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Abstract. We prove Central Limit Theorem for non-stationary random prod-

ucts of SL(2,R) matrices, generalizing the classical results by Le Page and
Tutubalin that were obtained in the case of iid random matrix products.

1. Introduction

1.1. Historical background. The two most fundamental results in probability
that are present in almost every textbook are the (strong) Law of Large Numbers
(LLN) and the Central Limit Theorem (CLT). In the most basic form, if {ξn} is
an iid sequence of random variables with finite expectation a and finite variance
σ2, the LLN claims that almost surely 1

n

∑n
i=1 ξi → a, and the CLT claims that∑n

i=1 ξi−na√
nσ

converges in distribution to a normal distribution N (0, 1) with mean 0

and variance 1.
There are many ways to relax the assumptions in both cases. In particular, the

random variables do not have to be identically distributed. For example, a non-
stationary version of the LLN known as Kolmogorov’s Law [Kol] claims that if {ξi}
is a sequence of independent random variables with ai = Eξi, σ2

i = Var (ξi), and∑∞
i=1

σ2
i

i2 < ∞, then
∑n

i=1(ξi−ai)

n → 0 almost surely. On the other hand, if for some

δ > 0 the sequence E|ξi|2+δ is uniformly bounded, then the sequence of random

variables
∑n

i=1(ξi−ai)∑n
i=1 σ2

i
converges in distribution to N (0, 1).

There are plenty of different generalizations and forms of these statements. For
example, for some of the analogs of the LLN and CLT for the sums of iid ran-
dom variables in the context of random walks on groups see the survey [F] and
monograph [BQ2], and references therein. Here we discuss random matrix prod-
ucts. In this case, a multiplicative version of the LLN is given by Furstenberg and
Kesten [FurK]. A stronger result is the famous Furstenberg Theorem, which also
guarantees positivity of the Lyapunov exponent:

Theorem 1.1 (H. Furstenberg [Fur]). Let {Xk, k ≥ 1} be independent and identi-
cally distributed random variables, taking values in SL(d,R), the d×d matrices with
determinant one, let GX be the smallest closed subgroup of SL(d,R) containing the
support of the distribution of X1, and assume that

E[log ∥X1∥] < ∞.
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Also, assume that GX is not compact and is strongly irreducible, i.e. there exists no
GX-invariant finite union of proper subspaces of Rd. Then there exists a positive
constant λF (Lyapunov exponent) such that with probability one

lim
n→∞

1

n
log ∥Xn . . . X2X1∥ = λF > 0.

Remark 1.2. In the case of random products of SL(2,R) matrices, the assumption
that GX is not compact and is strongly irreducible is equivalent to the assumption
that there exists no measure on RP1 invariant under the action of every map from
GX , see [AB, Lemma 3.6].

The CLT for the products of iid random matrices is also available. The initial
results were obtained for matrices with positive coefficients [Bel], [FurK]. In the
case of absolutely continuous distributions it was obtained by Tutubalin [T1, T2].
The requirements on regularity of distributions was relaxed by Le Page, who proved
the CLT for random matrix products under the assumption of finite exponential
moments [L], see also [BL], [GR], [GM], [J]. Finally, the assumption on the moments
of the distribution was optimized by Benoist and Quint [BQ1]:

Theorem 1.3 (Benuist, Quint, [BQ1]). Let {Xk, k ≥ 1} be independent and iden-
tically distributed random matrices in SL(d,R). Assume that GX is non-compact
and strongly irreducible and

(1) E
[
(log ∥X1∥)2

]
< ∞.

Then there exists σ > 0 such that the random variables

log ∥Xn . . . X1∥ − nλF√
n

,

where λF > 0 is the Lyapunov exponent, converge in distribution to N (0, σ2).

Notice that both Theorems 1.1 and 1.3 require the sequence of random matri-
ces to be identically distributed. That requirement allows to consider a stationary
measure for the random dynamics on the projective space, which is a key notion
used in the proofs of both results. Nevertheless, the classical LLN and CLT for
sums of real valued random variables hold without that assumption, and it is natu-
ral to expect that non-stationary versions of the LLN and CLT for random matrix
products should hold as well. Indeed, the non-stationary version of the Furstenberg
Theorem was recently provided in [GK1], and it already found interesting applica-
tions in spectral theory [GK2]. The non-stationary version of the CLT for random
products of SL(2,R) matrices is the main result of this paper.

1.2. Preliminaries and main results. Let us now provide the setting needed to
state our main result. From now on, let us restrict ourselves to the case of products
of SL(2,R) matrices.

Let K be a compact subset in the set of probability measures on the
group SL(2,R). We will say that the measures condition is satisfied if for every
measure µ ∈ K there are no Borel probability measures ν1, ν2 on RP1 such that
(fA)∗ν1 = ν2 for µ-almost every A ∈ SL(2,R).

Let us fix some sequence {µi}i∈N, µi ∈ K, and let Ai ∈ SL(2,R) be independent
matrix-valued random variables, with Ai being distributed w.r.t. µi. Set

Tn = AnAn−1 . . . A1,
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and denote

(2) Ln = E log ∥Tn∥.
If the measures condition is satisfied, then for any {µi}i∈N, µi ∈ K, the se-

quence {Ln} must grow at least linearly, i.e. the norms of the random products
must grow exponentially on average, see [GK1, Theorem 1.5]. A related statement
on exponential growth of the norms in the case of non-stationary linear cocycles
over Markov chains was established by Goldsheid [G]. Moreover, if additionally a
uniform bound on some exponential moment exists for distributions from K, the
non-random sequence {Ln} describes the behavior of almost every random product,
and in this sense serves as a non-stationary analog of Lyapunov exponent. Namely,
almost surely one has limn→∞

1
n (log ∥Tn∥ − Ln) = 0, see [GK1, Theorem 1.1]. This

provides a direct analog of the LLN for non-stationary random matrix products.
That compels the question whether an analog of CLT for non-identically dis-

tributed random variables must hold in this setting. Our main result provides a
positive answer in dimension two:

Theorem 1.4. Let K be a compact subset in the set of probability measures on
the group SL(2,R) that satisfies the measures condition, and there exists γ ≥ 9 and
M > 0 such that for any µ ∈ K one has

(3) E µ(log ∥A∥)γ < M.

Then the random variables
log ∥Tn∥ − Ln√
Var(log ∥Tn∥)

converge in distribution to N (0, 1), with the convergence that is uniform with respect
of the choice of the sequence µ1, µ2, · · · ∈ K.

Also, there are constants C1, C2 > 0 and an index n0 such that for all n ≥ n0

and all µ1, . . . , µn ∈ K one has

(4) C1n ≤ Var(log ∥Tn∥) ≤ C2n.

Remark 1.5. (a) The condition (3) is most likely not optimal. We would expect
that it should be sufficient to require γ > 2, compare with the version of the
LLN for real valued random variables provided above. Notice that it is still
more restrictive than γ = 2 which is optimal in the iid case, compare with
Theorem 1.3.

(b) One should expect that, under suitable conditions, Theorem 1.4 should hold for
random SL(d,R) matrix products for every d ≥ 2. To prove such a statement,
it would be helpful to have a non-stationary analog of simplicity of the Lya-
punov spectrum, see [GR], [GM] for the case of iid random matrix products.
In the case of some specific regular distributions in SL(d,R) such an analog
was recently established [AFGQ], but a statement for a general sequence of
distributions is currently not available, even if certainly expected.

We consider this paper as a “proof of concept”, the demonstration that enormous
amount of results on random walks on groups formulated in terms of the law of
large numbers, CLT, the law of the iterated logarithms etc. can be expected to
hold in the non-stationary setting, even if the notion of the stationary measure on
the projective space is not defined. The key observation here is that a random
dynamical system acts on the measures on the phase space by convolutions, i.e.
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averaging of the push-forwards of the measure by the random dynamics, and such an
action “moves” measures toward the space of measures with some specific modulus
of continuity, e.g. Hölder or log-Hölder, depending on the setting, see [GKM,
Theorem 2.8], [M1, Theorems 2.4 and 2.9]. For some other recent results related
to non-stationary random dynamics see [GK3], [M2], [M3].

