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Abstract: In this paper, we have investigated the role of H0 priors in describing H0 tension and
late-time cosmic behavior of the Universe in the framework of f (T, T ) gravity. The specific func-
tional form of f (T, T ), where T and T respectively denote the torsion scalar and trace of the energy-
momentum tensor, has the potential to show the H0 tension and late-time accelerating behavior. The
model parameter space has been obtained using multiple cosmological data sets such as cosmic chro-
nometers (CC), Supernovae Type Ia PAN+&SH0ES, and baryon acoustic oscillations (BAOs). Also,
we have incorporated the H0 priors from the Tip of the Red Giant Branch (TRGB) and HW. The ana-
lysis shows the ability of the model to replicate comparative performance with the standard ΛCDM
model through AIC and BIC. From the results obtained, it has been observed that the inclusion of
the BAO data set shifts the H0 values lower as compared to that of the CC + PAN+&SH0ES data set,
whereas the combination of HW prior favors higher H0 values. This demonstrates the sensitivity of
the model to different H0 priors. The findings indicate that the f (T, T ) gravity model can provide an
alternative approach to show cosmological tension and late-time cosmic phenomena.

I. INTRODUCTION

The late-time cosmic behavior of the Universe has emerged as the most compelling enigmas in contemporary
cosmology. Following an extended period of almost uniform expansion, observational evidence revealed that an
unidentified energy component is driving spacetime expansion at an accelerating rate [1, 2]. The leading candidate
for this phenomenon is dark energy (DE) [3, 4], which has a major share of approximately 70% of the total mass-
energy of the Universe. As a consequence, it largely influences the ultimate fate of the Universe. The discovery of
cosmic acceleration poses profound questions about our understanding of gravity and drives new investigations into
the fundamental principles of physics. The ΛCDM model that describes the Universe as a composition of cold dark
matter (CDM) and DE represented by a cosmological constant Λ has been corroborated by several cosmological
observations [5–10]. However, the discrepancies in Hubble constant H0 and structure growth parameter S8 pose
additional challenges. The recent observed values of H0 show a notable rift between the value derived from early
Universe observations such as cosmic microwave background (CMB) via the Planck satellite [11] and gleaned from
local measurements utilizing Cepheid variables and Supernovae Type Ia [12]. In particular, Riess et al. [12] within the
SH0ES Team have reported a Hubble constant estimate of 73.30 ± 1.04 km s−1 Mpc−1, based on Supernovae Type Ia
observations. Whereas the H0LiCOW Collaboration [13] derived a value of 73.3+1.7

−1.8 km s−1 Mpc−1 through a strong
gravitational lensing of quasars. Further, Freedman et al. [14] reported a lower estimate of 69.8 ± 1.9 km s−1 Mpc−1,
obtained using the tip of the red giant branch (TRGB) as a distance indicator. The Planck Collaboration [15] provides
a Hubble constant value of 67.4 ± 0.5 km s−1 Mpc−1, while Aboot et al. [16] suggest 67.2+1.2

−1.0 km s−1 Mpc−1. This
divergence between the estimates from early and late Universe measurements, known as the H0 tension, raises
significant questions in modern cosmology. Initially identified with the first release of Planck data [11], the H0
tension has garnered increasing scrutiny and attention in recent studies [15, 17, 18]. This ongoing inconsistency has
led to exploring possible modifications to the standard cosmological model and considering new physics beyond
ΛCDM.

General relativity (GR) encapsulates the interplay between matter, energy, and the curvature of spacetime. How-
ever, modifications in GR have been inevitable to address the late-time behavior of the Universe. A simple approach
to understanding this phenomenon is introducing the cosmological constant, leading to the ΛCDM model. Other-
wise, GR can be refined by integrating extra terms or scalar fields into the gravitational action. These modifications
may include higher-order curvature invariants or scalar fields coupled to the curvature. This may provide a robust
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theoretical framework that accommodates a concordance model for cosmology through various straightforward ad-
justments [19, 20]. The modifications can be incorporated as the Einstein-Hilbert action [21, 22] to provide various
cosmological phenomena. One such gravitational modification is the torsional equivalent formulation of GR, known
as the Teleparallel Equivalent of GR (TEGR) [23, 24]. TEGR permits the formulation of second-order equations in
four-dimensional spacetime and employs the Weitzenböck connection [25]. This framework is characterized by four
linearly independent tetrad fields, which serve as the orthonormal bases for the tangent space at each point in space-
time, with the torsion tensor being derived from the first derivatives of these tetrads. To note, f (R) gravity [21]
presents the basic modification of GR, whereas f (T) [26–33] gravity is the modification of TEGR. Further, many vari-
ations of the torsion-influenced gravitational theory such as f (T, TG) (TG refers to the Gauss-Bonnet term) [34, 35],
f (T, B) [36, 37] (B signifies the boundary term), f (T, ϕ) [38–41] (ϕ represents the scalar field), and f (T, T ) [42–47]
gravity have been proposed.

The H0 tension refers to the observed discrepancies in the Hubble constant measurements in various observational
methodologies, which challenges the standard ΛCDM model [48–54]. The motivation of this study is to examine the
influence of H0 priors on the H0 tension and late time behavior of the Universe in f (T, T ) gravitational theory [42].
Within this framework, the gravitational Lagrangian can be developed using the torsion scalar T functions and the
trace of the energy-momentum tensor T .

The paper is organized as follows: In Sec.-II, we present a brief overview of the mathematical formalism of f (T, T )
gravity. The formalism of the cosmological data sets and the mathematical formalism of the statistical criteria for
model comparison (AIC and BIC) is defined in Sec.-III. In Sec.-IV, we analyze the cosmological observations for
different data set combinations and the H0 priors. In addition, we obtain the best-fit values of the model parameters.
In Sec.-V, we present the evolution of the background cosmological parameters to analyze the behavior of the model
at late times. We summarize the results of cosmological observation for the ΛCDM model in the appendix and give
a conclusion on the findings in Sec.-VI.

