
Hilbert space geometry and quantum chaos

Rustem Sharipov,1, ∗ Anastasiia Tiutiakina,2, ∗ Alexander Gorsky,3 Vladimir Gritsev,4 and Anatoli Polkovnikov5

1Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
2Laboratoire de Physique Theorique et Modelisation, CNRS UMR 8089,

CY Cergy Paris Universite, 95302 Cergy-Pontoise Cedex, France
3Laboratory of Complex Networks, Center for Neurophysics and Neuromorphic Technologies, Moscow, Russia

4Institute for Theoretical Physics, University of Amsterdam,
Science Park 904, Postbus 94485, 1090 GL Amsterdam, The Netherlands

5Department of Physics, Boston University, 590 Commonwealth Ave., Boston, MA 02215

The quantum geometric tensor (QGT) characterizes the Hilbert space geometry of the eigenstates
of a parameter-dependent Hamiltonian. In recent years, the QGT and related quantities have found
extensive theoretical and experimental utility, in particular for quantifying quantum phase transi-
tions both at and out of equilibrium. Here we consider the symmetric part (quantum Riemannian
metric) of the QGT for various multi-parametric random matrix Hamiltonians and discuss the pos-
sible indication of ergodic or integrable behaviour. We found for a two-dimensional parameter space
that, while the ergodic phase corresponds to the smooth manifold, the integrable limit marks itself
as a singular geometry with a conical defect. Our study thus provides more support for the idea
that the landscape of the parameter space yields information on the ergodic-nonergodic transition
in complex quantum systems, including the intermediate phase.

Introduction. Over the past few decades, there has
been significant research into the statistical properties of
quantum systems. This has led to the crucial distinction
between two types of phases: quantum chaotic and inte-
grable. One method for identifying whether a system is
in a chaotic or integrable regime involves the use of the
quantum geometric tensor (QGT). The QGT is a tool
that quantifies the responds of a system to changes in its
parameters, making it a valuable approach for analyzing
these distinct phases [1–3].

The real part of the QGT defines a Riemann metric in
the parameter space known as the quantum metric ten-
sor or quantum information metric, while the imaginary
part corresponds to the Berry curvature. This metric
measures the distances in the space of the eigenfunc-
tions bundled over the parameter space. The singular
behaviour of the Ricci scalar or a change in the topol-
ogy of the parameter space are associated with quantum
phase transitions in the system [4]. The symmetries of
this metric can also be used for the classification of quan-
tum phases [5]. Some recent examples of the identifica-
tion of critical points via singularities in the quantum
metric can be found in Refs. [6, 7].

More recently, the quantum metric tensor has been
used as a probe of quantum chaos [8]. In particular, it was
found that at integrable points for integrability break-
ing direction of perturbation the metric tensor generi-
cally scales exponentially with the system size, similarly
to its scaling in ergodic systems that satisfy the eigen-
state thermalization hypothesis. There are possible ex-
ceptions, though, related to weak integrability breaking
perturbations [9–12]. In contrast, for integrability pre-
serving perturbations, the scaling of the QGT was found
to be polynomial, reflecting the vanishing of spectral

∗ These authors contribute equally

weight at low frequencies [13, 14]. In general, integrable
and ergodic/mixing regimes are separated by a KAM-
like chaotic but non-thermalizing region [8, 13]. A simi-
lar intermediate non-ergodic extended (NEE) phase has
also been identified in the context of disordered systems.
This phase is characterized by a multifractal structure of
eigenstates, first observed in the Rosenzweig-Porter (RP)
model [15], and later confirmed through the replica ap-
proach [16] and the Krylov basis viewpoint [17], see also
Refs. [18–22]. In Refs. [14, 23] it was further argued that
the geometric tensor becomes highly anisotropic near in-
tegrable points, and that such integrable points serve as
attractors of geodesic flows determined by the metric.

At least three other measures of the ”chaos-
intermediate-integrability” patterns have to be men-
tioned. The OTOC correlators [24] related to the oper-
ator growth work in some situations, while the approach
based on the Krylov complexity was suggested in [25].
Finally, the dependence of the inverse participation ratio
IPRq(L) on the system size L distinguishes the localized
and delocalized states and corresponds to the integrable
and non-integrable regimes respectively [26]. There are
some links between the approaches: the measure similar
to the fidelity susceptibility in context of localization was
proposed in Ref. [27]. The QGT can be related to the
late-time behaviour of autocorrelator tensor of the opera-
tors ∂λj

H where λj denotes the coordinates in the param-
eter space [28]. For this reason there must be some con-
nection between the operator spreading in Krylov space
and the QGT. At the same time there are clear exam-
ples that restrict the validity of the OTOC and operator
growth as chaos measures [28–31].