1.3. Notations and plan of the proof of the main result. Let us introduce
some notations. Let

T(n1,n2] := An2
An2−1 . . . An1+1

be the part of the product of our random matrices Ai, where the index varies from
n1 + 1 to n2. Also, denote

ξn = log ∥Tn∥, ξ(n1,n2] = log
∥∥T(n1,n2]

∥∥ .
Note that if two intervals of indices (n1, n2] and (n′

1, n
′
2] are disjoint, then the

corresponding products T(n1,n2] and T(n′
1,n

′
2]
are independent, and thus so are their

log-norms ξ(n1,n2] and ξ(n′
1,n

′
2]
.

Now, a long product of matrices can be split into two parts (that we will later
choose to be of comparable lengths): for any n, n′ one has

Tn+n′ = T(n,n+n′]Tn;

in particular, this implies

(5) ξn+n′ = log ∥TnT(n,n+n′]∥ ≤ log ∥Tn∥+ log ∥T(n,n+n′]∥ = ξn + ξ(n,n+n′].

The right hand side of the inequality in (5) is a sum of two independent random
variables; let us introduce the random variable Rn,n′ that measures the difference
between the right and left hand sides of (5):

(6) Rn,n′ = log ∥Tn∥+ log
∥∥T(n,n+n′]

∥∥− log ∥Tn+n′∥ = (ξn + ξ(n,n+n′])− ξn+n′ .

We start the proof of Theorem 1.4 with establishing uniform moment bounds for
the discrepancy Rn,n′ ; this is done in Sec. 2, see Proposition 2.1. To do so, we have
to show that it is (sufficiently) improbable that the mostly expanded vector for the
product Tn is sent to the direction close to the one that is contracted by T(n,n+n′].

This can be reformulated in terms of the action on the projective line RP1: in these
terms, it is the probability of sending a point to a given small neighbourhood. We
use results from [M1], where such estimates (log-Hölder bounds after a finite number
of non-stationary iterations) were established, to obtain Lemma 2.2, providing such
tail estimates.

Next, we use these estimates to establish a control on the central moments of ξn,
using the relation

(7) ξn+n′ =
(
ξn + ξ(n,n+n′]

)
−Rn,n′ .

To do so, we use the fact that the sum in the parenthesis is a sum of indepen-
dent random variables, and the moments for Rn,n′ are uniformly bounded, thus
its addition cannot increase the moments too much. This is done in Section 3.1,
see Proposition 3.1. Then, in Section 3.2 (see Lemma 3.3) we get a lower bound
for the linear growth of the variances Var ξn, thus altogether establishing the con-
clusion (4). The argument is again based on using (7); a key difficulty here is to
establish the arbitrarily large lower bound for the variances. The latter is Proposi-
tion 3.2, whose proof (that turned out to be surprisingly technical) is provided in
Section 6.
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Finally, the key step in the proof of Theorem 1.4 is a bootstrapping argument,
provided in Section 4. Namely, the sum of two independent random variables (for
instance, ξn and ξ(n,n+n′])) is closer to the Gaussian behavior than the summands
separately. We introduce the quantitative way (27) of measuring how close the
distribution is to the Gaussian, and establish the corresponding inequality in Sec-
tion 4.3. Then, we control how an additional perturbation, coming from the Rn,n′

term, can worsen the bounds. This is done in Section 4.4.
We conclude by joining the bootstrapping estimates with the bounds established

for ξn and Rn,n′ , and complete the proof of Theorem 1.4 in Section 5.

2. Moment estimates for Rn,n′

In this section we provide the estimates on the moments of discrepancies Rn,n′

defined by (6).

2.1. Statements. Here is the main statement of this section:

Proposition 2.1. Under the assumptions of Theorem 1.4, there exists CR, such
that for every n, n′ ∈ N, such that n ≤ 2n′ one has

ERn,n′ < CR, ER2
n,n′ < CR, and ER3

n,n′ < CR.

Actually, we will show that the tails of distributions of random variables Rn,n′

are uniformly bounded up to a linearly growing threshold. Namely, we have the
following lemma:

Lemma 2.2. There exist c, cκ > 0 such that

(8) ∀n, n′ ∀x ≤ cκn
′ P (Rn,n′ > x) ≤ cx−γ/2.

In the rest of this section we prove Proposition 2.1 and Lemma 2.2.

2.2. Proof of Proposition 2.1. Let us first deduce Proposition 2.1 from
Lemma 2.2:

Proof of Proposition 2.1. First of all, notice that it is enough to prove the estimate
for ER3

n,n′ , as it implies the other two by using Hölder’s inequality.

In order to estimate ER3
n,n′ we split it in two parts:

ER3
n,n′ = E (R3

n,n′ · 1Rn,n′≤cκn′) + E (R3
n,n′ · 1Rn,n′>cκn′).

The first summand can be estimated using (8):

E (R3
n,n′ ·1Rn,n′≤cκn′) ≤

∫ cκn
′

0

P (Rn,n′ ≥ x) ·3x2 dx ≤ 1+3c

∫ ∞

1

x2− γ
2 dx = const.

To estimate the second one, we notice that Rn,n′ is bounded from above by the
sum of n+ n′ independent variables log ∥Ai∥, i = 1, . . . , n+ n′, with 9-th moment
not exceeding M by (3). We apply the Hölder’s inequality with exponents 3 and
3/2 and inequality (8):

E (R3
n,n′ ·1Rn,n′>cκn′) ≤

(
ER9

n,n′

) 1
3 ·P (Rn,n′ ≥ cκn

′)
2
3 ≤ M

1
3 (n+n′)3 ·c 2

3 (cκn
′)−

γ
3 ,

and the right hand side again is bounded uniformly for n ≤ 2n′. □
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2.3. Establishing tail estimates: proof of Lemma 2.2. We start by recalling
some properties of SL(2,R) matrices. Let v ∈ R2 be a vector and B ∈ SL(2,R) be
a matrix. Define a function

Θ(B, v) = log(∥B∥ · |v|)− log(|Bv|) = log
∥B∥ · |v|
|Bv|

that compares the expansion by B of the vector v with the maximum possible.
Denote by fB the projectivization of the matrix B, namely

fB : RP 1 → RP 1, such that fB ◦ [·] = [·] ◦B,

where [·] is the canonical projection [·] : R2\{0} → RP 1. Consider the projection
[v], and denote by Ur([v]) its radius r neighbourhood in RP 1. Finally, consider the
projections [e1], [e2] of the basis vectors e1, e2 ∈ R2. The following lemma allows to
control the “loss of expansion” Θ(B, v) in terms of closeness of the direction of v
to preimages of given directions:

Lemma 2.3. For x > 0 take r = 2e−x/2. If

fB−1([e1]) /∈ Ur([v]) and fB−1([e2]) /∈ Ur([v])

then

(9) Θ(B, v) ≤ x.

Proof. First of all, notice that

Θ(B, v) = log(∥B∥ · |v|)− log(|Bv|) ≤
≤ log(∥B∥) + log(|v|)− log(∥B−1∥)− log(|v|) ≤ 2 log(∥B∥).

Hence, if ∥B∥ ≤ ex/2 then inequality (9) holds automatically. From now on we
assume that ∥B∥ > ex/2.

Recall that every matrix B ∈ SL(2,R) can be written as a product

B = Rotβ1

(
∥B∥ 0

0 ∥B∥−1

)
Rotβ2

,

where Rotβ is a rotation by the angle β. Moreover, without loss of generality we
can assume that β2 = 0 (the statement of Lemma 2.3 is invariant under a pre-
composition of B with a rotation).

