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Abstract

Each voxel in a diffusion MRI (dMRI) image contains a spherical signal corre-
sponding to the direction and strength of water diffusion in the brain. This paper
advances the analysis of such spatio-spherical data by developing convolutional
network layers that are equivariant to the E(3)× SO(3) group and account for
the physical symmetries of dMRI including rotations, translations, and reflections
of space alongside voxel-wise rotations. Further, neuronal fibers are typically
antipodally symmetric, a fact we leverage to construct highly efficient spatio-
hemispherical graph convolutions to accelerate the analysis of high-dimensional
dMRI data. In the context of sparse spherical fiber deconvolution to recover white
matter microstructure, our proposed equivariant network layers yield substantial
performance and efficiency gains, leading to better and more practical resolution
of crossing neuronal fibers and fiber tractography. These gains are experimentally
consistent across both simulation and in vivo human datasets.

1 Introduction

Instead of scalar intensities, each voxel of a diffusion MR image (dMRI) contains spatio-angular
measurements of local water diffusion [64]. As in Fig. 1, this yields spatio-spherical images living on
R3×S2 that are used to map neuronal organization in vivo [7, 44] alongside several other biomedical
use cases [35, 37, 56, 65, 71]. Despite its potential, deriving neuronal fiber pathways using dMRI is
hampered by significant partial voluming in both spatial and spherical domains due to limited clinical
scanner resolutions and low SNR [1]. This paper presents a state-of-the-art dMRI deconvolution
method to recover neuronal pathways in practical timeframes by developing highly efficient equiv-
ariant neural networks that account for dMRI’s spatio-spherical data geometry and the voxel-level an-
tipodal symmetry of neuronal fibers, all while demonstrating robustness to clinical dMRI resolutions.

Need for deconvolution. The diffusivity at a voxel reflects the underlying local tissue microstruc-
ture [7, 8, 44]. As multiple neuronal fibers can cross within a given resolution-limited voxel,
recovering these fibers necessitates solving a blind fiber deconvolution problem at each voxel.
Several voxel-level fiber models have been proposed [5, 45, 67, 69, 73, 79] and this work focuses
on the widely used fiber Orientation Distribution Function (fODF) model, which represents the fiber
configuration at a voxel as a sparse non-negative spherical function [66]. fODFs are the first step of
common dMRI applications such as fiber tractography [37]. However, due to noise, subject motion,
and clinically viable sampling resolutions (e.g., ≤ 30 spherical samples per voxel), fODF recovery
is highly ill-posed and requires significant regularization.

Iterative solutions. Constrained spherical deconvolution (CSD) [66] is the workhorse algorithm
for dMRI deconvolution, solving the per-voxel fODF deconvolution problem iteratively, subject
to non-negativity constraints. Several extensions of CSD further regularize fODFs to be sparse
and/or spatially smooth [11, 12, 29, 57, 59, 74]. Further, as fODFs can be assumed to be antipodally
symmetric [40, 67], many iterative algorithms optimize only over the hemisphere to accelerate
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Figure 1: A diffusion MRI (columns 1–3) and a T1w MRI (column 5) derived from a subject in the
HCP Young Adult dataset [70]. The inset (column 4) visualizes a region’s spatio-spherical diffusion
signal (b− 1000mm/s2), highlighting crossing-fiber patterns and the grey/white matter interface.

per-voxel optimization. For example, CSD only optimizes for the even-order spherical harmonics
of the fODF and RUMBA [11] uses approximately hemispherical sampling to represent the fODF.
Despite significant progress using iterative solutions, these methods still require high angular
sampling resolutions that are not clinically feasible to resolve crossing fibers within a voxel.

Deep deconvolution networks. Recent deep learning frameworks for dMRI deconvolution
incorporate supervision and/or additional inductive biases to improve results. Supervised approaches
train U-Nets to regress the solutions of iterative models or regress ground-truth fODFs estimated from
ex vivo animal histology. These methods are consequently upper-bounded by the quality of iterative
solutions and the generalizability limitations of small animal datasets. Further extensions incorporate
the underlying spherical geometry of the per-voxel estimation by using SO(3)-equivariant network
layers but retain the supervised strategy of previous models [62]. ESD [19] instead proposes to
use SO(3)-equivariant network layers and unsupervised and regularized reconstruction-based
deconvolution losses to surpass supervised solutions.

However, the above methods operate entirely at the voxel level and do not model the strong correlation
between neighboring fODFs. To this end, RT-ESD [20] proposed E(3)× SO(3)-equivariant net-
work layers for dMRI that are equivariant to spatial rotations, translations, and reflections alongside
voxel-wise spherical rotations to achieve high-quality deconvolution due to the joint spatio-spherical
modeling. However, its high computational requirements limit its use in clinical or large-scale deploy-
ment. For instance, while subject-specific iterative fits with CSD require 3-5 minutes for the whole
brain, RT-ESD requires about a day on an A100 GPU to converge when trained on a single subject.

Contributions. We present an efficient equivariant neural network framework for dMRI decon-
volution that respects the data geometry of dMRI while ensuring computational practicality. Our
spatio-hemispherical deconvolution (SHD) method addresses key redundancies and weaknesses of
previous deep networks for dMRI deconvolution in three ways: (1) As fODFs are approximately
antipodally symmetric at clinical resolutions, we replace RT-ESD’s full spherical sampling with
hemispherical sampling and find substantial efficiency gains by reducing the graph Laplacian of the
voxel-wise SO(3) convolutions used in RT-ESD; (2) We then exploit the dense structure of dMRI
data to further introduce optimized implementations and pre-computations, achieving a cumulative
65% reduction in processing time for an E(3) × SO(3)-equivariant U-Net; (3) Finally, we use explicit
smoothness-promoting spatial regularization, leading to further improved fODF recovery.

Experimentally, we achieve state-of-the-art deconvolution results on two widely used simulated
dMRI benchmarks with known ground truth. On real in vivo human dMRI, our method yields more
spatially coherent fODF fields and higher robustness to changes in resolution from research-grade
to clinical standards of single-shell low-angular protocols. Lastly, as the achieved efficiency gains
enable training on a large set of human datasets, we can now train a single network for amortized
inference on new human dMRI, as opposed to the subject-specific optimization of RT-ESD. Our code
is available at https://github.com/AxelElaldi/fast-equivariant-deconv.

2 Related work

Deep learning for dMRI. Learned networks operating on dMRI have been extensively used to
improve fiber tractography [46, 63], super-resolve diffusion signals or fODFs [48, 58, 78], regress
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Figure 2: A deconvolution visualization comparing recovered fiber orientation distribution functions
(fODFs) produced by the widely-used iterative CSD [66] model (top row) and our proposed SHD-TV
model (bottom row) with high-resolution / clinically-infeasible (left) and low-resolution / clinically-
feasible (right) spherical sampling. At high-resolutions (left), SHD-TV demonstrates enhanced
localization of fiber orientations, heightened sensitivity to small-angle crossing fibers, and improved
spatial consistency in the recovered fibers. At clinical low-resolutions (right), CSD struggles with
the loss of input information, whereas our approach exhibits greater robustness to resolution losses
and single-shell imaging protocols, yielding higher fidelity and spatially coherent fODFs. Appendix
Fig. 9 visualizes comparisons with additional baselines.

microstructral indices in undersampled settings [13, 14, 27, 30, 31, 61], denoise artifacts [22, 23, 76],
segment lesions [50], and more. Of these, most employ supervision via training on high-angular
resolution research datasets to generalize to low-resolution clinical datasets. Our work is most related
to networks that directly operate on R3 × S2 images either through spherical networks applied voxel-
wise or approximate parameterizations of the spatio-spherical space [6, 9, 10, 20, 19, 47, 50, 62].

