s(1) = ζθ∆µν + 2ησµν , (65)

Θ̃µν
a(1) = φ̃µν

(1) = ηs∆
µρ∆νσ (µρσ − T̟ρσ) . (66)

Although these relations take the same form as those obtained in Section III, it is important to

note that they apply specifically to the pseudo-gauge of a totally antisymmetric spin tensor. These

relations are particularly convenient for describing the evolution of spatial spin degrees of freedom.
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Thus, we see that choosing different forms for the spin tensor (loosely referred to as different

pseudo-gauges) leads to different forms for the constitutive relations. In an extreme case, one

might even select Φµρσ = Σµρσ , which completely eliminates the spin tensor and renders the

energy-momentum tensor totally symmetric (this choice is commonly referred to as the Belinfante

gauge [100–102]). While this may seem to eliminate all information about spin in hydrodynamics,

the energy density, viscous tensors, and heat current remain influenced by spin, meaning that

the dynamics of spin are still embedded within those quantities. For discussions regarding the

transformation from canonical to Belinfante gauges, see Refs. [59, 61, 65, 88]. Additionally, other

pseudo-gauges have been employed and discussed in the context of spin hydrodynamics [75, 76,

78, 103–106].

B. Spin hydrodynamics for strong vorticity

The power counting scheme employed in the previous discussions is motivated by the obser-

vation that, at global equilibrium, the spin potential µµν is determined by the thermal vorticity

̟µν = (∂νβµ − ∂µβν)/2, which is naturally assumed to be an O(∂) quantity. However, this

assumption may not hold true because global equilibrium allows for arbitrarily large rotations

(vorticity). When the vorticity is large, the assignment ̟µν ∼ O(∂) becomes inadequate; instead,

it is more appropriate to consider that ̟µν ∼ O(1). We will explore this situation in this sub-

section, following closely discussions in Ref. [62]. Before going into the details, it is useful to

compare spin hydrodynamics with magnetohydrodynamics (MHD), where the magnetic field is

treated as an O(1) quantity; See Ref. [107] for a review of relativistic MHD.

MHD describes the coupled evolution of fluid energy-momentum (or temperature and veloc-

ity) and the electromagnetic field in the low-energy and long-wavelength regime. The fundamental

equations consist of the conservation laws for the energy-momentum tensor and Maxwell’s equa-

tions. Due to the screening effect, electric fields within the fluid are gapped and are parametrically

small compared to the magnetic field. This renders the electric field not an active mode in the

low-energy, long-wavelength regime. In contrast, there is no screening of the magnetic field, al-

lowing it to exhibit its own dynamics even in this regime. Consequently, the magnetic field can

be large and is treated as an O(1) quantity, despite the fact that B = ∇×A involves one spatial

gradient. The presence of an O(1) magnetic field breaks the SO(3) symmetry in the constitutive

relations for Θµν , introducing anisotropy even in ideal hydrodynamics. Specifically, we can define
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a normalized vector bµ = Bµ/B, where B =
√

−BµBµ, satisfying b2 = −1 and b · u = 0,

as an additional building block for the hydrodynamic constitutive relations. For example, for a

partiy-even and charge neutral fluid, the energy-momentum tensor can be decomposed into

Θµν = εuµuν − P⊥Ξ
µν + P‖b

µbν +Θµν
(1), (67)

where Ξµν = ∆µν + bνbν is a projector that is transverse to both uµ and bµ. The terms P⊥ and P‖

represent the pressures in the directions transverse and parallel to the magnetic field, respectively.

Note that when we allow an environmental parity violation (e.g., when there is a density imbalance

between right- and left-hand particles in the fluid) and finite charge density, an term u(µbν) can

appear at zeroth order. The term Θµν
(1) (which is assumed to be symmetric since the spin degree of

freedom is typically disregarded in MHD) denotes a collection of terms that are at least of order

O(∂) in the gradient expansion and consistent with Onsager relations. For a parity-even fluid, all

such terms are expressed as Θµν
(1) =

∑7
i=1 λiη

µνρσ
i ∇ρuσ, where λi are the corresponding transport

coefficients [108–110].