Note that at least one of the points fB−1([e1]), fB−1([e2]) is within e−x of the
direction most contracted by B. Indeed,

B−1 =
(

∥B∥−1 0
0 ∥B∥

)
Rot−1

β1
;

the vectors e1, e2 are orthogonal, thus there exists i = 1, 2 such that for rotation
preimage Rot−1

β1
ei its second coordinate is no smaller than the first one. Hence, for

the vector B−1ei its second coordinate exceeds the first one at least by the factor
∥B∥2 ≥ ex, and hence B−1ei is at the distance at most e−x/2 < e−x of the second
coordinate axis, most contracted by B (see Fig. 1).

Now, as the direction of the vector v is not within r = 2e−x/2 of the one of B−1ei,
the angle between v and the second coordinate axis is at least r

2 , and hence the

absolute value of the first coordinate of the unit vector v is at least sin
(
r
2

)
≥ 2

π · r
2 .

Applying B, we hence get a vector with length at least ∥B∥ · r
π . Thus,

Θ(B, v) ≤ log ∥B∥ − log
r∥B∥
π

= log
π

r
=

x

2
log

π

2
< x.
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Rot−1
β1

(ei)

B−1(ei)

Ur(fB−1([ei]))
v

e1

e2

Figure 1. Vector v, the preimage B−1(ei) and its r-neighbourhood.

□

In what follows we will use the following statement about regularity of measures
produced by actions of products of random matrices on the projective space. This
is a particular case of [M1, Theorem 2.9].

Theorem 2.4 ([M1]). Let T(n,m] = AmAm−1 . . . An+1 be a product of random
SL(2,R) matrices whose distributions satisfy the measures condition. Then there
exists a positive constant C and 0 < κ < 1, such that for every pair of points
p1, p2 ∈ RP 1 we have the following:

∀n < m ∀r > κm−n P
(
fT(n,m]

(p1) ∈ Ur(p2)
)
< C| log(r)|−

γ
2 .

Combining Lemma 2.3 and Theorem 2.4, we are now ready to prove Lemma 2.2.

Proof of Lemma 2.2. Recall that

Rn,n′ = log(∥Tn∥) + log(∥T(n,n+n′]∥)− log(∥Tn+n′∥).
There exists a unit vector u ∈ R2 (that depends on Tn), such that

∥Tn∥ = |Tnu|.
Set v = Tnu and B = T(n,n+n′]. Note, that the discrepancy Rn,n′ is bounded from
above by Θ(B, v):

Rn,n′ = log(|Tnu|) + log(∥T(n,n+n′]∥)− log(∥Tn+n′∥) ≤
≤ log(∥T(n,n+n′]∥ · |Tnu|)− log(∥Tn+n′u∥) = Θ(T(n,n+n′], Tnu) = Θ(B, v).

Applying Lemma 2.3 we obtain that for every x > 0

P (Rn,n′ > x) ≤ P (Θ(B, v) > x) ≤
≤ P (fB−1([e1]) ∈ Ur([v])) + P (fB−1([e2]) ∈ Ur([v])),

where r = 2e−x/2. The random product

T−1
(n,n+n′] = A−1

n+1A
−1
n+2 . . . A

−1
n+n′

is formed by the matrices whose distributions satisfy the measures condition. Ac-
cording to Theorem 2.4 there exist constants C, κ < 1, such that for every [v] ∈ RP 1

and every r > κn′
we have

(10) P (fB−1([e1]) ∈ Ur([v])) + P (fB−1([e2]) ∈ Ur([v])) < 2C| log(r)|−
γ
2 .



8 A. GORODETSKI, V. KLEPTSYN, AND G. MONAKOV

Substituting r = 2e−x/2 and taking cκ = − log(κ), we obtain the desired esti-
mate (8). □

3. Moments growth for ξn

In this section we establish upper bounds on the moments of |ξn − E ξn|, and
also establish linear growth of the variance of ξn.

3.1. Moments upper bounds for ξn. Here we prove the following statement:

Proposition 3.1. Under the assumptions of Theorem 1.4 there exists a constant
Cξ < ∞, such that for any n ∈ N and any µ1, . . . , µn ∈ K the following holds:

(11) E |ξn − E ξn| < Cξ

√
n,

(12) E |ξn − E ξn|2 < Cξn,

and

(13) E |ξn − E ξn|3 < Cξn
3
2 .

Proof of Proposition 3.1. First, let us establish the upper bound (12) for the vari-
ances Var ξn. We will use the decomposition

(14) ξn+n′ =
(
ξn + ξ(n,n+n′]

)
−Rn,n′ ;

the triangle inequality for the L2-norm (applied to the centred variables) then
implies √

Var ξn+n′ ≤
√
Var(ξn + ξ(n,n+n′]) +

√
VarRn,n′ .

Due to Proposition 2.1 and due to the independence of ξn and ξ(n,n+n′], we have

(15)
√
Var ξn+n′ ≤

√
Var ξn +Var ξ(n,n+n′] +

√
CR,

We will now recurrently construct a sequence cn, such that for any n ∈ N and
any µ1, . . . , µn ∈ K,

(16) Var ξn ≤ cn · n.
The existence of c1 is guaranteed by the uniform moments condition (3). Now, to
construct cm with m > 1, take n =

⌊
m
2

⌋
and n′ = m− n. Next, let us divide (15)

by
√
m: we get√

Var ξm
m

≤
√

Var ξn
n

· n

m
+

Var ξ(n,n+n′]

n′ · n
′

m
+

√
CR√
m

≤
√
max(cn, c′n) +

√
CR√
m

.

Hence, it suffices to take cm to be defined by the relation

(17)
√
cm =

√
max(cn, c′n) +

√
CR√
m

.

For such sequence, it is easy to check by induction that for all m = 2k+1, . . . , 2k+1

we have
√
cm ≤

√
c1 +

k∑
j=0

√
CR√
2j

;

which in turn implies a uniform bound

√
cm ≤

√
c1 +

√
CR

1− 1√
2

,
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thus concluding the proof of (12).
This also implies (11): indeed, due to the Hölder inequality,

E |ξn − E ξn| ≤
√
Var ξn.

Finally, let us prove (13). Consider the centred random variables

ξ̃n = ξn − E ξn, ξ̃(n,n+n′] = ξ(n,n+n′] − E ξ(n,n+n′], R̃n,n′ = Rn,n′ − ERn,n′ .

Again applying the decomposition (14), and using the L3-triangle inequality, we
get

(18)
3

√
E
∣∣∣ξ̃n+n′

∣∣∣3 ≤ 3

√
E
∣∣∣ξ̃n + ξ̃(n,n+n′]

∣∣∣3 + 3

√
E
∣∣∣R̃n,n′

∣∣∣3
The second summand in the right hand side does not exceed 3

√
CR due to Proposi-

tion 2.1. To estimate the first one, note that for any

∀a, b ∈ R |a+ b|3 ≤ |a|3 + |b|3 + 3(|a|2 · |b|+ |a| · |b|2);
thus,

E
∣∣∣ξ̃n + ξ̃(n,n+n′]

∣∣∣3 ≤ E
∣∣∣ξ̃n∣∣∣3 + E

∣∣∣ξ̃(n,n+n′]

∣∣∣3 + 3C2
ξ (n(n

′)1/2 + n1/2n′).

Taking a cubic root and using inequality 3
√
a+ b ≤ 3

√
a+ 3

√
b, we get

(19)
3

√
E
∣∣∣ξ̃n + ξ̃(n,n+n′]

∣∣∣3 ≤ 3

√
E
∣∣∣ξ̃n∣∣∣3 + E

∣∣∣ξ̃(n,n+n′]

∣∣∣3 + 3

√
6C2

ξ ·m3/2.

Again, for an arbitrary m > 1 set the indices n =
⌊
m
2

⌋
and n′ = m − n.