II. MATHEMATICAL FORMALISM

In teleparallel gravity (TG), the tetrad fields eA
µ act as dynamical variables in place of the usual metric tensor gµν

in GR. The metric tensor in TG can be represented as,

gµν = ηABeA
µ eB

ν . (1)

The Greek indices denote space-time coordinates, while the capital Latin indices indicate tangent space-time coordin-
ates. ηAB denotes the Minkowski space-time and the tetrad fields satisfy the orthogonality condition eµ

AeB
µ = δB

A.
Employing the Weitzenböck connection as a framework for f (T, T ) gravity, we can define

Γ̂λ
νµ ≡ eλ

A(∂µeA
ν + ωA

BµeB
ν ), (2)

where ωA
Bµ represents a flat spin connection that guarantees invariance under Lorentz transformations, which stems

directly from the indices of the tangent space. On the other hand, the spin connections used in GR are not flat [55]
because they depend on the tetrads. In TG, the equations governing motion incorporate both gravitational and local
degrees of freedom, depicted by the pair of tetrads and spin connections. Now, the torsion tensor characterized by
the anti-symmetric part of the Weitzenböck connection can be described as,

Tλ
µν ≡ Γ̂λ

νµ − Γ̂λ
µν = eλ

A∂µeA
ν − eλ

A∂νeA
µ . (3)

The torsion tensor exhibits covariance under diffeomorphisms and Lorentz transformations. Provided that the
torsion tensor has been correctly contracted, the torsion scalar can be represented as,

T ≡ 1
4

TρµνTρµν +
1
2

TρµνTνµρ − T ρ
ρµ Tνµ

ν . (4)

The action in TG is based on the teleparallel Lagrangian T and the f (T) gravity extends this Lagrangian to an
arbitrary function f (T). The action of f (T, T ) gravity [42] is,

S =
1

16πG

∫
d4xe[T + f (T, T ) + Lm], (5)
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where T is the torsion scalar, T be trace of the energy-momentum tensor, Lm denotes matter Lagrangian and G
represents the gravitational constant. The determinant of the tetrad field is expressed as e = det[eA

µ] =
√−g.

Varying action (5) with respect to the tetrad field, one can obtain the gravitational field equations for f (T, T ) gravity
as,

[e−1∂µ(eeρ
AS µν

ρ )− eλ
ATρ

µλS νµ
ρ ](1 + fT) + eρ

AS µν
ρ [∂µ(T) fTT + ∂µ(T ) fTT ] +

1
4

eν
A[T + f (T)]

− fT

 eρ
AT ν

ρ + peρ
A

2

 = 4πGeρ
AT ν

ρ . (6)

For brevity, we denote fT = ∂ f
∂T , fTT = ∂2 f

∂T2 , fT = ∂ f
∂T and fTT = ∂2 f

∂T∂T . The total energy-momentum tensor
can be represented as T ν

ρ . The superpotential, S µν
ρ ≡ 1

2 (K
µν

ρ + δ
µ
ρ Tαν

α − δν
ρ Tαµ

α). The contortion tensor in the
superpotential can be defined as, Kµν

ρ ≡ 1
2 (T

νµ
ρ + T µν

ρ − Tµν
ρ).

We consider the homogeneous and isotropic flat Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) space-time as,

ds2 = dt2 − a2(t)[dx2 + dy2 + dz2] , (7)

where a(t) denotes the scale factor that represents the rate of expansion in the spatial dimensions. From Eq. (4), the
torsion scalar can be derived as,

T = −6H2 (8)

and the associated tetrad field can be expressed as eA
µ ≡ diag(1, a(t), a(t), a(t)). We can now derive the field equa-

tions for f (T, T ) gravity Eq. (6) as,

3H2 = 8πGρm − 1
2
( f + 12H2 fT) + fT (ρm + pm), (9)

Ḣ = −4πG(ρm + pm)− Ḣ( fT − 12H2 fTT)− H(ρ̇m − 3ṗm) fTT − fT

(
ρm + pm

2

)
. (10)

An over dot represents ordinary derivative with respect to cosmic time t. The trace of the energy-momentum tensor,
T = ρm − 3pm, where pm denotes the matter pressure and ρm be the corresponding energy density term. The
Friedmann Eqs.(9-10) can be written as,

3H2 = 8πG(ρm + ρDE), (11)

−Ḣ = 4πG(ρm + pm + ρDE + pDE). (12)

From Eqs. (9-12), the energy density (ρDE) and pressure (pDE) for the DE component can be retrieved as,

ρDE ≡ − 1
16πG

[
f + 12H2 fT − 2 fT (ρm + pm)

]
, (13)

pDE ≡ (ρm + pm)

 1 + fT
8πG

1 + fT − 12H2 fTT + H
dρm

dH
(1 − 3c2

s ) fTT

− 1

+
1

16πG
[ f + 12H2 fT − 2 fT (ρm + pm)]. (14)

The behavior of total EoS parameter (ωtot) and the deceleration parameter (q) are significant to analyze the late time
behavior of the Universe, which can be expressed as,

ωtot =
pm + pDE
ρm + ρDE

≡ −1 − 2Ḣ
3H2 , (15)

q =
1
2
(1 + 3ωtot) . (16)
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III. COSMOLOGICAL OBSERVATION DATA SETS

We have presented brief descriptions of the cosmological data sets and the methodology used to obtain the best-fit
values of the cosmological parameters. The best-fit values of the parameters will enable us to study the late-time
behavior of the Universe along with the H0 tension, if any. The data sets to be used are Hubble data, Supernovae
Type Ia data, and BAOs. The H0 priors used are Red Giant Branch (TRGB) and HW. We shall use the PYTHON
package chain consumer Ref [56] to execute a Markov Chain Monte Carlo (MCMC) analysis to integrate these data
sets. MCMC is a robust sampling technique that extracts samples from the posterior distribution of the cosmological
model. This method is widely used in Bayesian statistics to estimate model parameters and quantify uncertain-
ties. In this process, a large sample size would be required to ensure the accuracy of the model. We compute the
one-dimensional parameter distribution that provides the posterior distribution of each parameter and the two-
dimensional parameter distributions which will reveal the covariance relationship between pairs of parameters.
Our analysis culminates in generating MCMC corner plots at 1σ and 2σ confidence level.