ηµνρσ1 = bµbνbρbσ, (68a)

ηµνρσ2 = ΞµνΞρσ, (68b)

ηµνρσ3 = −Ξµνbρbσ − Ξρσbµbν , (68c)

ηµνρσ4 = −2
[

b(µΞν)ρbσ + b(µΞν)σbρ
]

, (68d)

ηµνρσ5 = 2Ξρ(µΞν)σ − ΞµνΞρσ, (68e)

ηµνρσ6 = −b(µbν)ρbσ − b(µbν)σbρ, (68f)

ηµνρσ7 = Ξρ(µbν)σ + Ξσ(µbν)ρ, (68g)

where bµν = ǫµνρσuρbσ is a cross projector which appears only when charge-conjugation symmetry

is violated (e.g., when a net charge density is presented).

Similar to the discussions above regarding MHD, we can consider a scenario for spin hydro-

dynamics where the vorticity is treated as zeroth order in gradients, while the gradients of other

thermodynamic quantities are treated as first order. In line with MHD, this framework has been

referred to as gyrohydrodynamics in Ref. [62]. To simplify the notation, we reuse bµ to denote the

unit vector along the vorticity:

bµ = ̟µ/
√

−̟µ̟µ = ωµ/
√

−ωµωµ, (69)
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with ̟µ = −ǫµνρσuν∂ρβσ/2 = βωµ the thermal vorticity vector. We choose the pesudo-gauge so

that the spin tensor is totally antisymmetric. Using uµ, bµ as well as gµν , ǫµνρσ as building blocks,

we can decompose Θµν and Σµνρ into the following irreducible forms:

Θµν = εuµuν − P⊥Ξ
µν + P‖b

µbν + P×b
µν + qµuν − uµqν +Θµν

s(1) + φµν , (70)

Σµνρ = −ǫµνρλSλ = −ǫµνρλ(n5uλ − S‖bλ + S⊥λ), (71)

where P⊥,‖,× represent pressures (which will be counted as O(1) quantities in gradient expansion)

in different directions, whose physical meaning will become clear shortly. The quantity S‖ = −b·S
denotes the spin component in the direction of the vorticity, while Sµ

⊥ = ΞµνSν denotes the spin

component transverse to the vorticity. As before, we have chosen the Landau-Lifshitz frame, with

qµ, Θµν
s(1), φ

µν , and Sµ
⊥ all transverse to uµ. Note again that, with this fully antisymmetric choice

of spin tensor, the qµ vector is no longer independent but is determined by Sµ through Eq. (64).

The power counting scheme is such that S‖ is counted as order one, while φµν = −φνµ, Sµ
⊥,

n5, and qµ (see Eq. (64)) are counted as being at least O(∂). Additionally, we will count Sµ as

O(~) (since spin is totally quantum in nature) in comparison to other thermodynamic quantities,

which can appear even at the classical level and are therefore assigned O(~0). This allows for a

double expansion in both ∂ and ~. For the entropy current, we can write sµ = suµ + sµ(1) and use

still Eq. (33). It is straightforward to derive the divergence of the entropy current, and after some

calculations, one finds that up to O(~∂2, ∂3) [62]:

∂µs
µ = [s− β (ε+ P⊥)] θ − (P‖ − P⊥ − µ‖S‖)b

µbν∂µβν + P×b
µν(∂µβν + βµµν)

+Θµν
s(1)∂(µβν) + φµν(∂[µβν] + βµµν) + ∂µ

(

sµ(1) − βµµn5

)

+O(~∂2, ∂3). (72)

The first line gives the zero-order contribution to the entropy production which is expected to

vanish so that they represent the non-dissipative contributions. This gives

ε+ P⊥ = Ts , P‖ = P⊥ + µ‖S‖ , P× = 0. (73)

The first relation is simply the Gibbs-Duhem relation, indicating that P⊥ can be interpreted as the

thermodynamic pressure. The second relation shows that the pressure along the vorticity direction

differs from the thermodynamic pressure by an amount due to spin polarization µ‖S‖. This term

is very similar to the MB term in magnetohydrodynamic constitutive relation. The third relation

shows that at leading order there is no spin torque.
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At O(∂) order, the requirement of a semi-positive entropy production gives that