For spherical data, SO(3)-equivariant convolutions are often achieved via spherical harmonics-
parameterized convolutions [16, 21, 42] or isotropic convolutions on spherical graphs [53]. These
models have been extended to voxel-wise fODF estimation [19, 62] but do not use the spatial
correlation between fODFs. [6, 10] develop convolutions for dMRI classification and super-resolution
that exhibit voxel-wise SO(3)-equivariance and incorporate manifold-valued spatial averaging. To
model spatio-spherical dependence explicitly, SE(3)-equivariance for improved dMRI segmentation
has been achieved via tensor field networks [50] and separable kernels [9, 47] at the cost of
high-memory usage. In contrast, RT-ESD [20] uses isotropic spatio-spherical kernels and focuses on
deconvolution with equivariance to both joint and independent voxel and grid rotations. More recently,
PONITA [9] proposes efficient SE(3)-equivariant convolutions for spatio-spherical molecular graphs,
but as yet, does not scale to high-angular resolutions needed for dMRI deconvolution.

Spherical deconvolution methods. Constrained spherical deconvolution (CSD) [38, 66] and its
sparse [12] and/or spatially regularized extensions [11, 29, 57, 59, 74] are established but rely on
lengthy and data-dependent iterative optimization and struggle to resolve small-angle crossing fibers
in the low-resolution setting (see Fig. 2). More recently, several trainable models have been proposed
for direct fODF estimation including pattern matching methods [24] that use a dictionary to match
diffusion signal to known tissue microstructure and deep neural networks [19, 20, 39, 43, 46, 51,
52, 61, 62, 78] that learn a mapping from diffusion signals to fODFs. Trainable models have the
advantage of potentially decreasing the need for high-angular resolution dMRI input. ESD [19]
further introduced an unsupervised learning framework using only a diffusion signal reconstruction
loss and additional fODF regularization, removing the need for ground-truth fODFs for training.

Spatially informed deconvolution. Traditionally, spherical deconvolution is optimized voxel-wise.
However, the underlying tissue microstructure has long-range spatial correlations. Iterative methods
account for this through spatial regularization such as total-variation [11] or fiber continuity
[29, 57, 59, 74], at the cost of increased optimization complexity. Current neural network frameworks
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have overlooked explicit fODF spatial regularization and rely solely on high-quality fODF training
data and implicit spatial regularization by mean of spatial-weight sharing, either employing grid-wise
3D convolution [20, 46, 78], or channel-wise concatenation of neighboring voxels [19, 61, 62].

3 Methods

3.1 Background

dMRI deconvolution. A dMRI image is a spatio-spherical function S : R3 × S2 → RB with B
features, called shells in the dMRI literature. The fODF model describes the tissue microstructure
as a non-negative spatio-spherical function F , providing information on the local tissue composition
and orientations, and links the dMRI and the fODFs S = C(F ). dMRI deconvolution is interested
in recovering the fODF from the dMRI by minimizing a constrained reconstruction loss F ∗ =
argminF≥0||S − C(F )||22. We focus our study on learnable spatio-spherical deconvolution operators
trained to reconstruct high-angular resolution fODFs from sparse dMRI measurements Nθ(S) = F .

Spatio-spherical convolutions. E(3)× SO(3) is the group of independent E(3) and SO(3)
transformations, where E(3) acts on the spatial grid R3 and SO(3) acts on the voxel sphere
S2. Let ψθ : R3 × S2 → R be a learnable filter, such that convolving f and ψθ yields
fout(T,R) =

∫
y∈R3

∫
p∈S2 ψθ(T

−1y,R−1p)f(y, p) dp dy where (T,R) ∈ E(3)× SO(3). RT-
ESD [20] implements these convolutions by only considering isotropic filters to limit computational
complexity. In addition, the filter ψθ is expressed as a separable kernel ψθ(z1, z2) = ϕθ1(z1)ϕθ2(z2),
turning the convolution into a two-step spherical-spatial convolution:

fout(x, q) =

∫
y∈R3

ϕθ1(||x− y||)
∫
p∈S2

ϕθ2(qp
T )f(y, p) dp dy. (1)

We build on RT-ESD [20], presented in Fig. 12, which uses DeepSphere [53]’s graph filtering based
SO(3)-equivariant spherical convolution. At every spatial location y ∈ R3, f(y, .) is discretized
on a set of spherical vertices V = {qi ∈ S2}i∈[1,.,NV ], f(y) ∈ RNV . The graph G = (V,A) and
its normalized Laplacian L are constructed from the set V , where A ∈ RNV×NV is the spherical
adjacency matrix. The voxel-wise spherical filtering output is then used to construct a spatio-spherical
graph f̂(y) = [T 0(L)f(y), ..., TK−1(L)f(y)] ∈ RNV×K with K features, where K is the polynomial
degree of the filtering and T k(L) is the Chebyshev polynomial of degree k. A learnable isotropic
spatial filter αk : R+ → R is then defined for each spherical filtered map f̂k, resulting in the overall
E(3)× SO(3)-convolutional operation expressed as:

fout(x) =
∑

y∈P(x)

K−1∑
k=0

αk(||x− y||)T k(L)f(y), (2)

where P(x) is a spatial neighborhood around the position x ∈ R3. Spherical SO(3)-equivariance is
achieved by using a uniform and symmetric V sampling such as the HEALPix [32] grid, providing a
uniform coverage of the spherical domain at different levels of resolution, and graph weight p, q ∈ V ,
A(p, q) = e−||p−q||/σ with σ’s value selected to minimize empirical equivariance error.

3.2 Efficient dMRI spatio-hemispherical convolutions

Spatio-Hemispherical Equivariant convolution. fODFs and dMRIs are approximately antipodally
symmetric, which makes fully spherical convolutions redundant. We therefore improve the
time and space efficiency of the RT-ESD convolution by reducing the spherical graph G to a
hemispherical graph H. Because f is antipodal symmetric, we assume, without loss of generality,
that V is a symmetric sampling, i.e. ∀p ∈ V , ∃(-p) ∈ V . We construct the hemispherical sampling
V+ = {p ∈ V and pz ≥ 0} from the spherical sampling V , with pz chosen to be the 3rd spatial
coordinate of p. We compute the hemispherical Laplacian weight as,

p, q ∈ V+, L+(p, q) = L(p, q) + L(p,−q). (3)

Thus, the spherical operation Lf is entirely explained by the hemisphere graph Laplacian L+f+,
i.e. ∀p ∈ V , ∃(p+) ∈ V+ s.t. (L+f)(p+) = (Lf)(p), where f+ is the f sampling on V+ (proof
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Figure 3: Contribution overview. A. We reduce the spherical graph (G,L) to an hemispherical
graph (H,L+). B. The SHD deconvolution framework operates on a grid of spherical signals and
reduces computation complexity while improving neuronal fiber deconvolution.

in appendix A.1). For spherical samplings V such as HEALPix, our proposed sampling reduces the
number of vertices sampled to 1

2 |V| and the hemispherical Laplacian size to 1
4 |V|

2. Our reduction is
both theoretically and empirically equivariant to E(3)× SO(3), see appendix A.2 for more details.

Dense Matrix Multiplication. DeepSphere’s [53] used sparse matrix multiplication to compute
T k(L)f(x). However, for dMRI, our Laplacians are dense and sparse matrix multiplication adds
significant computational overhead on dense matrices. To address this, we substitute the sparse
matrix multiplication used in [53] with standard matrix multiplications and find substantial efficiency
improvements when applied to dMRI data.

