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We theoretically investigate the Casimir effect originating from Dirac fields in finite-density mat-
ter under a magnetic field. In particular, we focus on quark fields in the magnetic dual chiral den-
sity wave (MDCDW) phase as a possible inhomogeneous ground state of interacting Dirac-fermion
systems. In this system, the distance dependence of Casimir energy shows a complex oscillatory be-
havior by the interplay between the chemical potential, magnetic field, and inhomogeneous ground
state. By decomposing the total Casimir energy into contributions of each Landau level, we eluci-
date what types of Casimir effects are realized from each Landau level: the lowest or some types
of higher Landau levels lead to different behaviors of Casimir energies. Furthermore, we point out
characteristic behaviors due to level splitting between different fermion flavors, i.e., up/down quarks.
These findings provide new insights into Dirac-fermion (or quark) matter with a finite thickness.

I. INTRODUCTION

The Casimir effect proposed by Casimir [1] is of great
importance for understanding small-volume physics in
quantum field theory. Casimir predicted that a reduction
in the zero-point energy of the photon field by two paral-
lel conducting plates in a vacuum would induce an attrac-
tive force, known as the Casimir energy or Casimir force.
This theoretical prediction was experimentally confirmed
several decades later [2, 3] (for reviews, see Refs. [4–11]).

While the original Casimir effect means an attractive
force from the photon field in a vacuum, other types of
Casimir (or Casimir-like) effects have also been explored.
For example, one can consider counterparts induced by
fermion fields [12, 13] such as quarks or in systems filled
by a medium [14]. Such an unusual setup sometimes
leads to anomalous phenomena, such as sign-flipping and
oscillating behaviors of Casimir energy as a function of
distance. In particular, in fermionic systems, (i) external
magnetic fields1 and (ii) chemical potentials can be ex-
perimentally tunable, so that these parameters should
be useful for the controllability and versatility of the
fermionic Casimir effect.

In this paper, we investigate the Casimir effect for
Dirac fields under both (i) and (ii) for the first time,
where we particularly focus on thin quark matter under
a magnetic field (see Fig. 1). Our previous work [40]
found that an oscillating Casimir effect is induced not
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1 Since the photon is not directly coupled to an external mag-
netic field, the magnetic response of the photonic Casimir ef-
fect in quantum electrodynamics (QED) vacuum is described
as a higher-order correction due to electron-positron loops [15].
On the other hand, the Casimir effect originated from Dirac
fields [16–27] (as well as charged scalar fields [19, 22, 28–39])
is directly affected by magnetic fields. Therefore, quark fields
which we consider in this work can be a realistic testing ground
for the Casimir effect coupled to magnetic fields.

only by the quark Fermi sea but also by the dynam-
ics of quark fields modified in the dual chiral density
wave (DCDW) phase [41–43] which is a possible ground
state of quantum chromodynamics (QCD) at finite quark
chemical potential. However, the DCDW phase (more
generally, an inhomogeneous phase) can exist only in a
narrow density region. Therefore, in this study, we con-
sider a more feasible situation, that is, the DCDW phase
under a magnetic field. When a magnetic field is im-
posed on the DCDW phase, the property of the DCDW
is modified, which may be called the magnetic dual chi-
ral density wave (MDCDW) [44] (see Refs. [45–60] for
related studies and Ref. [61] for a review). A magnetic
field makes the DCDW phase more robust, and in partic-
ular, at finite temperature, it removes the Landau-Peierls
instability [51]. Such robustness might support the for-
mation of DCDW in fireballs produced by heavy-ion col-
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FIG. 1. Schematic picture of the Casimir effect in the two-
flavor MDCDW phase, where the MDCDW phase is sand-
wiched by two boundary conditions at z = 0 and z = Lz. The

magnetic field B⃗ and the wave number b⃗ of density waves are
parallel to z the direction.
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lision experiments and in the interior of neutron stars.
This paper is organized as follows. In Sec. II, we review

the MDCDW phase described by an effective model of
interacting Dirac fermions and explain how to calculate
Casimir energy in this phase. In Sec. III, we show our
results. Sec. IV is devoted to the conclusion.

II. MODEL CONSTRUCTION

A. The model

To investigate quark matter in a magnetic field, we use
the Nambu–Jona-Lasinio (NJL) model [62, 63] which is
an effective model of QCD (see Refs. [64–67] for reviews).
The Lagrangian density of the NJL model in a magnetic
field is written as

LNJL = ψ̄(i /D + µγ0)ψ +G[(ψ̄ψ)2 + (ψ̄iγ5τ⃗ψ)
2], (1)

where the quark field ψ has two-flavor (Nf = 2) and
three-color (Nc = 3) components, and µ > 0 is the chem-
ical potential of quarks. G is the coupling constant for
the four-point interactions, and τ⃗ is the Pauli matrix
in the isospin (up or down quark) space, and γµ and
γ5 ≡ iγ0γ1γ2γ3 are the gamma matrix in the 3 + 1 di-
mensional spacetime. The covariant derivative is defined
as /D ≡ γµ(∂µ + iQAµ) using the gauge field Aµ and the
electric-charge matrix Q ≡ diag(qu, qd) = diag( 23e,−

1
3e)

with the elementary charge e > 0. Note that, in a van-
ishing electromagnetic field, the model (1) satisfies the
SU(2)L × SU(2)R chiral symmetry. When an external
magnetic field is switched on, this symmetry is broken to
U(1)L × U(1)R.