Substituting (19) into (18) and dividing by
√
m, we get

(20)

3

√
E |ξ̃m|3
m3/2

≤
3

√√√√E |ξ̃n|3
n3/2

·
( n

m

)3/2
+

E
∣∣∣ξ̃(n,n+n′]

∣∣∣3
(n′)3/2

·
(
n′

m

)3/2

+

(
6Cξ +

3
√
CR√
m

)
As previously, we are going to find a sequence cn such that for any n ∈ N and

any µ1, . . . , µn ∈ K,

(21) E |ξ̃n|3 ≤ cn · n3/2.

Substituting (21) for n, n′ into the right hand side of (20), we bound it from above
by

3

√( n

m

)3/2
+

(
n′

m

)3/2

·max ( 3
√
cn, 3

√
cn′) +

(
6Cξ +

3
√
CR√
m

)
Now, the factor before max

(
3
√
cn, 3

√
cn′
)
is bounded away from 1: it doesn’t exceed

3

√( n

m

)3/2
+

(
n′

m

)3/2

≤ 3

√√√√max

(( n

m

)1/2
,

(
n′

m

)1/2
)

≤
(
2

3

)1/6

< 1.

Hence, it suffices to take all cn = C̃3, where the constant C̃ is chosen sufficiently

large, so that E |ξ̃31 | ≤ C̃3 and that

C̃ ≤
(
2

3

)1/6

· C̃ + (6Cξ +
3
√
CR).

Indeed, inequality (20) then becomes an inductive proof of (21).
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We have obtained the desired upper bound E |ξ̃n|3 ≤ C̃3 · n3/2, thus concluding
the proof of the proposition. □

3.2. Linear growth of variances. In this section we will prove inequality (4), i.e.
we will show that there are constants C1, C2 > 0 and an index n0 such that for all
n ≥ n0 and all µ1, . . . , µn ∈ K one has

C1n ≤ Var(log ∥Tn∥) ≤ C2n.

We start by observing that estimate (12) guarantees that for every n ∈ N

Var(ξn) < Cξn,

so we only need to establish the lower bound. The proof of the lower bound can be
split into two statements:

Proposition 3.2. Under the assumptions of Theorem 1.4, for any c > 0 there exists
n1 ∈ N such that for any n ≥ n1 and any collection of distributions µ1, . . . , µn ∈ K
one has

Varµ1,...,µn
ξn ≥ c.

We will provide the proof of Proposition 3.2 in Section 6.

Lemma 3.3. Under the assumptions of Theorem 1.4, assume that Var ξn becomes
arbitrarily large:

(22) ∀c ∃n1 : ∀n ≥ n1 ∀µ1, . . . , µn ∈ K Varµ1,...,µn
ξn ≥ c.

Then there exists C1 > 0 and n0 such that Var ξn ≥ C1n for all n ≥ n0.

Proof. Recall that

ξn+n′ = ξn + ξ(n,n+n′] −Rn,n′ .

Cauchy-Schwarz inequality implies that

(23)
√

Var ξn+n′ ≥
√
Var(ξn + ξ(n,n+n′])−

√
VarRn,n′ .

Take n1 such that (22) holds with c = 16CR, and let ε := CR

2n1
, where CR is defined

in Proposition 2.1. Then, for every n = n1, . . . , 2n1−1 and any µ1, . . . , µn ∈ K one
has

(24)
√

Var ξn ≥
√
ε(n+ 1) + 3

√
CR.

We claim that in that case the estimate (24) holds for every n ≥ n1. In order to
show that we will proceed by induction. Indeed, let n ≥ 2n1 be the first number
for which (24) is not yet established; decompose it as n = ⌊n

2 ⌋+ ⌈n
2 ⌉. Then, each of

the variances Var ξ⌊n
2 ⌋, Var ξ⌈n

2 ⌉ in (23) is bounded from below by
√

ε(⌊n/2⌋+ 1)+

3
√
CR, and hence√
Var ξ⌊n

2 ⌋ +Var ξ(⌊n
2 ⌋,n] −

√
VarR⌊n

2 ⌋,⌈n
2 ⌉ ≥

≥
√
2 · (

√
ε(⌊n/2⌋+ 1) + 3

√
CR)−

√
CR ≥

≥
√

ε(n+ 1) + (3
√
2− 1)

√
CR,

where we have used 2(⌊n/2⌋+1) ≥ n+1. As 3
√
2−1 > 3, this proves the induction

step. In particular, for every n ≥ n1 we have Var ξn ≥ εn.
□
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Proposition 3.2 and Lemma 3.3 together prove (4).

Corollary 3.4. There exists C3 such that

• for all n ≥ n0 and any µ1, . . . , µn ∈ K, the normalized variable ηn = ξn−E ξn√
Var ξn

satisfies

(25) E |ηn|3 < C3.

• For all n, n′ ≥ n0 and any µ1, . . . , µn+n′ ∈ K, the variance of the normalized
sum

ηn,n′ =
θn,n′ − E θn,n′√

Var θn,n′
, where θn,n′ := ξn + ξ(n,n+n′],

satisfies

(26) E |ηn,n′ |3 < C3.

4. Bootstrapping: distance to the Gaussian distribution

This section is devoted to the bootstrapping arguments that allow to show the
convergence to Gaussian law.

4.1. Preliminaries. Let ξ, ξ′ be two independent random variables with finite
third moment and comparable variances: for a given constant C > 1, we have

C−1 <
Var ξ

Var ξ′
< C.

We will provide a value N ′
ρ(ξ), measuring quantitatively non-Gaussianity of the law

of ξ, such that (under appropriate assumptions) it will be smaller for the sum ξ+ξ′

than for the summands separately.

Definition 4.1. For a random variable ξ we denote by φξ(t) its characteristic
function:

φξ(t) = Eeitξ.

Now, let

(27) Nρ(η) = sup
0<|t|<ρ

∣∣∣log (φη(t)e
t2/2
)∣∣∣

|t|3
, N ′

ρ(ξ) = Nρ

(
ξ − E ξ√
Var ξ

)
.

Then η ∼ N (0, 1) if and only if Nρ(η) = 0 for all ρ > 0 (as the distribution of
a random variable is uniquely determined by its characteristic function). Note also
that Nρ(η) might be infinite if the corresponding characteristic function φη vanishes
somewhere on [−ρ, ρ]. Finally, the logarithm here is a function of a complex variable
(as the characteristic function might be, and most often is, non-real). As soon

as φη(t) doesn’t vanish on [−ρ, ρ], we define the composition log
(
φη(t)e

t2/2
)
by a

continuous extension, starting with the value log 1 = 0 at t = 0.
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4.2. Initial estimates. To start a bootstrapping argument, one needs some initial
bounds, in this case, for the norms N ′

ρ(ξ) for some ρ > 0.

Lemma 4.2. Let X be a random variable with

EX = 0, VarX = 1, E |X|3 < CX .

Then its characteristic function satisfies

(28)

∣∣∣∣φX(t)−
(
1− t2

2

)∣∣∣∣ ≤ CX · |t|3 for all t ∈ R.

Proof. Note that it suffices to establish the estimate for the second derivative φ′′(t):
for all t ∈ R,

(29) |φ′′
X(t) + 1| ≤ CX |t|.

Indeed, integrating (29) two times then suffices to obtain (28):

φX(t)−
(
1− t2

2

)
=

∫ t

0

dt1

∫ t1

0

(φ′′
X(t2) + 1) dt2.

Now, let us rewrite the estimated expression in (29):

(30) |φ′′
X(t) + 1| = |E (X2(eitX − 1))| ≤ E (X2|eitX − 1|) ≤ E (X2 · |tX|);

here we have used VarX = 1 for the first equality and the fact that eix is a 1-
Lipschitz function for the last inequality. Finally, the right hand side of (30) can
be rewritten as

|t| · E |X|3 < CX |t|,
thus completing the proof. □

Joining this with the estimate from Corollary 3.4, we get the initial bound lemma.

