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Abstract

The layer-upon-layer approach in additive manufacturing, open or closed cells in polymeric or
metallic foams involve an intrinsic microstructure tailored to the underlying applications. Homoge-
nization of such architectured materials creates metamaterials modeled by higher-gradient models,
specifically when the microstructure’s characteristic length is comparable to the length scale of the
structure. In this study, we conduct a comparative analysis of various finite elements methods
for solving problems in strain-gradient elasticity. We employ open-source packages from Firedrake
and FEniCS. Different finite element formulations are tested: we implement Lagrange, Argyris,
Hermite elements, a Hu–Washizu type (mixed) formulation, as well as isogeometric analysis with
Non-Uniform Rational B-Splines (NURBS). For the numerical study, we investigate one- and two-
dimensional problems discussed in the literature of strain-gradient modeling. All developed codes
are open-access to encourage research in Finite Element Method (FEM) based computation of
generalized continua.
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1 Introduction

Owing to its innovative process, additive manufacturing (AM) facilitates the fabrication of ex-
traordinary structures, thereby providing engineers an opportunity to envision and explore diverse
perspectives in design and manufacturing [1, 2, 3]. In particular, the layer-by-layer production
technique offered by AM enables the creation of intricate internal patterns, controlling and enhanc-
ing the functionality of the manufactured components (for example, see recent studies [4, 5, 6]).
Therefore, the ability to adjust infill patterns [7, 8, 9] and modify infill ratios [10, 11, 12] has be-
come pivotal in shaping the internal structural design of multi-scale structures [13, 14, 15]. This
functionality not only enables engineers to fine-tune the mechanical properties and performance
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characteristics of manufactured components; but also empowers them to optimize material usage
and reduce manufacturing costs.

Designing and fabricating complex materials using AM clearly necessitates novel mathemati-
cal models for assessing the overall behavior under various conditions. As classical mathematical
models fall short in accurately predicting the behavior of multi-scale structures, alternative ad-
vanced modeling techniques, which require proper generalization of classical elasticity theory, are
currently drawing great deal of interest (see recent applications in [16, 17, 18]). Particularly, mi-
cropolar [19, 20, 21], micromorphic [22, 23, 24], Cosserat [25, 26, 27], strain-gradient [28, 29, 30, 31]
continua are extensively investigated to model complex problems providing efficient numerical sim-
ulations. Notably, to establish such models, variational methods [32, 33, 34] are quite powerful,
providing a systematic approach to study higher gradient theories [35, 36, 37, 38]. Basically, these
variational frameworks involve defining an appropriate action functional, which encapsulates the
physical properties and constraints of the system under consideration. By processing the action
functional concerning the relevant fields, such as displacement, strain, or other relevant entities,
one may derive the Euler–Lagrange equations that govern the problem under investigation [39, 40].
Specifically, in the context of strain-gradient modeling, the action functional depends on not only
the strain but also its gradient. This extension may be motivated by an upscaling from a discrete
system with non-local connection [41] or continuum setting starting from Cauchy continuum [42].

In addition to modeling, effective numerical simulation of such complex models is also of great
interest to provide reliable predictions. In this study, we present an in-depth comparative analysis for
the numerical simulation of strain-gradient models, considering different finite element formulations.
To this end, two benchmark problems are investigated that are available in the literature, by utilizing
packages from FEniCS and Firedrake, open-source finite element computing platforms. In each
case, the problem is simulated using various shape functions, including Lagrange, Argyris, Hermite
elements, a mixed FE formulation, and NURBS-based isogeometric analysis (IGA). We investigate
FE solution of a two-dimensional simple shear problem discussed in [43] and a one-dimensional
pull-out problem numerically studied in [44]. For the FE analysis, a discrete approximation of
continuous functions are used in order to solve a variational formulation that is challenging to
adequately represent by a suitable function space. Hence, there are different suggestions in the
literature. Firedrake and FEniCS are using modern techniques with high level scripting to solve
any formulation that automates the numerical solution of field equations with the chosen element
type and formulation. Specifically herein, C1 continuous elements [45], and isogeometric analysis
(IGA) as function spaces are rather simple to utilize by leveraging the domain-specific language
of the FEniCS project [46]. FE method is based on a compact support with elements only locally
effective such that a monotonous convergence is guaranteed. Yet higher order formulations are
often defined within the whole domain (sometimes called patch) such that reliability and error
estimation may be in danger. One example of nonlocal formulation is the so-called isogeometric
analysis (IGA), where field equations are mapped to a parametric reference domain, and solutions
are approximated using function spaces constructed from linear combinations of finite element basis
functions over that domain [47]. IGA has been extensively applied into different fields (for example,
see [48, 49, 50]). In this work, we use the library called tIGAr [51] available within the open-
source finite element automation software FEniCS. It employs a global version of Bézier extraction
to integrate FEniCS’s capabilities into IGA workflows. Furthermore, with the aid of Firedrake
platform, we exploit Argyris and Hermite, which are higher-order elements. Another possibility is
to increase the number of field equations such that the smoothness conditions are reduced leading
to a mixed formulation.

The rest of the study is as follows. In Section 2, the adapted problems and their strain-gradient

2



models are summarized. In Section 3, the conducted comparative analysis is demonstrated and
discussed in detail, assessing the different FE formulations. Finally, conclusions are drawn in Section
4.