In this Letter, we investigate the geometry of the per-
turbed Hilbert space for matrix Hamiltonians. To explore
the metric in the neighbourhood of the chaotic point, we
start with a matrix Hamiltonian for a finite-dimensional
system and add random matrix perturbations. This anal-
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ysis is a generalization of [32], where only the fidelity sus-
ceptibility at a single point of the parameter space was
considered, which is not enough to capture the geome-
try. To examine the metric near an integrable point, we
consider diagonal matrices with independent Gaussian
distributions of eigenvalues, also known as the random
energy model [33]. In both cases, we perturb the ini-
tial system by a pair of random matrices multiplied by
parameters, which play the role of the coordinates. We
then evaluate the quantum metric in a two-dimensional
parameter space in both cases and find a clear-cut indica-
tion of the difference in geometries between the integrable
and chaotic cases: there is a universal conical singular-
ity emerging at the integrable point, which is related to
a long time tail of the autocorrelation function of these
random matrices. Our analysis also clearly identifies the
presence of an intermediate regime in the behavior of the
metric, which is interpreted most naturally as the NEE
phase.

Quantum Geometric Tensor . Let us begin by
briefly recalling the definition of the quantum geomet-
ric tensor (QGT) and introducing the relevant notations.
Consider the eigenspace of some parameter-dependent

Hamiltonian H(λ⃗). With the energy eigenvalues En(λ⃗)

and eigenvectors
∣∣∣n(λ⃗)

〉
depending on the parameters:

H(λ⃗)
∣∣∣n(λ⃗)

〉
= En(λ⃗)

∣∣∣n(λ⃗)
〉
, (1)

where the parameter λ⃗ = {λ1, λ2, . . . } is generally multi-
component. In the space of eigenvectors one can define
the distance between nearby states with infinitesimally
different parameters in the following way [1]

ds2 ≡ 1 −
∣∣∣〈n(λ⃗)

∣∣∣n(λ⃗ + dλ⃗)
〉∣∣∣2 . (2)

Then the quantum geometric tensor for the n-th eigen-

state is defined as the leading contribution in dλ⃗ expan-
sion of the distance defined above:

ds2 ≡ g
(n)
αβ dλαdλβ + O(|d⃗λ|

3
) =

= ⟨∂αn|∂βn⟩ − ⟨∂αn|n⟩ ⟨n|∂βn⟩ + O(|d⃗λ|
3
), (3)

where ∂α ≡ ∂λα
. Notice, that the quantum geometric

tensor is invariant under arbitrary phase transformations
of the eigenfunctions |n(λ)⟩ → eiϕn(λ) |n(λ)⟩, that is ex-
pected from the gauge invariance of the QGT. In the
absence of degeneracies, it is straightforward to rewrite
(3) in the following form (see Appendix A):

g
(n)
αβ =

∑
m ̸=n

⟨n|∂αH|m⟩ ⟨m|∂βH|n⟩
(En − Em)2

, (4)

which we will use in the next sections.
The real part of quantum geometric tensor is the quan-

tum metric tensor, while the imaginary part is the Berry
curvature. In this work we will focus on the averaged

geometric tensor (or the Hilbert–Schmidt norm of the
adiabatic gauge potential [8]):

Gαβ =
1

N

N∑
n=1

g
(n)
αβ , (5)

where N is Hilbert-space dimension, e.g. N = 2L for
qubit spin chains. It is straightforward to verify that the
imaginary, antisymmetric part of this averaged geometric
tensor is zero when the parameter-dependent Hamilto-
nian is Hermitian. Additionally, we note that the Hilbert
space average is equivalent to the average with respect to
the infinite temperature density matrix.
Geometry of a Random Matrix Model . Follow-

ing Berry and Shukla [32], we consider a two-parameter
family of N ×N random Hamiltonians:

H = H0 + xHx + yHy. (6)

We focus on the case when random matrices H0, Hx, and
Hy are independently drawn from the Gaussian Unitary
Ensemble (GUE) with the distribution