Lemma 4.3. There exists ρ0 > 0, such that for any n ≥ n0 the value Nρ0
(ηn) is

well-defined and satisfied

Nρ0(ηm) < 3C3 and ρ30Nρ0(ηm) <
1

100
,

where C3 is the constant defined in Corollary 3.4.

Proof. Applying Lemma 4.2, and multiplying its conclusion by e
t2

2 , we get

(31)

∣∣∣∣e t2

2 φηn(t)− e
t2

2

(
1− t2

2

)∣∣∣∣ ≤ C3|t|3 · e
t2

2

Now,

e
t2

2

(
1− t2

2

)
= 1 + o(|t|3),

thus for sufficiently small ρ one has

(32) ∀|t| ≤ ρ

∣∣∣∣e t2

2

(
1− t2

2

)
− 1

∣∣∣∣ ≤ 1

2
C3|t|3,

as well as

∀|t| ≤ ρ e
t2

2 ≤ e
ρ2

2 ≤ 3

2
,
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hence the right hand side of (31) can be replaced by 3
2C3|t|3. Joining this with (32),

we get

∀|t| ≤ ρ
∣∣∣e t2

2 φηn(t)− 1
∣∣∣ ≤ (1

2
+

3

2

)
· C3|t|3 = 2C3|t|3.

Taking

ρ0 := min

(
ρ, 3

√
1

300C3

)
,

we ensure that 2C3ρ
3
0 < 1

100 , and hence that log is 3
2 -Lipschitz in the (complex)

disc U2C3ρ3
0
(1). Therefore,

∀|t| ≤ ρ0

∣∣∣log e t2

2 φηn(t)
∣∣∣ ≤ 3

2
· 2C3|t|3,

which implies the desired
Nρ0

(ηn) ≤ 3C3.

□

4.3. Sum of two independent variables. The following is the first step of the
bootstrapping argument, estimating the decrease of N ′-values for the sum of two
independent random variables. Notice that in addition to the decrease by a linear
factor, the parameter ρ (describing the size of the domain) gets increased.

Lemma 4.4. For any C there exists λ < 1 and L > 1 such that if for some ρ > 0
for some independent random variables ξ, ξ′ one has

C−1 <
Var ξ

Var ξ′
< C

and values N ′
ρ(ξ), N

′
ρ(ξ

′) are finite, then

N ′
Lρ(ξ + ξ′) ≤ λ ·max(N ′

ρ(ξ), N
′
ρ(ξ

′)).

Proof. Let

η =
ξ − E ξ√
Var ξ

, η′ =
ξ′ − E ξ′√
Var ξ′

, η′′ =
(ξ + ξ′)− (E (ξ + ξ′))√

Var(ξ + ξ′)
,

Also, denote

c =

√
Var ξ

Var ξ +Var ξ′
, c′ =

√
Var ξ′

Var ξ +Var ξ′
;

then, one has
η′′ = cη + c′η′,

with the coefficients that satisfy

c2 + (c′)2 = 1, c, c′ ≤
√

C

C + 1
< 1.

By definition, we have for any L

N ′
Lρ(ξ + ξ′) = NLρ(η

′′) = NLρ(cη + c′η′).

Now, for the characteristic functions we have

φcη+c′η′(t) = φη(ct) · φη′(c′t),

and as c2 + (c′)2 = 1, we have

(33) et
2

φcη+c′η′(t) = e(ct)
2

φη(ct) · e(c
′t)2φη′(c′t).
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If cL, c′L ≤ 1, taking the logarithm of (33) and dividing by |t|3, we get

NLρ(η
′′) = sup

0<|t|<Lρ

∣∣∣log (et2φη′′(t)
)∣∣∣

|t|3
≤

≤ sup
0<|t|<Lρ

∣∣∣log (e(ct)2φη(ct)
)∣∣∣

|t|3
+ sup

0<|t|<Lρ

∣∣∣log (e(c′t)2φη′(c′t)
)∣∣∣

|t|3

Making the ct and c′t variable change in the first and second expressions respectively
in the right hand side, we obtain

NLρ(η
′′) ≤ c3NcLρ(η) + (c′)3Nc′Lρ(η

′) ≤
≤ (c3 + (c′)3) ·max(Nρ(η), Nρ(η

′)) ≤
≤ max(c, c′) ·max(Nρ(η), Nρ(η

′)).

Taking L =
√

C+1
C and λ = 1

L concludes the proof. □

4.4. Correction by an additional term. The expression (7) for ξn+n′ , besides
the sum of two independent random variables

θn,n′ = ξn + ξ(n,n+n′],

has an additional term

Rn,n′ = θn,n′ − ξn+n′ .

Due to this, an extra (and possibly non-independent) term is added to the normal-
ized random variable: for

(34) X =
θn,n′ − E θn,n′√

Var θn,n′
, Y =

ξn+n′ − E ξn+n′√
Var ξn+n′

this term is the difference

r = rn,n′ = Y −X

We are going to analyze and control its influence. First, note that E r = 0, and
E |r|3 satisfies an upper bound:

Lemma 4.5. There exists Qr < ∞, such that for every n, n′ ≥ n0, satisfying
n

2
≤ n′ ≤ 2n,

and any µ1, . . . , µn+n′ ∈ K, we have

(35) E |rn,n′ |3 < Qr(n+ n′)−
3
2 .

Proof. Note that rn,n′ can be expressed as

(36) r = rn,n′ =

√
Var θn,n′ −

√
Var ξn+n′√

Var ξn+n′
·X − 1√

Var ξn+n′
(Rn,n′ − ERn,n′).

Now, the L3-norms of both X and Rn,n′ are uniformly bounded (see Proposition 3.1
and Corollary 3.4). On the other hand, from the Cauchy-Schwartz inequality one
has ∣∣∣√Var θn,n′ −

√
Var ξn+n′

∣∣∣ ≤√VarRn,n′ ,

and hence both coefficients admit upper bounds as const√
n+n′ . □
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Our next step is to control the influence of such a “small” change by r on the
non-Gaussianity value Nρ:

Lemma 4.6. Let X,Y be two random variables with

EX = EY = 0, VarX = VarY = 1, EX3,EY 3 < CX .

Assume that for r = Y −X one has E |r|3 < Cr. Then for any t ∈ R one has

(37) |φX(t)− φY (t)| ≤ C
1
3
r C

2
3

X · |t|3

Proof. Let us take the second derivative of the difference of the characteristic func-
tions:

(38) (φX − φY )
′′(t) = −E (X2eitX − Y 2eitY )

= −E (X2(eitX − 1)− Y 2(eitY − 1)),

where the second equality follows from VarX = VarY . Now, note that it suffices
to obtain an estimate

(39) |(φX − φY )
′′(t)| ≤ 3C

1
3
r C

2
3

X · |t|,
as again we can integrate two times:

φX(t)− φY (t) =

∫ t

0

dt1

∫ t1

0

(φX − φY )
′′(t2) dt2,

and integrating (39) two times, we get the desired (37).
In order to obtain the estimate (39), let us decompose the right hand side of (38):

|φ′′
X(t)− φ′′

Y (t)| ≤ E |(X2 − Y 2)(eitX − 1)|+ E (Y 2|eitY − eitX |).
To estimate the first summand, we note that Y 2 −X2 = r(X + Y ), hence it does
not exceed

E |(X2 − Y 2)(eitX − 1)| ≤ E (|r| · (|X|+ |Y |) · |tX|) .
The expectation of the products |r| · |X|2 and |r| · |X||Y | can be estimated using

the Hölder inequality: each does not exceed C
1/3
r C

2/3
X . We thus get

E |(X2 − Y 2)(eitX − 1)| ≤ 2C1/3
r C

2/3
X · |t|.