2 Method of solution in strain-gradient elasticity

The strain-gradient model [52] is adapted in the numerical simulations and summarized in this
part. Following the variational framework presented in [53], we consider the Lagrange function
depending on displacement and its first and second gradients in space and time, as follows:

L =
1

2
ρ0(u̇iu̇i + d2u̇i,ju̇i,j + τ 2üiüi)− w + ρ0(fiui + ℓijui,j) (1)

where we understand Einstein summation convention over the repeated indices, i, j, k, · · · ∈ [1, 2, 3]
in three-dimensional space, ρ0 is the mass density of the material, and u is the displacement,
defined by difference between the current position, x, and the reference position, X. The first term
in the Lagrangian density is the kinetic energy density, including a length scale, d (in meter), and
a relaxation time, τ (in second). The second term, w, is the deformation energy density, which is
a function of the linearized Green–Lagrange strain and its gradient, w = ŵ(ε,∇ε). The last term
in the Lagrangean density represents the energy density due to the volumetric effects, including
a body force density, f , and a supply term, ℓ, which is accounted for work through displacement
gradient. The linearized strain tensor and its gradient are defined by

εij =
1

2
(ui,j + uj,i), εij,k =

1

2
(ui,jk + uj,ik) (2)

where

ui,j =
∂ui

∂Xj

, ui,jk =
∂2ui

∂Xk∂Xj

. (3)

The deformation energy density is given by

w =
1

2
εijCijklεkl +

1

2
εij,kDijklmnεlm,n + εijGijklmεkl,m , (4)

where the rank-4 tensor, Cijkl, corresponds to first-gradient (strain related) elastic properties. For
isotropic materials, it reads

Cijkl = c1δijδkl + c2(δikδjl + δilδjk) . (5)

The rank-6 tensor, Dijklmn, represents second-gradient (strain gradient related) elastic properties,
again for isotropic materials,

Dijklmn = c3(δijδklδmn + δinδjkδlm + δijδkmδln + δikδjnδlm) + c4δijδknδml (6)
+ c5(δikδjlδmn + δimδjkδln + δikδjmδln + δilδjkδmn) + c6(δilδjmδkn + δimδjlδkn) (7)
+ c7(δilδjnδmk + δimδjnδlk + δinδjlδkm + δinδjmδkl). (8)

Strain gradient is coupled to strain via the rank-5 tensor, Gijklm, which vanishes for a centro-
symmetric microstructure. Also, c1 and c2 are first-gradient constitutive parameters while c3, c4, c5, c6,
and c7 are strain-gradient constitutive parameters.
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Next, the following action functional is postulated in space (3-D) and time spanning an infinites-
imal element, dΣ = dV dt, for volume and time; as well as an infinitesimal element, dΓ = dA dt,
for surface and time; and herein, dΠ = dℓ dt, for line (edge) and time, as follows:

A =

∫
Ω

L dΣ +

∫
∂Ω

Ws dΓ +

∫
∂∂Ω

We dΠ (9)

where Ws and We are energy densities defined, respectively, over the surface ∂Ω and the edge ∂∂Ω of
the domain of interest Ω. These so-called Neumann boundaries are given. We neglect the inertial
terms in this study and compute cases in statics such that the time integration drops. Then, the
variation of the energy reads

δA =

∫
Ω

(
ρ0fiδui + ρ0ℓijδui,j −

∂w

∂ui,j

δui,j −
∂w

∂ui,jk

δui,jk

)
dV

+

∫
∂Ω

(
∂Ws

∂ui

δui +
∂Ws

∂ui,j

δui,j

)
dA+

∫
∂∂Ω

∂We

∂ui

δui dℓ .

(10)

A vanishing action leads to the solution according to Noether’s theorem [54]. The test function,
δu, is arbitrary and chosen to vanish on the Dirichlet boundaries, where the primitive variables
are known. Both u and δu are are from same space known as the Galerkin approach. The
derivative of the stored energy density with respect to the first gradient of displacement and the
second gradient of displacement are derived as follows

∂w

∂ui,j

=
∂w

∂εkl

∂εkl
∂ui,j

=
∂w

∂εkl

1

2
(δkiδlj + δkjδli) = Cijklεkl, (11)

∂w

∂ui,jk

=
∂w

∂εlm,n

∂εlm,n

∂ui,jk

=
∂w

∂εlm,n

1

2
(δliδmjδnk + δmiδljδnk) = Dijklmnεlm,n, (12)

by considering the symmetry of the stiffness tensors (Cijkl = Cjikl = Cklij = Cklji) and (Dlmnijk =
Dlmnjik = Dijklmn = Djiklmn).

In order to perform simulations with different finite element formulations, Eq. (10) is utilized in
FEniCS and Firedrake. Neglecting inertial terms, body forces, and work on edge and surface due
to second gradient terms, Eq. (10) takes the following form:∫

Ω

(δui,jCijklεkl + δui,jkDijklmnεlm,n) dV =

∫
∂Ω

t̂iδui dA , (13)

where t̂ is the traction given on boundaries.
One possible approach is to use sufficiently smooth elements for u. In this case, for applying

boundary conditions (i.e. prescribed displacement, prescribed displacement gradient, and applied
tractions on both boundary and edge), the penalty method is utilized in the simulations. To properly
enforce the boundary conditions while using IGA, Argyris and Hermite elements, Eq. (13) results
in ∫

Ω

(δui,jCijklεkl + δuij,kDijklmnεlm,n) dV =

∫
∂ΩN

t̂iδui dA+

∫
∂ΩD

K(ui − ûi)δui dA , (14)

with given Neumann boundaries, t̂, and Dirichlet boundaries, û. The implementation of Dirichlet
boundaries is employed in the integral form by means of a large number, K, also called penalty
factor. This fact is needed owing to higher continuity of the element at the domain boundaries.
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Another possibility is to introduce the mixed FE formulation [43] with an additional unknown,
gij, imposing ui,j = gij, through Lagrange multipliers as follows:∫

Ω

(
δui,jCijklεkl + δgij,kDijklmnεlm,n + Lij(δgij − δui,j) + (gij − ui,j)δLij

)
dV =

∫
∂ΩN

t̂iδui dA ,

(15)
where

εij =
1

2
(ui,j + uj,i) , εij,k =

1

2
(gij,k + gji,k) . (16)

In this version, Dirichlet boundaries are implemented directly by taking them out of the matrices
after assembly in the finite element method.

