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Abstract

Consider that G = (X,Y) is a simple, connected graph with X as the vertex set and Y as the edge set.
The atom-bond connectivity (ABC) index is a novel topological index that Estrada introduced in Estrada et
al. (1998). It is defined as

ABC(G) =
∑

xy∈Y (G)

√

ζx + ζy − 2

ζxζy

where ζx and ζx represent the degrees of the vertices x and y, respectively. In this work, we explore the
behavior of the ABC index for tree graphs. We establish both lower and upper bounds for the ABC index,
expressed in terms of the graph’s order and its Roman domination number. Additionally, we characterize the
tree structures that correspond to these extremal values, offering a deeper understanding of how the Roman
domination number (RDN) influences the ABC index in tree graphs.

Key words: ABC index; Roman domination number, Tree, chemical graph theory, Extremal values.

1 Introduction

In theoretical chemistry, mathematical chemistry is the study of chemistry without reference to quantum
mechanics, aimed at explaining and predicting the properties of molecules. Graph theory is used to represent
chemical events in the important topic of chemical graph theory within mathematical chemistry. The chemical
sciences have advanced significantly as a result of this strategy.

A molecular graph is a fundamental graph where the edges represent bonds between atoms, and the vertices
represent the atoms themselves. Hydrogen atoms are often omitted from these representations. According to
IUPAC terminology, a topological index is a number associated with the chemical structure. This value is used
to establish correlations between different physical and chemical attributes, biological activity, and chemical
reactivity, and the chemical structure, see [13,15–17,22].

The Randić connectivity index is one of the most well-known topological indices, supported by a solid
mathematical foundation and widely applied in pharmacology and chemistry. In 1998, Estrada et al. [11]
introduced the ABC(G) index as a notable alternative to the Randić index. According to Furtula [12], the
ABC index ranks among the leading degree-based molecular descriptors.

ABC(G) =
∑

xy∈Y (G)

√

ζx + ζy − 2

ζxζy
(1)

where Y (G) represents the set of edges in the graph G, and ζx and ζy are the degrees of the vertices x and y

connected by the edge xy. The index has been widely used to predict molecular stability, boiling points, and
other properties, and has proven to be a valuable tool in QSAR/QSPR studies and drug design. Chen and
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Das [7] confirmed the conjecture that the Turán graph maximizes the ABC index among graphs with a given
chromatic number, resolving a problem posed by Zhang et al. [28]. Zheng et al. [30] established bounds for the
general ABC index for connected graphs with fixed maximum degree, characterizing the extremal graphs for
specific parameter ranges. Numerous studies have been conducted on this topological indicator, and research
on it is still ongoing, see [5, 6, 19,20,23].

Prior research [9, 10, 27] has investigated the relations between different topological indices and the ABC

index. Among other notable studies, Das and Trinajstić [10] looked at the relationship between the GA and
ABC index. Xinli Xu [27] established correlations between the Harmonic index and several other indices,
including the ABC index, Randić index, and the first Zagreb index, based on the order, size, and number of
pendant vertices in the graph. Further research was done on the connection between the ABC index and the
distance-based variation of the ABCG index by Das et al. [9]. Additionally, they determined which extremal
trees reach these limits. In order to determine the structures of extremal graphs, Zhang et al. [29] investigated
the extremal limits of the ABS index for trees with certain matching and dominance values. In order to find
graphs with the highest and least values of these indices, Wang et al. [24] looked into extremal multiplicative
Zagreb indices in graphs with provided vertices and cut edges. Jamri et al. [2,14] established both the extreme
values of the RI(T) with a specified TDN . Most recently, Bermudo et al. [3, 4] provided an maximum value
for the GA(T), based on their order and TDN , as well as both extreme values for the RI(T), based on their
order and domination number, and research on the bounds of various topological indices with given parameters
is still ongoing, as noted in [1, 18,21,25].