Cosmic Chronometers (CC): We employed 31 data points for the Hubble parameter derived from the cosmic
chronometer (CC) methodology. This technique allows for directly analyzing the Hubble function across a range of
redshifts up to z ≤ 2. The strength of CC data lies in its ability to evaluate the age difference between two passively
evolving galaxies that formed simultaneously but have a small difference in redshift, enabling the calculation of ∆z

∆t .
Refs [57–64] provide the basis for the CC data points. The associated estimate for χ2

H is given as,

χ2
H(Θ) =

31

∑
i=1

(
H(zi, Θ)− Hobs(zi)

)2

σ2
H(zi)

, (17)

the Hubble parameters can be divided into two categories: H(zi, Θ) indicates the theoretical values of the Hubble
parameter at a given redshift zi whereas Hobs(zi) refers to the observed values of the Hubble parameter at zi, along
with an observational uncertainty denoted by σH(zi).

Supernovae Type Ia data set (SNIa) : This data set for our MCMC analysis includes the Type Ia supernova
collection, which incorporates 1701 Supernovae data points that represent relative luminosity distances within the
redshift interval 0.01 < z < 2.3 [12, 65, 66]. SNIa data sets were used for this study as Pantheon+ [PAN+&SH0ES].
The distance modulus is the discrepancy between the apparent magnitude m and the absolute magnitude M. At a
redshift zi, the distance modulus function µ(zi, Θ) can be formulated as

µ(zi, Θ) = m − M = 5 log10
[
DL(zi, Θ)

]
+ 25 , (18)

the luminosity distance DL(zi, Θ) can be formulated as

DL(zi, Θ) = c(1 + zi)
∫ zi

0

dz′

H(z′, Θ)
, (19)

where c indicates the speed of the light. To determine the chi-square (χ2
SN) value with the PAN+&SH0ES compil-

ation, which includes 1701 Supernovae data points, we apply the following formula[67]:

χ2
SN =

(
∆µ(zi, Θ)

)T C−1 (∆µ(zi, Θ)
)

. (20)

In this context, C refers to the covariance matrix incorporating systematic and statistical uncertainties in the meas-
urements. Additionally, ∆µ(zi, Θ) = µ(zi, Θ)− µ(zi)obs indicates the disparity between the predicted and observed
distance modulus at the redshift zi.

BAO data set: We also analyze a combined baryon acoustic oscillation (BAO) data set of distinct data points. For
this study, we utilize a BAO data set that features observations from the Six-degree Field Galaxy Survey at an effect-
ive redshift of zeff = 0.106 [68], the BOSS DR11 quasar Lyman-alpha measurements at zeff = 2.4 [69], and the SDSS
Main Galaxy Sample at zeff = 0.15 [70]. Additionally, we incorporate measurements of H(z) and angular diameter
distances obtained from the SDSS-IV eBOSS DR14 quasar survey at effective redshifts zeff = {0.98, 1.23, 1.52, 1.94}
[71], along with the consensus BAO measurements of the Hubble parameter and the corresponding comoving angu-
lar diameter distances from SDSS-III BOSS DR12 at zeff = {0.38, 0.51, 0.61} [5]. Our analysis considers the complete
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covariance matrix for the sets of BAO data. To evaluate the BAO data set for the cosmological model, it is necessary
to establish the Hubble distance DH(z), the comoving angular diameter distance DM(z), and the volume-average
distance DV(z).

DH(z) =
c

H(z)
, DM(z) = (1 + z)DA(z), DV(z) =

[
(1 + z)2D2

A(z)
z

H(z)

]1/3
, (21)

where DA(z) = (1 + z)−2DL(z) denotes the angular diameter distance. To include the BAO findings in MCMC
analyses, we need to take into account the pertinent combinations of parameters:

F (zi) =

{
DV(zi)

rs(zd)
,

rs(zd)

DV(zi)
, DH(zi), DM(zi)

(
rs,fid(zd)

rs(zd)

)
, H(zi)

(
rs(zd)

rs,fid(zd)

)
, DA(zi)

(
rs,fid(zd)

rs(zd)

)}
, (22)

where rs(zd) represents the sound horizon at the drag epoch, while rs,fid(zd) indicates the fiducial sound hori-
zon. To accomplish this, we calculated the comoving sound horizon rs(z) at the redshift zd ≈ 1059.94 [15], which
corresponds to the conclusion of the baryon drag epoch.

rs(z) =
∫ ∞

z

cs(z̃)
H(z̃)

dz̃ =
1√
3

∫ 1/(1+z)

0

da

a2H(a)
√

1 +
[

3Ωb,0
4Ωγ,0

]
a

, (23)

where the subsequent values are utilized: Ωb,0 = 0.02242 [15], T0 = 2.7255 K [72], and a reference value of
rs,fid(zd) = 147.78 Mpc. The relevant estimate for χ2

BAO is given by [67].