2.1 2-D simple shear problem
The first strain-gradient model examined in this study is the 2-D simple shear of a plate of length

L and height H, which was investigated both numerically and analytically by Shekarchizadeh et al.
[43]. The general analytical solution in closed form is provided below,

u = ux(y) = q1 + q2y + q3 sinh
(y
r

)
+ q4 cosh

(y
r

)
(17)

where r =
√

(c5+c6+c7)
c2

with integration constants q1, q2, q3, q4. We study 2 cases:

• case D: the prescribed displacement:

q1 = 0, q2 =
û cosh(H

r
)

H cosh(H
r
)− r sinh(H

r
)
, q3 =

ûr

r sinh(H
r
)−H cosh(H

r
)
, q4 = 0 (18)

• case T: the applied traction:

q1 =
−r3t̂ sinh(H

r
)

s
, q2 =

r2t̂ cosh(H
r
)

s
, q3 =

−r3t̂ cosh(H
r
)

s
, q4 =

r3t̂ sinh(H
r
)

s
(19)

where
s = c2r

2

(
cosh

(
H

r

)
− 1

)
+ c5 + c6 + c7 . (20)

As schematically shown in Fig. 1, for case D in Fig. 1a) and case T in Fig. 1b, the difference between
these cases is obvious at the bottom edge. In case D, the bottom edge may rotate, while in case T,
it is clamped.

(a) Prescribed displacement, case D (b) Applied traction, case T

Figure 1: 2-D simple shear problem for solving by the strain-gradient formulation with two separate boundary
conditions.
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For the prescribed displacement, case D, a displacement of û is applied at the top edge by a rail
such that the displacement gradient is set to zero in order to illuminate the effects of strain-gradient
terms. While the bottom edge prevents a translation but not rotation. For this case, the weak form
reads ∫

Ω

(
δui,jCijklεkl + δuij,kDijklmnεlm,n

)
dV =

∫
∂Ωbot

K(ui − ûbot
i )δui dA

+

∫
∂Ωtop

(
K(ui − ûtop

i )δui +K(ui,j − ĝtop
ij )δui,j

)
dA

(21)

where all terms with hat, ûbot = 0, ûtop, ĝtop = 0, are given to prescribe displacement.
For the applied traction, case T, a traction, t̂ is applied at the top edge, while the displacement

and displacement gradient are fixed to zero at the bottom edge,∫
Ω

(
δui,jCijklεkl + δuij,kDijklmnεlm,n

)
dV =

∫
∂Ωtop

t̂iδui dA

+

∫
∂Ωtop

K(u1 − ûtop
1 )δu1 dA+

∫
∂Ωbot

(
K(ui − ûbot

i )δui +K(ui,j − ĝbot
ij )δui,j

)
dA

(22)

although written explicitly, ûtop
1 = 0, ûbot = 0, ĝbot = 0, setting all components zero ensure no

deformation and no rotation along the bottom edge.
Importantly, periodic boundary conditions are imposed to the lateral boundaries of the plate,

effectively rendering the plate’s length negligible.

2.2 1-D pull-out problem
The pull-out problem is the second strain-gradient model examined in this study by following

Rezaei et al. [44]. As shown in Fig. 2, the pull-out test is an extraction of a rebar (reinforced
rod) from a cylindrical block of radius R. By following Rezaei et al. [44], the axisymmetric 3-D
problem is simplified to formulate a 1-D model. Here, the assumptions are: (i) external surface of
the cylindrical block is fixed; (ii) cylindrical block is infinitely long to neglect boundary effects and
have displacement field uniform in circumferential direction; (iii) the imposed displacement applied
to rigid bar (ûp) is axially directed and the radius of the rigid bar, ε, goes to zero.

Figure 2: The pull-out problem, a prescribed displacement, ûp, pulls the rebar from the cylindrical bulk of radius R
clamped around the surface (skin) area.

For a solution, the system is reduced to a 1-D formulation by utilizing cylindrical polar coor-
dinates, (r, θ, z), such that the quadratic deformation energy reads in Green–Lagrange strain and
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their gradients,

w(uz, u
′
z, u

′′
z) =

c1
8
(u′

z)
4 + c2

((u′
z)

2

2
+

(u′
z)

4

4

)
+

c3
2r

(
(u′

z)
2u′′

z + (u′
z + 2ru′′

z)
)
+ 2c4(u

′
z)

2(u′′
z)

2

+
c5
4r2

(
(u′

z)
2(1 + 4r2(u′′

z)
2) + r2(u′′

z)
2 + 4r(u′

z)
3u′′

z + 2ru′
zu

′′
z + (u′

z)
4
)

+
c6
2r2

(
(u′

z)
2(2r2(u′′

z)
2 + 1) + r2(u′′

z)
2 + (u′

z)
4
)

+
c7
4r2

(
(u′

z)
2(4r2(u′′

z)
2 + 1) + r2(u′′

z)
2 + (u′

z)
4
)