As the mean-field ansatz for the DCDW phase, we
adopt

⟨ψ̄ψ⟩ = ∆cos(q⃗ · r⃗), ⟨ψ̄iγ5τ3ψ⟩ = ∆sin(q⃗ · r⃗),
⟨ψ̄iγ5τ1ψ⟩ = 0, ⟨ψ̄iγ5τ2ψ⟩ = 0,

(2)

where ∆, q⃗ = (0, 0, q), and r⃗ = (x, y, z) are the amplitude
of DCDW, the wave number of DCDW propagating in
the z direction, and the position vector, respectively.

Using the mean-field ansatz (2), we obtain the mean-
field Lagrangian,

LMF = ψ̄[i /D + µγ0 −M(cos qz + iγ5τ3 sin qz)]ψ − M2

4G
,

(3)

where M = −2G∆.
By performing a local chiral transformation

ψ → eiγ5τ3qz/2ψ, ψ̄ → ψ̄eiγ5τ3qz/2 (4)

(called the Weinberg transformation), we can eliminate
the position dependence in the Lagrangian. The La-
grangian is then rewritten as

LMF = ψ̄(i /D + µγ0 −M + γ5τ3γ
µqµ/2]ψ − M2

4G
. (5)

Assuming also that the background electromagnetic field
is Aµ = (0, 0, Bx, 0) using the Landau gauge, we obtain

a magnetic field B⃗ parallel to q⃗ (see Fig. 1).

From the Lagrangian (5), by diagonalizing the inverse
of the quark propagator in momentum space, we obtain
the following energy eigenvalues [44]:

ωl=0 = El=0 + b− µ, ω̃l=0 = −El=0 + b− µ, (6)

ωζ,l = Eζ,l − µ, ω̃ζ,l = −Eζ,l − µ, (7)

El=0 ≡
√
M2 + k2z ,

Eζ,l ≡
√
(ζ
√
M2 + k2z + b)2 + 2|qfB|l, (l = 1, 2, ...),

where we redefined bµ ≡ qµ/2 = (0, 0, 0, q/2) =
(0, 0, 0, b). ω and ω̃ denote the positive and negative en-
ergy solutions (at µ = 0), respectively. ζ = ± is a spin
polarization index, and qf = qu or qd. The presence of
a magnetic field splits the eigenmodes of quarks into an
infinite number of Landau levels (LLs) labeled by l. The
two modes with l = 0, Eq. (6), are called lowest Lan-
dau levels (LLLs), and an infinite set of four modes with
l ≥ 1, Eq. (7), is called higher Landau levels (HLLs).
The LLLs have no spin index because only one spin com-
ponent is chosen.2 On the other hand, HLLs have both
modes with ζ = ±.

B. Casimir energy

From the partition function Z of the mean-field La-
grangian (5), the grand potential Ω ≡ − T

V lnZ per unit
volume V = LxLyLz at temperature T = 1/β is written
as [44]

Ω = ΩLLL +ΩHLL +
M2

4G
, (8)

ΩLLL = −Nc

∑
qf

|qfB|
2π

∫
dkz
2π

[1
2
|ωl=0|+

1

2
|ω̃l=0|

+
1

β
ln

{(
1 + e−β|ωl=0|

)(
1 + e−β|ω̃l=0|

)} ]
,

ΩHLL = −Nc

∑
qf ,ζ

|qfB|
2π

∫
dkz
2π

∞∑
l=1

[1
2
|ωζ,l|+

1

2
|ω̃ζ,l|

+
1

β
ln

{(
1 + e−β|ωζ,l|

)(
1 + e−β|ω̃ζ,l|

)} ]
,

where |qfB|/2π is called the Landau degeneracy factor
which is the remnant of the (kx, ky) integrals at B = 0.

2 In the LLLs, Eq. (6), the asymmetry between ωl=0 and ω̃l=0 due
to b ̸= 0 is called the spectral asymmetry [44, 45].
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In the zero-temperature limit, we obtain [44]

Ω(T → 0) = ΩT→0
LLL +ΩT→0

HLL +
M2

4G
≡ Eint

0

Lz
, (9)

ΩT→0
LLL = −Nc

∑
qf

|qfB|
2π

∫
dkz
2π

(
1

2
|ωl=0|+

1

2
|ω̃l=0|

)
,

ΩT→0
HLL = −Nc

∑
qf ,ζ

|qfB|
2π

∫
dkz
2π

∞∑
l=1

(
1

2
|ωζ,l|+

1

2
|ω̃ζ,l|

)
,

where we defined a new notation Eint
0 as the zero-point

energy per unit area LxLy (not per unit volume).

The Casimir energy appears as a finite volume effect
of the zero-point energy. In this work, we impose the pe-
riodic boundary conditions (PBCs) at z = 0 and z = Lz

(see Fig. 1). Then, the momentum in the z direction is
discretized as kz → 2nπ/Lz, (n = 0,±1, ....,±∞), the
momentum integral of Eq. (9) is replaced by the corre-
sponding momentum sum. Thus, the zero-point energy
at finite Lz is written as

Esum
0 ≡ Eint

0 (kz → 2nπ
Lz

) = Esum
0,LLL + Esum

0,HLL +
M2

4G
Lz,

(10)

Esum
0,LLL = −Nc

∑
qf

|qfB|
2π

∞∑
n=−∞

(1
2
|ωl=0,n|+

1

2
|ω̃l=0,n|

)
,

Esum
0,HLL = −Nc

∑
qf ,ζ

|qfB|
2π

∞∑
l=1

∞∑
n=−∞

(1
2
|ωζ,l,n|+

1

2
|ω̃ζ,l,n|

)
.