Θµν
s(1) = Tηµνρσ∂(ρβσ) + Tξµνρσ(∂[ρβσ] + βµρσ), (74)

φµν = Tγµνρσ(∂[ρβσ] + βµρσ) + Tξ′µνρσ∂(ρβσ), (75)

sµ(1) = βµµn5, (76)

where ηµνρσ and γµνρσ are the usual and rotational viscous tensors representing the response of the

symmetric and antisymmetric parts of the energy-momentum tenor to fluid shear and expansion

and the difference between vorticity and spin potential, and ξµνρσ and ξ′µνρσ are two cross viscous

tensors. Note that the cross viscous tensors are not independent from each other but inter-related

according to Onsager’s reciprocal principle, ξ′µνρσ(b) = ξρσµν(−b). Decomposing these tensors

into irreducible structures, one obtains a number of new transport coefficients (viscosities) that

characterize the response of the fluid to gradients of fluid velocity and spin potential [62]:

ηµνρσ = ζ⊥Ξ
µνΞρσ + ζ‖b

µbνbρbσ + ζ×
(

bµbνΞρσ + Ξµνbρbσ
)

+η⊥
(

ΞµρΞνσ + ΞµσΞνρ − ΞµνΞρσ
)

+ 2η‖
(

bµΞν(ρbσ) + bνΞµ(ρbσ)
)

+2ηH⊥

(

Ξµ(ρbσ)ν + Ξν(ρbσ)µ
)

+ 2ηH‖

(

bµbν(ρbσ) + bνbµ(ρbσ)
)

, (77)

γµνρσ = γ⊥
(

ΞµρΞνσ − ΞµσΞνρ
)

+ 2γ‖
(

bµΞν[ρbσ] − bνΞµ[ρbσ]
)

+2γH
(

bµbν[ρbσ] − bνbµ[ρbσ]
)

, (78)

ξµνρσ = 2ξ‖
(

bµΞν[ρbσ] + bνΞµ[ρbσ]
)

+ ζH⊥
Ξµνbρσ + ζH‖b

µbνbρσ

+2ξH
(

bµbν[ρbσ] + bνbµ[ρbσ]
)

, (79)

where the η’s, ζ’s, γ’s, and ξ’s are transport coefficients. Especially, those with subscript “H” are

Hall-type transport coefficients which do not contribute to the entropy production and thus their

sign are not constrained by the second law of local thermodynamics. Note that the expression for

ξµνρσ is different from that in Ref. [62] but equivalently gives the same constitutive relations once

substituting into Eq. (74).

C. A spin Cooper-Frye formula

For the purpose of applying spin hydrodynamics to specific physical systems, we need to know

what are the appropriate observables for detection of the spin degrees of freedom in the fluid. In

principle, the presence of the spin degree of freedom in the fluid should modify the usual hy-

drodynamic quantities such as the energy density and fluid velocity, but when the spin density is
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not large (nevertheless it is always suppressed by ~ comparing to the traditional hydrodynamic

quantities), such modification is small. In heavy ion collisions, the natural observable is the spin

polarization of hadrons, including spin-1/2 hyperons and spin-1 vector mesons. Hyperons are of

special interest because they primarily decay via weak interactions in such a way that the mo-

mentum of one of the daughter particles tends to align with the spin direction of the hyperon. In

order to obtain the spin polarization observables of hadron from the spin hydrodynamics, we need

a machinery to convert the outcomes of spin hydrodynamics, such as fluid velocity, temperature,

and spin potential, to measurable hadronic observables.