ρ(Ha) = e−
N
2 Tr(H2

a), a = 0, x, y. (7)

In this section, we calculate the QGT, for this purely
random model. We treat the QGT as an induced met-
ric on a two-dimensional surface embedded in the three-
dimensional Euclidean space. First, notice that it is con-
venient to move to the polar coordinates, since our sys-
tem has no preferred direction on average. That is, we
redefine:

H = H0 + r cosϕ Hx + r sinϕ Hy. (8)

It is clear that the metric tensor averaged over the
random matrices H0, Hx, Hy, must be independent of the
angle ϕ. In the course of straightforward calculations (see
Appendix B), the components of the averaged QGT are
given by:

Grr(r) =
N − 1

2(r2 + 1)2
, Gϕϕ(r) = r2

N − 1

2(r2 + 1)
, (9)

and Grϕ = 0.
Topology by embedding. Finally, the two-

dimensional first fundamental form can be written as

ds2 = Grr(r)dr2 + Gϕϕ(r)dϕ2. (10)

We analyse the topological characteristics of the corre-
sponding manifold by constructing an isometric surface
and plotting its shape. In order to do this we consider
three-dimensional Euclidean space and two-dimensional
submanifold Mch embedded within it, with the metric
set by the standard relation:

dZ2 + dR2 + R2dϕ2 = Grr(r)dr2 + Gϕϕ(r)dϕ2. (11)
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Since the metric components are independent of ϕ, the
submanifold Mch can be parametrized as follows:

Mch : Z = Z(r), R = R(r).

Then by using Eq. (11) we obtain the corresponding
system of equations, which reads as(

dZ

dr

)2

+

(
dR

dr

)2

= Grr(r), (12a)

R(r)2 = Gϕϕ(r). (12b)

This system of equations can be easily solved for the met-
ric tensor we derived:

R(r) = R0
r√

r2 + 1
, Z(r) = R0

(
1 − 1√

r2 + 1

)
, (13)

where R0 =
√

N−1
2 . We fixed the integration constant

by assuming Z(0) = 0. This system defines a two-
dimensional surface parametrised by r. By excluding r
from these equations, we find that Z and R satisfy the
following constraint relation:

(Z −R0)
2

+ R2 = R2
0, (14)

where 0 ≤ R ≤ R0 and 0 ≤ Z ≤ R0 . This represents
the equation of a lower hemisphere centered at Z = R0

with radius R0. In Fig. 1 we illustrate the shape of this
isometric manifold.

FIG. 1: Isometric manifold Mch

This result can be anticipated from heuristic reason-
ing: by adding a random matrix deformation xHx +yHy

to an existing random matrix H0 we generate another
random matrix equivalent to H0 apart from rescaling of
the variance σ2. The geometry of the manifold cannot
depend on the overall scale, therefore locally the shape
should be both r and ϕ - independent. Hence, Mch is
locally equivalent to the surface of a sphere, where all
points are also equivalent.

Geometry of Integrability Breaking . Now, let us
consider a different Hamiltonian, where the unperturbed
Hamiltonian H0 is replaced by a diagonal matrix Λ0 with
independent random entries while the perturbation is still
a random matrix. Such a diagonal matrix exhibits Pois-
son level statistics and can therefore be regarded as a

representation of an integrable model.. The Hamiltonian
H now takes the form

H = Λ0 + xHx + yHy, (15)

where Λ0 = diag(λi) with ρ(λi) = e−
1
2λ

2
i , and Hx and Hy

are drawn from GUE as before. This setup is comparable
to the RP model [15] with the addition that we also al-
low deformations along the ϕ-direction, which obviously
keeps the spectrum invariant but has a non-trivial metric
associated with eigenstate deformations. For N = 2 the
model is similar to the one considered in [34], where the
angular parameter is also present. It is intuitively clear
that the radial and angular directions should no longer
be equivalent near the integrable point, and thus, the
spherical geometry found in the previous section must
be distorted near r = 0.

Let us first consider N = 2, where the entire analysis
can be carried out analytically. We find that the quantum
metric tensor in polar coordinates is given by:

Gϕϕ = r
1

2
√

2
arctan

(√
2

r

)
, (16a)

Grr =
1

4

arccot
(

r√
2

)
√

2r
− 1

2 + r2

 , (16b)

and Grϕ = 0. The fact that the metric tensor is ϕ inde-
pendent and that its mixed component of it is zero again
allows us to perform the embedding in pseudo-Euclidean
space (see Appendix C).