In this work, unlike the conventional mean-field ap-
proach in the NJL model, we do not minimize the ther-
modynamic potential (or solve the gap equation) at finite
Lz. Instead, we fix the values of the order parameters and
then investigate what types of behaviors of the Casimir
energy can be realized under a parameter set. Note that
the Casimir energy appears also from the Lz dependence
of the term with M2/4G, but it will be neglected in our
definition of Casimir energy. This is because this contri-
bution is just the free energy shift by the Lz dependence
of the order parameterM and is not directly regarded as
the fermionic Casimir effect.

The infinite sum (10) contains an ultraviolet diver-
gence, but it becomes finite by using a regularization
scheme. Here we apply the Lifshitz formula [68], which
was first proposed for the conventional photonic Casimir
effect and is well known nowadays. Our previous works
established analogous formulas for the DCDW-type dis-
persion relation (M ̸= 0, b ̸= 0) [40] and at finite chemical
potential (µ ̸= 0) [69]. Using this formula, the Casimir
energy for fermion fields in the MDCDW phase (i.e.,

M ̸= 0, b ̸= 0, µ ̸= 0, B ̸= 0) is written as3

ECas = −2Nc

∫ ∞

−∞

dξ

2π

∑
qf ,ζ

∞∑′

l=0

|qfB|
2π

ln
[
1− e−Lz k̃

[l,ζ]
z

]
,

(11)

k̃[l,ζ]z =

√
M2 −

(
b+ ζ

√
(iξ + µ)2 − 2|qfB|l

)2

,

where the overall factor of 2 means the factor from
the PBCs. The integration variable ξ is the imaginary
part of the imaginary energy iξ. The prime in the
sum means that the factor 1/2 is multiplied only for
l = 0. This formula is regarded as the infinite sum of
a (quasi-)one-dimensional analog of the Lifshitz formula
because of the absence of the transverse-momentum in-
tegral. Also, taking the B → 0 limit of Eq. (11) leads
to the Casimir energy in the usual DCDW phase (i.e.,
M ̸= 0, b ̸= 0, µ ̸= 0),4

ECas(B → 0) =

− 2NfNc

∫ ∞

−∞

dξ

2π

∑
ζ=±

∫
dkxdky
(2π)2

ln
[
1− e−Lz k̃

[ζ]
z

]
,

(12)

k̃[ζ]z =

√
M2 −

(
b+ ζ

√
(iξ + µ)2 − k2x − k2y

)2

.

As another approach to calculate the Casimir energy,
we use the lattice regularisation scheme [24, 40, 69–81].
By replacing the continuous momentum kz in the zero-
point energy (9) per unit area as kz → (2− 2 cos akz)/a

2

where a is the lattice spacing in the z direction, the
Casimir energy on the lattice is defined as

ELat
Cas = Esum

0 − Eint
0 , (13)

where the sum of n is restricted within the first Brillouin
zone (BZ): n = 0, 1, ..., Nz − 1 with the number of lattice
cells Nz ≡ Lz/a. By taking the continuum limit a →
0 (i.e., by using a sufficiently small a), we can get the
correct Casimir energy.
Finally, we define a Casimir coefficient,

C
[d]
Cas = Ld

zECas/Λ
3−d. (14)

Since now ECas is defined as a quantity with the mass
dimension 3, Ld

zECas is dimensionless only when d = 3.
Therefore, we define a dimensionless quantity divided by
Λ3−d, where Λ is a parameter with mass dimension one.
On the other hand, in a nonzero magnetic field, since

3 If b = µ = 0, M ̸= 0, and B ̸= 0, Eq. (11) is equivalent to the
known formula for the massive Dirac field in a magnetic field [16]
obtained from the proper-time regularization, except for the color
and flavor factors.

4 Note that Eq. (12) was not given in our previous paper [40]. By
substituting µ = 0 into Eq. (12), we obtain Eq. (11) in Ref. [40].
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each LL is regarded as a particle moving in the quasi-
one-dimensional space, the corresponding Casimir energy
may scale as ECas ∼ 1/Lz. Therefore, in the following,

C
[1]
Cas will be used to characterize the Casimir energies

decomposed in each LL, while C
[3]
Cas will be used to char-

acterize the total Casimir energy summed over all the
LLs.

C. Classification of dispersion relations

In the presence of a magnetic field, the quark energy
levels split into the infinite number of Landau levels. If
the homogeneous chiral condensate phase is realized, all
the HLLs behave as quasi-one-dimensional massive (or
gapped) dispersion relations. In the case of the MD-
CDW phase, the low-energy dispersion relations of HLLs
are distorted and different from the usual massive one,
which is a remnant of dispersion relations with the two
Weyl points characterizing the DCDW phase in a zero
magnetic field. In a weak magnetic field, lower-l (i.e., oc-
cupied) modes in the HLLs produce Fermi points (FPs).
As the magnetic field increases, the spacing between ω±,l

and ω̃±,l with the same l becomes large. ω±,l near the
Fermi level begin to exceed the Fermi level sequentially,
and eventually at a strong magnetic field, all ω±,l exceed
the Fermi level, which means that there are no FPs.

In Fig. 2, we show the dispersion relations (6) and
(7) at M/Λ = 0.1, b/Λ = 0.5, and µ/Λ = 0.7 under
a magnetic field eB/Λ2 = (0.1)2. Here, for simplicity,
we consider the one-flavor case with an electric charge
qf = ±e, which can be regarded as a (quasi-)electron or
positron system. The choice of these parameters realizes
the DCDW phase in a magnetic field, i.e., the MDCDW
phase. The two solid black lines are the upper and lower
modes of the LLLs. The other colored lines and the black
dashed lines are the HLLs, which split the eigenmodes
of the HLLs for the two spin degrees of freedom. The
circles, diamonds, and triangles represent FPs. In the
case of the black dashed line, there is no FP because
the gap between the positive and negative energy modes
spreads as l increases.