Pre-computed Chebyshev Polynomials. DeepSphere [53] assumes the spherical sampling V , and
thus the Laplacian L, to be dependent on the input spherical signal f. Thus, for efficiency, the
Chebyshev polynomials are computed iteratively as T k+1(L)f(x) = (2LT k(L)− T k+1(L))f(x) for
each new f and L. In our setting, we use the same spherical sampling V for every spherical signal f,
making the Laplacian L of every convolutional layer fixed. We therefore precompute and store these
polynomials before training to further eliminate redundancy.

3.3 Spatial Hemispherical Deconvolution (SHD) Network

Fig.3 presents an overview of our proposed spatial-hemispherical deconvolution (SHD) framework.
Below, we first describe how our inputs are preprocessed and then detail our network and the losses
used to train it.

Data normalization. The dMRI signal acquisition yields a raw spatio-spherical signal SG sampled
on a set of spherical coordinates G, called shell sampling. The signal intensity range and shell
sampling are scan-dependent and need to be normalized before being fed to our proposed neural
network. Following [55], we normalize the dMRI scans such that the white matter B0-diffusion
signal is comparable between scans. Then, following [19], the normalized data is interpolated onto a
hemispherical HEALPix sampling V+. We provide details in appendix C.2.

E(3)× SO(3)-Unet. The interpolated diffusion signal is then deconvolved to recover the
spatio-spherical fODFs FV+ on the same input HEALPix sampling V+. We use a U-Net, with 4
depth levels, with layers acting on a spatial grid of hemispherical samples. We use our proposed layers
in the U-Net architecture presented in Fig. 3. Besides the last, every block comprises a convolution,
batch-norm, and a ReLU activation. The last block consists of a convolution and a Softplus
activation function. The up/downsampling layers first involve mean spatial upsampling/pooling
on R3, followed by mean spherical upsampling/pooling on S2, both introducing minor numerical
equivariance error. Following DeepSphere [53], to minimize the equivariance error from the spherical
upsampling/pooling, we use the hierarchical structure of the HEALPix grid.

Network training. Our proposed deconvolution network Nθ takes as input the shell-sampled dMRI
signal SG to produce fODFs Fθ

V+ = Nθ(SG). We train the network in an unsupervised manner
by reconstructing the dMRI signal Sθ

D = C(Fθ
V+) from the estimated fODFs, with details on the
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Figure 4: Efficiency analysis. Runtime (A & C) and GPU memory usage (B & D) expressed as
the percentage of the baseline [20], for both: (line plots) a convolutional layer applied to increasing
angular resolution samplings and (bar plots) a U-Net applied to high-angular resolution. The
proposed convolution is more efficient than existing equivariant spatio-spherical convolutions.

reconstruction function C in appendix C.2. We note that the input and reconstruction shell samplings
G and D need not be the same, allowing for angular super-resolution reconstruction during training if
required. The parameters θ are estimated by minimizing a reconstruction loss subject to non-negativity
[19, 66] and sparsity-promoting regularization [12, 19]:

L = ||SD − Sθ
D||22 + λnn.||A.Fθ

V+ ||22 + λspa.|| log

(
1 +

Fθ
V+

2

σ2

)
||22 + λtvLtv, (4)

where the terms correspond to reconstruction, non-negativity, sparsity, and smoothness, respectively.
We define A as a vector setting any positive component of Fθ

V+ to 0. We set σ = 10−5 following
[12]. LTV is described below.

Spatial regularization. To add explicit spatial regularization, we propose to extend the spatial total-
variation regularization from [11] to the trainable model framework Ltv = ||∇xF

θ
V+ ||22 where ∇x

is the spatial gradient operator. The spatial regularizer Ltv seeks to promote smoother reconstructions
in ill-posed settings, especially at clinical angular resolutions used later in our experiments.

4 Experiments

We first quantify the runtime and memory efficiency gains produced by our contributions. We then
analyze their use across a diversity of dMRI deconvolution settings on both real and synthetic datasets.

4.1 Runtime and memory efficiency improvements

Experimental details. We first compare the efficiency of our proposed convolution against two spatio-
spherical equivariant convolutions: RT-ESD [20] and PONITA [9], as measured by inference runtime
and memory consumption. We then conduct an ablation analysis of our three proposed improvements.
All analyses are conducted for both a single spatio-spherical layer applied to increasing spherical
graph resolution and also for an entire spatio-spherical U-Net architecture detailed in Fig. 3. As
input, we use a random 8× 8× 8× V spatio-spherical volume, with V depending on the spherical
HEALPix grid resolution. We fix the U-Net input HEALPix resolution to 8 (V = 754) and we vary
the single layer HEALPix resolution from 1 (V = 12) to 8. We take the RT-ESD convolutions as
a reference baseline and present runtime and memory usage results as a percentage of the baseline
averaged across 50 inference steps. All comparisons are performed using an Nvidia RTX-8000 GPU.
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[B] Dataset III: fODF and Tractography
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Figure 5: Overview of the diffusion MRI experiments in Section 4.2. [A] We perform super-
resolved fODF estimation experiments on two datasets, DiSCo and HCP, respectively. Here, we
study the impact of using either high-angular or low-angular resolution as input. [B] We perform
quantitative fODF and tractography estimation experiments on Tractometer. We extract fODFs and
tractograms from the dMRI with both input and output having low-angular resolution.

Results. Fig. 4 presents the results of the efficiency analysis. For a single layer, our convolutions are
2 to 5 times faster than the RT-ESD baseline while decreasing memory footprint by 2.5 times on large
spherical sampling. PONITA has a similar runtime and memory footprint as SHD on sparse spherical
sampling but underperforms on large spherical graphs (that are common in dMRI deconvolution [12]),
being 10 times slower and more memory intensive. Consequently, a U-Net designed for high-
angular resolution sampling is 2.5 and 3.5 faster using our proposed convolutions over RT-ESD and
PONITA, while using 4 and 20 times less memory, respectively. Our ablations indicate that using our
hemispherical convolutions over the spherical convolutions, as well as using precomputed Laplacian
polynomials, brings the most improvement for both runtime and memory on large spherical sampling
while leveraging dense matrix multiplication reduces runtime on low-angular resolutions.

