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Abstract

We prove new instances of Halin’s end degree conjecture within ZFC. In
particular, we prove that there is a proper class of cardinals κ for which Haliln’s
end-degree conjecture holds. This answers two questions posed by Geschke,
Kurkofka, Melcher and Pitz in 2023. Furthermore, we comment on the re-
lationship between Halin’s conjecture and the Singular Cardinal Hypothesis,
deriving consistency strength from failures of the former. We also show that
Halin’s conjecture fails on finite intervals of successors of singular cardinals in
Meremovich’s model.

1 Introduction

In the study of infinite graphs, the notion of ends is an endeavor to give a notion of
“direction” to undirected graphs, by adding “vertices at infinity”. Namely, an end of
a graph is represented by rays that are connected by infinitely many vertex-disjoint
paths.

Continuing the work from [1], we search for special configurations inside the ends
of an underlying graph. In particular, such configurations will contain stars of rays.
It was shown in [1] that this might depend on a measure of how sparse the rays of
an end are — i.e., on their degree.

In a graph G, a ray is a one-way infinite path, whose infinite connected subgraphs
are called its tails. Say that two of its rays r and r1 are equivalent if they are infinitely
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connected. The degree degpεq of an end ε is the maximum cardinality of a collection
of pairwise disjoint rays in ε.

Observing that prototypes of ends of any prescribed degree are given by the
Cartesian product of a sufficiently large connected graph with a ray, Halin proved
his famous grid theorem (see [1]):

Halin’s grid Theorem. Every graph with an end of infinite degree contains a sub-

division of the hexagonal quarter grid whose rays belong to that end.

In order to generalize Halin’s grid theorem to higher cardinals Halin introduced
the notion of a ray graph, as follows:

Given a set R of disjoint equivalent rays in a graph G, we call a graph H with
vertex set R a ray graph in G iff there exists a set P of independent R-paths (inde-
pendent paths with precisely their end-vertices on rays from R) in G such that for
each edge RS of H there are infinitely many disjoint R–S paths in P. Given an end ε

in a graph G, a ray graph for ε is a connected ray graph in G on a degree-witnessing
subset of ε.

Let Halin’s conjecture for κ, HCpκq, be the following statement:

“For any graph, if an end has degree κ, then it contains a ray graph”.

Halin’s end-degree Conjecture. HC is the statement that HCpκq holds for every
κ.

The following Theorem was proven in [1], and it was conjectured that it encom-
passes all cases that could be decided in ZFC alone, regarding HCpκq.

Theorem (Geschke et al [1]). The following two assertions about HCpκq are provable
in ZFC:

(1) HCpℵnq holds for all n P ω,

(2) HCpκq fails for all κ with cfpκq P tµ` : cfpµq “ ωu; in particular, HCpℵ1q fails.

Furthermore, the following assertions about HCpκq are consistent:

(3) Under GCH, HCpκq holds for all cardinals not excluded by (2).

(4) However, for all κ with cfpκq P tℵα | ω ă α ă ω1u it is consistent with
ZFC` CH that HCpκq fails, and similarly also for all κ strictly greater than
the least cardinal µ with µ “ ℵµ.
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Question. [1, Question 1] Is Halin’s conjecture true for some κ ą ℵω1
? [1, Question

3] More generally, is it true that for every cardinal κ there is fpκq ą κ, such that
every end ε of degree fpκq contains a connected ray graph of size κ?

We answer both questions positively. One can see that already Lemma 2.2 implies
that HC holds for a proper class of cardinals. Furthermore, we could decide the status
of HC depending on a cardinal functional, ,ר that partitions the class of all cardinals
into a family of intervals indexed by the ordinals.

A cardinal κ is said θ-strong iff µθ ă κ, whenever µ ă κ. So, for example, c` is
the smallest ω-strong cardinal. In Section 3 we shall prove the following theorem:

Theorem 1.1. There exists ר : ON Ñ CARD, a partition of the class of cardinals
into intervals indexed in the ordinals, with the following property: if κ ą c is any
cardinal and γ is an ordinal such that pγqר is not a fixed-point of the ℵ-function:

(1) if κ P pרpγq, pγר ` 1qs, then

(a) HCpκq holds if κ P pרpγq, pγq`ωsר and cfpγq ‰ ω; and

(b) HCpκq fails if κ P pרpγq`ω, pγר ` 1qs or cfpγq “ ω.