We have shown in the previous work [40] that FPs
induce an oscillation in the Casimir energy. Under mag-
netic fields, the presence of FPs also results in the os-
cillating Casimir energy in the same way. In the case
of current parameters, the LLLs have FPs and induce
an oscillation of Casimir energy. Its oscillation period is
determined by the momenta of FPs:

Losc
z =

2π

|kFPz |
,

(
kFPz = ±

√
(µ− b)2 −M2

)
(15)

when the PBC is applied.5 Thus, the necessary condition

5 For the MIT bag boundary condition leading to kz → (n +
1/2)π/Lz (n = 0, 1, 2, . . . ), the oscillation period becomes the
half of that with the PBC.

-1-2 21
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-type ( )(0,0) l = 30
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Paper

FIG. 2. Typical examples of dispersion relations for the LLLs
(solid black line) and HLLs (red, blue, green, or dashed black
line) of fermion fields in the MDCDW phase. Filled symbols
stand for crossing points with the Fermi level, namely the
Fermi points (FPs).

for this oscillation is the presence of FPs, i.e., (µ− b)2 >
M2.
For the HLLs in the MDCDW phase, we can classify

possible dispersion relations into four types. Their typi-
cal forms are shown in Fig. 2.

(a) (2,2)-type: This type is realized when the condition
2|qfB|l < (µ2−(M+b)2) is satisfied: the magnetic
field and the label of LLs are small enough. In this
type, the upper energy mode ω+ makes two FPs,
and the lower energy mode ω− also makes two FPs.
We call this type of dispersion relation the (2, 2)-
type, since both the modes make two FPs. The
momentum of FPs is given as

|kFPz,±| =
√
(
√
µ2 − 2|qfB|l ± b)2 −M2. (16)

We note that |kFPz,+| > |kFPz,−|, where |kFPz,+| and |kFPz,−|
correspond to ω− and ω+, respectively. The result-
ing Casimir energy is a superposition of two oscil-
lations with different periods (Losc

z = 2π/|kFPz,+| and
Losc
z = 2π/|kFPz,−|).

(b) (2,0)-type: This type is realized when the condi-
tion (µ2 − (M + b)2) < 2|qfB|l < (µ2 − (M − b)2)
is satisfied, where only the lower mode ω− makes
two FPs. We call this type of dispersion relation
the (2, 0)-type, since only ω− make two FPs. The
resulting Casimir energy show an oscillation with
a period (Losc

z = 2π/|kFPz,+|) due to the FPs |kFPz,+|
made by ω−.

(c) (4,0)/“Island”-type:6 This type is realized when

6 When M ≥ b, this type is forbidden by the property of quartic
functions. We will see this situation later.
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TABLE I. Classification of dispersion relations possible in the MDCDW phase at µ > 0: two types of LLLs and four types of
HLLs, where we also list the modes with FPs, the number of induced oscillations, the classification of Casimir effect, and the
oscillation period. ωl=0 and ω±,l are defined as Eqs. (6) and (7). The form of Losc

z is given in Eqs. (15) and (16).

Dispersion-type Condition with FPs No. of osc. Casimir effect Losc
z for PBC

LLL/“Metal” M2 < (µ− b)2 ωl=0 1 singly oscillating 2π
|kFP

z |

LLL/“Insulator” (µ− b)2 < M2 No 0 non-oscillating No

(2,2)/“Metals” 2|qfB|l < µ2 − (M + b)2 ω−,l, ω+,l 2 dually oscillating 2π
|kFP

z,±| for ω∓,l

(2,0)/“Metal-Insulator” µ2 − (M + b)2 < 2|qfB|l < µ2 − (M − b)2 ω−,l 1 singly oscillating 2π
|kFP

z,+|

(4,0)/“Island” µ2 − (M − b)2 < 2|qfB|l < µ2 ω−,l 2 dually oscillating 2π
|kFP

z,+| ,
2π

|kFP
z,−|

(0,0)/“Insulators” µ2 < 2|qfB|l No 0 sign-flipping No

TABLE II. Classification of dispersion relations of the LLLs and HLLs in the homogeneous-chiral-condensate phase (or massive-
Dirac-fermion vacuum/matter) in a magnetic field and at µ > 0. The notations are the same as those in Table I.

Dispersion-type Condition with FPs No. of osc. Casimir effect Losc
z for PBC

LLL/“Metal” M2 < µ2 ωl=0 1 singly oscillating 2π
|kFP

z | at b = 0

LLL/“Insulator” µ2 < M2 No 0 non-oscillating No

HLL/“Metal” M2 + 2|qfB|l < µ2 ω±,l (degenerate) 1 singly oscillating 2π
|kFP

z,±| at b = 0

HLL/“Insulator” µ2 < M2 + 2|qfB|l No 0 non-oscillating No

the condition (µ2 − (M − b)2) < 2|qfB|l < µ2 is
satisfied, where the lower mode ω− has four FPs.
We call this type of dispersion relation the (4, 0)-
type or “Island”-type7 since only the ω− mode has
the four FPs. The resulting Casimir energy is a
superposition of oscillations of two different periods
due to the FPs |kFPz,±| with |kFPz,+| > |kFPz,−| made by
ω−.

(d) (0,0)-type: This type is realized when the condition
2|qfB|l > µ2 is satisfied: the magnetic field and/or
the label of LLs is large enough. In this type, the
lower mode ω− is located above the Fermi level, so
that there is no FP. Therefore, we call this type
of dispersion relation the (0, 0)-type. The resulting
Casimir energy does not oscillate.