4.2 Diffusion MRI deconvolution experiments

Experimental details. Validation of fODF estimation methods is confounded by the absence of
known and unbiased ground truth fODFs in in vivo human dMRI. To address this limitation, the
literature commonly benchmarks methods on synthetic datasets with known ground truth tissue
microstructure. We conduct both a quantitative (synthetic dataset) and qualitative (in vivo human
dMRI) analysis of our deconvolution framework (Section 4.2.1). We then perform a quantitative
analysis on the tractography downstream task on a benchmark synthetic dataset (Section 4.2.2). For
quantitative evaluation, we first estimate fODFs, then detect fiber peaks, and report the peak angular
error and false positive rate (FPR) following [17]. The angular error is the average angle between the
ground truth peaks and their closest predicted peaks and the FPR is the number of predicted peaks
that do not match any ground-truth peaks divided by the number of ground-truth peaks. See Appendix
A.3 for more details. All deep network experiments were performed using a single RTX8000 GPU
and used less than 16GB of system RAM.

Baselines. We compare the proposed SHD method against conventional iterative methods including
CSD [66], RUMBA and RUMBA-TV [11], and state-of-the-art learning based methods leveraging different
convolutional layer, such as the non-equivariant voxel-wise MLP in [52] and the volume-wise CNN
in [46], that we also extend to have spatial regularization (CNN-TV). We also compare against
equivariant voxel-wise spherical convolutions ESD [61, 19], and more recent equivariant spatio-
spherical convolutions RT-ESD [20] and PONITA [9]. To focus on the inductive bias introduced by each
method’s convolution layer, we adopt a standardized network architecture and training framework,
presented in section 3.3. We provide details about these different baselines in appendix C.3.

Data. We leverage three public dMRI datasets for validation. DiSCo [54] is a synthetic dMRI
dataset with three volumes, split into training, validation, and testing volumes, with high-angular
resolution sampling (4 shells each with 90 gradients) provided with ground truth fODF. We then use
100 in-vivo unrelated dMRI scans from the HCP young adult dataset [70], split into 65 training, 15
validation, and 20 testing volumes, with high-angular resolution (3 shells, each with 90 gradients),
without any ground truth. As we aim to benchmark performance on both high-angular resolution
data and more commonly acquired low-angular resolution data, we further simulate low-angular
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Figure 6: DiSCo fiber detection performances on high (left col.) and low (right col.) angular
resolutions. We first present fODF estimation results on high-angular [A] and low-angular resolution
[B] input (closer to bottom-left is better). [C-D] then present a qualitative example of a two-crossing
fiber estimation. Our faster implementation SHD does not negatively impact results in comparison to
RT-ESD, while our improved model SHD-TV outperforms other methods by providing higher angular
precision and less spurious fibers, especially at clinically-viable low-angular resolution.

resolution acquisitions on DiSCo and HCP by randomly selecting 29 gradients from only the lowest
shell. The last dataset is Tractometer [49], a single-volume simulation of a real human brain with
a low-angular resolution protocol (1 shell, 32 gradients), provided with ground truth tractography
alongside a tractography scoring algorithm [60].

4.2.1 Super-resolved fODF estimation: synthetic DiSCo and real human HCP datasets

We perform two experiments, depicted in Fig.5A). First, we measure performance when all baselines
are trained and tested on high-angular resolution data. Second, we give all methods high-angular
resolution data only during training and test them on low-angular resolution data. In this setting,
the networks are trained to regress the high-angular resolution data from low-angular resolution
input. For quantitative evaluation, we extract fiber directions from the estimated fODF and we report
the peak angular error and false positive rate as described in the previous section. All results are
averaged over five random training seeds. Finally, as HCP lacks fODF and tractogram ground truth,
we perform a qualitative analysis. Further validation details are in appendix A.3 and A.4.

Results. Fig. 6 presents DiSCo deconvolution results for both the low and high-angular resolution
settings. We visualize qualitative results on a random HCP test subject in Fig.2, focusing on two
areas with diverse tissue microstructures, such as crossing fibers, fiber bending, and multi-tissue
compartments. Our proposed efficiency contributions retain all of the performance of previous
methods as our proposed SHD model (without spatial regularization) achieves similar results to the
much slower and more memory-intensive RT-ESD and PONITA methods. Moreover, non-equivariant
methods, while having competitive angular errors, are negatively impacted by a high false positive
rate and qualitatively high number of spurious fibers.

Finally, on research-grade high-angular resolution data, incorporating spatial information in the
network input does not improve results. However, adding total-variation regularization on the output
of the model as in our proposed SHD-TV model shows significantly improved results. Further, in a
clinical low-angular setting, our spatially informed models (SHD and SHD-TV) widely outperform
voxel-wise methods, showcasing the importance of contextual information for clinical dMRI.

4.2.2 Unsupervised fODF estimation and tractography w/ known ground truth: Tractometer

A high-level overview of this experiment is described in Fig.5B). As Tractometer consists of a single
volume with a low-angular resolution protocol with no held-out testing data, we benchmark methods
on unsupervised fODF estimation similarly to previous work [19]. We first train the models in an
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Figure 7: Tractometer fODF estimation and tractography performance. Top: Unsupervised
fODF estimation (A, closer to bottom left is better) and tractography (B, closer to top right is better)
results. Bottom: In [C], we visualize ground-truth and estimated fibers projecting out from the
brainstem into the right hemisphere. Overall, SHD and SHD-TV demonstrate more faithful fiber and
streamline recovery as compared to the voxel-wise RUMBA and ESD methods. In particular, SHD-TV
yields fewer invalid streamlines and increases spatial coherence.

unsupervised manner to estimate fODFs and then use them to investigate the effect of improved local
fODF estimation on white matter tractography accuracy. Validation of the unsupervised estimated
fODFs involves using the same local fiber detection evaluation as for the DiSCo experiments.
Subsequently, the validation of the estimated tractographs is conducted by comparing them against
21 ground truth fiber bundles provided by the dataset [60]. The white matter streamlines of the
tractograph are initially segmented into 21 target fiber bundles. The correctly identified bundles
are counted as Valid Bundles and the streamlines belonging to one of the ground truth bundles are
counted as Valid Streamlines. Further, the volume of each estimated bundle is compared against the
volume of its corresponding ground truth bundle, leading to the computation of the Overlap score
(analogous to a True Positive value) and the Overreach Score (similar to a False Positive value).

Results. We present Tractometer results in Fig.7. In this setting where all methods are trained and
tested on the same volume, non-equivariant methods (CNN and CNN-TV) outperform most unregu-
larized equivariant deconvolution methods. We speculate that when generalization is not required,
non-equivariant models enjoy a higher overfitting capability in this problem, thereby diminishing the
advantage of employing inductive priors in neural networks.

However, the proposed SHD-TV, which incorporates both spatio-spherical inductive biases and spatial
regularization, significantly outperforms all other methods, regardless of whether they are equivariant
or spatially regularized. This finding supports the compounding benefits of both our architectural
modifications and our proposed regularization strategy. In turn, these enhanced fODF recovery
performances positively impact tractography accuracy, reflected in a quantitatively higher number
of valid streamlines and bundle overlap (albeit with an increase in bundle overreach) and more
qualitatively coherent streamlines.