In the application of traditional hydrodynamics to heavy-ion collisions, the hadron momentum

spectra are typically obtained using the so-called Cooper-Frye formula,

Ep
dNi

dp3
=

∫

Ξ

dΞµ(x)p
µfi(x, p), (80)

where the integral is over the freeze-out hypersurface (where particlization occurs) Ξ, and fi(x, p)

is the distribution function of species i of the hadrons in the fluid. Any possible degeneracy of

hadrons should be accounted for in fi. For example, when dissipative effects are neglected, the

distribution function fi is typically taken as the Fermi-Dirac or Bose-Einstein functions fF,B(p ·
β − µi) with µi the chemical potential. The above Cooper-Frye formula has been widely used in

hydrodynamic simulations in heavy-ion collisions and has proven to be very successful. Therefore,

in extending traditional hydrodynamics to spin hydrodynamics, we also need to generalize the

above Cooper-Frye formula to a spin Cooper-Frye formula.

Let us consider a system in which the thermal equilibrium is reached locally but not necessarily

globally. The density operator ρ̂ for description of such an ensemble is obtained by maximizing

the entropy functional under the constraints of given energy-momentum and angular momentum

(or spin) densities,

S[ρ̂] = −Tr(ρ̂ ln ρ̂) + λ(Trρ̂− 1)−
∫

Ξ

dΞµ

[

Tr(ρ̂Θ̂µν)−Θµν
]

βν

+
1

2

∫

Ξ

dΞµ

[

Tr(ρ̂Σ̂µνρ)− Σµνρ
]

µνρ, (81)

where Θµν(x) and Σµνρ(x) are the actual local energy-momentum tensor and spin tensor, and

βν(x) and µνρ(x) are corresponding Lagrange multipliers. The Lagrange multiplier λ is introduced

to normalize ρ̂ and is related to the partition function Z as exp(1− λ) = Z. The resultant density

operator is the local-equilibrium density operator [111–114]:

ρ̂LE =
1

ZLE
exp

{

−
∫

Ξ

dΞµ(x)

[

Θ̂µν(x)βν(x)−
1

2
Σ̂µρσ(x)µρσ(x)

]}

, (82)
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where ZLE is the local-equilibrium partition function. Now, we see that ρ̂LE is determined by the

local thermodynamic quantities βµ and µρσ. If we calculate the spin density Σµρσ(x) using this

density operator, we obtain a relation between Σµρσ(x) and the local thermodynamic quantities

(and possibly their derivatives). However, this is not particularly useful in the context of heavy-ion

collisions, because what is measured is the spin density in momentum space, rather than coordinate

space. To express such a relation for the spin density in momentum space or phase space, the most

natural approach is to use the Wigner function.

To illustrate how this can be achieved, we consider a system of Dirac fermions as an example.

The Wigner operator is defined as

Ŵ (x, p) =

∫

d4se−ip·s ¯̂ψ
(

x+
s

2

)

⊗ ψ̂
(

x− s

2

)

, (83)

where [
¯̂
ψ⊗ ψ̂]ab ≡ ¯̂

ψbψ̂a with a, b spinor indices. We choose the canonical pseudo-gauge in which

the energy-momentum tensor operator and spin tensor operator are given by

Θ̂µν =
¯̂
ψiγµ∂νψ̂ − ηµνL̂, (84)

Σ̂µνρ =
1

4
¯̂
ψ {γµ, σρσ} ψ̂ = −1

2
ǫµνρσ

¯̂
ψγσγ5ψ̂. (85)

where L̂ is the Lagrangian (in the following we consider free fermions, so thatL = ψ̄ (iγµ∂µ −m)ψ

is in quadratic form and the second term in Θ̂µν vanishes upon using equation of motion of field

operator) and σρσ = i[γρ, γσ]/2. Note that the second equation means that the spin vector

Ŝσ = (1/2)
¯̂
ψγσγ5ψ̂ is nothing but half of the axial current. In the above, both Θ̂µν(x) and Σ̂µνρ(x)

are local Heisenberg operators. We can extend them into operators in phase space by using the

Wigner transformation, e.g.,

Σ̂µνρ(x, p) = −1

2
ǫµνρσ

∫

d4se−ip·s ¯̂ψ
(

x+
s

2

)

γσγ5ψ̂
(

x− s

2

)

= −1

2
ǫµνρσTrD

[

γσγ5Ŵ (x, p)
]

, (86)

where TrD is trace over Dirac space. It is easy to find that
∫

d4p/(2π)4Σ̂µνρ(x, p) = Σ̂µνρ(x).