In the same way,

E (Y 2|eitY − eitX |) ≤ E (Y 2|t(X − Y )|) = |t| · E (|r| · Y 2),

and the right hand side does not exceed C
1/3
r C

2/3
X |t|. Adding these estimates to-

gether, we obtain the desired (39). □

Proposition 4.7. In the assumptions of Lemma 4.6, let Kr := C
1/3
r C

2/3
X be the

factor that appears in its conclusion. Assume additionally that for some ρ > 0 one
has

(40) ρ3Nρ(X) ≤ 1

100
and

(41) Krρ
3e

ρ2

2 ≤ 1

100
.

Then

Nρ(Y ) ≤ Nρ(X) + 2Kre
ρ2

2 .
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Proof. Note first that due to (40), for any |t| ≤ ρ we have∣∣∣log (φX(t)e
t2

2

)∣∣∣ ≤ 1

100

and hence ∣∣∣φX(t)e
t2

2 − 1
∣∣∣ ≤ 1

50

(as the exponent function is 2-Lipschitz in U1/100(0)).
At the same time, the conclusion of Lemma 4.6 and the assumption (41) imply

that for any |t| ≤ ρ one has∣∣∣φX(t)e
t2

2 − φY (t)e
t2

2

∣∣∣ = |φX(t)− φY (t)| · e
t2

2 ≤ Krρ
3 · e

ρ2

2 ≤ 1

100
,

hence altogether∣∣∣φY (t)e
t2

2 − 1
∣∣∣ ≤ ∣∣∣φX(t)e

t2

2 − φY (t)e
t2

2

∣∣∣+ ∣∣∣φX(t)e
t2

2 − 1
∣∣∣ ≤ 1

100
+

1

50
≤ 1

25
.

Finally, the logarithm function is 2-Lipschitz in U 1
25
(1), and thus for such t

(42)
∣∣∣log (φY (t)e

t2

2

)∣∣∣ ≤ ∣∣∣log (φX(t)e
t2

2

)∣∣∣+ 2 ·
∣∣∣φY (t)e

t2

2 − φX(t)e
t2

2

∣∣∣
≤ Nρ(X)|t|3 + 2Kre

t2

2 |t|3 ≤ (Nρ(X) + 2Kre
t2

2 ) · |t|3.

This implies the desired

Nρ(Y ) ≤ Nρ(X) + 2Kre
ρ2

2 .

□

We will now apply Proposition 4.7 to the random variables X and Y , given
by (34), that occur in our study of random matrix products. Namely, denote for
any n, n′ ≥ n0

(43) ηn =
ξn − E ξn√

Var ξn
, θn,n′ = ξn + ξ(n,n+n′], ηn,n′ =

θn,n′ − E θn,n′√
Var θn,n′

.

Corollary 4.8. In the assumptions of Theorem 1.4, there exists a constant K such
that that if for some ρ > 0, n, n′ ≥ n0,

n
2 ≤ n′ ≤ 2n, one has

(44) ρ3Nρ(ηn,n′) ≤ 1

100

(45) ρ3
K√
n+ n′

e
ρ2

2 ≤ 1

100
,

then

Nρ(ηn+n′) ≤ Nρ(ηn,n′) + 2
K√
n+ n′

e
ρ2

2 .

Proof. First, recall that due to Corollary 3.4 one has

E |ηn,n′ |3 < C3, E |ηn+n′ |3 < C3,

and hence while applying Proposition 4.7 to X,Y , given by (34), one can take
CX = C3.
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Now, apply Lemma 4.5: from its conclusion (35) see that the value Kr = C
1
3
r C

2
3

X

in Proposition 4.7 is bounded from above by

Kr = C
1
3
r C

2
3
3 ≤ Q

1
3
r√

n+ n′
· C

2
3
3 =

K√
n+ n′

,

where

K := Q
1
3
r C

2
3
3 .

The conclusion now immediately follows from Proposition 4.7, applied to the ran-
dom variables X,Y , given by (34). □

5. Proof of the main result

Joining the results of the previous sections, we obtain the following proposition:

Proposition 5.1. In the assumptions of Theorem 1.4, there exist sequences ρn →
∞, δn → 0, such that for any n ≥ n0 and any µ1, . . . , µn ∈ K
(46) N ′

ρn
(ξn) ≤ δn.

Prior to proving it, note that our main result follows from it almost immediately:

Proof of Theorem 1.4. Assume that the assumptions of Theorem 1.4 are satisfied.
Due to Proposition 5.1, for any ρ > 0 we have

lim
n→∞

N ′
ρ(ξn) = lim

n→∞
Nρ(ηn) = 0,

where

ηn =
ξn − E ξn√

Var ξn
.

In particular, the characteristic functions φηn(t) of the normalized variables con-

verge uniformly on compact sets to e−
t2

2 . As the weak convergence of random
variables is equivalent (Lévy’s continuity theorem) to the pointwise convergence of
their characteristic functions, we have the desired weak convergence

ηn =
ξn − E ξn√

Var ξn
→ N (0, 1), n → ∞.

Moreover, this convergence is actually uniform in the choice of the sequence of
measures µ1, . . . , µn, · · · ∈ K. □

Proof of Proposition 5.1. We construct the sequence (ρn, δn)n≥n0
so that the de-

sired property (46) can be established by induction on n. Namely, we have the
following

Lemma 5.2. Let the sequence (ρn, δn)n≥n0 be chosen in such a way that the fol-
lowing conditions hold:

• As n → ∞, one has ρn → ∞ and δn → 0.
• For some n1 ≥ 2n0, we have

ρn = ρ′0, δn = 3C3 for all n = n0, . . . , n1,

where

ρ′0 = min

(
ρ0,

(
3C3

100

)1/3
)

and ρ0 is given by Lemma 4.3.
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• For every m > 2n0, taking n = ⌈m
2 ⌉ and n′ = m− n, one has

ρm ≤ Lmin(ρn, ρn′),(47)

ρ3mδm ≤ 1

100
,(48) λmax(δn, δn′) + 2

Ke
ρ2m
2

√
m

 ≤ δm,(49)

where constants L and λ are defined by the conclusion of Lemma 4.4 for
C = 2C2

C1
with C1, C2 given by (4).

Then the conclusion of Proposition 5.1 holds for this sequence.

Proof. The proof of (46) is by induction. Namely, form = n0, . . . , n1 the conclusion
follows from the choice of ρ′0 and Lemma 4.3. Let us make the induction step: for
m > n1 let n = ⌈m

2 ⌉ and n′ = m− n. Due to the induction assumption,

N ′
ρn
(ξn) ≤ δn, N ′

ρn
(ξ(n,n+n′]) ≤ δn′ ,

and thus due to Lemma 4.4 and the inequality (47)

N ′
ρm

(θn,n′) = N ′
ρm

(ξn + ξ(n,n+n′]) ≤ λmax(δn, δn′).

Now, let us apply Corollary 4.8 for ρm, n, n′. First, check that the assumptions
of Corollary 4.8 are satisfied. Indeed,

Nρm
(ηn,n′) = N ′

ρm
(θn,n′) ≤ λmax(δn, δn′) ≤ δm

due to (49); multiplying by ρ3m and applying (48), we get

ρ3mN ′
ρm

(θn,n′) ≤ 1

100
,

what proves (44). Next, (45) follows again from (49) and (48):

K√
m
ρ3me

ρ2m
2 ≤ ρ3mδm ≤ 1

100
.

Corollary 4.8 is applicable, and hence (again using (49)) we get

N ′
ρm

(ξm) = Nρm
(ηm) ≤

λmax(δn, δn′) + 2
Ke

ρ2m
2

√
m

 ≤ δm.