In this study, we take a look at a simple, uncorrected connected graph G, which has a set of vertices X and
an edge set Y. An edge in graph G connecting two vertices, x and y, is represented by the symbol xy. The
open neighborhood of any vertex y ∈ X is defined as N(y) = x ∈ X | xy ∈ Y, whereas N [y] = N(y)∪ y indicates
the closed neighbor. The size of an open neighborhood, |N(x)|, around a vertex x, denoted by ζx, is called its
degree. A vertex x is called a leaf if ζx = 1. The longest path between any two leaves in a tree is defined as its
diameter. A diameter path in a tree T is denoted by Pd+1 = x1, x2, . . . , xd+1, where the path between vertices
x1, x2, . . . , xd+1 reaches this maximum length.

For a given vertex y ∈ X, the graph G− y is obtained by removing y, which results in a new vertex set X− y

and an edge set Y− yx | x ∈ N(y). Similarly, for an edge e ∈ Y, the graph G− e retains the original vertex set
X but removes the edge e, resulting in the edge set Y− e.

For l vertices x1, . . . , xl or edges e1, . . . , el, we define the graph G−x1, . . . , xl as (G− x1, . . . , xl−1)−xl, and
similarly, G − e1, . . . , el as (G− e1, . . . , el−1) − el. The path graph Pn, and the star graph Sn. We direct the
reader to [26] for definitions of any other notation and terminology not covered here.

The RDN of a graph G is the minimum weight of a Roman dominating function on G. An RDN is a
function ℵ : X(G) → 0, 1, 2 such that every vertex y ∈ X(G) with ℵ(y) = 0 is adjacent to at least one vertex
x ∈ X(G) where ℵ(x) = 2. The weight of ℵ is the sum ℵ(X) =

∑

y∈X(G) ℵ(y) [8]. Essentially, the RDN ensures
that any unguarded vertex (with ℵ(y) = 0) is adjacent to a heavily guarded vertex (with ℵ(x) = 2), and it is
denoted by ΓR.

2 Preliminary Results

We introduce a number of lemmas in this section that will be utilized to demonstrate the primary theorem.
Using the Mathematics program, all single and double variables function-related inequalities in these lemmas
and the main theorem’s proof have been confirmed.

Lemma 2.1. Suppose m(a) = (a− 1)
√

a−1
a

− (a− 2)
√

a−2
a−1 with a ≥ 3. Then, m(a) is increasing function.

Proof. Suppose that f(a) = (a − 1)
√

a−1
a

. The derivative is f ′(a) =
√

a−1
a

+ a−1
2a2

√

a
a−1 . The expression for

f ′(a) is positive for a ≥ 2. Since f ′(a) > 0 in this range, the function is increasing. Thus, f(a) is increasing for
a ≥ 2. Therefore, m(a) = f(a)− f(a− 1) ≥ 0.

Lemma 2.2. Suppose q(a) =
√

a+b−2
ab

−
√

a+b−3
(a−1)b with b, and a ≥ 3. Then, q(a) is decreasing function for any

b ≥ 2.
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Proof. We have that q′(a) = −b+2

2
√
ba

3

2

√
a+b−2

− −b+2

2
√
b(a−1)

3

2

√
a+b−3

≥ 0 ⇐⇒ 1

a
3

2

√
a+b−2

≥ 1

(a−1)
3

2

√
a+b−3

. If we denote

k(b) = 1

a
3

2

√
a+b−2

, since k′(b) = −1

2a
3

2 (a+b−2)
3

2

< 0 for b ≥ 2, k(b) is a decreasing function. Thus, it follows that

1

a
3

2

√
a+b−2

< 1

(a−1)
3

2

√
a+b−3

. Hence, we conclude that q(a) is a decreasing function for a ≥ 3 and b ≥ 2.

Lemma 2.3. Suppose Ξ(a, b) = (a−1)
√

a−1
a

+
√

a+b−2
ab

− (a−2)
√

a−2
a−1 −

√

a+b−3
(a−1)b >

√
5

2
√
2
with a ≥ 3, and b ≥ 2.

Proof. We begin by decomposing the function Ξ(a, b) into two parts, f1(a) = (a − 1)
√

a−1
a

− (a − 2)
√

a−2
a−1

and f2(a, b) =
√

a+b−2
ab

−
√

a+b−3
(a−1)b . By Lemma 2.1 f1(a) is increasing function and it satisfies f1(a) ≥ 0.9258

(f1(3) = 0.9258). By Lemma 2.2 f2(a, b) is deceasing function and it satisfies f2(a, b) ≥ −0.1296. Since

Ξ(a, b) = f1(a, b) + f2(a, b) we conclude Ξ(a, b) ≥ 0.7962 >
√
5

2
√
2
. Thus, it follows that Ξ(a, b) >

√
5

2
√
2
. This

completes the proof.