The integration of Σ̂µνρ(x, p) over certain spacelike hypersurface will give us the spin tensor in

momentum space (whose exact meaning will be clarified later) whose ensemble average under ρ̂LE

is exactly the quantity that we are looking for. Therefore, we just need to calculate the so-called

Wigner function under local equilibrium:

W (x, p) = 〈Ŵ (x, p)〉 = Tr
[

ρ̂LEŴ (x, p)
]

, (87)
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where Tr denotes the trace over a complete set of microstates of the system. To proceed, one can

re-write the local-equilibrium density operator as ρ̂LE = exp(Â+ B̂)/ZLE with the abbreviations

Â = −P̂ µβµ(x), (88)

B̂ = −
∫

dΞµ(y)
[

Θ̂µν(y)∆βν(y)−
1

2
Σ̂µρσ(y)µρσ(y)

]

, (89)

where P̂ µ =
∫

dΞν(y)Θ̂
νµ(y), ∆βµ(y) = βµ(y) − βµ(x). The purpose of rewriting ρ̂LE in this

form is that, typically, the correlation length between the spin tensor and the energy-momentum

tensor is small. Within this correlation length, we can assume that local thermodynamic quantities,

such as βµ, vary only slightly. Given that µρσ is also small at the hypersurface Ξ (which is a

reasonable assumption for heavy-ion collisions, though it may not hold for a strongly polarized

medium), we assign ∆βν ∼ µρσ ∼ O(∂), and therefore Â ∼ O(1), B̂ ∼ O(∂). Using this power-

counting scheme, we can expand the right-hand side of Eq. (87) order by order in ∂ by applying

the identity eÂ+B̂ = eÂ + eÂ
∫ 1

0
e−λÂB̂eλÂ + · · ·, and obtain

W (x, p) = W0(x, p) +W1(x, p) + · · · , (90)

where

W0(x, p) = 〈Ŵ (x, p)〉0 ≡
1

Z0
Tr

(

eÂŴ (x, p)
)

, (91)

W1(x, p) ≡ 〈Ŵ (x, p)〉(Θ) + 〈Ŵ (x, p)〉(Σ) , (92)

with

〈Ŵ (x, p)〉(Θ) ≡ −
∫ 1

0

dλ

∫

dΞρ(y)∆βν(y)〈Θ̂ρν(y − iλβ(x))Ŵ (x, p)〉0,c ,

〈Ŵ (x, p)〉(Σ) ≡
1

2

∫ 1

0

dλ

∫

dΞν(y)µρσ(y)〈Σ̂νρσ(y − iλβ(x))Ŵ (x, p)〉0,c ,
(93)

and Z0 = TreÂ. Here, 〈· · ·〉0,c means the connected part of the correlation. The calculation then

will depend on the shape of the hypersurface Ξ. For the purpose of illustration, we consider Ξ to

be the 3-space at some time t so that its normal direction is t̂µ = (1, 0). The calculation then is

straightforward by using the free field operator

ψ̂(x) =
2

∑

σ=1

1

(2π)3/2

∫

d3k

2Ek

[

uσ(k)e
−ik·xâσ(k) + vσ(k)e

ik·xb̂†σ(k)
]

, (94)

where Ek =
√
k2 +m2 and âσ(k), b̂σ(k) are annihilation operators for particles and antiparticles

satisfing the anti-commutation relation {âσ(k), â†σ′(q)} = {b̂σ(k), b̂†σ′(q)} = 2Ekδσσ′δ3(k − q)



23

and the relation 〈â†σ(k)âσ′(q)〉0 = 〈b̂†σ(k)b̂σ′(q)〉0 = 2Ekδσσ′δ3(k−q)nF (p ·β). In the following,

we consider only the particle branch, the antiparticle branch is completely similar. The zeroth

order Wigner function is easy to get: W0(x, p) = 2π(p/ +m)θ(p0)δ(p
2 −m2)nF (p · β), which is

spin independent: TrD [γµγ5W0(x, p)] = 0.