FIG. 2: Isometric manifold Mint

Near the origin, i.e.. at r ≪ 1, we can Taylor expand
the metric and obtain the following expression for the
first fundamental form

ds2 ≈ π

8
√

2

(
dr2

r
+ 2rdϕ2

)
=

π

2
√

2

(
dρ2 +

1

2
ρ2dϕ2

)
,

(17)
where ρ =

√
r. Embedding this metric, as before, into

Euclidean space, we find

R(ρ) ≈ Z(ρ) ≈
√

π

4
√

2
ρ (18)
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This surface represents a cone with an angle π/2 (see
Appendix D), we illustrate the shape of isometric man-
ifold in Fig.2. In the limit of r ≫ 1, the components
of the metric tensor (16a) and (16b) approach those of
the random model (9), and the shape crossovers to the
hemisphere. The presence of the conical singularity indi-
cates a change in the geometric properties of the quan-
tum manifold. In particular, the quantum eigenstates
become parametrically more sensitive to small pertur-
bations in the ϕ-direction than to the radial (random)
direction close to the integrable point. Having identi-
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FIG. 3: Grr and Gϕϕ components of the QGT as a
function of radial parameter r. The inset on the plots
represents metric components as function of rescaled
parameter r/

√
N . The black line corresponds to the

fully chaotic case results given by Eq.(9).

fied the conical geometry at the origin for N = 2, let
us turn to numerical simulations, increasing the system
size. The corresponding behaviour of the metric com-
ponents near the origin is presented in Fig 3. One can
identify three different regimes, consistent with Ref. [35].

For r ≪ r∗ = 1/
√
N , there is an evident 1/r behaviour

of the metric, similar to the N = 2 case. Here

ds2 ∼
√
N

(
dr2

r
+ 2rdϕ2

)
, (19)

which, apart from the overall prefactor, agrees with
Eq. (17). This regime corresponds to the conical geome-
try. We note that r∗ is the localization transition point,
so physically, the conical geometry describes the localized
phase. For large r ≫ 1, which corresponds to the ergodic
phase, Grr and Gϕϕ approach the corresponding values
of the RMT model (9). This regime obviously represents
spherical geometry.
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FIG. 4: Components of QGT as a function of scaling
parameter

Finally, there is an intermediate regime at r∗ ≪ r ≪ 1
representing delocalized non-ergodic phase [35], where
Grr and Gϕϕ/r

2 saturate at constants scaling as N , but
with the prefactors somewhat different from the RMT
model. We found that in this intermediate regime, the
geometry is still spherical or very close to spherical. To
better identify the intermediate regime, we reparametrise
r = N (1−γ)/2 such that the localized, ergodic, and the in-
termediate phases correspond to γ > 2, γ < 1, 1 < γ < 2,
respectively. Fig. 4 clearly indicates that there are three
different scaling regimes for the metric corresponding to
these three phases.
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It is worth noting the apparent analogy between the
conical singularity near the integrable point and that
(with the same conical angle) found previously in Ref. [4]
for the ground state metric close to the isotropic quan-
tum critical point in the ferromagnetic regime of the
anisotropic XY spin chain. Our study shows an appar-
ent similarity between the integrable and quantum crit-
ical points, with both characterized by the critical slow-
ing down of dynamics and hence by divergent metric, as
well as by a strong anisotropy along the radial and az-
imuthal directions for perturbations. In both situations,
we observe condensation of the level crossings, near the
origin (i.e. near the critical or integrable point), which
are equivalent to magnetically charged defects produc-
ing vortex Berry connections in two-dimensional param-
eter space or the monopole Berry connection in three-
dimensional parameter space.

For random matrix perturbations considered in this
work, the matrix elements entering Eq. (4) are random,
and hence the scaling of the geometric tensor is entirely
determined by the spectral properties of the Hamiltonian.
In this case, the diagonal components of the geometric
tensor become equivalent to the spectral complexity C(t),
defined in Sec. 7 of Ref. [36]. The inverse of the time t
used to regularize the spectral complexity is equivalent to
the energy cutoff µ introduced in Refs. [8, 23]. Physically
the regularized geometric tensor determines distance be-
tween energy shells of width µ. Then, t or 1/µ represent
the minimal time required to measure this regularized
metric. From these considerations we conclude that the
1/r divergence of the geometric tensor leading to the con-
ical singularity (see Fig. 4) originates from the loss of the
level repulsion and hence corresponds to µ of the order of
the level spacing: µ ∼ 1/N (see Appendix E for details).