χ2
BAO(Θ) =

(
∆F (zi, Θ)

)T C−1
BAO∆F (zi, Θ) , (24)

where CBAO denotes the covariance matrix for the chosen BAO data, and ∆F (zi, Θ) = F (zi, Θ)−Fobs(zi) indic-
ates the discrepancy between the theoretical and measured values of F at redshift zi.

We will investigate how an H0 prior affects the selected functional form f (T, T ) along with the previously de-
scribed data set. The measurement from the H0LiCOW Collaboration, based on strong lensing of quasars, yields a
value of H0 = 73.3+1.7

−1.8 km s−1 Mpc−1 HW [13]. The measurement using the tip of the red giant branch (TRGB) as a
standard candle with H0 = 69.8 ± 1.9 km s−1 Mpc−1 [14].

The HW measurement usually refers to a recent high-value local estimation of the Hubble constant, H0, provided
by the H0LiCOW collaboration. This estimation is grounded in observations of Cepheid variable stars and Super-
novae Type Ia in the nearby galaxies, which act as standard candles to determine distances to galaxies and thus
measure the expansion rate of the Universe. The TRGB offers an independent determination of the Hubble constant.
This approach depends on measuring the brightness of red giant stars in nearby galaxies. The TRGB technique
enables accurate distance assessments of galaxies, which can be used to compute H0.

The ΛCDM model acts as a foundational framework for comprehending cosmic evolution. When comparing other
cosmological models to the ΛCDM model, the Akaike Information Criterion (AIC) and the Bayesian Information
Criterion (BIC) are vital tools for selecting models. The AIC can be expressed as,

AIC = −2 ln Lmax + 2k, (25)

where k indicates the number of parameters used in the estimation procedure and Lmax is the maximum value of the
likelihood function. The BIC can be given as,

BIC = −2 ln Lmax + k ln µ, (26)

The sample size of the observational data combination is denoted by µ. AIC and BIC serve as valuable tools for
determining whether a new cosmological model significantly improves upon the fit to the data compared to ΛCDM
model. Additionally, if the value of the ∆AIC or ∆BIC is lower, we can say that the chosen cosmological model
is similar to the standard ΛCDM model. This comparison helps us understand the need to introduce new cosmic
phenomena or modify the established model. The ∆AIC or ∆BIC can be defined as,

∆AIC = AICmodel − AICΛCDM , (27)

∆BIC = BICmodel − BICΛCDM . (28)
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IV. COSMOLOGICAL MODEL

In the Friedmann equations [Eq.(9)-Eq.(10)], we need to incorporate some well-motivated functional form of
f (T, T ). The selection of the functional form for f (T, T ) is vital in the sense that it influences the predictions of
the model and its alignment with observational data. We may also investigate possible variations from ΛCDM that
analyze the late-time cosmic acceleration and some direction to address the H0 tension. In this setting, we have
considered the following form of f (T, T ) [42],

f (T, T ) = αTnT + Λ , (29)

where α ̸= 0, n ̸= 0 and Λ are arbitrary constants. At present, one can express the Friedmann Eq. (9) as,

α =
2 − 2Ωm0 +

Λ
3H2

0

(1 + 2n)Ωm0(−6H2
0)

−n , (30)

where H0 and Ωm0 respectively represent the Hubble parameter and matter density parameter at present time.
From Eq. (30), it can be inferred that the model parameter α depends on other parameters such as H0, Ωm0, n and
Λ. Therefore, we will constrain these parameters using the cosmological data sets. By defining the dimensionless
Hubble parameter E(z) = H(z)

H0
, the Friedmann Eq. (9) for this model can be reformulated as

E2(z) = (1 + z)3Ωm0 −
Λ

6H2
0
+

(
1 − Ωm0 +

Λ
6H2

0

)
(1 + z)3E2n(z) . (31)

To ensure that the term Λ
6H2

0
remains dimensionless, we define the cosmological constant as Λ = pH2

0 with p is a

parameter without dimensions. This reformulation expresses the cosmological constant about the Hubble parameter,
allowing p to reflect the effect of DE on the expansion of the Universe while maintaining consistency in units within
the equation. Now, Eq. (31) becomes,

E2(z) = (1 + z)3Ωm0 −
p
6
+

(
1 − Ωm0 +

p
6

)
(1 + z)3E2n(z) . (32)

Eq. (32) is an implicit formulation for E(z). Considering that analytical solutions for Eq. (32) are impractical, we
have adhered to the numerical methods to compute the parameters. The methodology used as described in Sec.-III
and the results obtained are described below.

In Fig.-1, we have presented the 1σ and 2σ confidence levels along with the posterior distributions for the para-
meters H0, Ωm0, p, n and M using CC, PAN+&SH0ES and BAO data sets in addition to the TRGB and HW priors. It
displays the marginalized posterior distributions for different combinations of parameters. The inner contours indic-
ate the 68% confidence level while the outer contours represent the 95% confidence level. This visual representation
facilitates a thorough evaluation of parameter uncertainties and correlations. In Table-I, the exact value of the model
parameters along with the nuisance parameter M are given. It can be seen that the highest H0 value is recorded
for the data set combination CC+PAN+&SH0ES+HW i.e., H0 = 72.69+0.88

−0.85 km s−1 Mpc−1. This indicates that the
inclusion of H0 prior has a significant effect on value of H0. At the same time, the lowest H0 value obtained to be
H0 = 69.25+0.62