Finally, in Table I, we summarize the dispersion re-
lations of LLLs and HLLs in the MDCDW phase and
the properties of corresponding Casimir energy. As
a comparison, in Table II, we summarize the case
of the homogeneous-chiral-condensate phase (which is
also regarded as just the massive-Dirac-fermion vac-
uum/matter) under a magnetic field. Thus, only the
difference in the LLLs is the factor b, while the Casimir
effects from the HLLs are drastically modified by the MD-
CDW.

7 “Island” means a bump structure located on the Fermi sea.

III. RESULTS

In this section, we discuss the Casimir energy of the
MDCDW phase. In our previous work [40], we discussed
the Casimir effect in the DCDW phase (without a mag-
netic field) and proposed that oscillating Casimir energy
is produced in this phase. The origin of this effect is that
the dispersion relations of quarks have Fermi points. The
presence of Fermi points means that the absolute value
of a dispersion relation, i.e., |ω| or |ω̃|, has a nondifferen-
tiable point in momentum space.
In this section, we adopt Λ = 860 MeV and ℏc ∼

197.327 MeV · fm, where ℏ is the reduced Planck constant
and c the speed of light.

A. Casimir energy in MDCDW for one-flavor case

In this subsection, we consider the one-flavor case as
a demonstration, where we use Eq. (6) and (7) with
qf = ±e as the energy eigenvalues. Based on the under-
standing of the dispersion relation described here and the
corresponding Casimir energy, we will discuss the more
realistic two-flavor case in the next subsections.
In Fig. 3 (a), we show the dispersion relations in

a DCDW phase characterized by (M/Λ, b/Λ, µ/Λ) =
(0.05, 0.25, 0.5) at eB/Λ2 = (0.05)2. Fig. 3 (b) shows the

corresponding Casimir coefficients C
[1]
Cas, where we sep-

arately plot the contributions from each Landau level.8

8 In this plot, the contribution of the LLLs means the sum of
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FIG. 3. (a) Dispersion relations of fermion fields in the one-flavor MDCDW phase. (b) Thickness dependence of Casimir

coefficients C
[1]
Cas for each LL. Inset: the total Casimir coefficients C

[3]
Cas.

The inset of Fig. 3 (b) shows the total Casimir coefficients

C
[3]
Cas obtained by summing sufficiently many LLs. The

solid lines and the dots are the results from the Lifshitz
formula (11) and the lattice regularization (13), respec-
tively.

For the LLLs, the dispersion relations and the Casimir
coefficient are shown as the solid black lines in Fig. 3 (a)

and (b), respectively. We find that the C
[1]
Cas shown in

the Fig. 3 (b) oscillate with respect to Lz. This is due
to the presence of FPs created by ωl=0, as explained in
the previous section. Its oscillation period is determined
by the position of the FPs, and from Eq. (15), we can
estimate Losc

z = 5.89 fm.
For the HLLs, the behaviors of the Casimir coefficients

are classified as the following four patterns.

1. l = 1–31 [(2, 2)-type]. In this type, the Casimir co-
efficient behaves as the superposition of oscillations
with two different periods. In Fig. 3 (a), we show
the quark dispersion relations of l = 2, 4, . . . , 30 as
the solid red lines. We can see that each mode of
ω+ or ω− has two FPs. The periods of oscillations
read from Fig. 3 (b) coincide with Eq. (16) using
FPs positions in Fig. 3 (a).

2. l = 32–42 [(2, 0)-type]. In this case, the Casimir
coefficient oscillates with one period. We show the
quark dispersion relations of l = 32, 34, . . . , 42 as
the blue solid lines in Fig. 3 (a).

3. l = 43–50 [(4, 0)/Island-type]. In this case, the
Casimir coefficient is a superposition of oscillations
with two different periods. We show the quark dis-
persion relations of l = 44, 46, 48, 50 as the green

the Casimir energies from the two modes, ωl=0 and ω̃l=0. The
contribution from the HLLs with l ̸= 0 means the sum of the
Casimir energies from the four modes, ω+,l, ω−,l, ω̃+,l, and ω̃−,l.

solid lines in Fig. 3 (a). We can see that ω− has
four FPs.

4. l ≥ 51 [(0, 0)-type]. In this case, the Casimir coef-
ficient does not oscillate and damps (see Sec. IIID
for its sign-flipping behavior). This is because ev-
ery ω± is located above the Fermi level.

Furthermore, we find that at Lz ∼ 0 the amplitude of
the Casimir energy from the LLLs is half of that from
HLLs. This is because the eigenmodes of the LLLs pick
up one spin component whereas the HLLs have two spin
components. Thus, in this strength of magnetic field, the
contribution from the HLLs is more dominant than that
from the LLLs. Also, the result for each LL approach to
a constant

C
[1]
Cas,LLL(Lz → 0) = Nc ×

|qfB|
2πΛ2

× π

3
, (17)

C
[1]
Cas,HLL(Lz → 0) = Nc ×

|qfB|
2πΛ2

× 2π

3
, (18)

where |qfB|/2π is the Landau degeneracy factor [appear-
ing as the coefficient in the thermodynamic potential (8)
or the Lifshitz formula (11)], and π/3 or 2π/3 is the factor
known in the Casimir energy from the massless Dirac field
(without or with the spin degrees of freedom 2) in the 1+1
dimensional spacetime with the PBC in one direction. In

the current parameters, we get C
[1]
Cas,LLL → 0.00125 and

C
[1]
Cas,HLL → 0.0025.