The induction step is complete. □

To complete the proof of Proposition 5.1, it remains to construct the sequences

ρm → ∞, δm → 0

that satisfy the assumptions of Lemma 5.2. Roughly speaking, the contraction with

the factor λ effectively allows to bring δm to zero as the additional term 2Ke
ρ2m
2√

m

tends to zero. It suffices to make the radii ρm increase extremely slow, so that the

exponent e
ρ2m
2 would not break this asymptotic vanishing.

We will choose ρm so that

ρm ≤ 1

2

√
logm;
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such a restriction already allows to note for checking (48), (49) that

Ke
ρ2m
2

m1/2
<

Km1/8

m1/2
<

K

m1/4

We let

(50) δm = Am−β , m > n1,

where the constant A is chosen so that at m = n1 this value coincides with 3C3,

(51) A = 3C3 · nβ
1 ,

and the (sufficiently small) power β > 0 and the (sufficiently large) initial index n1

are yet to be fixed.
Now, choose the exponent β > 0 sufficiently small so that

λ · 2β < 1, β <
1

4
,

and fix λ′ ∈ (2βλ, 1).
Then, for all sufficiently large n1 the condition (49) holds and can be proved by

induction. Indeed, in the left hand side the first summand is

λmax(δn, δn′) ≤ λ ·A
(
m− 1

2

)−β

= 2−βλ ·Am−β ·
(
m− 1

m

)−β

< λ′δm.

The second summand is at most K ·m− 1
4 , thus it suffices to check for m > n1 the

inequality

λ′Am−β +Km− 1
4 < Am−β ,

or, equivalently,

(52) (1− λ′)Am−β > Km− 1
4 .

As β < 1
4 , it suffices to check it for m = n1 (recall that (51) is used to determine A

for given n1 and β). Indeed, (52) holds once n1 is sufficiently large to ensure

(1− λ′)3C3 > Kn
− 1

4
1

We fix a sufficiently large n1 so that (52) holds, fix the corresponding A (defined
by (51)) and the sequence (δm), defined for m > n1 by (50). Then, we use (48)
and (47) to choose the sequence (ρm). Namely, for m > n1 we let

(53) ρm = min

(
Lmin(ρn, ρn′),

1

2

√
logm, (100δm)−1/3

)
.

Then the inequality ρm ≤ (100δm)−1/3 implies (48), and (47) is satisfied automat-
ically. Finally, as

min

(
1

2

√
logm, (100δm)−1/3

)
→ ∞, m → ∞,

the sequence (ρm) defined by (53) also tends to infinity; actually, it will coincide
with 1

2

√
logm for all sufficiently large m.

For the sequences (ρm, δm), the conditions of Lemma 5.2 are satisfied, and this
completes the proof of our main result. □
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6. Unboundedness of Variance: proof of Proposition 3.2

In this section we prove Proposition 3.2, i.e. show that under the assumptions
of Theorem 1.4 variances of ξn become arbitrarily large.

In order to do so, we will assume that n is quite large, and will decompose the
full product An . . . A1 into a several “long” groups Dm+1, . . . , D1, between which
some “short” compositions are applied:

An . . . A1 = Dm+1(Bµn0,m
. . . Bµ1,m

)Dm . . . D2(Bµn0,1
. . . Bµ1,1

)D1.

We will show that (for an appropriate choice of lengths) even conditionally to all
D1, . . . , Dm+1, the distribution of the log-norm of the product (with high proba-
bility) has sufficiently high variance. At the same time, dividing by the product of
norms of Dj , we get the composition

Dm+1

∥Dm+1∥
(Bµn0,m

. . . Bµ1,m
)

Dm

∥Dm∥
. . .

D2

∥D2∥
(Bµn0,1

. . . Bµ1,1
)

D1

∥D1∥
,

where all the quotients
Dj

∥Dj∥ are almost rank-one matrices.

Therefore, we first consider the variance of a distribution of images of a given
vector under random linear maps of rank one. In this case it is easier to show that
the variance grows, see Lemma 6.1 and Lemma 6.6 below. By continuity, if one
replaces random rank one linear maps by random linear maps of large norm, and
uses the fact that for a matrix D ∈ SL(2,R) with large norm, D

∥D∥ is close to a

linear map of rank one and norm one, then a lower bound on variances still holds,
see Lemma 6.7 and Corollary 6.8. Finally, we can complete the proof of Proposition
3.2 by applying the fact that with large probability a composition of a long enough
sequence of random SL(2,R) matrices has a large norm.

Let us now realize this strategy.
Let Y ⊆ GL2(R) be the space of all linear maps R2 → R2 of norm 1 and of

rank 1. Notice that Y is homeomorphic to the torus T2; indeed, it follows from
the fact that any such map can be represented as a composition of an orthogonal
projection to a one-dimensional subspace and a rotation.

Lemma 6.1. There exist ε0 > 0 and n0 ∈ N such that for any non-zero vector
v ∈ R2, any p ∈ Y , and any µ1, µ2, . . . , µn0

∈ K we have

Var log
∣∣p ◦ (Bµn0

. . . Bµ1
)v
∣∣ ≥ ε0.

To prove Lemma 6.1 we will use a statement from [GK] that was called Atom
Dissolving Theorem there. We will start with a couple of definitions.

Definition 6.2. Denote by Max(ν) the weight of a maximal atom of a probability
measure ν. In particular, if ν has no atoms, then Max(ν) = 0.

Definition 6.3. Let X be a metric compact. For a measure µ on the space of
homeomorphisms Homeo(X), we say that there is

• no finite set with a deterministic image, if there are no two finite sets
F, F ′ ⊂ X such that f(F ) = F ′ for µ-a.e. f ∈ Homeo(X);

• no measure with a deterministic image, if there are no two probability
measures ν, ν′ on X such that f∗ν = ν′ for µ-a.e. f ∈ Homeo(X).

The following statement is a general statement for non-stationary dynamics,
ensuring the “dissolving of atoms”: decrease of the probability of a given point
being sent to any particular point.
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Theorem 6.4 (Atoms Dissolving Theorem 2.8 from [GK]). Let KX be a compact
set of probability measures on Homeo(X).

• Assume that for any µ ∈ KX there is no finite set with a deterministic
image. Then for any ε > 0 there exists n such that for any probability
measure ν on X and any sequence µ1, . . . , µn ∈ KX we have

Max (µn ∗ · · · ∗ µ1 ∗ ν) < ε.

In particular, for any probability measure ν on X and any sequence
µ1, µ2, . . . ∈ KX we have

lim
n→∞

Max (µn ∗ · · · ∗ µ1 ∗ ν) = 0.

• If, moreover, for any µ ∈ KX there is no measure with a deterministic
image, then the convergence is exponential and uniform over all sequences
µ1, µ2, . . . from KN and all probability measures ν. That is, there exists
λ < 1 such that for any n, any ν and any µ1, µ2, · · · ∈ KX

Max (µn ∗ · · · ∗ µ1 ∗ ν) < λn.

In the proof below we will only be using the first part of Theorem 6.4.

Proof of Lemma 6.1. Due to Theorem 6.4 and our assumptions regarding the mea-
sures from K, there exists n′ ∈ N such that for any µ1, µ2, . . . , µn′ ∈ K we have

Max (µn ∗ · · · ∗ µ1 ∗ ν) <
1

2

for any probability measure ν on RP1. To prove Lemma 6.1 it is enough to choose
n0 = n′ + 1.

Since

Var log |p ◦ (Bµn
. . . Bµ1

)v| = Var log

∣∣∣∣p ◦ (Bµn
. . . Bµ1

)
v

|v|

∣∣∣∣ ,
without loss of generality we can assume that |v| = 1 and, slightly abusing the
notation, consider it an element of RP1. For given p ∈ Y , v ∈ R2, |v| = 1,
{µ1, µ2, . . . , µn0

} ∈ Kn0 consider the probability distribution χ on [0,+∞) of the
random images

∣∣p ◦ (Bµn0
. . . Bµ1)v

∣∣.
Lemma 6.5. The function Φ : RP1 × Y ×Kn0 → R ∪ {∞} defined by

Φ(v, p, µ1, µ2, . . . , µn0) =

{
∞, if χ({0}) > 0;
Var log

∣∣p ◦ (Bµn0
. . . Bµ1

)v
∣∣ , if χ({0}) = 0,

is lower semicontinuous.