Lemma 2.4. Suppose that p(a) =
√
a− b

√
a− b− 1−

√
a− b+ 1

√
a− b with a ≥ 3 and b ≤ ⌈2a3 ⌉ is a increasing

and negative function, and −
√
2 ≤ p(a) < −1.

Proof. Suppose that k(a) =
√
a− b

√
a− b− 1 and k′(a) = 2a−2b−1

2
√
a−b−1

√
a−b

, so k(a) is a increasing function for

a ≥ 3 and b ≤ ⌈2a3 ⌉. Therefor, give function p(a) = k(a) − k(a + 1) is a increasing and negative function. We

verified that given function hold the inequalities −
√
2 ≤ p(a) < −1.

Lemma 2.5. Let m(a) =
√
a− b− 1

√
a− b− 2 −

√
a− b+ 1

√
a− b with a ≥ 4 and b ≤ ⌈2a3 ⌉ is a increasing

and negative function, and −
√
6 ≤ m(a) < −2.

Proof. Derivative of α(a) =
√
a− b− 1

√
a− b− 2 is α

′

(a) = 2a−2b−3
2
√
a−b−2

√
a−b−1

> 0. Therefore, α(a) is a increasing

function for a ≥ 4 and b ≤ ⌈2a3 ⌉. Hence, give function m(a) = α(a) − α(a + 2) is a increasing and negative

function. We verified that given function hold the inequalities −
√
6 ≤ m(a) < −2.

Theorem 2.6. [8] For the path graph Pn, RDN is ΓR(Pn) =
⌈

2n
3

⌉

.

3 Main Results

This section presents the extremal values of the ABC index of trees in terms of their Roman domination
number and order. We define two functions, ℧min(n,ΓR) and ℧max(n,ΓR), which represent the lower and
upper bounds of the ABC index for trees, respectively, based on the order n and the RDN ΓR. The proofs of
these bounds are provided in Theorems 3.2 and 3.3. Additionally, Theorems 3.4 and 3.5 identify specific graphs
that achieve these exact values.

℧min(n,ΓR) =
1√
2
(n− 1) +

⌈

2n

3

⌉(

3

4
− 1√

2

)

+ ΓR

(

1√
2
− 3

4

)

.

℧max(n,ΓR) =
√

n− ΓR + 1
√

n− ΓR − (ΓR − 2)

(

1

2
− 3√

5

)

.

The following lemma assists in establishing the minimum value of the ABC index in terms of the order and its
RDN .

Lemma 3.1. Suppose that T is a tree graph and ΓR is a RDN , a vertex x ∈ V (T) such that ζ(x) = m ≥ 3,
N(x) = {y1, y2, . . . , ym}, ζ(ym) = j ≥ 2, ζ(ya) = 1 for every a ∈ {1, 2, 3, . . . ,m − 1}. If we take T ′ = T − y1,

we have:
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Proof. Since T
′ = T − y1, we have ABC(T) = ABC(T′) + (m − 1)

√

m−1
m

+
√

m+j−2
mj

− (m − 2)
√

m−2
m−1 −

√

m+j−3
(m−1)j ≥ 1√

2
(n− 1)− 1√

2
+
⌈

2(n−1)
3

⌉(

3
4 − 1√

2

)

+ΓR

(

1√
2
− 3

4

)

+(m− 1)
√

m−1
m

+
√

m+j−2
mj

− (m− 2)
√

m−2
m−1 −

√

m+j−3
(m−1)j ≥ ℧min(n,ΓR) + (m − 1)

√

m−1
m

+
√

m+j−2
mj

− (m − 2)
√

m−2
m−1 −

√

m+j−3
(m−1)j − 1√

2
−

(

3
4 − 1√

2

)

. Suppose

that α(m, j) = (m−1)
√

m−1
m

+
√

m+j−2
mj

− (m−2)
√

m−2
m−1 −

√

m+j−3
(m−1)j . Using Lemma 2.3, we say α(m, j) >

√
5

2
√
2
.