−0.64 km s−1 Mpc−1 from the combination of CC+PAN+&SH0ES+BAO data sets. This indicates that the
inclusion of BAO data lowering H0 and diminishes the effect of H0 prior. Interestingly, when BAO data is analyzed
with HW prior, the H0 value increases again. The resultant value of H0 remains between [71-72] for the combined
data sets CC+PAN+&SH0ES with H0 with HW and TRGB priors. The inclusion of the BAO data set shows the range
of H0 between [69-70]. The BAO data imposes a limiting influence on H0 that favors lower values. This can likely be
attributed to the inherent characteristics of the BAO measurements, which are responsive to the sound horizon scale
and the expansion rate across various redshifts. Consequently, BAO data typically adjusts H0 estimates to values
that portray a slower late-time cosmic expansion than those derived from local measurements or priors like HW and
TRGB. Thus, integrating BAO data in the combination significantly lowers H0, presenting a notable contrast to the
higher values that the local data set suggests. The HW prior elevates H0 to greater values, while the TRGB prior
decreases it.
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We have also computed the AIC and BIC values, which will provide a statistical foundation for selecting the
appropriate model. Results related to the ΛCDM model can be found in the Appendix, particularly in Table-IV.
Lower values of ∆AIC and ∆BIC suggest that the model using the chosen data sets closely resembles the ΛCDM
model, indicating enhanced performance. In this study, the ∆AIC and ∆BIC values for the data set combinations
CC+PAN+&SH0ES incorporating H0 priors are significantly lower than those for the CC+PAN+&SH0ES+BAO
combinations that also include H0 priors. This implies that the combination of CC+PAN+&SH0ES with H0 priors
alone performs better than when BAO data is part of the combination. The decreased ∆AIC and ∆BIC values for
the CC+PAN+&SH0ES with H0 priors signify that this particular data combination aligns more closely with the
standard ΛCDM model.

Table I: The best fit values of the parameters explored by MCMC analysis. The first column enumerates a combin-
ation of data sets with the H0 priors. The second column presents the constrained H0 values. The third column
contains the constrained Ωm0 values. The fourth and fifth columns represent the optimal p and n values respectively.
The sixth column provides the nuisance parameter M.

Data set H0[km s−1 Mpc−1] Ωm0 p n M

CC+PAN+&SH0ES 72.56+0.98
−1.01 0.377+0.055

−0.069 −0.5+2.5
−0.0 −2.25+0.34

−0.46 −19.260+0.031
−0.028

CC+PAN+&SH0ES+TRGB 71.98+0.86
−0.90 0.378+0.055

−0.069 −0.405+2.381
−0.084 −2.23+0.33

−0.46 −19.276+0.025
−0.026

CC+PAN+&SH0ES+HW 72.69+0.88
−0.85 0.370+0.057

−0.064 −0.44+2.35
−0.34 −2.24+0.31

−0.48 −19.257+0.027
−0.023

CC+PAN+&SH0ES+BAO 69.25+0.62
−0.64 0.286+0.021

−0.020 −0.5+2.1
−0.0 −2.06 ± 0.18 −19.361 ± 0.017

CC+PAN+&SH0ES+BAO+TRGB 69.30+0.64
−0.56 0.286+0.021

−0.020 −0.39+1.99
−0.10 −2.07 ± 0.18 −19.360+0.017

−0.016

CC+PAN+&SH0ES+BAO+HW 69.78+0.58
−0.63 0.282+0.021

−0.020 −0.8+2.1
−0.0 −2.12+0.20

−0.18 −19.348+0.016
−0.017

Table II: The statistical comparison between the chosen model and the standard ΛCDM model. Details regarding
the ΛCDM model are given in Appendix. The first column enumerates the data sets including the H0 priors. The
second column displays the values of χ2

min. The third and fourth column respectively provides the value of AIC and
BIC. The fifth and sixth column respectively illustrates the values of ∆AIC and ∆BIC.

data set χ2
min AIC BIC ∆AIC ∆BIC

CC+PAN+&SH0ES 1538.23 1548.23 1554.42 3.01 5.49

CC+PAN+&SH0ES+TRGB 1539.94 1549.94 1556.13 2.76 5.24

CC+PAN+&SH0ES+HW 1538.37 1548.37 1554.57 3.08 5.57

CC+PAN+&SH0ES+BAO 1570.62 1580.62 1586.83 7.45 9.93

CC+PAN+&SH0ES+BAO+TRGB 1570.73 1580.73 1586.95 7.23 9.73

CC+PAN+&SH0ES+BAO+HW 1575.41 1585.41 1591.63 10.6 13.11
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Figure 1: The contour plot of 1σ and 2σ uncertainty regions and posterior distribution for the model parameters
with the combination of data sets (a) CC, PAN+&SH0ES (b) CC, PAN+&SH0ES and BAO. The H0 priors are: TRGB
(Blue) and HW (Green).

V. DYNAMICS OF COSMOLOGICAL PARAMETERS

In this section, we shall analyze the background cosmological parameters to explore the late time behavior for the
f (T, T ) model. Also, we compare these findings with those from the standard ΛCDM model. In Fig.-2a, we have
shown the behavior of the Hubble parameter for different combinations of data sets with prior and compared to that
of ΛCDM model. It has been observed that the curves are traversing in a similar fashion to that of ΛCDM and well
withing the error bars. So, the model can effectively reproduce the ΛCDM behavior. To illustrate the discrepancies
between the chosen model and the conventional ΛCDM model, we introduce the relative difference,

∆r H(z) =
|Hmodel − HΛCDM|

HΛCDM
. (33)

The evolutionary behavior of the relative difference has been shown in Fig.-2b. Fig.-3 illustrates the progression
of the Hubble parameter and the relative difference in the Hubble parameter for the CC, PAN+&SH0ES and BAO
data set that includes the H0 priors. This progression closely resembles the pattern depicted in Fig.-2, which shows
almost uniform behavior across the data sets.