Proof. Notice that χ depends continuously on (v, p, µ1, µ2, . . . , µn0
) in weak-∗ topol-

ogy.
Let us consider the cases when χ({0}) > 0 and when χ({0}) = 0 separately.
Assume first that χ({0}) > 0. We want to show that given M > 0, for any

sufficiently small perturbation χ′ of χ we have Var logχ′ > M . Notice that the
measures condition implies that χ cannot be concentrated exclusively at 0 ∈ R.
Hence for some τ > 0 we have χ[τ,+∞) > 0. If χ′ is a probability distribution
that is sufficiently close to χ, then χ′[τ/2,+∞) is not less than 1

2χ[τ,+∞), and the

χ′-weight of a small neighborhood of the origin is at least 1
2χ({0}). Choosing that

neighborhood small enough guarantees that Var logχ′ > M.



22 A. GORODETSKI, V. KLEPTSYN, AND G. MONAKOV

Assume now that χ({0}) = 0 and Var logχ < ∞. Then

Var logχ = lim
T→∞

Var
[
(logχ)|[−T,T ]

]
,

so for any ε > 0, for some large enough T > 0 we have

Var
[
(logχ)|[−T,T ]

]
> Var logχ− ε

2
.

Therefore, for any χ′ that is sufficiently close to χ we have

Var logχ′ ≥ Var
[
(logχ′)|[−2T,2T ]

]
≥ Var

[
(logχ)|[−T,T ]

]
− ε

2
> Var logχ− ε.

The case when χ({0}) = 0 and Var logχ = ∞ can be treated similarly. □

The space RP1×Y ×Kn0 is compact. Hence, Lemma 6.5 implies that it is enough
to show that Φ > 0 to ensure that for some ε0 > 0 we have Φ ≥ ε0 > 0.

Suppose this is not the case, and for some unit vector v, a linear map p ∈ Y ,
and µ1, . . . , µn0

∈ K we have

Var log
∣∣p ◦ (Bµn0

. . . Bµ1
)v
∣∣ = 0.

Then for some d ≥ 0 with probability 1 we have
∣∣p ◦ (Bµn0

. . . Bµ1)v
∣∣ = d. That

means that Bµn0
. . . Bµ1

v has to belong to L = {u | |p(u)| = d}, which is a line (if

d = 0) or a union of two lines (if d > 0). This implies that µ1×µ2×. . .×µn0−1-almost
surely the image Bµn0−1

. . . Bµ1
v must belong to the set ∩A∈supp(µn0

)A
−1(L). Since

L = {|p(u)| = d}

0 0

A−1

0

vBµn0−1 . . . Bµ1

Figure 2. The set L and its preimages

the measure µn0
must satisfy the measure condition, this intersection must consists

at most of four points, whose projectivization gives at most two points on RP1. But
this would imply that if ν is an atomic measure on RP1 at the point corresponding
to the initial vector v, then µn0−1 ∗ · · · ∗ µ1 ∗ ν is a measure supported on at most
two points, which contradicts the choice of n0 above. This completes the proof of
Lemma 6.1. □

Lemma 6.6. For any m ∈ N, any {µ1,i, . . . , µn0,i}i=1,...,m ∈ Kmn0 , and any
{p1, . . . , pm+1} ∈ Y m+1 we have

Var log ∥pm+1(Bµn0,m
. . . Bµ1,m

)pm . . . p2(Bµn0,1
. . . Bµ1,1

)p1∥ ≥ ε0m.
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Proof. As each pj is a unit norm rank 1 matrix, it can be written as

pj = vj ⊗ ℓj , where vj ∈ R2, ℓj ∈ (R2)∗, |vj | = |ℓj | = 1.

Now, let

B̃j := Bµn0,j
. . . Bµ1,j

be the j-th intermediate product. Then for the product

T = pm+1B̃mpm . . . p2B̃1p1

one has for any v ∈ R2

T (v) = vm+1 · ℓm+1(B̃mvm) · · · · · ℓ2(B̃1v1) · ℓ1(v),

and hence

(54) log ∥T∥ =

m∑
j=1

log |ℓj+1(B̃jvj)|.

Right hand side of (54) is a sum of m independent random variables, and the
variance of each of them is at least ε0 due to Lemma 6.1. Thus, the variance of
log ∥T∥ is at least mε0. □

Lemma 6.7. There exists a neighborhood U of the compact Kn0m×Y m+1 in Kn0m×
Mat2(R)m+1 such that for any

µ̄× {Dj}j=1,...,m+1 ∈ U,

where µ̄ = {µ1,i, . . . , µn0,i}i=1,...,m and Dj ∈ Mat2(R), we have

Var log ∥Dm+1(Bµn0,m . . . Bµ1,m)Dm . . . D2(Bµn0,1 . . . Bµ1,1)D1∥ ≥ ε0m

2

Proof. On Kn0m × Y m+1 this variance is bounded from below by ε0m due to
Lemma 6.6. As the set Kn0m × Y m+1 is compact, and the variance is a lower-
semicontinuous function of a distribution, there exists a neighbourhood U of this
compact on which the variance is at least mε0

2 . □

Corollary 6.8. There exists Q such that for any D1, . . . , Dm+1 ∈ SL(2,R) with
∥Dj∥ ≥ Q, j = 1, . . . ,m+ 1 one has

Var log ∥Dm+1(Bµn0,m . . . Bµ1,m)Dm . . . D2(Bµn0,1 . . . Bµ1,1)D1∥ ≥ ε0m

2

Proof.

(55) log ∥Dm+1(Bµn0,m
. . . Bµ1,m

)Dm . . . D2(Bµn0,1
. . . Bµ1,1

)D1∥ =

= log ∥D̃m+1(Bµn0,m
. . . Bµ1,m

)D̃m . . . D̃2(Bµn0,1
. . . Bµ1,1

)D̃1∥+
m∑
j=1

log ∥Dj∥,

where D̃j :=
Dj

∥Dj∥ . On the other hand, as ∥D∥ → ∞ for D ∈ SL(2,R), one has
D

∥D∥ → Y , so it suffices to choose Q sufficiently large to ensure that

({µi,k}1≤i≤n0,1≤k≤m, (D̃1, . . . , D̃m+1)) ∈ U

once ∥Dj∥ ≥ Q for all j = 1, . . . ,m+ 1, where U is provided by Lemma 6.7. □
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Proof of Proposition 3.2. First, fix n0 and ε0 given by Lemma 6.1. Then, choose
and fix m such that mε0

4 > c.
Now, take a sufficiently large Q provided by Corollary 6.8. It follows from [G,

Theorem 2.2] that for a sufficiently large n2 one has

∀n′ ≥ n2 ∀µ1, . . . , µn′ ∈ K P µ1,...,µn′ (∥An′ . . . A1∥ ≥ Q) ≥ 1− 1

2(m+ 1)
.

Now, take n3 := n2(m + 1) + n0m. Then, for any n ≥ n3 and any µ1, . . . , µn ∈ K
we can decompose the product An . . . A1 as

An . . . A1 = Dm+1B̃mDm . . . D2B̃1D1,

where each Dj is a product of at least n2 matrices Ai, and each B̃j is a product
of n0 of Ai’s.

This implies that with the probability at least 1
2 one has ∥Dj∥ ≥ Q for all j, and

hence the variance of the distribution conditional to such Dj is at least mε0
2 . Thus,

we finally have

Var ξn ≥ ED1,...Dm+1 Var(ξn | D1, . . . Dm+1) ≥
1

2
· mε0

2
=

mε0
4

> c.

□
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