The total Casimir coefficient C
[3]
Cas, which is calculated

by summing a sufficient number of LLs (lmax = 1000), is
shown in the inset of Fig. 3 (b). In a sufficiently weak
magnetic field, the total Casimir energy roughly agrees
with that obtained from the three-dimensional Lifshitz
formula (12). On the other hand, when Lz is small, the
two Casimir energies do not coincide. This is because the
HLLs become nonnegligible at small Lz, meaning that
the number of LLs summed up is insufficient. In Ap-
pendix A, we examine the lmax dependence in the short-
Lz region.
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FIG. 4. (a) Dispersion relations of fermion fields in the two-flavor MDCDW phase under a weakmagnetic field eB/Λ2 = (0.05)2.

(b) Thickness dependence of Casimir coefficients C
[1]
Cas for each LL. Inset: the total Casimir coefficient C

[3]
Cas.

Finally, we comment on the energy scale of our Casimir
energy. As a reference, in the massless-quark vacuum

(i.e., at M = b = µ = B = 0), we know C
[3]
Cas = NfNc ×

2π2/45 ∼ 2.63 at any Lz. Then, at Lz = 1 fm, ECas =

C
[3]
Cas×ℏc/L3

z ∼ 519 MeV/fm2 ∼ 8.32×104 N/fm, and at

Lz = 10 fm, ECas ∼ 0.519MeV/fm2. The total Casimir

energy in Fig. 3 (b) is about C
[3]
Cas ∼ 5 (even in the longer

Lz), which is comparable with that in the massless-quark
vacuum. The emergence of the energy scale in the longer
Lz is caused by the combination of the quantum effect
and the finite-density effect (for the zero-density case, see
Sec. IIID). In addition, it may be instructive to discuss
the energy scale of the Casimir energy from each LL in

Fig. 3 (b). Then, we can estimate C
[1]
Cas ∼ 0.001. This

value is transformed to ECas ∼ 0.001 × Λ2/Lzℏc = 3.75
MeV/fm2 at Lz = 1 fm and ECas ∼ 0.375 MeV/fm2 at
Lz = 10 fm. Therefore, ECas of each LL at Lz ∼ 10 fm
is comparable to that in the massless-quark vacuum at
Lz ∼ 10 fm.

B. Casimir energy in MDCDW (weak eB)

In the following, we consider the two-flavor case, which
is more realistic as quark matter containing u and d
quarks. According to Ref. [44], the DCDW phase (char-
acterized by M ̸= 0 and b ̸= 0) is more stable than the
homogeneous chiral-condensate phase (M ̸= 0 and b = 0)
if both the chemical potential µ and the magnetic field
B are nonzero. Therefore, in this work, we consider only
the MDCDW phase at µ ̸= 0 and B ̸= 0 and do not con-
sider the homogeneous chiral-condensate phase at µ ̸= 0
and B ̸= 0.

First, we discuss the DCDW phase under a weak mag-
netic field. As a parameter set characterizing the MD-
CDW phase, we adopt (M/Λ, b/Λ, µ/Λ) = (0.15, 0.3, 0.5)
and eB/Λ2 = (0.05)2 which is determined by solving a

gap equation in Ref. [44].9 In this case, the dispersion
relations for the LLLs and HLLs (l = 4, 8, . . . ) are shown
in Fig. 4 (a). From this figure, in the case of the u quark
(plotted as the orange lines), the LLs of l = 1–47 belong
to the (2, 2)-type, l = 48–62 to the (2, 0)-type, l = 63–75
to the (4, 0)/Island-type, and l > 75 to the (0, 0)-type.
From Eq. (7), in general, for the two-flavor case, an even
number of l in the HLL dispersion relations for d quarks
completely coincides with the dispersion relation for u
quarks. In the case of d quarks (the green lines), the
LL of l = 1–95 belongs to the (2, 2)-type, l = 96–126
to the (2, 0)-type, l = 127–150 to the (4, 0)/Island-type,

and l > 150 to the (0, 0)-type. Fig. 4 (b) shows the C
[1]
Cas

for each of LLs and the total C
[3]
Cas summing the sufficient

number of LLs. Here, each line of C
[1]
Cas corresponds to

the dispersion relation plotted in Fig. 4 (a).
In the case of the LLLs, the dispersion relations of

the u and d quarks are degenerate. The period of each

C
[1]
Cas is estimated to be Losc

z = 10.90 fm from Eq. (15).
Thus, the oscillation period is independent of the flavor,
but due to the difference between the electric charges in
the Landau degeneracy factor |qfB|/2π, the amplitude of
Casimir energy is different: The Casimir energy created
by the u quark is exactly twice as large as that by the d
quark.

In the case of the HLLs, the Casimir energy created by
each of the u, d quarks behaves as explained in Sec. III A.
Due to the difference in the electric charge, the position
of the FPs, |kFPz |, for the u quarks labeled by l is always
smaller than that for the d quarks labeled by the same
l. Consequently, the oscillation period becomes longer.
Also, similar to the discussion for the LLLs, due to the

9 See Fig. 2 (c) in Ref [44], where the coupling constant of the NJL
model is supercritical: at B = 0 and a smaller µ, the chiral sym-
metry is broken (M ̸= 0). In the nonzero-B and intermediate-µ
region, the MDCDW phase is realized.
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C
[1]
Cas from u and d quarks at l = 1.

difference in the Landau degeneracy factor, the Casimir
energy produced by the u quark is roughly twice as large
as that produced by the d quark.