So, ABC(T) ≥ ℧max(n,ΓR) +
√
5

2
√
2
− 1√

2
−

(

3
4 − 1√

2

)

> ℧max(n,ΓR).

Theorem 3.2. Suppose that T be a tree graph and let ΓR denote its RDN . Then the ABC index of T satisfies

the inequality ABC(T) ≥ ℧min(n,ΓR).

Proof. Let us demonstrate the outcome using induction regarding the vertex count. T is either a star S4 or a
path P4. As we have already observed, ABC(P4) = ℧min(4, 3), and ABC(S4) = 2.44 > ℧min(4, 3) = 2.1213.
We examine a T with order n and ΓR. We consider that the inequality holds for every T with n − 1 vertices.
Now we prove that for when T has n vertices. We discuss some cases.

Case 1: We consider that x − y − z is a path in T. If x is a leaf, ζ(y) = m ≥ 3 and ζ(z) = j ≥ 2, then we
apply Lemma 3.1 and get the result.

Case 2: Let Pd+1 = {x1, x2, . . . , xd+1} is a diametral path of the tree graph. Now, Let degree of x2 is 2.
Case 2.1: Suppose that d(x3) = m ≥ 4, N(x3) = {x2, x4, w1, . . . , wm−2}, d(wα) = bα ≤ 2, α = 2, . . . ,m − 2,
d(w1) = 1 and d(x4) = k where 3 ≤ k ≤ m. If T = T1 − {x1, x2, w1}, then ΓR(T) = ΓR(T1) + 1, we get:

ABC(T) = ABC(T1)+
∑m−3

α=1

(

1√
bα

)

(

√

m+bα−2
m

−
√

m+bα−4
m−2

)

+ 1√
k

(

√

m+k−2
m

−
√

m+k−4
m−2

)

+
√

m−1
m

+
√
2 ≥

1√
2
(n − 1) − 3√

2
+

⌈

2(n−3)
3

⌉(

3
4 − 1√

2

)

+ ΓR

(

1√
2
− 3

4

)

−
(

1√
2
− 3

4

)

+
∑m−3

α=1

(

1√
bα

)

(

√

m+bα−2
m

−
√

m+bα−3
m−1

)

+

1√
k

(

√

m+k−2
m

−
√

m+k−3
m−1

)

+
√

m−1
m

+
√
2 ≥ ℧min(n,ΓR)+

∑m−3
α=1

(

1√
bα

)

(

√

m+bα−2
m

−
√

m+bα−4
m−2

)

+ 1√
k
(
√

m+k−2
m

−
√

m+k−4
m−2 )+

√

m−1
m

−
(

3
4 − 1√

2

)

− 3√
2
+
√
2 ≥ ℧min(n,ΓR)+

(

m−3√
3

)(
√

m+1
m

−
√

m−1
m−2

)

+ 1√
k

(

√

m+k−2
m

−
√

m+k−4
m−2

)

+

√

m−1
m

− 3
4 . Suppose that α(m,k) =

(

m−3√
3

)(
√

m+1
m

−
√

m−1
m−2

)

+ 1√
k

(

√

m+k−2
m

−
√

m+k−4
m−2

)

+
√

m−1
m

− 3
4 .

α(m,k) > 0 for m ≥ 4 and 3 ≤ k ≤ m. So, ABC(T) ≥ ℧min(n,ΓR) + α(m,k) > ℧min(n,ΓR).

Case 2.2: We assume ζ(x3) = 3, N(x3) = {x2, x4, y1}, y1 is the leaf of the T and ζ(x4) = k.
Case 2.2.1: We suppose that 1 ≤ k ≤ 4. If we take T2 = T− {x1, x2}, then ΓR(T) = ΓR(T2) + 1, we get:

ABC(T) = ABC(T1)+
√

k+1
3k +

√

2
3 ≥ 1√

2
(n−1)− 2√

2
+
⌈

2(n−2)
3

⌉(

3
4 − 1√

2

)

+(ΓR−1)
(

1√
2
− 3

4

)