The first-order Wigner function reads

〈Ŵ (x, p)〉(Θ/Σ) = 2π

∫ 1

0

dλ

∫

d3k

2Ek

∫

d3q

2Eq

δ4
(

p− q + k

2

)

(γ · k +m)t̂µI
µ
(Θ/Σ)(γ · q +m)

×eλ(k−q)·β(x)nF (k) [1− nF (q)] , (95)

where nF (p) = nF [β(x)·p], Iµ(Θ) = −γµpν [∂λβν(x)]∆λ
β

[

i∂βq δ
3(q − k)

]

, and Iµ(Σ) =
1
4
ǫµνρσγ5γνµρσδ

3(q−
k) with ∆µν = ηµν − t̂µt̂ν . To obtain this result, we have used

∫

dΞµ(y)(y − x)αe−i(p−q)·(y−x) = (2π)3t̂µ∆
α
β

i∂

∂pβ
δ3(p− q), (96)

which is valid when Ξ is a 3-space. In heavy-ion collisions, the true freeze-out hypersurface Ξ is of

course not a 3-space and thus correction due to the non-flatness of Ξ would appear; see discussions

in Refs. [115, 116].

With the first-order Wigner function in Eq. (95), the local-equilibrium spin vector in phase

space is directly obtained by finishing the trace over Dirac space [117, 118]:

Sµ(x, p) = −4πδ(p2 −m2)θ(p0)nF (p)[1− nF (p)]
{

1
4
ǫµνρσp

νµρσ + Σt̂
µν

[

(ξνλ +∆µνλ)pλ
]

}

, (97)

where Σt̂
µν = ǫµνρσp

ρt̂σ/(2p · t̂), ξµν = ∂(µβν) is the thermal shear tensor, and ∆µµν = µµν −̟µν

is the difference between spin potential and thermal vorticity tensor.

With this spin vector in phase space, the spin vector per particle in momentum space is obtained

by average over hypersurface Ξ [117, 118]:

Sµ(p) =
1

2

∫

dΞ(x) · pTrD[γµγ5W (x, p)]
∫

dΞ · pTrD[W (x, p)]

= −
∫

dΞ · p
{

ǫµναβp
νµαβ + 4Σt̂

µν

[

pλ(ξ
νλ +∆µνλ)

]

}

nF (1− nF )

8m
∫

dΞ · p nF

, (98)

where pµ on the right-hand side is on-shell. This is a Cooper-Frye-type formula for the spin vector,

which connects the momentum-space distribution of the mean spin vector of particles emitted from

Ξ with the fluid properties characterized by µµν(x) and βµ(x) on Ξ. Thus, once these fluid vari-

ables are obtained from spin hydrodynamics, this spin Cooper-Frye formula allows us to convert

them into the mean spin vector in momentum space, which is a directly measurable quantity.
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We give several comments before concluding this subsection. First, at local equilibrium, the

thermal shear tensor can induce spin polarization, which has important implications for spin po-

larization phenomenology in heavy-ion collisions [115, 119–121]. Second, when the system is

in global equilibrium, the spin potential is determined by the thermal vorticity, and the thermal

shear tensor ξµν vanishes. In this case, the above spin Cooper-Frye formula reduces to the one

obtained in Refs. [16–18]. Third, we have not included the effect of a finite baryon chemical po-

tential. Its inclusion is straightforward, with the modification being that the distribution function

nF (p · β) → nF (p · β − α), where α = µ/T . Additionally, a new term, 4
∫

dΞ, p · Σt̂
µν∂

να,

should be added to the numerator of Eq. (98), whose contribution is referred to as the spin Hall

effect [122]. Fourth, the formula (98) depends on the choice of the pseudo-gauge [117, 118]. In

particular, it is possible to completely eliminate the contributions from thermal shear by adopting

appropriate pseudo-gauges. Therefore, when applying this formula to spin hydrodynamics, it is

important to be careful in choosing the pseudo-gauge to maintain consistency.