(2) HCpκq holds if and only if HCpcfpκqq holds, whenever κ “ pγqר is a singular
cardinal and γ is a limit ordinal.

(3) HCpκq holds for all regular cardinals κ that are fixed-points of the function .ר

In particular, it follows from the item (1) that HC holds in the interval pc, c`ωs;
and it fails in the interval rc`ω`1, pc`ωqωs.

2 Making stars of rays out of combs and spines

Let ε be an end of a graph G “ pV,Eq and U Ď V disjoint from ε. An pε, Uq-comb
is a set of the form R YD, where R is a ray that belongs to ε and D is a collection
of independent paths with ending points in R and U .

Theorem. Let ε be an end of a graph G and R be a κ-sized collection of disjoint
rays belonging ε.

(1) Comb’s lemma. If U is a countable set of vertices, and C is an uncountable
collection of internally disjoint pε, Uq-combs of G, then ε contains a |C|-star of
rays whose leaf rays are the spines of (a subset of) combs in C; and
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(2) The greedy lemma. if cfpκq ą ℵ1, then there exists a set of vertices U of G,
and a κ-sized collection C of internally disjoint pε, Uq-combs of G, such that
|U | ă κ and all spines of C are in R.

A pλ, κq-graph is a bipartite graph G “ pA,B,Eq, where

§ E is the edge-relation on the set of vertices AYB;

§ |A| “ λ ă κ “ |B|;

§ pAˆ tbuq X E is infinite, for every b P B; and

§ A2 X E “ B2 X E “ H — i.e., A and B are both independent sets.

These graphs will naturally arise from sets of vertices and families of internally
disjoint combs whose spines are contained in a prefixed collection of rays that are
all members of the same end. This will be sufficient to obtain positive instances for
Halin’s end-degree conjecture.

Let R be a κ sized collection of disjoint rays belonging to an end ε of a graph
G “ pV,Eq such that cfpκq ą ℵ1. Let U be a set of vertices ofG such that |U | “ λ ă κ

and C be a κ-sized collection of internally disjoint pε, Uq-combs of G, with all spines
in R. From this, we define the corresponding pλ, κq-graph on pU, Cq, pU, SpCq, Eq, as
follows:

§ SpCq is the collection of all spines of all combs in C; and

§ pv, rq P E if, and only if, r is the spine of a pε, Uq-comb c P C such that v is
the teeth of c.

Lemma 2.1. Let pA,B,Eq be a pλ, κq-graph such that pA ˆ tbuq X E is countable,
for every b P B.

(1) If κ is a regular cardinal, cfpλq “ ω and κ is ω-strong, then there exists a
pℵ0, κq-subgraph of pA,B,Eq.

(2) [1, Lemma 4.4] If cfpλq ą ω and cf κ ‰ cf λ, then there is a pλ1, κq-subgraph of
pA,B,Eq for some λ1 ă λ.

(3) If κ is a ω-strong cardinal, λ ă cfpκq, then there exists a pℵ0, κq-subgraph of
pA,B,Eq.

(4) If κ is a ω-strong cardinal, then there exists a pℵ0, κq-subgraph of pA,B,Eq or
there is a collection of disjoint pℵ0, θβq-subgraphs such that tθβ | β ă cfpκqu is
cofinal in κ and for every β ă cfpκq it holds that θβ is regular and ω-strong.
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Proof. (1) We will find ν ă κ such that λ ă ν and νω “ ν. We have two cases:
κ “ θ` for some cardinal θ or κ is a weakly inaccessible cardinal. On the first case
we let ν “ θ. On the second case, let µ be a cardinal such that λ ă µ ă κ and
µω ă κ. We have νω “ ν and by König’s Lemma, it follows that cfpνq ą ω. Hence
in both cases we have λ ă ν and νω “ ν.

Thus λω ď νω “ θ. By the pigeonhole’s principle it follows that there exists A1 Ď
A such that |A1| “ ℵ0 and B1 Ď B such that |B1| “ |B| “ κ and A1 “ pAˆ tbuq XE,
for all b P B1. Thus pA1, B1q is our desired pℵ0, κq-subgraph of pA,Bq.