+
√

k+1
3k +

√

2
3 ≥

℧min(n,ΓR) +
√

k+1
3k +

√

2
3 −

√
2−

(

3
4 − 1√

2

)

. Suppose that β(k) =
√

k+1
3k +

√

2
3 −

√
2−

(

3
4 − 1√

2

)

. β(k) > 0

for 1 ≤ k ≤ 4. Therefore, ABC(T) ≥ ℧min(n,ΓR) + β(k) > ℧min(n,ΓR).
Case 2.2.2: We suppose that k ≥ 5, ζ(x5) = u, N(x4) = {x3, x5, y1, . . . , yk−2}, ζ(y1) = 1 and ζ(ya) = ba ≤ 5
where a = {2, 3, . . . , k − 2}. If we take T4 = T− {x1, x2, x3, x4, y1}, then ΓR(T) = ΓR(T4) + 3, we get:

ABC(T) = ABC(T4)+
∑u−2

a=1

√

k+ba−2
kba

−∑u−3
a=1

√

k+ba−3
(k−1)ba

+
√

k−1
k

+
√

k+1
3k +

√

k+u−2
ku

−
√

k+u−3
(k−1)u + 2√

2
+
√

2
3 ≥

1√
2
(n − 1) − 5√

2
+

⌈

2(n−5)
3

⌉(

3
4 − 1√

2

)

+ (ΓR − 3)
(

1√
2
− 3

4

)

+
∑u−2

a=1

√

k+ba−2
kba

−
∑u−3

a=1

√

k+ba−3
(k−1)ba

+
√

k+u−2
ku

−
√

k+u−3
(k−1)u +

√

k−1
k

+
√

k+1
3k + 2√

2
+

√

2
3 ≥ ℧min(n,ΓR) +

∑u−2
a=1

√

k+ba−2
kba

−∑u−3
a=1

√

k+ba−3
(k−1)ba

+
√

k−1
k

+
√

k+1
3k +

√

k+u−2
ku

−
√

k+u−3
(k−1)u+

2√
2
+
√

2
3− 5√

2
≥ ℧min(n,ΓR)+(k−2)

√

k+3
5k −(k−3)

√

k+2
5(k−1)+

√

k−1
k

+
√

k+1
3k +

√

k+u−2
ku

−
√

k+u−3
(k−1)u + 2√

2
+

√

2
3 − 5√

2

Suppose that α(k) = (k − 2)
√

k+3
5k − (k − 3)

√

k+2
5(k−1) +

√

k−1
k

+
√

k+1
3k . It has been verified that α(k) > 1.57.

Now, Let β(k, u) =
√

k+u−2
ku

−
√

k+u−3
(k−1)u . By using Lemma 2.2, we have β(k, u) > −0.013. Therefore,
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ABC(T) ≥ ℧min(n,ΓR) + α(k) + β(k, u) + 2√
2
+

√

2
3 − 5√

2
> ℧min(n,ΓR).

Case 2.3: Assume that ζ(x3) = 2, ζ(x4) = l ≥ 2, and N(x4) = {x3, x5, y1, . . . , yl−2}, where ζ(yi) = ai ≤ 5 for
i ∈ {1, 2, . . . , l − 2} and ζ(x5) = t ≤ l. If we take T5 = T− {x1, x2, x3, y1}, then ΓR(T) = ΓR(T4) + 2, we get:

ABC(T) = ABC(T5)+
∑l−3

i=1
1√
ai

(

√

l+ai−2
l

−
√

l+ai−3
l−1

)

+
√

l−1
l
+ 1√

k

(

√

l+k−2
l

−
√

l+k−3
l−1

)

+ 3√
2
≥ 1√

2
(n−1)−

4√
2
+
⌈

2(n−4)
3

⌉(

3
4 − 1√

2

)

+(ΓR−2)
(

1√
2
− 3

4

)

+
∑l−3

i=1
1√
ai

(

√

l+ai−2
l

−
√

l+ai−3
l−1

)

+
√

l−1
l
+ 1√

k

(

√

l+k−2
l

−
√

l+k−3
l−1

)

+

3√
2
≥ ℧min(n,ΓR) +

∑l−3
i=1

1√
ai

(

√

l+ai−2
l

−
√

l+ai−3
l−1

)

+
√

l−1
l

+ 1√
k

(

√

l+k−2
l

−
√

l+k−3
l−1

)

− 1√
2
−
(

3
4 − 1√

2

)

>

℧min(n,ΓR) +
l−3√

5

(

√

l+3
l

−
√

l+2
l−1

)

+
√

1− 1
l
+ 1√

k

(

√

l+k−2
l

−
√

l+k−3
l−1

)

− 3
4 .