C. Casimir energy in MDCDW (intermediate eB)

As an intermediate magnetic field, we adopt
(M/Λ, b/Λ, µ/Λ) = (0.28, 0.28, 0.5) and eB/Λ2 = (0.3)2

as a solution obtained in Ref. [44]. As the magnetic field
increases, the upper dispersion relations ω±,l of HLLs
with higher l are above the Fermi level (the lower disper-
sion relations ω̃±,l are still below the Fermi level). Since
ω+,l does not have FPs, there is no (2, 2)-type dispersion
relation in the current parameter set.

In this case, the dispersion relations for the LLLs and
the HLLs (l = 1, 2, ...) are shown in Fig. 5 (a). From
this figure, in the case of u quark, the LLs of l = 1, 2
belong to the (2, 0)-type, no LL to the (4, 0)/Island-type,
and l > 2 to the (0, 0)-type. In the case of d quark, the
LL of l = 1–4 belongs to the (2, 0)-type, the no LL to
the (4, 0)/Island-type and the LL of l > 4 to the (0, 0)-
type. As mentioned in footnote 6, when M ≥ b, the
(4, 0)/Island-type is forbidden by the property of quartic

functions. The Casimir coefficient C
[1]
Cas from each of LLs

at l = 1, 2 is shown in Fig. 5 (b).
For the current parameters, the dispersion relations

of the LLLs do not intersect with the Fermi level, and
hence no oscillation of Casimir energy arises, which is the
same as the Casimir energy for a one-dimensional massive
Dirac field (with no spin degrees of freedom 2).10 This

10 Its Casimir coefficient is given as the well-known formula

C
[1]
Cas,LLL = Nc ×

|qfB|
2πΛ2

×
2MLz

π

∞∑
m=1

K1(mMLz)

m
, (19)

can be understood from the fact that the eigenvalue (6) is
formally the same as that of the ordinary one-dimensional
massive Dirac field shifted by b− µ.
Here, we focus on only l = 1 of the HLLs. In the inset

of Fig. 5 (b), we show the Casimir energy from each of
the u, d quarks at l = 1 and the sum of them (the ma-
genta line). For the current parameters, the oscillation
periods of Casimir energies produced by the u, d quarks
are very close to each other. Then, the superposition of
the two different oscillations leads to a longer periodicity
of the Casimir energy, i.e., a beating behavior with a pe-
riod Lbeat

z estimated by 1/Lbeat
z = 1/|Losc,u

z | − 1/|Losc,d
z |.

This is a new type of beating Casimir effect in the sense
that it originates from the flavor-dependent splitting by
a magnetic field.11 Note that this beating behavior is
realized when we focus on a LL index (now, l = 1), but
in general, the oscillatory behavior of the total Casimir
energy should be more complex due to contamination of
oscillations from other LLs. In the current parameters,
since the LLL and HLLs of l > 3 for the u quark and
l > 5 for the d quark and do not induce any oscillations,
the total oscillation consists of the superposition of oscil-
latory behaviors of lower six levels.

D. Casimir energy in MDCDW (strong eB)

Finally, we discuss the behavior in the strong-
magnetic-field region. In this subsection, we adopt
(M/Λ, b/Λ, µ/Λ) = (0.57, 0.48, 0.5) and eB/Λ2 = (0.8)2

as a solution obtained in Ref. [44]. In this case, the
dispersion relations for the LLLs and the HLLs with

where K1 is the modified Bessel function.
11 As other examples of the beating Casimir effect, it is induced also

by spin-split Dirac points [24], multiple exceptional points [78],
or multiple chemical potentials [69].
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Cas for each LL. Upper inset: the total Casimir coefficients C

[3]
Cas. Lower

inset: a close-up view near the C
[1]
Cas = 0.

l = 2, 4, . . . are shown in Fig. 6 (a). For both the u, d
quarks, the dispersion relations for all HLLs belong to
the (0, 0)-type, which means that all the HLLs do not

cross the Fermi level. Figure 6 (b) shows C
[1]
Cas from each

of the LLs.
In this parameter set, the dispersion relations of all the

LLs do not cross the Fermi level, and hence do not induce
any oscillating behavior of Casimir energy. In particular,
the functional form of Casimir energies for the LLLs is
the same as that from ordinary one-dimensional massive
Dirac fields.

We find that, in the short-Lz region, the contribution
of HLLs is not negligible. On the other hand, in the
long-Lz region, the Casimir energy for the HLLs rapidly
decreases, so that the total Casimir energy is dominated
by the LLLs. Also, we find that the signs of Casimir en-
ergy for HLLs change near Lz ∼ 0.8 fm and then damps,
as shown in the lower inset of Fig. 6 (b). Such a sign-
flipping Casimir effect is distinct from the case of the
LLLs, which originates from the functional form of the
eigenvalues (7) of HLLs.12

In addition, we can find a transition of the total C
[3]
Cas

at Lz ∼ 1 fm, where the Casimir energy switches from
the region dominated by the LLLs to that dominated
by HLLs, which may be called the LLL-to-HLL transi-
tion. This transition was first discovered by the formula

12 A similar system is the axion electrodynamics where the eigenval-
ues of modified photon fields in the 3 + 1 dimensional spacetime

are given as ωζ=± =

√
(ζ
√

b̃2 + k2z + b̃)2 + k2x + k2y with a pa-

rameter b̃. The sign-flipping Casimir effect originating from such
photon fields was studied in Refs. [80, 82–87]. These dispersion
relations correspond to b = M → b̃ and 2|qfB|l → k2x+k2y in our
eigenvalues (7) at µ = 0. Therefore, our finding is a new type
of sign-flipping Casimir effect, which is induced by HLLs in the
MDCDW phase.

for the massive Dirac field under a magnetic field in the
early study [18]. Since the LLL-to-HLL transition is a
property for the normal massive Dirac field, there is no
direct relationship to the MDCDW.