(23)

where c1 and c2 are the first-gradient parameters (i.e., Lame parameters), and c3, c4, c5, c6, and c7 are
second-gradient parameters. Also, uz represents the axial displacement. Considering the analogous
variational formulation, we obtain

δA = 0

∫
Ω

( ∂w

∂uz

δuz +
∂w

∂u′
z

δu′
z +

∂w

∂u′′
z

δu′′
z

)
dV . (24)

By calculating each term,

∂w

∂uz

= 0,

∂w

∂u′
z

=
λ

2

(
(u′

z)
3
)
+ µ

(
(u′

z) + (u′
z)

3
)
+

c3
2z

(
3(u′

z)
2u′′ + 4z(u′

z)(u
′′)2

)
+ 2c4

(
2(u′

z)(u
′′)2

)
+

c5
4z2

(
2(u′

z) + 8z2(u′
z)u

′′(u′
z)

2 + 12z(u′
z)

2u′′(u′
z) + 2zu′′ + 4(u′

z)
3

)
+

c6
2z2

(
4z2(u′

z)(u
′′)2 + 2(u′

z) + 4(u′
z)

3
)
+

c7
4z2

(
8z2(u′

z)(u
′′)2 + 2(u′

z) + 4(u′
z)

3
)
,

∂w

∂u′′
z

=
c3
2z

(
(u′

z)
3 + 4zu′′(u′

z)
2
)
+ 2c4

(
2u′′(u′

z)
2
)

+
c5
4z2

(
8z2(u′

z)
2u′′ + 2z2u′′δu′′

z + 4z(u′
z)

3 + 2z(u′
z) + 4(u′

z)
3

)
+

c6
2z2

(
4z2(u′

z)
2u′′ ++2z2u′′)+ c7

4z2
(
8z2(u′

z)
2u′′ ++2z2u′′) .

(25)

We stress that the adapted 1-D strain-gradient model is non-linear without an analytical solu-
tion as opposed to the 2-D strain-gradient model presented for the simple shear problem with the
aforementioned analytical solution.

3 Numerical results and discussion

For the numerical simulations of the 2-D strain-gradient model, we consider a plate of length
L = 1.5 mm and height H = 0.5 mm. The constitutive parameters adapted in the simulations are
listed in Table 1, considering a material of Young’s modulus E = 400 MPa and Poisson’s ratio ν =
0.49. All the constitutive parameters, including those for the strain-gradient elasticity contribution,
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are based on the granular micromechanics modeling by Barchiesi et al. [55], given by,

c1 =
Eν

(1 + ν)(1− 2ν)

c2 =
E

2(1 + ν)

c3 = c4 =
l2c
112

λ

c5 = c7 =
l2c

1120
(7µ+ 3λ)

c6 =
l2c

1120
(7µ− 4λ) ,

(26)

where the characteristic length, l = 0.1 for case D and l = 0.2 for case T, represents the size of
microstructural interactions.

The parameters c1 and c2 compensate the negative values c3, c4, c5, c6, c7, we emphasize that
the presence of negative values is a known fact [56] and still resembles a positive energy, thereby
guaranteeing a unique solution. This aspect is elaborately discussed in the context of positive
definiteness in strain-gradient theory [57, 58, 59].

Table 1: Constitutive parameters adapted for the simple shear problem.

c1 in MPa c2 in MPa c3 in N c4 in N c5 in N c6 in N c7 in N

6577.18 134.23 0.59 0.59 0.18 -0.23 0.18

The simple shear problem is investigated for the cases D and T, prescribed displacement and
applied traction, respectively. In the case D, û = (0.05, 0) in mm is applied for a horizontal
displacement of the top edge of the plate. In the second case, a traction vector, t̂ = (1, 0) in N/mm,
applied for a horizontal shear to the same (top) edge. In Fig. 3, the numerical predictions obtained
by the performed finite element simulations are compared to the analytical solution for both cases.
The provided plots are the displacement in the horizontal direction occurring along the right edge
of the plate. The zoomed-in sections highlight the predicted displacements and the accuracy of the
approximations. Notably, the applied zero displacement gradient conditions in both cases, the top
edge for the prescribed displacement case and the bottom edge for the applied traction case, are
accurately captured in the finite element simulations.

In general, numerical predictions are consonant with the analytical solution in both cases. Pre-
cisely, for the case D, obviously, Argyris and the mixed FE simulations provide a convincing match
against the analytical solution, while Hermite and IGA simulations provide slightly different pre-
dictions, around the top edge of the plate. On the other hand, for the applied traction case, a
similar trend is observed, having negligible differences around the bottom edge of the plate. The
discretization of the presented results in Fig. 3 have been selected based on convergence behavior
of each formulation. For the simulations with the Argyris and Hermite elements, the rectangular
domain is discretized into 54 triangular elements that is 612 Degrees Of Freedom (DOF) and 96
triangular elements that is 552 DOF triangular elements, respectively. A single 2nd-degree NURBS
patch with 100 elements (882 DOF) is used for the IGA simulation. And, to perform the mixed
FEM simulation, the domain is discretized into 5400 linear elements (54 720 DOF).
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Figure 3: Comparison of the converged results for the simple shear problem.

Furthermore, to investigate the convergence characteristics of different FE formulations, a se-
ries of simulations is designed, refining the computational domain systematically as known as h-
convergence. The computed errors are presented as a function of degrees of freedom on a log-log
scale using L1 error norm for both cases in Fig. 4, calculated by

Error =
∫ 1

0

|uref − usim| dx ≈
N−2∑
i=0

1

2

(
|uref

i − usim
i |+ |uref

i+1 − usim
i+1|

)
∆x (27)

using the trapezoidal integration method and considering the analytic solution, uref and the
numerical solution, usim, in 1-D reduced order model. The error calculation involves defining the
distance ∆x as 1

N−1
, where N represents the number of calculated displacement values.