Conclusions and Outlook. In this Letter, we dis-
cussed the geometry of the two-dimensional parameter
spaces for matrix Hamiltonians. Combining the analyt-
ical and numerical tools, we found that the associated
geometry is smooth and locally equivalent to the sur-
face of the sphere when the perturbation is large and the
model is effectively in the ergodic regime. At the same
time, near the integrable point, the metric develops a con-
ical defect both for the Hilbert space dimension N = 2

and large N matrices. We also observed three different
regimes of the metric behaviour, corresponding to the lo-
calized, ergodic, and intermediate phases. The observed
conical singularity is reminiscent of the one observed for
the ground state near a continuous quantum phase tran-
sition. This similarity highlights the close analogy be-
tween the integrable and quantum critical points, both
characterized by the emergence of divergent time scales
and singular geometry.

It would be interesting to analyze in more detail the
geometry by adding ”integrable” perturbations commut-
ing with the unperturbed Hamiltonian. There, the met-
ric is expected to diverge even more strong due to an
additional enhancement of the matrix elements of the
perturbation near the integrable point [13, 35]. We leave
the corresponding analysis of the associated geometry for
future work. Another interesting direction concerns the
investigation of the metric for the perturbed matrix Rus-
sian Doll Model with TRS breaking, which also hosts
the NEE phase [34]. Finally, we note that the adiabatic
gauge potential and hence the metric can be directly com-
puted from the Lanczos coefficients defining the Krylov
basis [37, 38]. For this reason, it can be also very in-
teresting to study geometry for the matrix Hamiltonians
enjoying the exact results [39, 40]. The large N ma-
trix Hamiltonians are also studied in the context of low-
dimensional holography as Hamiltonians in the boundary
1d model, see for instance [41]. Hence, it would be in-
teresting to recognize the meaning of our findings in the
dual 2d gravity.
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Supplemental Material for “Hilbert space geometry and quantum chaos”

Appendix A: Quantum Geometric tensor in terms of matrix elements of the Hamiltonian

Here we want to show the formulae Eq.(4). To do so, we start with the original definition:

gnαβ(λ) = ⟨∂αn|∂βn⟩ − ⟨∂αn|n⟩ ⟨n|∂βn⟩ =
∑
m

(⟨∂αn|m⟩ ⟨m|∂βn⟩ − ⟨∂αn|m⟩ ⟨m|n⟩ ⟨n|m⟩ ⟨m|∂βn⟩) , (A1)

where we inserted the identity
∑

m |m⟩ ⟨m| in each overlap. Now we can differentiate stationary Schrödinger equation
Eq.(1)

∂αH |n⟩ + H |∂αn⟩ = ∂αEn |n⟩ + En |∂αn⟩ (A2)

calculating an overlap with another eigenvector |m⟩, we can get

⟨m|∂αn⟩ =
⟨m| ∂αH |n⟩
En − Em

, n ̸= m. (A3)

Inserting this expression into eq.(A1) we get the desired formula

Gαβ(λ) =
1

N

∑
m̸=n

⟨n| ∂αH |m⟩ ⟨m| ∂βH |n⟩
(En − Em)2

. (A4)

Generally this expression needs regularization if there are degeneracies in the spectrum [23] (see also Appendix E).

Appendix B: Calculation of the 2d QGT components

In this appendix, we provide detailed derivation of the components of quantum geometric tensor as a function of
parameter r. We also show that due to symmetry of the problem, the components are angle independent.

Firstly, we change the basis of the random matrices in the following way:

H̃x = cosϕHx + sinϕHy, H̃y = cosϕHy − sinϕHx, (B1)

then the integration measure changes as

DHx DHy = J DH̃x DH̃y. (B2)

Here we notice that the Jacobian J does not depend on H̃x and H̃y, since the change of coordinates is linear. Therefore,
the overall Jacobian factor, does not affect the averages over matrix ensembles.