5 Discussion

Limitations and future work. Our work has certain limitations. First, while we focus on the key
dMRI task of fiber deconvolution, our proposed layers are task-agnostic and can also be deployed
to other tasks such as denoising and segmentation in future studies. Second, while our layers can be
used in many fields with spatio-spherical data outside of neuroimaging, such as robotics [72], neural
rendering [26], and molecular dynamics [9], our assumption of antipodal symmetry (widespread
in dMRI) may need to be relaxed for many applications within these fields. Third, angularly
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undersampled reconstruction results have an inherent risk of missing fibers or fiber hallucination.
While our work partially mitigates these unrealistic reconstructions by adding geometric and spatial
priors to the reconstruction, future validation studies could analyze cohorts with paired scans on
clinical low-resolution and research-grade high-resolution dMRI protocols. Finally, our methods
need further testing on additional clinical challenges such as subject motion, imaging artifacts, and
abnormal structures. However, as our work is entirely self-supervised and only based on regularized
reconstruction of input data, we anticipate robustness to such imaging variation. Preliminary results
on a pathological brain sample are provided in appendix A.5.

Conclusions. The analysis of in vivo white matter neuronal organization within the brain depends on
the key task of dMRI deconvolution and current methods are either not accurate or too slow. To that
end, we developed highly time and memory-efficient equivariant convolutional network layers that
respect the physical symmetries of dMRI. Our contributions led to 3.5× faster runtimes and up to 20×
lower memory consumption as compared to existing spatio-spherical layers, while exceeding or main-
taining their performance on dMRI studies. These layers were then used to construct networks that
achieved strong dMRI deconvolution performance in practical timeframes across multiple commonly
used synthetic benchmark datasets and real in vivo human datasets. Finally, our methods are robust to
the dMRI angular resolutions typically used in clinical practice outside of research settings, potentially
enabling robust analyses of large-scale retrospective dMRI studies and direct application to the clinic.
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A Additional results

A.1 Spherical and hemisphere convolution

Hemispherical sampling. Consider the symmetric spherical sampling V = {p ∈ S2} such that
∀p ∈ V , ∃(−p) ∈ V , and the Euclidean coordinate p = (px, py, pz) ∈ S2. The sphere can be divided
into a north and south hemisphere V = V+ ∪ V−, with V+ = {p ∈ V , such that pz > 0)} and
V− = {p ∈ V , such that pz < 0)}. For point p lying on the circle pz = 0, we further add to V+

every point such that py > 0 and to V− every point such that py < 0. Finally, for the two points p
such that pz = py = 0, we add p such that px > 0 to V+ and p such that px < 0 to V−.

Hemispherical restriction. Consider a spherical function f : S2 → R and a function L : S2×S2 →
R, both sampled on V such that f ∈ RV and L ∈ RV×V . Consider the function L+ : S2 × S2 → R,
L+(p, q) = L(p, q) + L(p,−q), sampled on V+ such that L+ ∈ RV/2×V/2 and f+ ∈ RV/2 the
sampling of f on V+.

Theorem 1 Consider an antipodally symmetric spherical function f and L, such that for all p, q ∈
V , f(p) = f(−p) and L(p, q) = L(-p,-q), then ∀p ∈ V , ∃p+ ∈ V+, such that (Lf)(p) =
(L+f+)(p+).

Proof Let p ∈ V . Then, define p+ = p if p ∈ V+, -p otherwise. Thus, we know that p+ ∈ V+.

(Lf)(p) =
∑
q∈V

L(p, q)f(q) (5)

=
∑
q∈V+

L(p, q)f(q) +
∑
q∈V−

L(p, q)f(q) (6)

=
∑
q∈V+

L(p, q)f(q) + L(p,−q)f(−q) (7)

=
∑
q∈V+

(L(p, q) + L(p,−q))f(q) (8)

=
∑
q∈V+

(L(p+, q) + L(p+,−q))f(q) (9)

=
∑
q∈V+

L(p+, q)f(q) (10)

= (L+f+)(p+) (11)
(12)

A.2 Numerical equivariance error analysis

Motivation. Due to discretization and implementation practicalities, equivariant networks are subject
to aliasing and are only approximately equivariant [33]. Prior work in this space [53, 19, 20] has
demonstrated low equivariance errors for SO(3) and E(3)× SO(3) convolutions and their U-Net
counterparts when operating on full spherical sampling. We claim that the proposed accelerated
implementations of these convolutions do not introduce additional equivariance error and provide
empirical evidence below.

Model details. The hemispherical E(3)× SO(3) convolution is compared to a grid-wise E(3)-
equivariant convolution with spherical information, E(3)-SH, and a voxel-wise SO(3)-equivariant
convolution with spatial information, Concat-SO(3). The E(3)-SH convolution is a 3D convolution
with isotropic kernels processing spherical harmonic coefficients as input features [52]. The Concat-
SO(3) convolution is a spherical convolution processing spatial neighbors as input features [62, 20].
The spatial and spherical kernels are initialized randomly following [34].

Evaluation. We measure numerical equivariance error as the deviation from the equivariance equality,
using:

∇Equiv(N , G, f) =
||[GN (f)]−N ([Gf ])||22

||N (f)||22
(13)
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where N is the tested operator, f is a spatio-spherical signal, and G = (T,R) ∈ E(3)× SO(3)
is a composition of grid-wise and voxel-wise transformation. In practice we only test rotation-
equivariance, and we limit T and R to be rotations. This quantity is measured over 1000 randomly
sampled spatio-spherical signals f , random rotations (T,R), and randomly initialized N . f is
randomly generated from a uniform U [0, 1] distribution on a 8× 8× 8× V spatio-spherical volume
with HEALPix hemispherical grid of resolution 8 (V = 384 vectors). Moreover, we filter high
spherical frequency by only keeping the first 8 spherical harmonic degrees.

Results. Fig.8 illustrates estimated equivariance errors. As expected, we find that the E(3)-SH
convolution exhibits a lack of equivariance to voxel-wise rotations, and the Concat-SO(3) convo-
lution exhibits a lack of equivariance to grid-wise rotations. The accelerated implementation of
the E(3)× SO(3) convolution, taking into account both inductive bias of the spatial and spherical
domain, maintains low voxel-wise rotation equivariance errors.

Equivariance Error in Function of Convolution Equivariance Group
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Figure 8: Quantitative evaluation of equivariance error, depending on the convolution equivariance
group, and the applied rotation group.

A.3 DiSCo quantitative results

Experiment details. We provide more details on the DiSCo dataset, which we used to evaluate
both fODF estimation performance and robustness to dMRI protocol angular resolution. The DiSCo
dataset comprises three 40× 40× 40 synthetic volumes with variable amounts of synthetic noise
added. Our experiments use the volumes with a noise level of SNR=30. All three volumes share the
same synthetic generation process and have four B0 images and four shells each with 90 gradients.
We do not apply any pre-processing step. For quantitative analysis, we train the different models on
the first volume, validate on the second, and test on the third. Given that the synthetic generation
process of the DiSCo dataset is similar to a white matter/CSF tissue simulation, we limit the different
models to a 2 tissue decomposition, and we analyze the white-matter fODFs.