In the simulations with Argyris and the mixed FE, we observe a monotonous convergence. As
expected, Argyris elements have a higher convergence rate compared to the mixed FE with an
adequate accuracy and efficiency compared with the analytical solution. Remarkably, not ideal
convergence characteristics are obtained for Hermite elements and IGA, with increasing number
of degrees of freedom. Especially, the simulations with Hermite elements show an undesirable
convergence behavior in both cases such that a posteriori error estimation is not possible without
knowing the solution.
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Figure 4: Error analysis on a log-log scale for finite elements in the simple shear deformation problem with prescribed
displacement and applied traction

An analogous study has been conducted with the 1-D strain-gradient model of pull-out prob-
lem. By using different finite element formulations, we model rebar as embedded into a cylindrical
concrete block of Young’s modulus E = 20 GPa and Poisson’s ratio ν = 0.2. In Table 2, all con-
stitutive parameters are calculated by Eq. (26). The solution of this geometric nonlinear reduced
order problem investigates the accuracy by using a linearization scheme. Herein, we use SNES
scheme from PETSc libraries [60].

Table 2: Constitutive parameters for the pull-out problem.

c1 (MPa) c2 (MPa) c3 (N) c4 (N) c5 (N) c6 (N) c7 (N)

5555.55 8333.33 6.20 1.55 8.37 2.02 8.37

The numerical simulations are performed using quadratic Lagrange, cubic Hermite elements, the
mixed FE, and IGA with a 2nd-degree NURBS spline. In addition to the simulations on FEniCS and
Firedrake, the problem is also investigated by COMSOL Multiphysics® using cubic Hermite and
quadratic Lagrange elements. The weak form of the PDE is implemented by introducing the energy
density in COMSOL Multiphysics®. In Fig. 5, the performed simulations are compared, providing
the predicted displacements in the radial direction of the cylindrical block. For each element type,
the problem is simulated with 5000 elements on FEniCS and Firedrake. It is clear that numerical
simulations with Lagrange element, the mixed FE, and IGA compare each other very well. However,
the displacement predicted by Hermite elements is notably different than other FE formulations.
The same trend is observed for the simulations performed on COMSOL Multiphysics®. Overall,
the predicted results on FEniCS and Firedrake compare well with those obtained by COMSOL
Multiphysics®.
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Figure 5: a) Comparison of the converged results of the strain-gradient elasticity solution of the pull-out problem
b) 3-D illustration of deformation in the pull-out problem, captured in ParaView (scaled 50 times)

In order to investigate the convergence characteristics, a series of simulations is designed by
using four levels of discretization. In this regard, the computational domain is divided into 5, 50,
500, and 5000 elements, respectively, to perform a convergence study. In Fig. 6, the convergence
of each formulation is presented on a log-log scale using the L1 error norm as defined in (27). The
most discretized solution, with 5000 elements, is considered the reference solution, uref. It is clear
that monotonic convergence is observed for each element type for the 1-D non-linear strain-gradient
model.
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Figure 6: Convergence on a log-log scale for the pull-out problem

Furthermore, run-time performance of each finite element formulation is analyzed to assess their
computational efficiency. Table 3 presents a comparison in terms of run-time, considering all the
simulations examined in this study. For the 2-D model, it is clear that the mixed FE has the highest
run-time for both cases, while IGA has the lowest. For the 1-D model, Lagrange elements have
the highest run-time, followed by the mixed FE, Hermite elements, and IGA respectively. In this
analysis, the number of degrees of freedom is kept constant for each case to ensure a fair comparison.
Also, Hermite elements are excluded in the 2-D model due to their convergence behavior.

Table 3: Run-time performance of different finite element formulations

Element
Type

Number of
Nodes DOF

Runtime
(sec)

Case D:
Prescribed
Displacement

Argyris 36 612 0.541

Mixed FEM 36 612 0.768

IGA 42 608 0.182

Case T:
Applied
Traction

Argyris 36 612 0.493

Mixed FEM 36 612 0.751

IGA 42 608 0.187

Case 3:
Pull-out
Problem

Lagrange 36 106 0.373

Hermite 53 106 0.187

Mixed FEM 36 107 0.337

IGA 35 106 0.113
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4 Conclusion

In this study, a numerical investigation is presented on the applicability of different finite el-
ement formulations within the framework of strain-gradient elasticity by using the open-source
platforms FEniCS and Firedrake. To this end, two problems previously examined in the literature
are investigated. A 2-D linear strain-gradient model is utilized for the simple shear of a plate. The
simulations are performed for two different cases using Argyris, Hermite, a mixed FE, and IGA
formulations. It is observed that Argyris and the mixed FE perform well, accurately predicting
the problem under study, while Hermite and IGA lack the ideal convergence trends. Furthermore,
a 1-D non-linear strain model is applied for the pull-out test, considering a rigid bar embedded
into a cylindrical concrete block. For this problem, the 1-D simulations are performed using La-
grange, Hermite, the mixed FE, and IGA formulations. It is observed that all the finite element
formulations exhibit monotonic convergence behavior for the 1-D model. Importantly, predicted
displacement by Hermite elements is different than those obtained with other formulations. This
discrepancy is also confirmed by simulations in COMSOL Multiphysics® for validation. Moreover,
run-time performance of each formulation is analyzed to compare their computational efficiency.