1. Grϕ component

Let’s start with the mixed component. In terms of new variables, r, ϕ the ḡrϕ component can be written in the
following way:

Grϕ = Z−1 r

N

∑
m̸=n

∫ ⟨n|H̃x|m⟩⟨m|H̃y|n⟩
(H0 + rH̃x)2nm

ρ(H0, H̃x, H̃y)DH0DHxDHy (B3)

Notice that ρ(H0, Hx, Hy) = ρ(H0, H̃x, H̃y) , since Tr(H2
x + H2

y ) = Tr(H̃2
x + H̃2

y ). Thus, the average is

Grϕ = Z−1 r

N

∑
m̸=n

∫ ⟨n|H̃x|m⟩⟨m|H̃y|n⟩
(H0 + rH̃x)2nm

e−
N
2 Tr(H2

0+H̃2
x+H̃y

2)DH0DH̃xDH̃y (B4)

In the pre-exponential factor, only the second term in the numerator depends on the matrix H̃y. So integrating

over H̃y matrix we obtain: ∫
DH̃y⟨n|H̃y|m⟩e−N

2 Tr(H̃2
y) = 0 (B5)

Finally we obtain ḡrϕ = 0.



8

2. Grr component

For the ḡrr component we have:

Grr = Z−1 1

N

∑
m̸=n

∫ ⟨n|H̃x|m⟩⟨m|H̃x|n⟩
(H0 + rH̃x)2nm

ρ(H0, H̃x, H̃y)DH0DHxDHy (B6)

The integration over H̃y returns unity. Then, the rest of the integral reads as:

Grr = Z−1 1

N

∑
m ̸=n

∫ ⟨n|H̃x|m⟩⟨m|H̃x|n⟩
(H0 + rH̃x)2nm

e−
N
2 Tr(H2

0+H̃2
x)DH0DHx (B7)

It is convenient to change the variables of integration again:

H0 → H = H0 + rH̃x (B8)

Because this transformation is linear there is no Jacobian and hence:

Grr = Z−1 1

N

∑
m̸=n

∫ ⟨n|H̃x|m⟩⟨m|H̃x|n⟩
(H)2nm

e−
N
2 Tr((H−rH̃x)

2+H̃2
x)DHDHx. (B9)

Upon some simple calculations the metric has simple Gaussian form in the coordinates H̃ and H:

Grr = Z−1 1

N(r2 + 1)

∑
m̸=n

∫ ⟨n|H̃|m⟩⟨m|H̃|n⟩
(H)2nm

e
−N

2 Tr
(

1
r2+1

H2+H̃2
)
DHDH̃. (B10)

Now we integrate over H̃, the only H̃ dependent part of the integral is∫
⟨n|H̃|m⟩⟨m|H̃|n⟩e−N

2 TrH̃2DH̃∫
e−

1
2N TrH̃2DH̃

. (B11)

Moreover we can explicitly write the components of eigenvectors as

⟨n|H̃|m⟩⟨m|H̃|n⟩ = (n∗
iHijmj) (m∗

kHklnl), (B12)

using correlator of GUE matrices ⟨HijHkl⟩GUE = 1
N δilδjk, the average of Eq.(B12) can be written in the following

form:

⟨(n∗
iHijmj) (m∗

kHklnl)⟩GUE =
1

N
(n∗

imj) (m∗
knl)δilδjk =

1

N
⟨n|n⟩ ⟨m|m⟩ =

1

N
. (B13)

So, the metric is rewritten as

Grr = Z−1 1

N2(r2 + 1)

∑
m̸=n

∫
1

(En − Em)2
e
− N

2(r2+1)
Tr(H2)DH. (B14)

In order to proceed further, let’s rewrite the expression by the eigenvalue integration:

Grr =
1

N2(r2 + 1)

∑
m ̸=n

∫
1

(En−Em)2

∏
i>j

(Ei − Ej)
2e

− N
2(r2+1)

N∑
i=1

E2
i ∏

i

dEi

∫ ∏
i>j

(Ei − Ej)2e
− N

2(r2+1)

N∑
i=1

E2
i ∏

i

dEi

, (B15)
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where
∏
i>j

(Ei − Ej)
2 is a standard Vandermonde determinant. Now changing the variables by Ei = E′

i

√
r2+1
N , we

obtain

Grr =
1

N2(r2 + 1)2

∑
m ̸=n

∫
1

(E′
n−E′

m)2

∏
i>j

(E′
i − E′

j)
2e

− 1
2

N∑
i=1

E
′ 2
i ∏

i

dE′
i

∫ ∏
i>j

(E′
i − E′

j)
2e

− 1
2

N∑
i=1

E
′ 2
i ∏

i

dE′
i

=

=
1

N2(r2 + 1)2

∑
m ̸=n

〈
1

(λn − λm)2

〉
GUE

=
N − 1

2(r2 + 1)2
,

(B16)

where this average can be calculated using the ‘virial relation’ (see e.g. [42]):