In Fig.-4a, we present the progression of the distance modulus for the chosen model in comparison to the ΛCDM
model using 1701 data points from the PAN+&SH0ES data set. The selected model shows a significant agreement
with the ΛCDM model. The relative difference

∆rµ(z) =

∣∣µmodel − µΛCDM
∣∣

µΛCDM
. (34)

In Fig.-4b, we depict the comparative evolution of the distance modulus between the chosen model and the ΛCDM
model, In Fig.-5, we illustrate the evolution of the distance modulus function and the relative difference distance
modulus function for the CC, PAN+&SH0ES, and BAO data set, while incorporating H0 priors. This trend closely
aligns with the pattern observed in Fig.-4, which shows consistent behavior among the data sets.
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Figure 2: (a) Evolutionary behavior of Hubble parameter and ΛCDM model in redshift (b) Relative variation between
the Hubble parameter and ΛCDM model. The combination of data sets: CC, PAN+&SH0ES. The H0 priors are:
TRGB and HW
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Figure 3: (a) Evolutionary behavior of Hubble parameter and ΛCDM model in redshift (b) Relative variation between
the Hubble parameter and ΛCDM model. The combination of data sets: CC, PAN+&SH0ES and BAO. The H0 priors
are: TRGB and HW



10

0.0 0.5 1.0 1.5 2.0 2.5

z
27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

(z
)

Modulus function as a Function of Redshift

CC + PAN+&SH0ES(Model)
CC + PAN+&SH0ES( CDM)
CC + PAN+&SH0ES + TRGB(Model)
CC + PAN+&SH0ES + TRGB( CDM)
CC + PAN+&SH0ES + HW(Model)
CC + PAN+&SH0ES + HW( CDM)
From data

a)

0.0 0.5 1.0 1.5 2.0 2.5

z
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

r
(z

)

(z) CDM(z) as a Function of Redshift
CC + PAN+&SH0ES
CC + PAN+&SH0ES + TRGB
CC + PAN+&SH0ES + HW

b)

Figure 4: (a) Evolutionary behavior of distance modulus and ΛCDM model in redshift (b) Relative variation between
the distance modulus and ΛCDM model. The combination of data sets: CC, PAN+&SH0ES. The H0 priors are:
TRGB and HW
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Figure 5: (a) Evolutionary behavior of distance modulus and ΛCDM model in redshift (b) Relative variation between
the distance modulus and ΛCDM model. The combination of data sets: CC, PAN+&SH0ES and BAO. The H0 priors
are: TRGB and HW

The deceleration parameter (q), the total equation of state parameter (ωtot), and the matter-energy density as a
function of redshift (z) can be expressed as

q = −1 +
(1 + z)H

′
(z)

H(z)
, (35)

ωtot = −1 +
2(1 + z)H

′
(z)

3H(z)
, (36)
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Ωm =
Ωm0(1 + z)3H2

0
H2(z)

, (37)

In Fig.-6, we show the progression of the deceleration parameter for the chosen model and the ΛCDM model. The
chosen model demonstrates the shift from a decelerating phase to an accelerating phase of the Universe, suggesting
that it can accurately reflect the accelerated expansion behavior of the Universe. Furthermore, we ascertain the
current value of the deceleration parameter. The current value of the deceleration parameter and the transition point
for the various data sets are detailed in Table-III. The deceleration parameter is essential for distinguishing between
the decelerating and accelerating phases of the Universe. The results from the chosen model regarding the current
value of the deceleration parameter and the transition point align with cosmological observations [73, 74].

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5

z
1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

q

Deceleration parameter as a Function of Redshift

CC + PAN+&SH0ES(Model)
CC + PAN+&SH0ES( CDM)
CC + PAN+&SH0ES + TRGB(Model)
CC + PAN+&SH0ES + TRGB( CDM)
CC + PAN+&SH0ES + HW(Model)
CC + PAN+&SH0ES + HW( CDM)

a)

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5

z
1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

q

Deceleration parameter as a Function of Redshift

CC + PAN+&SH0ES + BAO(Model)
CC + PAN+&SH0ES + BAO( CDM)
CC + PAN+&SH0ES + BAO + TRGB(Model)
CC + PAN+&SH0ES + BAO + TRGB( CDM)
CC + PAN+&SH0ES + BAO + HW(Model)
CC + PAN+&SH0ES + BAO + HW( CDM)

b)

Figure 6: Evolutionary behavior of deceleration parameter and ΛCDM model in redshift with the combination of
data sets (a) CC, PAN+&SH0ES (b) CC, PAN+&SH0ES and BAO. The H0 priors are: TRGB and HW
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Figure 7: Evolutionary behavior of EoS parameter and ΛCDM model in redshift with the combination of data sets
(a) CC, PAN+&SH0ES (b) CC, PAN+&SH0ES and BAO. The H0 priors are: TRGB and HW
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In Fig.-7, we illustrate the progression of the total equation of state (EoS) parameter for the chosen model compared
to the ΛCDM model. The EoS parameter indicates a quintessence phase for the Universe as it meets the quintessence
criterion −1 < ω < − 1

3 . This behavior showcases a departure from constant DE, implying that the DE component
in the chosen model changes over cosmic time. At later stages, the EoS parameter approaches −1, confirming the
alignment with the ΛCDM model. This tendency to converge towards ω = −1 further reinforces the alignment of the
model with observational data at later epochs, demonstrating the quintessence-like behavior in the early Universe
and the eventual approach to a cosmological constant in the far future. A summary of the current value of the total
EoS parameter is presented in Table-III.
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Figure 8: Evolutionary behavior of density parameters in redshift with the combination of data sets (a) CC,
PAN+&SH0ES (b) CC, PAN+&SH0ES and BAO. The H0 priors are: TRGB and HW

In Fig.-8, we show the changes in the density parameters for both matter and DE in the Universe as a function
of redshift. This graph illustrates the evolving relationship between matter and DE, indicating that DE density
increasingly prevails in later periods, leading to the accelerated expansion of the Universe. The current values of
these density parameters are given in Table-III. In the early Universe, dark matter is the primary component of
energy density at higher redshifts, greatly exceeding that of DE. As redshift decreases, the share of dark matter
diminishes while the impact of DE gradually increases. In the late Universe, DE becomes the dominant factor, and
at lower redshifts, it surpasses dark matter and propels the accelerated expansion.
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Data set For f (T, T ) model For the ΛCDM model

q0 ω0

Transition

ztransi.