V. SUMMARY AND OUTLOOKS

In this article, we provide a pedagogical introduction to relativistic spin hydrodynamics. We

begin by demonstrating how one can derive a set of hydrodynamic equations from the conserva-

tion equations based on the requirement of local thermodynamic laws, primarily the second law

of thermodynamics. We then extend this framework to include the conservation of angular mo-

mentum, which leads to spin hydrodynamics. In the framework of spin hydrodynamics, the new

(quasi-)hydrodynamic variable is the spin density. Due to spin-orbit coupling, the spin density is

not a strict hydrodynamic variable but rather a quasi-hydrodynamic variable. It relaxes to a local

equilibrium value determined by the local thermal vorticity, through the dissipative conversion of

spin and orbital angular momenta. We show how such dissipative processes are characterized by

two new transport coefficients: one for boost heat conductivity and another for rotational viscosity.

We discuss several interesting aspects of spin hydrodynamics. First, we address the pseudo-

gauge ambiguity in defining the spin tensor, which reflects the freedom in separating the total

angular momentum into its spin and orbital components. One consequence of this pseudo-gauge

ambiguity is that we have the flexibility to choose spin tensors with different symmetries in their

indices as the starting point for derivation of the spin hydrodynamics, leading to different constitu-

tive relations. Second, we emphasize the importance of derivative power counting in the formula-
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tion of spin hydrodynamics. In particular, for a strongly vortical (or strongly spin-polarized) fluid,

it is natural to assign the vorticity and the spin potential as being of similar strength to other local

thermodynamic quantities, such as temperature, in terms of derivative powers. This is analogous to

magnetohydrodynamics. As a result, anisotropy emerges in the constitutive relations both at zeroth

order and first order in derivatives. This framework is well-suited for describing strongly vortical

or spin-polarized fluids. Third, for potential applications of spin hydrodynamics, such as in heavy-

ion collisions, we require a method to convert the results of spin hydrodynamics—specifically, the

spin density (or spin potential), temperature, and fluid velocity—into momentum-space observ-

ables. To this end, we give a spin Cooper-Frye formula for Dirac fermions, and a similar formula

can also be derived for spin-one vector bosons.

Spin hydrodynamics is an area of intensive study, with many interesting aspects already ex-

plored and many more awaiting investigation. We provide a brief discussion of some of these

topics.

(1) Spin magnetohydrodynamics. When the constituents of the fluid are charged, the fluid can

interact with electromagnetic fields and behave like a magnetized fluid. In this case, it is convenient

to extend spin hydrodynamics to spin magnetohydrodynamics [123–127]. Since electric fields are

easily screened, they are not typically described as hydrodynamic variables. Therefore, the new

hydrodynamic variable is the magnetic field (more precisely, the magnetic flux) Bµ = F̃ µνuν ,

which is counted as an O(1) quantity in derivative power counting. Its conservation law is simply

the Bianchi identity.

∂µF̃
µν = 0. (99)

Here, F̃ µν = (1/2)ǫµνρσFρσ is the dual tensor of Maxwell tensor. This equation should be com-

bined with the conservation laws of energy-momentum and angular momentum to form the com-

plete equations of motion for the fluid. Expanding F̃ µν in terms of the hydrodynamic variables

gives [107]

F̃ µν = Bµuν − Bνuµ + F̃ µν
(1) , (100)

with F̃ µν
(1) and Bµ transverse to uµ. One can impose the local thermodynamic laws, e.g., the first

law and a generalized Gibbs-Duhem relaion, as

Tds+ 1
2
µµνdS

µν +HµdB
µ = dε, (101)

Ts+ 1
2
µµνS

µν +HµB
µ = ε+ P, (102)
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with Hµ the “magnetic potential” conjugate to the magnetic flux (physically, it can be interpreted

as the in-medium magnetic field strength). The convariant form for the Gibbs-Duhem relation is

sµ = Pβµ +Θµνβν −
1

2
Σµρσαρσ + F̃ µνγν , (103)

with γµ = βHµ. The second law of thermodynamics requires ∂µs
µ ≥ 0, which imposes con-

straints on the possible forms of the constitutive relations order by order in the gradient ex-

pansion. Recently, such a framework for spin magnetohydrodynamics has been discussed; see

Refs. [126, 127] for more details.