(3) By (2) there is pA1, B1, E 1q a pλ1, κq-subgraph of pA,B,Eq such that λ1 ă λ. If
cfpλ1q “ ω, then by (1) we can find a pℵ0, κq-subgraph of pA1, B1, E 1q. If cfpλ1q ą ω,
we can apply (2) again. Iterating this process, since there is no infinitely decreasing
sequence of ordinals, we will find finitely many steps a pℵ0, κq-subgraph of pA,B,Eq.

(4) We follow [1, Lemma 4.6]:
Recursively choose disjoint pℵ0, µ

`
β q-subgraphs pAβ , Bβq of pA,Bq for β ă cf κ as

follows: Given some fixed i ă cf κ with pairwise disjoint pAα, Bαq already selected
for all α ă β, let

A1
β :“ Az

ď

αăβ

Aα and B1
β :“

#
b P Bz

ď

αăβ

Bα | Npbq X A1
β is infinite

+
.

If |B1
β| ă κ, then since |

Ť
tAα | α ă βu| ă cf κ, the subgraph pYtAα | α ă βu, BzB1

βq
of pA,Bq would contain an pℵ0, κq-subgraph by (3) of Lemma 2.1, contradicting our
initial assumption. Therefore, we may choose B2

β Ă B1
β of size µ`

β , and by (1) of

Lemma 2.1 obtain an pℵ0, µ
`
β q-subgraph pAβ , Bβq of pA,Bq disjoint from all pAα, Bαq

for α ă β as desired.

We are ready to prove Lemma 2.2:

Lemma 2.2. HCpκq holds for all ω-strong regular cardinals κ.

Proof. Let G “ pV,Eq be a graph with an end ε of degree κ. Let R Ď ε be a family
of pairwise disjoint rays such that |R| “ κ. Since κ ą ω1 and cfpκq “ κ, by the
greedy Lemma , there exists U Ď V and C such that |U | “ λ ă κ, |C| “ κ and C is a
collection of internally disjoint pε, Uq-combs in G with all spines in R. Now consider
the corresponding pλ, κq-graph on pU, Cq, pU, SpCq, Eq.

If |U | “ ℵ0, then, by Comb’s lemma, there exists a ray graph contained in ε. If
|U | ą ℵ0, setting λ “ |U | we consider two cases: The first case is cfpλq “ ω, then by
(1) of Lemma 2.1 we may find a pU 1, C1q a pℵ0, κq-subgraph of pU, Cq to which we can
apply Lemma 2 and obtain a ray graph. The second case is cfpλq ą ω. In this case,
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we may apply (2) of Lemma 2.1 and obtain pU2, C2q with |U2| ă λ a pλ, κq-subgraph
of pU, Cq. Iterated applications of (2) of Lemma 2.1 produces a finite decreasing

sequence of cardinals which stops when we find a ppU, pCq which is a pℵ0, κq-bipartite
sub-graph of pU, Cq and again Comb’s Lemma ensures that there exists a ray graph
as we sought.

Corollary 2.3. HC ppµωq`nq holds for every natural n ě 1 (in particular, for every
p2ωq`n “ c

`n).

Proof. Note that pµωq`n is ω-strong, for every natural n ě 1.

Lemma 2.4. HCpκq holds whenever κ is an ω-strong cardinal such that ω2 ď cfpκq ă
κ and HCpcfpκqq holds.

Proof. Suppose that HCpcfpκq hods and xµβ | β ă cfpκqy be an increasing cofinal
sequence of cardinals in κ such that for each β ă cfpκq it holds that pµβq

ω “ µβ.
Given a graph G and an end ε with degpεq “ κ let F Ď ε be such that |F | “ κ and
the rays in F are mutally disjoint.

We consider two cases cfpκq “ ω and cfpκq ą ω1.
For the first case, cfpκq “ ω, we use the argument from [1, Proposition 5.3]: For

each n ă ω “ cfpκq let Sn Ď F be a ray graph of cardinality µ`
n with center Rn.

Notice that µ`
n rays in Sn are disjoint from

Ť
γPβ Sγ Y

Ť
δPcfpκq Rδ, since the last has

cardinality ď µ`
n´1

. Therefore, we can find a set of ε-
Ť

nPω Rn internally disjoint
comb’s. Hence by the Comb’s lemma we can find a star of rays in G of cardinality
κ.

