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Abstract  
 
Background 
Identifying amyloid-beta (Aβ) positive patients is critical for determining eligibility for Alzheimer’s 
disease (AD) clinical trials and new disease-modifying treatments, but this is currently only 
possible with PET or CSF sampling. Previously reported MRI-based deep learning models for 
predicting amyloid positivity have used only T1-weighted (T1w) sequences and have shown 
moderate performance. 
 
Purpose 
To train deep learning models to predict amyloid PET positivity and to determine whether multi-
contrast inputs can improve performance. 
 
Materials and Methods 
A total of 4,058 exams with multi-contrast MRI and PET-based quantitative Aβ deposition were 
obtained from three separate public datasets: the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI), the Open Access Series of Imaging Studies 3 (OASIS3), and the Anti-Amyloid Treatment 
in Asymptomatic Alzheimer’s Disease (A4). Aβ positivity was defined based on each dataset’s 
recommended centiloid threshold, and 55% of the cohort were amyloid positive. Two separate 
EfficientNet models were trained for amyloid positivity prediction: one with only T1w images and 
the other with both T1w and T2-FLAIR images as network inputs. The area under the curve (AUC), 
accuracy, sensitivity, and specificity were determined using an internal held-out test set. The 
trained models were further evaluated using an external test set. DeLong’s and McNemar’s tests 
were used to assess AUC and accuracy, respectively. Finally, we compared our results with a 
publicly available Aβ deep learning-based prediction model for T1w imaging. 
 
Results 
In the held-out test sets, the T1w and T1w+T2-FLAIR models demonstrated AUCs of 0.62 (95% 
CI: 0.60, 0.64) and 0.67 (95% CI: 0.64, 0.70) (p = 0.006); accuracies were 61% (95% CI: 60%, 
63%) and 64% (95% CI: 62%, 66%) (p = 0.008); sensitivities were 0.88 and 0.71; and specificities 
were 0.23 and 0.53, respectively. The trained models showed similar performance in the external 
test set. Performance of the current model on both test sets exceeded that of the publicly available 
model. 
 
Conclusion 
The use of multi-contrast MRI, specifically incorporating T2-FLAIR in addition to T1w images, 
significantly improved the predictive accuracy of PET-determined amyloid status from MRI scans 
using a deep learning approach.  
 
  



Introduction 
 
Alzheimer’s disease (AD) is a progressive disorder with three phases: an asymptomatic phase, 
mild cognitive impairment (MCI), and a dementia phase. The early detection of neuropathological 
changes in AD is valuable as it potentially enables earlier treatment (1). AD is commonly defined 
by its neuropathological hallmarks. Among these, amyloid-beta (Aβ) deposition is one of the 
earliest indicators of disease. In many clinical trials for AD, Amyloid deposition has been treated 
as a surrogate marker representing disease (2–4), since amyloid deposition is related to more 
rapid progression to dementia (5,6). Amyloid positron emission tomography (PET) and 
cerebrospinal fluid (CSF) sampling can directly identify the presence of Aβ; however, their limited 
accessibility and high cost restrict their widespread use.  
 
Amyloid deposition has been implicated in the structural alteration of the brain. Such alterations, 
manifesting as cerebral atrophy or hippocampal volume loss, can be quantitatively assessed 
utilizing structural magnetic resonance imaging (MRI) scans (5–8). Furthermore, numerous 
machine learning-based studies have highlighted the utility of MRI data to predict amyloid status 
when integrated with clinical and genetic information (9–16). Most of these studies utilized T1w 
image-based features due to its excellent tissue contrast, resolution, and widespread availability 
in public datasets, and employed various machine learning methods to predict Aβ positivity. A few 
of these specifically investigated a deep learning based approach using T1w images, avoiding 
the use of subjectively determined features (9,15,16). Although T1w images are useful to visualize 
brain anatomy, other imaging sequences, particularly T2-weighted fluid attenuated inversion 
recovery (T2-FLAIR), better delineate white matter abnormalities, which may be associated with 
amyloid deposition or cognitive impairment (17–21). For example, a recent study showed regional 
associations between white matter hyperintensities (WMH) and amyloid-PET determined amyloid 
deposition (19). In general, downstream prediction may benefit from multi-contrast MRI inputs, 
given that different sequences may highlight different aspects of the disease. Finally, none of 
these previous studies have tested their model’s performance in a truly external test set. 
 
In this study, we trained and tested a deep learning algorithm to predict amyloid positivity in a 
large publicly accessible cohort of patients using T1w MRI and tested it on a separate external 
test group. We then evaluated whether a multi-contrast approach could enhance model 
performance, using T1w and T2-FLAIR as inputs to a deep learning-based method. 
 