Let α(l) = l−3√
5

(

√

l+3
l

−
√

l+2
l−1

)

+
√

1− 1
l
. Since α(l) is an increasing function for every l ≥ 3, we define

β(l, k) = 1√
k

(

√

l+k−2
l

−
√

l+k−3
l−1

)

. By Lemma 2.2 β(l, k) is a decreasing function. Therefore, the inequality

holds: ABC(T) ≥ ℧min(n,ΓR) + α(l) + β(l, k) − 3
4 > ℧min(n,ΓR).

Theorem 3.3. If T be a tree graph and let ΓR denote its RDN . Then the ABC index of T satisfies the inequality

ABC(T) ≤ ℧max(n,ΓR).

Proof. Let us demonstrate the outcome using induction regarding the vertex count. T is either a star S4 or a
path P4. As we have already observed, ABC(P4) = 2.121 < ℧max(4, 3), and ABC(S4) = ℧max(4, 3) = 2.44.
We examine a T with order n and RDN ΓR. We consider that the inequality holds for every T with n − 1
vertices. Now we prove that for when T has n vertices. We discuss some cases.

Case 1: Consider a vertex x where ζ(x) = m ≥ 3, N(x) = {y1, y2, . . . , ym}, ζ(ym) = j ≥ 2, ζ(ya) = 1 for every
a ∈ {1, 2, 3, . . . ,m− 1}. If we take T ′ = T − y1, then ΓR(T) = ΓR(T

′). We have:

ABC(T) = ABC(T′) + 1√
m

(

(m− 1)
3

2 +
√

m+j−2
j

)

− 1
m−1

(

(m− 2)
3

2 +
√

m+j−3
j

)

≤
√
n− ΓR

√
n− ΓR − 1 −

(ΓR − 2)
(

1
2 − 3√

5

)

+ 1√
m

(

(m− 1)
3

2 +
√

m+j−2
j

)

− 1√
m−1

(

(m− 2)
3

2 +
√

m+j−3
j

)

≤ ℧max(n,ΓR) +
√
n− ΓR

√
n− ΓR − 1 −

√
n− ΓR + 1

√
n− ΓR + 1√

m

(

(m− 1)
3

2 +
√

m+j−2
j

)

− 1√
m−1

(

(m− 2)
3

2 +
√

m+j−3
j

)

. We as-

sume that α(n) =
√
n− ΓR

√
n− ΓR − 1−

√
n− ΓR + 1

√
n− ΓR and β(m, j) = 1√

m

(

(m− 1)
3

2 +
√

m+j−2
j

)

−
1√
m−1

(

(m− 2)
3

2 +
√

m+j−3
j

)

. By using Lemma 2.4, we get −
√
2 ≤ α(n) < −1 for n ≥ 3 and 2 ≤ ΓR ≤ ⌈2n3 ⌉

and by Lemma 2.3, we get
√
5

2
√
2
≤ β(m, j) < 1 for any m ≥ 3 and j ≥ 2. Therefore, η(n,m, j) = α(n) + β(m, j)

is negative function. So, ABC(T) ≤ ℧max(n,ΓR) + η(n,m, j) < ℧max(n,ΓR).