For the second case, cfpκq ą ω1, we adpat the argument from [1, Theorem 5.4]
Let ε be an end of G with degpεq “ κ. We may assume that κ is singular and

cfpκq ą ℵ1. Hence, by the Greedy Lemma, there are some set of vertices U Ă V pGq
with |U | ă κ and a κ-sized family C of internally disjoint ε–U combs. Consider
the p|U |, κq-minor H “ pU, Cq of G where we contract the interior of every ε–U
comb C P C. By item (4) of Lemma 2.1, H contains either an pℵ0, κq-subgraph
(in which case we are done by item (1) of Lemma 2.1) and the Comb’s Lemma, or
a collection of disjoint pℵ0, θβq-subgraphs for tθβ | i ă cf κu cofinal in κ with all
θβ ą maxtℵω`1, cfpκqu regular and ω-strong.

Consider one pℵ0, θβq-subgraph Hβ. As κβ is ω-strong, it follows that 2ℵ0 ă
θβ and the regularity of θβ that there is a complete pℵ0, θβq-subgraph H 1

β Ă Hβ.
Uncontracting the θβ-side of H 1

β to combs and applying Comb’s Lemma inside the
resulting subgraph of G (in which by construction all spines of the combs are still
equivalent) gives a star of rays Sβ of size θβ. By construction, any two such stars are
disjoint.
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Now, we apply HCpcfpκqq to the collection R of all center rays of the Sβ to obtain
a star of rays S of size cfpκq with leaf rays in R. Keeping only those Sβ whose centre
ray is a leaf ray of S, we may assume that S has precisely R as set of leaf rays. Since
|S| ă |Sβ| for all i, we may assume that each Sβ meets S only in the former’s centre
ray. Then S Y

Ť
tSβ | β ă cfpκqu yields a connected ray graph of size κ.

3 HC on an interval-partition of the cardinals

In this section, we introduce the cardinal function ר that will assist in determining
when HC holds or fails. This function naturally arises from the operator ppω, from
Shelah’s PCF theory. This operator acts on singular cardinalls and, ω-strong singular
cardinals, with some extra requirements, it allows us to assign the truth values for
HC in an interval-partition of all cardinals. For instance, by resorting to the operator
ppω we can map the intervals whose cardinals have scales, which we know, by [1,
Theorem 8.1; Proposition 7.4], implies the failure of HC for these cardinals.

We will need some elementary definitions from PCF theory. Namely, given an
ideal J , on ω, a set of regular cardinals a “ tνn | n P ωu, indexed in increasing order,
and functions f, g P

ś
κPa κ, we write f ăJ g iff

tν P a : fpνq ě gpνqu P J.

Let λ :“ suppaq. A collection X “ pfαqαăκ of elements of
ś

nPω νn is a κ-scale on λ

iff there exists an ideal I, on ω, such that

§ every bounded subset of ω belongs to J ;

§ for all α, β ă κ such that α ă β, we have that fα ăJ fβ ; and

§ for all g P
ś

nPω νn, there is α ă κ such that g ăJ fα.

Then the operator ppωpλq is defined as

ppωpλq “ suptκ | there is a κ-scale for λu

We will need the following result from PCF theory:

Theorem. [5, Ch II §5, Ch IX §2] Suppose that λ is a ω-strong cardinal and cfpλq “
ω. Then ppωpλq ď λω. Moreover, if λ is not a fixed-point of the ℵ-function, then
ppωpλq “ λω; and ppωpλq is not a weakly inaccessible cardinal.
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The following result is key for this section, it tells how the existence of κ-scales
for λ implies that HCpκq fails.

Theorem (Counterexample from scales).

(1) [1, Theorem 8.1] Let T be a λ-tree with κ tops X , and G be any sparse T -
graph such that the corresponding pλ, κq-graph on pTăω, Xq, pT YX,Eq, has
no pℵ0, κq-subgraphs. Then the ray inflation G7N of G does not have a ray
graph of cardinality κ1 for every regular κ1 such that λ ă κ1 ď κ. It follows
that HCpκ1q fails for any such cardinal κ1.

(2) [1, Proposition 7.4] Let λ be a singular cardinal of countable cofinality. Given
any κ-scaleX , the corresponding tree Tλ with topsX gives rise to a pλ, κq-graph
that has no pℵ0, κq-subgraph.

The statement of (1) in Theorem (Counterexample from scales) is stronger than
what is presented in [1, Theorem 8.1]. However, the proof provided in [1] also
establishes this stronger result.