Ω0
m Ω0

de q0 ω0

Transition

ztransi.

CC+PAN+&SH0ES −0.374 −0.583 0.62 0.38 0.62 −0.43 −0.62 0.48

CC+PAN+&SH0ES+TRGB −0.370 −0.58 0.63 0.38 0.62 −0.43 −0.62 0.48

CC+PAN+&SH0ES+HW −0.379 −0.586 0.65 0.37 0.63 −0.445 −0.63 0.50

CC+PAN+&SH0ES+BAO −0.399 −0.599 0.89 0.29 0.71 −0.565 −0.71 0.70

CC+PAN+&SH0ES+

BAO+TRGB

−0.398 −0.599 0.90 0.29 0.71 −0.565 −0.71 0.70

CC+PAN+&SH0ES+

BAO+HW

−0.419 −0.613 0.92 0.28 0.72 −0.58 −0.72 0.72

Table III: Present value of the parameters and the transition point. The upper or lower indices 0 represent the current
time at z = 0.

The Om(z) diagnostic is another approach to differentiate different DE cosmological models. It can be expressed
as [75, 76],

Om(z) =
E2(z)− 1

(1 + z)3 − 1
, (38)

evaluating the Om(z) values at varying redshifts can provide information about the properties and behavior of DE.
The methodology for two-point difference diagnostics can be outlined as,

Om(z1 − z2) = Om(z1)− Om(z2) (39)

If Om(z1, z2) > 0, then the model indicates the quintessence scenario, whereas for Om(z1, z2) < 0, it indicates
phantom behavior given that z1 < z2. Also, if Om(z) is consistent across different redshifts, it suggests that DE can
be linked to the cosmological constant [75]. We have illustrated the comparison with the model presented here and
ΛCDM model in Fig.-9. It can be seen that Om(z) parameter shows stability across the redshift interval 0 < z < 2.5.
Such behavior is essential for grasping the dynamics of the Universe and its accelerated expansion. The slope of
Om(z) is a significant indicator of DE models. A positive slope denotes the existence of phantom behavior, charac-
terized by an equation of state parameter ω < −1. In contrast, a negative slope is associated with the quintessence
region, where ω > −1.

In Fig.-9, the slope of the Om(z) parameter exhibits a decreasing trend as the redshift increases, indicating that the
influence of DE becomes more pronounced over time. This decline suggests a shift in the dynamics of the Universe,
reflecting the changing roles of matter and DE as the Universe evolves. This decrease aligns with the quintessence
phase of the Universe, where the equation of state parameter ω is greater than −1. In Fig.-9a, we observed that the
slope of Om(z) exhibits an increasing trend beyond the redshift point z = 1, indicating that the chosen model is also
consistent with a phantom phase of the Universe. In Fig.-9b, the slope of Om(z) stabilizes at a constant value after
z = 1, suggesting that the chosen model shows a ΛCDM-like behavior.
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Figure 9: Evolutionary behavior of Om(z) parameter and ΛCDM model in redshift with the combination of data sets
(a) CC, PAN+&SH0ES (b) CC, PAN+&SH0ES and BAO. The H0 priors are: TRGB and HW
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Figure 10: Whisker plot for the chosen f (T, T ) framework. This plot provides a visual representation of the distribu-
tions of several key parameters: the Hubble constant H0, the matter-energy density Ωm0, and the model parameters
p and n, along with the nuisance parameter M. In the first column, the blue-shaded region represents the TRGB
prior, while the cyan-shaded region indicates the HW prior.
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The whisker plot is a comprehensive tool for encapsulating the uncertainties and variability inherent in the para-
meters under investigation. It provides a clear view of their ranges and central tendencies. By scrutinizing the
distribution and median values illustrated in the plot, we can extract valuable insights into the behavior of the
chosen model and its alignment with observational cosmology. This comparative analysis elucidates the interac-
tions between different parameters and their influence on the dynamics of the Universe within the framework of
f (T, T ) theory. In Fig.-10, the whisker plot distinctively delineates parameter values obtained from various data set
combinations. We observed a marked discrepancy in the estimates of H0 and Ωm0 across these configurations. For
instance, the combination of CC and PAN+&SH0ES data set, when utilizing the H0 priors TRGB and HW, yields H0
values in the range of 71 to 72. In contrast, integration with the BAO data set results in H0 values shifting to approx-
imately 69 to 70. This variation underscores the existing H0 tension, indicating that the chosen model captures this
discrepancy effectively. Fig.-10 demonstrates that an increase in the matter component corresponds to a rise in the
expansion rate of the Universe, whereas a decrease in the matter component indicates a slower expansion rate of the
Universe.