References

[1] Bianca Maria Colosimo, Marco Grasso, Federica Garghetti, and Beatrice Rossi. Complex
geometries in additive manufacturing: A new solution for lattice structure modeling and mon-
itoring. Journal of Quality Technology, 54(4):392–414, 2022.

[2] Gordon Zyla, Emilio Barchesi, Stefanos Mavrikos, Ivan Giorgio, Francesco dell’Isola, Costas
Grigoropoulos, and Maria Farsari. 3d pantographic metamaterials at an extremely small length
scale. In Nanoscale and Quantum Materials: From Synthesis and Laser Processing to Appli-
cations 2024, page PC128740G. SPIE, 2024.

[3] Emilio Barchiesi, Stefanos Mavrikos, Ivan Giorgio, Costas Grigoropoulos, Maria Farsari,
Francesco dell’Isola, and Gordon Zyla. Complex mechanical properties of 3d micro-metric
pantographic metamaterials fabricated by two-photon polymerization. Continuum Mechanics
and Thermodynamics, pages 1–12, 2024.

[4] Minghao Bi, Lingwei Xia, Phuong Tran, Zhi Li, Qian Wan, Li Wang, Wei Shen, Guowei
Ma, and Yi Min Xie. Continuous contour-zigzag hybrid toolpath for large format additive
manufacturing. Additive Manufacturing, 55:102822, 2022.

[5] Emilio Turco, Emilio Barchiesi, Andrea Causin, Francesco dell’Isola, and Margherita Solci.
Harnessing unconventional buckling of tube origami metamaterials based on Kresling pattern.
International Journal of Solids and Structures, page 112925, 2024.

[6] Francisco Dos Reis and Nikolaos Karathanasopoulos. Deep learning, deconvolutional neural
network inverse design of strut-based lattice metamaterials. Computational Materials Science,
244:113258, 2024.

[7] Shivani Sriya Ambati and Ravindra Ambatipudi. Effect of infill density and infill pattern on
the mechanical properties of 3d printed pla parts. Materials Today: Proceedings, 64:804–807,
2022.

13



[8] Emilio Turco, Emilio Barchiesi, and Francesco dell’Isola. The long and winding road that
leads to homogenisation of kresling origami. International Journal of Non-Linear Mechanics,
163:104756, 2024.

[9] Davood Rahmatabadi, Elyas Soleyman, Mahshid Fallah Min Bashi, Mohammad Aberoumand,
Kianoosh Soltanmohammadi, Ismaeil Ghasemi, Majid Baniassadi, Karen Abrinia, Mahdi
Bodaghi, and Mostafa Baghani. 4d printing and annealing of petg composites reinforced with
short carbon fibers. Physica Scripta, 99(5):055957, 2024.

[10] Gokhan Aydin, M Erden Yildizdag, and Bilen Emek Abali. Strain-gradient modeling and
computation of 3-d printed metamaterials for verifying constitutive parameters determined
by asymptotic homogenization. In Theoretical Analyses, Computations, and Experiments of
Multiscale Materials: A Tribute to Francesco dell’Isola, pages 343–357. Springer, 2022.

[11] Reza Afshar, Simon Jeanne, and Bilen Emek Abali. Nonlinear material modeling for mechanical
characterization of 3-d printed pla polymer with different infill densities. Applied Composite
Materials, 30(3):987–1001, 2023.

[12] Arnaldo Casalotti, Francesco D’Annibale, and Giuseppe Rosi. Optimization of an architected
composite with tailored graded properties. Zeitschrift für angewandte Mathematik und Physik,
75(4):126, 2024.

[13] Gokhan Aydin, B Cagri Sarar, M Erden Yildizdag, and B Emek Abali. Investigating infill
density and pattern effects in additive manufacturing by characterizing metamaterials along
the strain-gradient theory. Mathematics and Mechanics of Solids, 27(10):2002–2016, 2022.

[14] Mihiro Torisaki, Masatoshi Shimoda, and Musaddiq Al Ali. Shape optimization method for
strength design problem of microstructures in a multiscale structure. International Journal for
Numerical Methods in Engineering, 124(8):1748–1772, 2023.

[15] Rachele Allena, D Scerrato, AM Bersani, and I Giorgio. A model for the bio-mechanical
stimulus in bone remodelling as a diffusive signalling agent for bones reconstructed with bio-
resorbable grafts. Mechanics Research Communications, 129:104094, 2023.

[16] Ivan Giorgio, Francesco dell’Isola, and David J Steigmann. Second-grade elasticity of three-
dimensional pantographic lattices: theory and numerical experiments. Continuum Mechanics
and Thermodynamics, pages 1–13, 2023.

[17] Nurettin Yilmaz, M Erden Yildizdag, Francesco Fabbrocino, Luca Placidi, and Anil Misra.
Emergence of critical state in granular materials using a variationally-based damage-elasto-
plastic micromechanical continuum model. International Journal for Numerical and Analytical
Methods in Geomechanics, 2024.

[18] Maximilian Stilz, Francesco Dell’Isola, Ivan Giorgio, Victor A Eremeyev, Georg Ganzenmüller,
and Stefan Hiermaier. Continuum models for pantographic blocks with second gradient energies
which are incomplete. Mechanics Research Communications, 125:103988, 2022.

[19] Jacek Chróścielewski, Francesco dell’Isola, Victor A Eremeyev, and Agnieszka Sabik. On
rotational instability within the nonlinear six-parameter shell theory. International Journal of
Solids and Structures, 196:179–189, 2020.