Lemma 3.1. Suppose that κ and µ are cardinals such that ω2 ď cfpκq ă κ, µ ă κ

and cfpκq ă cfpµq. If there is a increasing sequence of regular cardinals greater than
µ, xµα | α ă cfpκqy, cofinal in κ such that for every α ă cfpκq there is a graph Gα

with exactly one end εα, degpεαq “ µα with no ray graph of cardinality ě µ. Then
HCpκq fails.

Proof. We will build a graph G with an end ε of degree κ with no ray graph of
size κ. Suppose that the graphs Gα from our hypothesis are mutally disjoint. Let
r “ trn | n P ωu be a set disjoint from each Gα for α P cfpκq. We start defining
our graph G by adding trn, rn`1u to the set of edges of the graph for every n P ω.
For each α ă cfpκq, we fix a ray tα P Gα and add the vertices tprn, ptαqnu to G

for every α ă cfpκq and every n P ω. That concludes our definition of G, which
is a pκ, t|Gα| | α P cfpκquq-star. It readly follows that G has only one end ε and
degpεq “ κ.

Suppose that F0 Ď ε is a collection of parwise disjoint rays with |F0| “ κ. Suppose
towards a contradiction that there is F Ď F0 with |F | “ κ and a family of paths P
such that pF ,Pq is a ray graph of G. We will find an α ă cfpκq such that there is a
ray graph in εα X F of size κ.

The hypothesis that cfpµq ą cfpκq implies that there is α ă cfpκq such that |RX
εα| ě µ. We will find a ray graph of εα of cardinality ě µ reaching a contradiction.

We consider two cases, on the first case we suppose that tα R F . Given z0, z1, w0, w1

mutually disjoint elements of F X εα, such that there are p, s P P that p connects z0
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to z1 and s connects w0 to w1, pX r ‰ H and sX r ‰ H. Then pX rX s “ H, since
P is a family of independent paths. Therefore the set of pair of rays z0, z1 P F such
that there exists a path p P P connecting z0 to z1 and pX r ‰ H is a countable set.
Then we let R “ to be the set of w P εα X F such that for every u P εα X F for all
p P P that connects u to w we have that p X r “ H. We let C “ tp P P | p Ď Gαu.
Then pR, Cq is a ray graph in εα of cardinality κ that we seek.

On the second case we assume that tα P F . We let C be the paths of the form
p X Gα such that p connects rays v0, v1 P εα. From the construction of G, it follows
that pXGα also connectes v0 to v1. Since |εαXF | “ κ, if R “ εαXF , then it follows
that pR, Cq is a ray graph in Gα of cardinality κ that we seek.

In both cases we reach a contradiction to our hypothesis that Gα has no ray graph
of cardinality κ ě µ.

Proof of Theorem 1.1. The function ר : ONÑ CARD is defined such that, for every
ordinal β:

pβqר “

$
’’’’’’&
’’’’’’%

2 if β “ 0

c if β “ 1

pרpγq`ωqω if β “ γ ` 1 for some ordinal γ such that cfpγq ‰ ℵ0

pγqωר if β “ γ ` 1 for some limit ordinal γ such that cfpγq “ ℵ0Ť
αPβ pαqר if β is a limit ordinal

Case (1) (a): Suppose κ ă pγר ` 1q`ω. An easy induction argument proves that
for θ P rרpγ ` 1q, pγר ` 1q`ωq we have that θω “ θ. It follows, by Lemma 2.2, that
for all κ Psרpγ ` 1q, pγר ` 1q`ωr we have HCpκq. It follows from Lemma 2.4 that
HCpרpγq`ωq holds.

Case (1)(b): We consider four subcases of (1)(b). First, suppose cfpγq ‰ ℵ0 and
κ P pרpγq`ω, pγר ` 1qqq. By Theorem 3 applied to pγq`ωר we have that