It would be very interesting to extend these studies to include possible parity-violating effects,

thereby obtaining spin magnetohydrodynamics in a chiral conducting medium. This would pro-

vide a bridge between spin magnetohydrodynamics and chiral magnetohydrodynamics. Another

issue that may affect the formulation of spin magnetohydrodynamics is the pseudo-gauge ambi-

guity. As we have seen, such an ambiguity is crucial for the formulation of spin hydrodynamics,

and it would be interesting to explore how it influences the formulation of spin magnetohydrody-

namics. Finally, exploring possible collective modes and instabilities in such a fluid will also be

important. This would be valuable for potential applications (e.g., possible dynamo mechanisms

due to spin degrees of freedom) in what we might call spin plasma, whether in heavy-ion collisions

or astrophysical systems.

(2) Calculation of new transport coefficient. As we have seen, new transport coefficients

appear in spin hydrodynamics, most notably the rotational viscosity ηs. Strictly speaking, ηs, un-

like the usual shear viscosity η, is not a transport coefficient in the traditional sense. It does not

characterize the ability to transport spin within the fluid; rather, it represents how quickly the spin

density relaxes to its equilibrium value determined by thermal vorticity. This can be easily under-

stood by rewriting Eq. (8) in the canonical pseudo-gauge and in component form (keeping linear

terms in spin density and velocity): ∂tS
i ≈ −ηs(µi − ̟i) where µi = ǫijkµik, which leads to

∂tµ
i = −Γs(µ

i−̟i) with Γs = ηs/χs the spin relaxation rate and χs the spin susceptibility. Nev-

ertheless, the calculation of Γs and, equivalently, ηs is important for understanding the evolution

of spin polarization. Recently, Γs has been computed perturbatively for heavy quarks in hot QCD

plasma [55, 57] and for baryons in hot hadronic plasma [56]. Kinetic theory-based calculations

have also been reported. The results show that for heavy quarks, this parameter can be paramet-

rically small, making the spin degree of freedom a quasi-hydrodynamic mode. In the future, the

calculation of other new transport coefficients, such as those arising in gyrohydrodynamics [62],
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could also be crucial for understanding spin dynamics in different fluids. Additionally, it will be

important to examine and understand the pseudo-gauge dependence of these new transport coeffi-

cients.

(3) Simulation of spin hydrodynamics. In order to apply spin hydrodynamics to, for exam-

ple, heavy-ion collisions, it is important to develop a suitable numerical framework for performing

simulations. It is well known that first-order relativistic hydrodynamic equations suffer from nu-

merical instabilities and the emergence of acausal modes. The origin of this problem lies in the

fact that first-order constitutive relations are non-dynamical, meaning that the response of the fluid

to thermodynamic forces is instantaneous. One solution to this problem is to make the constitutive

relations dynamical. For example, the constitutive relation for the shear channel can be modified

to

τπ∂tπ
µν + πµν = 2ησµν , (104)

with πµν being the tracelss symmetric part of Θµν
(1) and τπ being introduced to represent how

quickly πµν relaxes into the hydrodynamic constitutive relation. (Note that this procedure intro-

duces new dynamic mode that is not hydrodynamic mode, and would relax on a timescale given by

τπ.) The use of such a modification has been very successful in the numerical simulation of rela-

tivistic hydrodynamics. For relativistic spin hydrodynamics, to implement numerical simulations,

one may adopt similar modifications to the constitutive relations. This has been recently discussed

in Refs. [37, 64, 81, 82, 84, 128, 129]. Essentially, the constitutive relation (41) is replaced by a

dynamic relation

τφ∂tφ
µν + φµν = ηs∆

µρ∆νσ (µρσ − T̟ρσ) , (105)

with τφ a relaxation time for the antisymmetric part of the energy-momentum tensor. With these

modifications, a numerical simulation of relativistic spin hydrodynamics can be performed, which

will provide valuable insights into spin polarization phenomena, such as those observed in heavy-

ion collisions.
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