14



[20] Jianqiu Tian, Yuanming Lai, Enlong Liu, and Chuan He. A thermodynamics-based micro-
macro elastoplastic micropolar continuum model for granular materials. Computers and
Geotechnics, 162:105653, 2023.

[21] Anastasiya E Vilchevskaya, Elena N Vilchevskaya, Wolfgang H Müller, and Victor A Eremeyev.
Modeling of blood flow in the framework of micropolar theory. Continuum Mechanics and
Thermodynamics, 35(6):2337–2359, 2023.

[22] Anil Misra, Luca Placidi, Francesco dell’Isola, and Emilio Barchiesi. Identification of a ge-
ometrically nonlinear micromorphic continuum via granular micromechanics. Zeitschrift für
angewandte Mathematik und Physik, 72:1–21, 2021.

[23] Pierre Seppecher and Lukáš Jakabčin. Asymptotic comparison of the strain-gradient and
micromorphic models when loading forces are widely spread. In Theoretical Analyses, Com-
putations, and Experiments of Multiscale Materials: A Tribute to Francesco dell’Isola, pages
253–272. Springer, 2022.

[24] Mohammad Sarhil, Lisa Scheunemann, Peter Lewintan, Jörg Schröder, and Patrizio Neff. A
computational approach to identify the material parameters of the relaxed micromorphic model.
Computer Methods in Applied Mechanics and Engineering, 425:116944, 2024.

[25] Ivan Giorgio, Michele De Angelo, Emilio Turco, and Anil Misra. A biot–cosserat two-
dimensional elastic nonlinear model for a micromorphic medium. Continuum Mechanics and
Thermodynamics, 32(5):1357–1369, 2020.

[26] Ivan Giorgio, Francois Hild, Emaad Gerami, Francesco dell’Isola, and Anil Misra. Experi-
mental verification of 2d cosserat chirality with stretch-micro-rotation coupling in orthotropic
metamaterials with granular motif. Mechanics Research Communications, 126:104020, 2022.

[27] Ivan Giorgio, Anil Misra, and Luca Placidi. Geometrically nonlinear cosserat elasticity with
chiral effects based upon granular micromechanics. In Sixty Shades of Generalized Continua:
Dedicated to the 60th Birthday of Prof. Victor A. Eremeyev, pages 273–292. Springer, 2023.

[28] B Emek Abali, Wolfgang H Müller, and Victor A Eremeyev. Strain gradient elasticity with
geometric nonlinearities and its computational evaluation. Mechanics of Advanced Materials
and Modern Processes, 1:1–11, 2015.

[29] Hua Yang, Dmitry Timofeev, B Emek Abali, Baotong Li, and Wolfgang H Müller. Verifi-
cation of strain gradient elasticity computation by analytical solutions. ZAMM-Journal of
Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik,
101(12):e202100023, 2021.

[30] Victor A Eremeyev, Antonio Cazzani, and Francesco dell’Isola. On nonlinear dilatational strain
gradient elasticity. Continuum Mechanics and Thermodynamics, 33:1429–1463, 2021.

[31] Ivan Giorgio. Lattice shells composed of two families of curved kirchhoff rods: an archety-
pal example, topology optimization of a cycloidal metamaterial. Continuum Mechanics and
Thermodynamics, 33(4):1063–1082, 2021.

[32] Tomasz Lekszycki. Variational methods in structural optimization. Encyclopedia of Continuum
Mechanics, pages 2643–2653, 2020.

15



[33] Luca Placidi, Emilio Barchiesi, Anil Misra, and Ugo Andreaus. Variational methods in contin-
uum damage and fracture mechanics. Encyclopedia of continuum mechanics, pages 2634–2643,
2020.

[34] Anil Misra, Luca Placidi, and Emilio Turco. Variational methods for continuum models of
granular materials. In Encyclopedia of continuum mechanics, pages 2611–2621. Springer, 2020.

[35] Valerii Maksimov, Emilio Barchiesi, Anil Misra, Luca Placidi, and Dmitry Timofeev. Two-
dimensional analysis of size effects in strain-gradient granular solids with damage-induced
anisotropy evolution. Journal of Engineering Mechanics, 147(11):04021098, 2021.

[36] Alessandro Ciallella, Francesco D’Annibale, Dionisio Del Vescovo, and Ivan Giorgio. Deforma-
tion patterns in a second-gradient lattice annular plate composed of “spira mirabilis” fibers.
Continuum Mechanics and Thermodynamics, 35(4):1561–1580, 2023.

[37] Salvatore Sessa, Emilio Barchiesi, and Luca Placidi. An implicit computational approach in
strain-gradient brittle fracture analysis. Mechanics Research Communications, 136:104259,
2024.

[38] Jean-Jacques Alibert, Pierre Seppecher, and Francesco Dell’Isola. Truss modular beams with
deformation energy depending on higher displacement gradients. Mathematics and Mechanics
of Solids, 8(1):51–73, 2003.

[39] Francesco dell’Isola, Simon R Eugster, Roberto Fedele, and Pierre Seppecher. Second-gradient
continua: From lagrangian to eulerian and back. Mathematics and Mechanics of Solids,
27(12):2715–2750, 2022.

[40] F dell’Isola, E Turco, and E Barchiesi. 5 lagrangian discrete models: Applications to metama-
terials. Discrete and Continuum Models for Complex Metamaterials, page 197, 2020.

[41] U. Mühlich, B. E. Abali, and F. dell’Isola. Commented translation of Erwin Schrödinger’s
paper ’On the dynamics of elastically coupled point systems’(Zur Dynamik elastisch gekoppelter
Punktsysteme). Mathematics and Mechanics of Solids, 26(1):1081286520942955, 2020.