Validation details. All results for deep network models are averaged over five random seeds. For
quantitative evaluation, we first estimate fODFs, then detect peaks, and finally threshold them based
on their voxel-wise relative fiber partial volume applying 19 different threshold values ranging from
0.05 to 0.95. For each threshold, we calculate the false positive rate (FP), false negative rate (FN), and
angular precision of detected fibers following the evaluation framework proposed by [17]; utilizing a
rejection cone of 25◦. Precision and recall are computed at different thresholds using FP, FN, and true
positive fibers (TP). Subsequently, we calculate the Precision-Recall F1 score. We report the angular
error and false positive rate for the threshold that maximizes the F1 score on the DiSCo validation
volume. We report raw average scores and 95% confidence interval (CI) average over five random
seeds in Table 1. Notice that all scores have a CI< 0.01, but the angular error.

A.4 Qualitative in vivo human results

Experiment details. We provide more details on the HCP dataset, which we used for qualitative
evaluation of the fODF estimation. The HCP young adult release contains 100 unrelated subjects and
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Table 1: DiSCo fiber detection performances @ noise level SNR=30 on high and low-resolution data.
Models requiring training are trained on the first volume, validated on the second, and tested on the
third. Results average over 5 random initialized models. Confidence interval at 95% given if CI is
greater than 0.01.

Model PR AUC (↑) F1 score (↑) Angle @F1 (↓) FNR @F1 (↓) FPR @F1 (↓)
Protocol resolution High Low High Low High Low High Low High Low

CSD 0.64 0.50 0.56 0.45 23.0 29.8 0.65 0.74 0.10 0.18
RUMBA 0.61 0.54 0.49 0.42 27.1 33.5 0.74 0.80 0.05 0.08
RUMBA-TV 0.49 0.55 0.49 0.48 26.4 27.5 0.71 0.74 0.12 0.09

MLP 0.59 0.48 0.53 0.42 23.8 ± 0.1 31.8 ± 0.2 0.68 0.78 0.12 0.15
CNN 0.56 0.51 0.51 0.47 24.9 ± 0.3 27.4 ± 0.3 0.70 0.74 0.11 0.12

S2 U-net 0.63 0.50 0.58 0.42 22.2 ± 0.1 32.4 ± 0.1 0.62 0.79 0.11 0.13
ESD 0.64 0.47 0.61 0.47 20.4 ± 0.2 27.9 ± 0.8 0.56 0.68 0.17 0.32
Concat-ESD 0.65 0.59 0.61 0.56 20.3 ± 0.1 22.6 ± 0.1 0.56 0.61 0.15 0.20

RT-ESD 0.64 0.60 0.60 0.57 20.4 ± 0.3 22.0 ± 0.2 0.58 0.61 0.14 0.16
SHD (ours) 0.64 0.61 0.60 0.57 20.0 ± 0.1 21.5 ± 0.5 0.57 0.60 0.17 0.19
SHD-TV (ours) 0.70 0.62 0.65 0.58 17.5 ± 0.2 20.7 ± 0.2 0.49 0.57 0.19 0.22

ensures the exclusion of twin subjects to prevent any data leakage between dataset splits. The dMRI
volumes had undergone pre-processing using FSL [36] and FreeSurfer [25], and further details on the
preprocessing pipeline can be found in the HCP dataset documentation [28, 2, 3, 4]. The 100 dMRI
volumes adhered to a high-resolution diffusion protocol, featuring 18 B0 volumes per subject and
three diffusion shells, each comprising 90 diffusion gradients. We apply similar downsampling to the
HCP dataset, randomly selecting 29 diffusion gradients from the lower b-value shell (1000, s/mm2)
while retaining the B0 volumes. For qualitative analysis on the HCP dataset, we train on 65 randomly
selected subjects, monitor training on 15 validation subjects, and test on 20 subjects. In contrast with
the DiSCo dataset, we estimated 3 group-wise tissue response functions, accounting for white matter,
gray matter, and cerebrospinal fluid present in in-vivo human brains.

Validation details. In-vivo datasets lack microstructure ground truth. Some approaches [62] suggest
using the CSD estimated fODFs from high-quality and high-resolution dMRI as a surrogate ground
truth. However, we argue that this introduces a bias towards CSD and hinders the assessment of
performance improvements in new methodologies. A more recent alternative proposed by [19, 20]
involves using partial volume estimation (PVE) from fODFs as a validation metric. Nevertheless, the
PVE scalar is rotation invariant, posing limitations on its ability to discern the impact of rotation-
equivariant methods compared to their non-equivariant counterparts. Non-equivariant models may
demonstrate high accuracy in invariant scalar estimation while failing to capture the underlying
geometric structure adequately. Moreover, PVE validation relies heavily on the accuracy of third-
party tissue segmentation on T1/T2 images, which may not consistently correlate with partial volume
estimates derived from more information-rich but low-resolution dMRI data. While we acknowledge
that a comprehensive solution for quantitative analysis of in-vivo fODF estimation is yet to be
established, we advocate for a visual qualitative analysis of our proposed method. This approach
aims to provide insights into the performance of our model without relying on potentially biased or
limited validation metrics.
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Figure 9: Qualitative illustration comparing the proposed equivariant dMRI deconvolution framework
against all other baselines.
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A.5 Preliminary analysis on an abnormal brain

Here, we demonstrate the preliminary applicability of our method on abnormal brains. In Fig. 10, we
estimate fODFs on a brain with a glioma using the recently released dMRI dataset from [75]. We
find that the additional priors from our method help fODF estimation and fiber tracking substantially,
filling in a hole in the fiber tracks recovered using the baseline CSD method. However, we note that
this analysis is highly preliminary and that tractography on brains with lesions is a highly active area
of research that requires substantial modifications to tractography algorithms [77].

Figure 10: fODF and tractography estimation in a glioma-affected brain (gray arrow). In [A],
we compare the conventional CSD method ([A.1]) with our proposed SHD-TV model ([A.2]). Our
approach retrieves more spatially coherent fODFs with better fiber angular separation in voxels con-
taining crossing fibers. Notably, the CSD method does not detect fODFs in the crossing area indicated
by the red arrow, leading to an inadequate representation of microstructures by the tractography
algorithm. Additionally, our model does not reveal any abnormal fODFs near or within the tumorous
tissue.
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B Equivariance vs. Data Augmentation: Spatio-Spherical MNIST

Motivation. We study the advantages of using spatio-spherical inductive biases for convolutional
layers, as opposed to learning them from the data. We create a synthetic spatio-spherical MNIST
dataset (inspired by the spherical MNIST experiments of [15]) to conduct controlled experiments.

Dataset. The R3×S2 MNIST data generation process is presented in Fig.11. Importantly, the dataset
characterizes a spatio-spherical segmentation task, where voxel-wise information alone is insufficient
for correct voxel classification. We construct two versions of this dataset to test generalization from
either equivariance or data augmentation. The first version lacks any form of data augmentation,
whereas the second version incorporates random grid and voxel-wise rotations. Because on-the-fly
data augmentation of spatio-spherical signals is computationally expensive, we pre-generate a total
of 1000 volumes per dataset, with a training-validation-test split of 716/142/142.