N∑
n=1

∑
m̸=n

〈
1

(En − Em)2

〉
GUE

=
N2(N − 1)

2
. (B17)

It depends on the level n and the size of the matrix N . Thus, we found the explicit expression for metric up to
constant to be found numerically.

3. Gϕϕ component

The calculation of the angle-angle component can be performed in the similar manner, following steps of the previous
Appendix B 2 The ḡϕϕ reads:

Gϕϕ = Z−1 1

N
r2
∑
m ̸=n

∫ ⟨n|H̃y|m⟩⟨m|H̃y|n⟩
(H0 + rH̃x)2nm

ρ(H0, H̃x, H̃y)DH0DH̃xDH̃y. (B18)

Using the same average over H̃y as in Eq. (B13) we obtain:

Gϕϕ = Z−1 r2

N2

∑
m ̸=n

∫
1

(H0 + rH̃x)2nm
e−

N
2 Tr(H2

0+H̃2
x)DH0DH̃x, (B19)

again changing the coordinates in the following way

H0 → H = H0 + rH̃x. (B20)

Thus, we will change the integration DH0DH̃x → DHDH̃x and using the same technique as in the previous subsection
we obtain

Gϕϕ = r2
N − 1

2(r2 + 1)
, (B21)

with the same constant we defined above.

Appendix C: N = 2 Integrability breaking metric

In this appendix, we present the derivation of the metric tensor for the random matrix system with the integrable
point. Similar to the purely chaotic case, we perform an averaging over random matrices. As a result, we identify an
isomorphic two-dimensional manifold. Additionally, we observe a conical singularity at the integrable point on this
manifold.
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1. Gϕϕ component

To calculate, Gϕϕ we will use the expression derived in the previous appendix:

Gϕϕ = Z−1 1

N
r2
∑
m ̸=n

∫
1

(H0 + rH̃x)2nm
e−

N
2 Tr(H2

0+2H̃2
x)DH0DH̃x , (C1)

where now DH0 =
∏
i

dhi. In N = 2 case, the matrix H0 corresponds to the integrable point, that can be parametrised

by two independent Gaussian distributed parameters. While perturbation that is represented by GUE matrix of the
size 2 is parametrised by 4 parameters:

H0 =

(
h1 0
0 h2

)
H̃x =

(
a ceiϕ

ce−iϕ b

)
. (C2)

Then the integration measure simply reads as

DH0DH̃x = dh1 dh2 da db cdc dϕ . (C3)

Notice that eigenvalues of the Hamiltonian do not depend on the parameter ϕ, so we can trivially integrate over ϕ.
After we change the variables

h1 + h2 = x1 , h1 − h2 = x2 ,

a + b = y1 , a− b = y2 .

Thus, in the new variables the integral reads as

Gϕϕ =
1

2
Z−1r2

∫
e−

1
4 (x2

1+x2
2)− 1

2 (y2
1+y2

2+4c2)

(x2 + ry2)2 + 4c2r2
cdc dx2 dy2 dx1 dy1 . (C4)

We can integrate over x1 and y1 and change the variables again :

x2 + ry2 = z1 , x2 − ry2 = z2.

After the integration, we arrive at the final expression

Gϕϕ = r
1

2
√

2
arctg

(√
2

r

)
. (C5)

2. Grr component

The consideration of rr component can be done in the similar manner. We start with the expression:

Grr = Z−1
∑
m ̸=n

∫ ⟨n|H̃x|m⟩⟨m|H̃x|n⟩
(H0 + rH̃x)2nm

e−
1
2 Tr(H2

0+2H̃2
x)DH0DHx . (C6)

Using parametrisation we discussed for the ϕϕ component of the metric and the same change of variables we obtain
the expression:

Grr = Z−1

∫
e−

1
4 (x2

1+x2
2)− 1

2 (y2
1+y2

2+4c2) x2
2c

2

((x2 + ry2)2 + 4c2r2)
2 cdc dx2 dy2 dx1 dy1. (C7)