[42] K. K. Mandadapu, B. E. Abali, and P. Papadopoulos. On the polar nature and invariance
properties of a thermomechanical theory for continuum-on-continuum homogenization. Math-
ematics and Mechanics of Solids, 26(11):1581–1598, 2021.

[43] Navid Shekarchizadeh, Bilen Emek Abali, and Alberto Maria Bersani. A benchmark strain
gradient elasticity solution in two-dimensions for verifying computational approaches by means
of the finite element method. Mathematics and Mechanics of Solids, 27(10):2218–2238, 2022.

[44] Nasrin Rezaei, M Erden Yildizdag, Emilio Turco, Anil Misra, and Luca Placidi. Strain-gradient
finite elasticity solutions to rigid bar pull-out test. Continuum Mechanics and Thermodynamics,
pages 1–11, 2024.

[45] Leopoldo Greco, Domenico Castello, and Massimo Cuomo. An objective and accurate g1-
conforming mixed bézier fe-formulation for kirchhoff–love rods. Mathematics and Mechanics
of Solids, 29(4):645–685, 2024.

16



[46] Florian Rathgeber, David A Ham, Lawrence Mitchell, Michael Lange, Fabio Luporini, An-
drew TT McRae, Gheorghe-Teodor Bercea, Graham R Markall, and Paul HJ Kelly. Firedrake:
automating the finite element method by composing abstractions. ACM Transactions on Math-
ematical Software (TOMS), 43(3):1–27, 2016.

[47] Thomas JR Hughes, John A Cottrell, and Yuri Bazilevs. Isogeometric analysis: Cad, finite
elements, nurbs, exact geometry and mesh refinement. Computer methods in applied mechanics
and engineering, 194(39-41):4135–4195, 2005.

[48] Antonio Cazzani, Marcello Malagù, and Emilio Turco. Isogeometric analysis of plane-curved
beams. Mathematics and Mechanics of Solids, 21(5):562–577, 2016.

[49] J Schulte, M Dittmann, SR Eugster, S Hesch, T Reinicke, F dell’Isola, and C Hesch. Isoge-
ometric analysis of fiber reinforced composites using kirchhoff–love shell elements. Computer
Methods in Applied Mechanics and Engineering, 362:112845, 2020.

[50] M Erden Yildizdag, I Tugrul Ardic, and Ahmet Ergin. An isogeometric fe-be method to
investigate fluid–structure interaction effects for an elastic cylindrical shell vibrating near a
free surface. Ocean Engineering, 251:111065, 2022.

[51] David Kamensky and Yuri Bazilevs. tigar: Automating isogeometric analysis with fenics.
Computer Methods in Applied Mechanics and Engineering, 344:477–498, 2019.

[52] B. E. Abali, W. H. Müller, and F. dell’Isola. Theory and computation of higher gradient
elasticity theories based on action principles. Archive of Applied Mechanics, 87(9):1495–1510,
2017.

[53] B Emek Abali. Revealing the physical insight of a length-scale parameter in metamaterials by
exploiting the variational formulation. Continuum Mechanics and Thermodynamics, 31(4):885–
894, 2019.

[54] B. E. Abali. Energy based methods applied in mechanics by using the extended noether’s for-
malism. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte
Mathematik und Mechanik, 103:e202300020, 2023.

[55] Emilio Barchiesi, Anil Misra, Luca Placidi, and Emilio Turco. Granular micromechanics-based
identification of isotropic strain gradient parameters for elastic geometrically nonlinear defor-
mations. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte
Mathematik und Mechanik, 101(11):e202100059, 2021.

[56] Manon Thbaut, Basile Audoly, and Claire Lestringant. Effective boundary conditions for
second-order homogenization. Journal of the Mechanics and Physics of Solids, page 105707,
2024.

[57] Lidiia Nazarenko, Rainer Glüge, and Holm Altenbach. Positive definiteness in coupled strain
gradient elasticity. Continuum Mechanics and Thermodynamics, 33:713–725, 2021.

[58] Francesco dell’Isola, Giulio Sciarra, and Stefano Vidoli. Generalized Hooke’s law for isotropic
second gradient materials. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 465(2107):2177–2196, 2009.

17



[59] Victor A Eremeyev, Sergey A Lurie, Yury O Solyaev, and Francesco dell’Isola. On the well
posedness of static boundary value problem within the linear dilatational strain gradient elas-
ticity. Zeitschrift für angewandte Mathematik und Physik, 71:1–16, 2020.

[60] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson, Jed Brown, Peter Brune,
Kris Buschelman, Emil M. Constantinescu, Lisandro Dalcin, Alp Dener, Victor Eijkhout, Jacob
Faibussowitsch, William D. Gropp, Václav Hapla, Tobin Isaac, Pierre Jolivet, Dmitry Karpeev,
Dinesh Kaushik, Matthew G. Knepley, Fande Kong, Scott Kruger, Dave A. May, Lois Curfman
McInnes, Richard Tran Mills, Lawrence Mitchell, Todd Munson, Jose E. Roman, Karl Rupp,
Patrick Sanan, Jason Sarich, Barry F. Smith, Stefano Zampini, Hong Zhang, Hong Zhang, and
Junchao Zhang. PETSc Web page. https://petsc.org/, 2024.

18

https://petsc.org/

	Introduction
	Method of solution in strain-gradient elasticity
	2-D simple shear problem
	1-D pull-out problem

	Numerical results and discussion
	Conclusion