Dataset generation. We randomly position eight non-overlapping 4× 4 squares on a 2D 16× 16
slice. Subsequently, each square is assigned a random digit between 1 and 9, designating 0 as the
background digit. This 2D slice is duplicated along the z-axis, yielding the final 3D segmentation
volume. Notably, this volume comprises eight non-overlapping 4× 4× 16 structures, termed tubes,
aligned along the z-axis, each featuring the same classification digit across its voxels. Optionally,
we apply a random grid rotation to the segmentation volume. In the second step, we randomly
select an MNIST image corresponding to the classification digit assigned to each square. These digit
images are projected onto a sphere using the methodology presented in [15]. We utilize HEALPix
spherical sampling with a resolution of 4, equivalent to a spherical resolution of V = 192 vertices.
Given the straightforward nature of voxelwise spherical digit classification, we reduce the amount
of information at each voxel. Instead of projecting the entire MNIST image onto the sphere, we
randomly crop it to one-quarter of its original size before projecting the cropped digit onto the sphere.
As a result, any segmentation network has to rely on both the spatial neighborhood and the spherical
information within a voxel. Optionally, we apply a random voxel rotation to the spherically projected
digit.

Figure 11: Top row: Spatio-Spherical MNIST generation process. Bottom row: Results from
testing generalization from equivariance vs. data augmentation on the synthetic R3 × S2

MNIST classification task. [A-C] Dataset generation process. [D-E] Segmentation dice score of
models trained without (D) and with (E) data augmentation. Overall, our proposed E(3)× SO(3)
convolution has a higher generalization power to unseen transformation than its non-equivariant
counterparts, and the right inductive bias increases segmentation performance against data augmented-
only models.

Model details. We compare four convolutional architectures, each exhibiting different equivariance
properties while sharing the same U-Net structure presented in Fig.3. We compare the three previously
presented spatio-spherical E(3)× SO(3), E(3)-SH, and Concat-SO(3) U-Nets, and, to highlight
the importance of incorporating spatial information, we compare them with a voxel-wise SO(3)
U-Net. Inputs to the U-Nets consist of 16×16×16×192 R3×S2 MNIST volumes, and the outputs,
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post-Softmax activation, are 16× 16× 16× 10 volumes representing the classification probabilities
of each voxel for the 10 digits.

Training details. Our training regimen uses a batch size of 8 and trains for 50 epochs with an initial
learning rate of 3× 10−3, which is halved after the 25, 35, and 45 epochs. The optimized objective
function encompasses a combined Dice and Cross-Entropy loss with class-dependent weight to
address imbalanced labels.

Results. We first assess how equivariance influences the generalization of models to unseen data
transformations. The four models are first trained on the dataset without data augmentation and
subsequently tested on the dataset incorporating out-of-distribution random rotations. We then train
and test the models on the dataset augmented with random rotations. The results are presented in
Fig.11.D) and E). To quantify segmentation performance, we compute the dice score across every
volume in the testing set.

In Fig.11.D), we observe that all four models, regardless of the embedded equivariance, perform
well when trained and tested on a transformation-free (i.e., in-distribution) dataset. Importantly, the
spatially informed networks outperform the voxel-wise SO(3) network, underscoring the significance
of incorporating spatial context into the neural network. Furthermore, we emphasize the importance
of incorporating inductive bias into the neural network to enhance generalization to unseen data
transformations during training. The E(3)× SO(3) model, trained on the rotation-free dataset,
achieves a relatively better dice score of 0.38 on the dataset with unseen rotations than both other
models with only equivariance to E(3) or SO(3).

Fig.11.E) further illustrates the advantage of inductive bias compared to data augmentation during
training. Data augmentation dramatically enhances the performance of the E(3)× SO(3) model on
randomly rotated data, surpassing its non-equivariant counterparts. Meanwhile, data augmentation
applied to E(3) or SO(3) models lacking spherical or spatial inductive bias improves segmentation
performance but falls short of matching the performance of the E(3)× SO(3) equivariant model.
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C Additional experimental details

C.1 Spatio-Hemispherical Convolution overview

Figure 12: Overview of the Hemispherical E(3)× SO(3) Convolution computation. This figure
is adapted from [20]. [A-C] The input of the convolution is a 3D grid of hemispherical graphs with
V vertices per voxel. The input is first processed by voxel-wise spherical filtering using the proposed
hemispherical Laplacian and efficient implementation. [D-F] The 3D volume is then processed by a
3D isotropic convolution with weight-sharing across the hemispherical graph vertex.

C.2 Details of the deconvolution framework

fODF model. The fODF model assumes the voxel-wise diffusion signal to be produced by a
composition of T tissue types, with each tissue further composed of an unknown number of cells/fibers,
each one described by its local partial volume and orientation. At the voxel level, the fiber information
is aggregated into one fiber orientation distribution function (fODF) per tissue, providing information
on the local tissue composition and orientations. The model relates the dMRI signal and tissue
microstructure by combining T tissue-specific Response Functions (RFs) and T fiber Orientation
Distribution Functions (fODFs). The fODFs F={Ft} are tissue-dependent antipodally symmetric
spatio-spherical functions. The response functions RF={RF b

t } are tissue-dependent and shell-
dependent spherical functions, assumed constant across the spatial domain, and to be antipodal and
axial symmetric. The total b-shell dMRI signal is modeled as a sum over tissue-specific signals
Sb =

∑T
t=1 S

b
t , where tissue-specific diffusion signals are modeled as a voxel-wise spherical

convolution Sb
t = C(Ft, RF

b
t ) between the fODF and the response function. The convolution is

defined as C(F,RF )(x, q) =
∫
p∈S2 F (x, p)RF (q

T p)dp.

Diffusion sampling. A dMRI image S is a function S(x, q) : R3 ×S2 → RB . In practice, the dMRI
signal is discretized on a set of shells B = {bi ∈ R+}i∈[1,.,B] where B is the number of shells, such
that for every b ∈ B, the b-shell function Sb is a spatio-spherical signal. Furthermore, the b-shell func-
tion is sampled on a shell-dependent set of spherical gradient direction Vb = {qbi ∈ S2}i∈[1,.,Nb] with
Nb the number of b-shell gradient sampling. We note Sb,Vb

(x) = [S(x, qb1, b), ..., S(x, q
b
Nb
, b)] ∈

RNb the sampled b-shell signal on Vb. Moreover, we note D = {B, {Vb}b∈B} the full diffusion
sampling set, and SD(x) = [Sb1,Vb1

(x), ...,SbB,VbB
(x)] ∈ RND the sampled dMRI signal, with

ND =
∑

b∈BNb the total number of gradient sampling.

Data normalization. For every new dMRI scan Sori., we compute the scan-specific white matter B0
response function RF 0,ori.

wm using MRtrix [68], and normalize the dMRI signal S = Sori./RF 0,ori.
wm .

The input of our framework is the normalized shell-sampled diffusion MRI signal SG(x) =
[Sb1,Vb1

(x), ...,SbB,VbB
(x)] ∈ RND for x ∈ R3. Following [19], we first normalize the protocol-

dependent spherical sampling by first interpolating it, for each diffusion shell, to a fixed hemisphere
HEALPix sampling V+ as defined in section 3.2. We implement the interpolation using spherical
harmonics. For this, we first compute the spherical harmonic coefficients Ŝb(x) ∈ RNL for every
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b ∈ B shell, where NL is the number of harmonic coefficient for a maximal harmonic bandwidth of
L. Because the diffusion signal is antipodal-symmetric, the odd-order spherical harmonic coefficients
are equal to 0 and we only compute the even-order coefficients, making the total number of coefficient
NL = (L/2+ 1)(L+1). Importantly, getting the coefficients Ŝb(x) from Sb,Vb

(x) requires at least
|Vb| ≥ (L/2 + 1)(L+ 1) samples. We limit the maximum interpolation bandwidth to L = 8, which
requires at least 45 samples per shell. In case the shell sampling Vb does not have enough samples,
we use the theoretically maximum spherical harmonic degree estimated from the available gradients.
We then interpolate the harmonic coefficients on the HEALPix grid V+, Sb,V+(x) = Ŝb(x)Y

L
V+ ,

where YL
V+ relates the even L bandwidth harmonic coefficients to the HEALPix spherical sampling.