Case 2: Let Pd+1 = {x1, x2, . . . , xd+1} is a diametral path of the tree. Let ζ(x2) = 2, ζ(x3) = m, N(x3) =
{x2, x4, y1, . . . , ym−2}, ζ(yi) = bi, where i ∈ {1, 2, . . . ,m− 2}, and ζ(x4) = k. If we take T2 = T−{x1, x2}, then
ΓR(T) = ΓR(T2)+1, we get: ABC(T) = ABC(T2)+

1√
k

(

√

m+k−2
m

−
√

m+k−3
m−1

)

+
∑m−1

i=1
1√
bi

(

√

m+bi−2
m

−
√

m+bi−3
m−1

)

+

√
2 ≤

√
n− ΓR − 1

√
n− ΓR − 2−(ΓR − 3)

(

1
2 − 3√

5

)

+ 1√
k
(
√

m+k−2
m

−
√

m+k−3
m−1 )+

∑m−2
i=1

1√
bi

(

√

m+bi−2
m

−
√

m+bi−3
m−1

)

+

√
2 ≤ ℧max(n,ΓR)+

√
n− ΓR − 1

√
n− ΓR − 2−

√
n− ΓR + 1

√
n− ΓR + 1√

k

(

√

m+k−2
m

−
√

m+k−3
m−1

)

+
∑m−2

i=1

1√
bi

(

√

m+bi−2
m

−
√

m+bi−3
m−1

)

+
√
2+

(

1
2 − 3√

5

)

≤ ℧max(n,ΓR)+
√
n− ΓR − 1

√
n− ΓR − 2−

√
n− ΓR + 1

√
n− ΓR+

1√
k

(

√

m+k−2
m

−
√

m+k−3
m−1

)

+ m−2√
5

(
√

m+3
m

−
√

m+2
m−1

)

+
√
2 +

(

1
2 − 3√

5

)

.

We assume that α(n) =
√
n− ΓR − 1

√
n− ΓR − 2−

√
n− ΓR + 1

√
n− ΓR, β(m,k) = 1√

k

(

√

m+k−2
m

−
√

m+k−3
m−1

)

5



and γ(m) = m−2√
5

(
√

m+3
m

−
√

m+2
m−1

)

. By using Lemma 2.5, we get −
√
6 ≤ α(n) < −2, by Lemma 2.2 β(m,k)

is decreasing function, and γ(m) is negative function for any m ≥ 3. Hence, ABC(T) ≤ ℧max(n,ΓR) + α(n) +

β(m,k) + γ(m) +
√
2 +

(

1
2 − 3√

5

)

< ℧max(n,ΓR).

Theorem 3.4. Suppose that T be a tree with order n and RDN ΓR, then we have ABC(T) = ℧min(n,ΓR) if
and only if T = Pn.

Proof. Using Equation 1, we know that for the path graph Pn, the ABC index is: ABC(Pn) = 1√
2
(n − 1).

By Theorem 2.6, the RDN of the path graph Pn is, ΓR(Pn) =
⌈

2n
3

⌉

. Substituting this into the formula for

℧max(n,ΓR), we get ℧max(n,ΓR) =
1√
2
(n−1)+

⌈

2n
3

⌉

(

3
4 − 1√

2

)

+ΓR(Pn)
(

1√
2
− 3

4

)

= 1√
2
(n−1) = ABC(Pn).

Theorem 3.5. Suppose that T a tree with order n and the RDN ΓR, then we have ABC(T) = ℧max(n,ΓR)
if and only if T = Sn.

Proof. By using Equation 1, we know that for the star graph Sn, the ABC index in the term of order of Sn is
given by: ABC(Sn) =

√
n− 1

√
n− 2 and RDN of Sn is 2 (ΓR(Sn) = 2). Hence, we substitute this into the

formula for ℧max(n,ΓR(Sn)), giving: ℧max(n,ΓR(Sn)) =
√
n− 1

√
n− 2 = ABC(Sn). This is exactly equal to

the ABC index of Sn, so we conclude that: ABC(Sn) = ℧max(n,ΓR(Sn)).

4 Conclusion

In this study, we examined the ABC index of tree graphs, focusing on its dependence on the RDN and the
tree’s order. We established the lower and upper bounds of the ABC index, as detailed in Theorems 3.2 and
3.3, demonstrating that these bounds are determined by the tree’s order and RDN . Specifically, Theorem 3.4
shows that Pn achieve the minimum ABC index, while Theorem 3.5 reveals that Sn trees attain the maximum
index, illustrating the significant impact of the RDN on these extremal values. These results enhance the
understanding of the relationship between tree parameters and topological indices, providing a basis for future
research to explore these interactions in broader graph classes and uncover new connections between the ABC

index and other graph invariants.
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