IV. SUMMARY AND OUTLOOK

In this paper, we have discussed the Casimir energy
produced by the quark field in the DCDW phase of quark
matter under a magnetic field. We extended the Lifshitz
formula to Dirac fermion fields in the MDCDW phase:
our main formula is Eq. (11). Using this formula, we
have calculated the Casimir energy in some parameter
regions realizing the MDCDW phase.
In particular, we have examined the LL decomposition

of the Casimir energy in a magnetic field. This analysis
clarifies how each LL (among the LLLs and some types
of HLLs) contributes to the total Casimir energy. The
HLLs are classified by the presence or absence of FPs, as
in Table I. Our findings may be summarized as, in the
one-flavor case,

• LLL (weak eB): Singly oscillating Casimir effect.

• LLL (strong eB): Non-oscillating Casimir effect.

• (2,2)-type: Dually oscillating Casimir effect.

• (2,0)-type: Singly oscillating Casimir effect.

• (4,0)/Island-type: Dually oscillating Casimir effect.

• (0,0)-type: Sign-flipping Casimir effect.

Here, the “dual” effect in the (2,2)-type is caused by the
spin-splitting, while that in the (4,0)/Island-type is at-
tributed to the low-energy distortion of one dispersion
relation. The situation of the two-flavor case is more
complex, where the magnetic field splits the dispersion
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relations of u, d quarks with different charges. As a result,
we have observed the beating Casimir energy produced
by u, d quarks.
Finally, we summarize our possible outlooks:

1. Lattice simulations—To examine the Casimir effect
of interacting fermion systems, one can utilize nu-
merical simulations of a lattice field theory (e.g.,
see Refs. [88–91] for the Casimir effect from Yang-
Mills fields). In particular, the existence (or ab-
sence) of the MDCDW phase can be numerically
tested by lattice NJL or QCD simulations. Al-
though Monte-Carlo simulations are usually diffi-
cult at finite chemical potential due to the sign
problem, the chemical potential required for the
MDCDW phase is smaller than that of the DCDW
phase in a zero magnetic field. Therefore, the lat-
tice simulations of the Casimir effect in the MD-
CDW phase would be easier.

2. Real kink crystals—As another possible ground
state within the NJL model, one can consider a
solitonic modulation, the so-called real kink crystal
(RKC) phase. The early references [46, 50, 55] pre-
dict that sufficiently strong magnetic fields tend to
favor the MDCDW over the RKC (see Ref. [92] for
analysis under only the RKC). The stability of the
MDCDW phase is attributed to the spectral asym-
metry of the LLLs in the MDCDW phase. How-
ever, in smaller magnetic fields (not dominated by
only the LLLs), the RKC phase (or a hybridized
phase [46]) may survive, and the Casimir effect in
such a phase might be interesting.

3. Chiral soliton lattice—Apart from the NJL model,
the chiral perturbation theory, which is an effective
field theory of low-energy QCD based on mesonic
degrees of freedom, predicts a ground state of mag-
netized finite-density QCD: the chiral soliton lattice
(CSL) in QCD [93, 94], which is a stack of parallel
π0 domain walls. The MDCDW phase may be con-
sistent with the CSL in the sense that it is induced
by the Wess-Zumino-Witten-type anomaly [45, 46],
while in the viewpoint of the Casimir effect, com-
paring the descriptions based on mesonic and quark
degrees of freedom would be important.

4. Dirac/Weyl semimetals—In the typical disper-
sion relations of relativistic fermions in the three-
dimensional Dirac/Weyl semimetals, Dirac/Weyl
points are located at finite momenta (see Ref. [95,
96] for reviews). When a magnetic field is switched
on, the low-energy spectrum of LLs can be dis-
torted like those in Fig. 2, which is a remnant of
Dirac/Weyl points. Since the typical behavior of
the Casimir effect is characterized by the form of
the dispersion relations, the classifications we sug-
gested in this paper will be also useful for under-
standing the fermionic Casimir effect inside thin
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FIG. 7. lmax dependence of Casimir coefficient, where lmax

is the maximum number of summed Landau levels. (a) the
case in a weak magnetic field as in Fig. 4. (b) the case in a
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films of Dirac/Weyl semimetals under a magnetic
field (for analysis with only the LLL, see Ref. [24]).
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Appendix A: Dependence on summation of LLs

In our numerical analysis in Sec. III, we summed LLs
up to a maximum number lmax, which is large enough,
and ignored higher levels. For the calculation of Casimir
energy, this approximation is valid when Lz is long
enough but is not sufficient when Lz is very short. In
this Appendix, we examine the dependence of Casimir
energy on lmax.
In Fig. 7, we compare some results by different lmax.

Here, we show the total Casimir energy in the two-flavor
MDCDW phase under a weak magnetic field [as in Fig. 4
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(b)] or under a strong magnetic field [as in Fig. 6 (b)].
As shown in Fig. 7 (a), in a weak magnetic field, we can
see that lmax = 1000 is sufficient up to Lz ∼ 1.2 fm while
lmax = 5000 is up to Lz ∼ 0.7 fm. As shown in Fig. 7 (b),
in a strong magnetic field, we can see that lmax = 5000
and 10000 are sufficient up to Lz ∼ 0.1 fm and near
Lz ∼ 0, respectively. Thus, if the magnetic field is strong

enough, we can obtain almost exact results by summing
many Landau levels.
Also, we find that, at Lz ∼ 0, the results using a suf-

ficient lmax approach to C
[3]
Cas = NfNc × 2π2/45, where
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the massless Dirac field in the 3+1 dimensional spacetime
with the PBC in the z direction.
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