Calculating the Gaussian integrals we arrive at

G
(a)

rr =
1

4

arcctg
(

r√
2

)
√

2r
− 1

2 + r2

 . (C8)
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3. Embedding in 3d pseudo-Euclidean space

Following the procedure we discussed in the main text we can find the radius component of the embedding:

R2(r) = r
1

2
√

2
arctan

(√
2

r

)
, (C9)

and the form of the surface Z(r) can be found from Eq.(12), which reduces to a differential equation:

(
dZ

dr

)2

=
1

8

 cot−1
(

r√
2

)
√

2r
− 2

√
2r
(
2 + r2

)−2

cot−1
(

r√
2

)
 . (C10)

Although we can not calculate the integral exactly, we investigate the asymptotic limits. Here we consider two opposite
limits: at infinite value of the parameter r and when r goes to zero. In the infinite limit r → ∞

Grr(r) → 1

4r4
,

Gϕϕ(r)

r2
→ 1

2r2
,

⇒ R(∞) →
√

2

2
and Z(∞) → 1.097,

(C11)

and in the r → 0 limit the functions are the following,

Grr(r) → π

8
√

2r
− 1/4 ,

Gϕϕ(r)

r2
→ π

4
√

2r
− 1/4

R(r) →
√

π

4
√

2

√
r , Z(r) →

√
π

4
√

2

√
r.

(C12)

These approximate values were obtained by the expansions up to the order O(r3/2). Therefore, near the point r = 0
or Z = R = 0 the angle of slope of this surface of revolution is

dZ

dR
(0) = 1. (C13)

Appendix D: Conical singularly

The Gauss-Bonnet theorem allows finding the Euler characteristic χ of a Riemannian manifold:∫
M

KdA +

∫
∂M

kds = 2πχ(M), (D1)

where K is the Gaussian curvature of a compact two-dimensional Riemannian manifold M and k is the geodesic
curvature of the boundary ∂M . There is an extension of this theorem that allows to find the Euler characteristic of
a manifold with conical singularities: ∫

M

KdA +

∫
∂M

kds +
∑
i

θi = 2πχ(M), (D2)

where θi is an angular defect of the manifold at point i. For instance, let’s consider a two-dimensional space with
topology of the cone:

ds2 = dρ2 + α2ρ2dϕ2 (D3)

where ϕ ∈ [0, 2π], α ∈ (0, 1] and ρ ∈ [0, 1]. If we make a replacement, ϕ̃ = αϕ we will get the flat metric in polar

coordinates with ϕ̃ ∈ [0, 2πα] . Thus, the angular defect is θ = 2π(1 − α).
The embedding of the conical defect into the 3d pseudo-Euclidean space is described by the equation

z2 − |1 − α2|
α2

(x2 + y2) = 0, z ≥ 0 (D4)
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Using the simple geometry, we can find the connection between the angle of the cone and the angular defect

sinβ = α. (D5)

As a result,

θ = 2π(1 − sinβ), (D6)

which is an additional contribution to the Euler characteristic of the manifold from the defect.

Appendix E: Quantum geometric tensor with energy cutoff and transition timescales

To probe the typical timescales for transitions between regimes we introduce the µ regularization of the metric
having in mind that t ∝ µ−1,

g
(n)
αβ =

∑
m ̸=n

⟨n| ∂αH |m⟩ ⟨m| ∂βH |n⟩ (En − Em)2

((En − Em)2 + µ2))2
, (E1)

and analyse the behaviour of grr(r, µ), gϕϕ(r, µ). The µ -dependencies of the metric components at late times are
presented at the Fig.5. We observe that the transition to the integrable regime occurs at t > N .

In the parametrization µ ∝ N−γ at small values of γ the metric manifests purely chaotic pattern and at β ≥ 1
the 1/r behaviour is observable Fig.5. In parametrization t ∝ Nγ the observed timescales are consistent with known
scaling for the Thouless time tTh ∝ N1−D in the RP model [15], where D is the fractal dimension in the corresponding
phase. Indeed, in the localized(integrable) phase D = 0 hence the expected transition timescale is t ∝ N while in the
ergodic delocalized phase D = 1 hence the corresponding timescale is N0.
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FIG. 5: The µ dependence of the metric components for different cutoffs with N = 1600. The black lines
corresponds to µ = 0.
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