APPENDIX

Presented here are the results of the ΛCDM model. In Fig.- 11, we display the posterior distributions alongside the
1σ and 2σ confidence intervals for various data set combinations, offering an in-depth view of parameter constraints.
The detailed results for each combination of data sets are consolidated in Table-IV. This approach underscores the
alignment of chosen results with the standard expectations of the ΛCDM framework, enabling a robust evaluation
of model performance in the selected data sets.
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Figure 11: The contour plot of 1σ and 2σ uncertainty regions and posterior distribution for the model parameters
with the combination of data sets (a) CC, PAN+&SH0ES (b) CC, PAN+&SH0ES and BAO. The H0 priors are: TRGB
(Blue) and HW (Green).
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Table IV: The results for the ΛCDM model. The first column identifies the data set combinations and the applied
H0 priors. The second and third columns present the derived values for H0 and Ωm,0, respectively, while the fourth
column displays the value of the nuisance parameter. The fifth column provides the minimized χ2

min values, with
the sixth and seventh columns showing the AIC and BIC values, respectively.

ΛCDM H0 Ωm,0 M χ2
min AIC BIC

CC+PAN+& SH0ES 72.81+0.96
−1.01 0.335 ± 0.018 −19.261 ± 0.029 1539.22 1545.22 1548.93

CC+PAN+& SH0ES+TRGB 72.24+0.82
−0.93 0.335+0.019

−0.016 −19.277+0.024
−0.028 1541.18 1547.18 1550.89

CC+PAN+& SH0ES+HW 72.82+0.95
−0.77 0.333+0.019

−0.016 −19.258+0.026
−0.025 1539.29 1545.29 1549.00

CC+PAN+& SH0ES+BAO 70.93+0.72
−0.67 0.313 ± 0.011 −19.321+0.020

−0.023 1567.17 1573.17 1576.90

CC+PAN+& SH0ES+BAO+TRGB 70.89+0.59
−0.71 0.315+0.010

−0.012 −19.327+0.021
−0.020 1567.50 1573.50 1577.22

CC+PAN+& SH0ES+BAO+HW 71.32+0.62
−0.68 0.314+0.010

−0.011 −19.314+0.022
−0.019 1568.81 1574.81 1578.52

VI. CONCLUSION

We have presented a cosmological model in f (T, T ) gravity that provides insight into the H0 tension and late time
behavior. The results obtained in the model for some specific form of the functional f (T, T ) have been compared
with the standard ΛCDM model. Our analysis aimed at obtaining the best-fit values of the model parameters using
the CC, PAN+&SH0ES and BAO data sets alongside the H0 priors TRGB and HW [Table-I]. In the analysis, we
have shown the influence of H0 value on the H0 priors. Specifically, we assess the impact of H0 when combined
with various data sets. We have also conducted an MCMC analysis for the ΛCDM model, utilizing it as a basis for
our statistical evaluation. We have also shown the differences and similarities between the f (T, T ) gravity model
presented and the established ΛCDM model.

In our analysis, we observe that for the combination of the CC and PAN+&SH0ES data set, alongside the H0 priors
TRGB and HW, the value of H0 tends to shift toward higher values of the Hubble constant. Specifically, for the data
set combination CC+PAN+&SH0ES+HW, we obtain an elevated H0 value of 72.69+0.88

−0.85. This upward shift in H0
highlights the influence of the HW H0 prior. Conversely, for the data set combination CC+PAN+&SH0ES+TRGB, a
lower H0 value of 71.98+0.86

−0.90 is found, illustrating the effect of the TRGB H0 prior in moderating the Hubble constant.
This sensitivity to the choice of H0 prior underscores its significant impact on the inferred value of the Hubble
constant. On the other hand, when we incorporate the BAO data set, the H0 value shifts to a lower range, likely
due to contributions from early-Universe effects. Specifically, after including the BAO data set, the combination of
CC+PAN+&SH0ES+BAO yields a lower H0 value than that derived from other data set combinations. This variation
in H0 values exemplifies the phenomenon of the H0 tension. Notably, chosen f (T, T ) model also exhibits this H0
tension. Including the H0 priors TRGB and HW within the data set, combinations result in lower and higher shifts in
H0 values, respectively. Fig.-(10) shows that as the matter component increases, the expansion rate of the Universe
also rises. In contrast, reducing the matter component leads to a slower Universe expansion rate.

Alternatively, we further investigate our selected f (T, T ) model, which presents intriguing features due to its
lack of a corresponding ΛCDM limit. Specifically, there is no set of parameter values within this model that rep-
licates the exact behavior of the ΛCDM model. From a statistical perspective, the AIC and BIC values for the data
set combination CC+PAN+&SH0ES are found to be very close to those of the standard ΛCDM model, suggest-
ing that this data set combination supports the ΛCDM model well. However, when including the BAO data set
with CC+PAN+&SH0ES, the AIC and BIC values increase compared to the ΛCDM model. This indicates that the
CC+PAN+&SH0ES+BAO data set combination does not provide strong evidence in favor of the ΛCDM model.

To investigate late-time cosmology, we present the evolution of key background cosmological parameters such as
the deceleration parameter, the total EoS parameter, the energy density parameters for matter and DE, and the Om(z)
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diagnostic parameter for our selected f (T, T ) model alongside the standard ΛCDM model. For the data set combin-
ation, the current values of deceleration and EoS parameters, as well as the energy density and the deceleration to
acceleration transition redshift, are summarized in Table-III.

The behavior of the deceleration parameter indicates that the chosen model captures the transition from early
Universe deceleration to late time acceleration. The behavior of the EoS parameter supports the quintessence-like
behavior at the late phase of the evolution. The energy density parameters indicate a shift from a matter-dominated
early Universe to a DE dominated late-time phase. So, the model can describe the late time cosmic phenomena of
the Universe.

Finally, the approach presented to study the H0 tension and late time behavior of the Universe in f (T, T ) gravity
framework may provide some basis for further study. In particularly, the study can be integrated with the Cosmic
Microwave Background (CMB) data from surveys such as the Planck mission. We anticipate a deeper understanding
of inflationary dynamics and other key phenomena in the early Universe and this may provide a new avenue to
analyze the fundamental properties of cosmic evolution.
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