ppωpרpγq
`ωq “ pרpγq`ωqω “ pγר ` 1q

Thus we can find τ P pרpγq`ω, pγר ` 1qq such that τ ě κ and there is a τ -scale for
.pγq`ωר We can apply 3 to τ and obtain a graph G wich witnesses that HCpκq fails.
For the second subcase of (1)(b), suppose that cfpγq ‰ ℵ0 and κ “ pγר ` 1qq. If
there is a pγר ` 1q-scale for ,pγq`ωר it follows as in the previous case that  HCpκq,
otherwise from Theorem 3 it follows that pγ`1qר is not a weakly inaccessible cardinal
and hence it is a singular cardinal. We can apply Lemma 3.1 and obtain  HCpκq.
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For the third subcase of (1)(b), suppose cfpγq “ ω and κ P pרpγq, .pγ`1qqר From
our hypothesis that pγqר is not a fixed-point of the ℵ function we can apply Theorem
3 to pγqר and by the definition of pγר ` 1q, in the case cfpγq “ ω, we obtain

ppωpרpγqq “ pγqωר “ pγר ` 1q

Applying Theorem 3 it follows that HCpκq fails.
For the forth and last subcase of (1)(b), suppose that κ “ pγר ` 1q, if there is a

`pγר 1q-scale for pγqר it follows as in the previous case that HCpκq fails. Otherwise
pγר ` 1q is a singular cardinals and by Lemma 3.1 it follows that HCpκq fails.

Case (2): Note that for µ ă κ “ pγqר we have µω ă κ. Suppose that cfpκq ‰ ω,
since HCpcfpκqq, we must have cfpκq ě ω2. Applying Lemma 2.4 we obtain HCpκq.

Case(3): Follows from Lemma 2.2.

4 A word about SCH and its relation to HC

In this section we discuss what values the function ר assumes in certain models of
ZFC. We intend to conciliate the result in Theorem 1, in particular item (4), with
Theorem 1.1 and Lemma 2.2.

Remark 1. If ω ă α ă ω1, by results due to Magidor and Shelah [3], assuming large
cardinals, it is consistent that GCH holds below ℵω and ℵω

ω “ ℵα`1. In this context
we have p1qר “ c “ ℵ1 and p2qר “ ℵω

ω “ ℵα`1. Applying Theorem 1.1 it follows
that HCpκq fails for every κ P pרp1q`ω, p2qsר “ pℵω,ℵ

ω
ωs and HCpκq holds for every

κ P pרp1q, p1qωsר “ pℵ1,ℵωs.

Remark 2. If µ is the first fixed-point of the ℵ-function with rank ω and κ ą µ,
then it is consistent, modulo large cardinals, that GCH holds below µ and µω ě κ.

The Singular Cardinal Hypothesis above λ states the following:

SCHěλ: c ă λ and κcfpκq “ κ` for every κ ą λ such that 2cfpκq ă κ.

As a consequence of the next corollary, we will derive large cardinal strength from
failures of HC.

Corollary 4.1. If SCHěλ holds, then HCpκq holds for all successor cardinal κ such
that κ ą λ and are not of the form µ` for some µ such that cfpµq “ ω.
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Proof. Suppose that µ` “ κ ą λ ě pcq` where cfpµq ‰ ω. Then µ ą c and by SCH
above λ it follows that µω “ µ. Therefore, by Lemma 2.2, HCpµ`q holds.

The following corollary is an immediate consequence of Gitik’s landmark result
[2] on the consistency strength of the negation of SCH.

Corollary 4.2. Suppose that HCpκ`q fails for some κ` such that cfpκq ‰ ω and
κ` ą c. Then there is a inner model M with a measurable cardinal θ such that
oMpθq “ θ``M.

Note that if κ is ω-strong, then HCpκq is not affected by κω. On the other hand,
in this case, κω will affect HCpκ`nq depending on wether κω ě κ`n.

Corollary 4.3. Suppose SCH holds above κ. If µ ą κ` and cfpµq is not of the form
θ` with cfpθq “ ω, then HCpµq holds.

Theorem 4.4. Suppose there is a class of strong cardinals, then given n P ω it is
consistent that for every cardinal µ it holds that HCpµ`ω`kq fails for every k ď n.

Proof. Assuming large cardinals by [4] for every n P ω it is consistent that 2λ “ λn

holds for every cardinal λ.
Let κ “ µ`ω for some cardinal µ. Then cfpκq “ ω and θ ă κ implies

θω ď θθ “ 2θ “ θ`k ă µ`ω “ κ

These inequality shows that κ is ω-strong.
For a “ tµ`n | n P ωu, it follows from Theorem 3 that

κω “ ppωpκq “ κ`k

Applying Theorem Counterexamples from scales it follows that HCpκ`mq fails for
every m such that 1 ď m ď k.
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