We get the B feature input spatio-spherical signal SV+(x) ∈ RV×B .

Group-average response function. We estimate a population-based response function R̂F following
[55]. For Ns normalized dMRI scans in our training dataset, we first compute T tissue response
functions R̂Ft,i per dMRI image, where i is the image index, using the Dhollander algorithm,
implemented in MRtrix [68] [18]. We then compute the per-tissue average response function
R̂Ft = 1/Ns

∑Ns

i=1 R̂Ft,i.

Signal reconstruction. From the fODFs FV+ , we reconstruct the diffusion signal SD on the
reconstruction shell-sampling D using a spherical convolution with response functions RF. For every
voxel x ∈ R3, we compute the spherical harmonic coefficients F̂(x) = {fml,t(x)} ∈ RNL×T from
the estimated FV+(x). The fODFs being antipodal-symmetric, we only compute the even-degree
coefficients. The maximum spherical harmonic degree L depends on the resolution of the HEALPix
sampling V+. We use a sampling resolution with 384 vertices per hemisphere and a fODF maximum
spherical harmonic degree of L = 18. Moreover, the response functions are also represented by
their spherical harmonic coefficients R̂F = {rm,b

l,t } ∈ RML×T×B . The RFs are antipodal and
z-axis symmetric, setting to 0 every non-even degree and non-zero order coefficients. We then
compute the reconstruction dMRI spherical harmonic coefficients Ŝ(x) = {sm,b

l (x)} ∈ RNL×B ,
sm,b
l (x) =

∑
t

√
2π/(2l + 1)fml,t(x)r

0,b
l,t . Finally, we can interpolate the reconstructed signal Ŝ on

any shell-sampling D.

C.3 Details of compared models

We give an overview of details of the compared methods in Fig.13 and separate the different baseline
methodologies into two groups.

Conventional Models. Conventional methods for fODF estimation generally solve the inverse
problem iteratively. Constrained Spherical Deconvolution [66, 68] (CSD) and RUMBA [11] optimize
voxel-wise dMRI reconstruction losses subject to a non-negativity constraint on the fODF. RUMBA-TV
further enhances fODF smoothness by incorporating spatial total variation regularization. Importantly,
conventional methods do not need prior training and are limited by the input data quality.

Deep-Learning Models. We evaluate our proposed framework against existing deep-learning
methodologies for fODF estimation. While diverse network architectures, such as MLP, 2D/3D CNN,
or spherical CNN, have been proposed, we adopt a standardized network architecture to focus our
comparison on the inductive bias and training framework introduced by each method’s convolution
layer. We employ an MLP-based network that operates voxel-wise [52] and a CNN-based network
operating on spatial patches [46]. Adding spherical inductive biases to the MLP network, we employ
a voxel-wise S2-based network ESD [61, 19]. The SE(3)-equivariance PONITA method adds spatial
information and inductive bias, equivariant to joint transformation on the spatio-spherical domain.
Finally, the RT-ESD model is a E(3)× SO(3)-equivariance spatio-spherical convolution network,
equivariant to independent transformation on the spatial and spherical domain. We extend RT-ESD to
an efficient implementation SHD and spatially regularized SHD-TV.

C.4 Details of architecture and training

Network Details. A high-level network architecture is illustrated in Fig. 3. For E(3)× SO(3)-
equivariant models, we use spatio-spherical pooling and unpooling operations. The SO(3)-
equivariant models employ spherical pooling/unpooling, the CNN models use only spatial pool-
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ing/unpooling, and no pooling is used by the MLP model. The first layer maps the input features to
Fs = 32 features for equivariant models and Fs = 128 features for non-equivariant models.

The input and output feature number of the first and last layers depend on the convolution inductive
bias, the number of estimated tissue components T , the number of input diffusion shells B, and the
diffusion gradients angular resolution. The MLP and CNN models have at each voxel a feature vector
of size Fi = B × 45 (high angular resolution) or Fi = B × 28 (low angular resolution) consisting of
the 45 or 28 spherical harmonic coefficients of degree 8 or 6, respectively. At each voxel, they output
a feature vector of size Fo = T × 45, representing the 8-degree spherical harmonic coefficients
of the T tissue fODF. The S2 U-Net, ESD, and RT-ESD models use an input spherical graph of 768
vertices (HEALPix grid resolution of 8) with Fi = B spherical feature maps. The Concat-ESD
model uses the same graph resolution but the number of feature maps increases to Fi = B × 33

due to neighborhood concatenation. All four models output Fo = T spherical maps (with the same
resolution), corresponding to the T tissue fODFs.

SE(3)-Equivariance

E(3)xSO(3)-Equivariance

Spherical rotation-equivariant network

Standard networks

No Equivariance

Iterative optimization

Spatio-spherical equivariant networks

SO(3)-Equivariance

T(3)-Equivariance

Figure 13: Model description. We compare conventional and learnable methods. Learnable methods
have increasing embedded geometric prior through equivariance.

Training implementation. All models are trained for 50 epochs with a batch size of 16 patches
using the Adam optimizer [41] with an initial learning rate set at 1.7× 10−2. The learning rate is
decayed by a factor of ten after the 30, 40, and 45 epochs. For unsupervised models, we tuned the
regularization weights using the ESD model on the DiSCo validation volume, and further tune λtv for
SHD: λnn = 10−1, λsparse = 5×10−5, and λtv = 5×10−1. The spatially-informed models operate
on 3× 3× 3 spatial patches, whereas the spherical-only models process 1× 1× 1 spatial patches.

fODF ground truth generation. Quantitative validation of the model requires access to ground
truth fODF. The two benchmark datasets either do not directly provide this information or provide
reference fODFs estimated with the CSD model on noise-free high-angular resolution dMRI volumes.
However, both datasets provide ground-truth white matter streamlines. To avoid bias towards the CSD
model and extract ground-truth fODF for the Tractometer dataset, we propose an alternative unbiased
fODF estimation approach leveraging the ground-truth tractograph. We approximate the voxel-wise
ground-truth fODFs by aggregating every streamline passing through a voxel and computing its
spherical fiber density function. A white matter streamline can be represented as a set of vectors {vij}
where v ∈ S2 is the local streamline direction, j is the streamline index and i is the vector index. For
every voxel p, we find every local direction {vikjk} going through the voxel. We then apply a spherical
kernel density estimation on the set of unit vectors {vikjk} using a uniform spherical kernel with an
angular size of 15◦. We then extract the ground-truth peak directions from the fiber density function
using the MRtrix peak detection algorithm [68] with a maximum number of crossing fibers per voxel
set to 10.
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