Methods 
 
Datasets  
In this study, the data were obtained from three largest publicly available datasets and one in-
house dataset (hereafter referred to as the Stanford data). The publicly available datasets were 
Alzheimer’s Disease Neuroimaging Initiative (ADNI), Open Access Series of Imaging Studies 3 
(OASIS3), and Anti-Amyloid Treatment in Asymptomatic Alzheimer’s Disease (A4). Only subjects 
who underwent T1w, T2-FLAIR, and amyloid PET were included in the study. For the public 
datasets, MRI studies were paired with corresponding amyloid PET imaging performed within 30 
days for each subject. This study included only datasets from the years 2010 to 2023, given 
changes in MRI and PET technology over the past decade. Regarding the amyloid-PET data, 
inclusion was limited to datasets acquired using the following US Food and Drug Administration-
approved radiotracers: 18F-florbetapir (FBP) and 18F-florbetaben (FBB). 
 
The Stanford dataset was evaluated as an external test set. 231 subjects underwent T1w, T2-
FLAIR, and amyloid PET scans (all with FBB). The study protocols for the Stanford data were 
approved by the Stanford University Institutional Review Board, with written informed consent 



obtained from each study participant or their legally authorized representative. The MRI and PET 
scans were acquired simultaneously at Stanford University using a PET/MRI scanner (Signa 3T, 
GE Healthcare). The acquisition parameters of amyloid PET scanning are detailed in a previous 
study (22). Each participant’s cognitive status and etiology were determined by a clinical 
consensus of a panel of Alzheimer Disease Research Center-affiliated neurologists at Stanford 
University. Subjects with non-amnestic cognitive impairment or missing cognitive status were 
excluded from this study. Flow diagrams for both cohorts are shown in Figure 1, while 
demographic information can be found in Table 1.  
 
MRI Data Acquisition and Post-Processing 
For the Stanford dataset, T1w images were acquired using a sagittal spoiled gradient recalled 
acquisition with the following parameters: echo time (TE) = 3.06-3.23 ms, repetition time (TR) = 
7.65-8.02 ms, inversion time (TI) = 400 ms, and flip angle = 11°. 3D T2-FLAIR images were 
acquired with the following parameters: TE = 116-165 ms, TR = 4800-6000 ms, TI = 1440-1800 
ms, and flip angle = 90°.  
 
T2-FLAIR images underwent co-registration to their corresponding T1w images using rigid 
registration with Advanced Normalization Tools (ANTS) (23). Brain masks were generated, and 
images were skull stripped using an artificial neural network-based algorithm (termed HD-BET) 
on the T1w images (24). All images were oriented in the left-posterior-inferior (LPI) orientation 
and were resampled using trilinear interpolation to achieve isotropic voxel size of 1 mm. The 
images were then normalized based on the 5th to 95th intensity percentiles. 
 
Centiloid Calculation and Amyloid Status Determination 
Amyloid status was determined based on the centiloid cutoff values recommended for each 
dataset and their respective radiotracers. For the OASIS3 dataset, this centiloid cutoff value was 
20.6, without further details given. The ADNI, A4, and Stanford datasets were processed using 
an optimized MRI-free Aβ quantification approach (25). A brain atlas and a whole cerebellum 
mask, obtained from the Global Alzheimer’s Association Interactive Network (GAAIN; 
gaain.org/centiloid-project), were used to calculate standard uptake value ratio (SUVR) values, 
which were then converted to centiloid values. The ADNI Core developed tracer-specific centiloid 
cutoff values, which were 12 for FBB and 18 for FBP.  
 
Deep Learning Model and Experiments 
The public datasets were independently and randomly split into a training set (comprising 64% of 
the cases), a validation set (comprising 16% of the cases), and a held-out test set (comprising 
20% of the cases). The training and validation datasets were used during training, and the held-
out test set was used for evaluation. Note that the longitudinal data from the public datasets were 
used only for training and validation and were excluded from the held-out test set. A 3D 
EfficientNet-B3 was adopted from the MONAI framework as the deep learning method for this 
study (26,27). This architecture includes an input layer, multiple convolutional layers, and blocks 
designed to balance network depth, width, and resolution efficiently. It also features global 
average pooling to reduce the spatial dimensions before feeding the data into a fully connected 
layer, which handles the final classification task.  
 
Two separate models were trained for amyloid positivity prediction: one with only T1w images 
and one with both T1w and T2-FLAIR images as the inputs (Figure 2). All models were trained 
for 500 epochs with a batch size of 8 with Adam optimizer (28), a cosine annealing learning rate 
scheduler (29) with a 20-epoch warm up period and a learning rate of 0.0005 after warmup. Binary 
cross entropy was used as the loss function. The input images were augmented by randomly 
rotating them along each of the three spatial axes within a range of ±0.2 radians (equivalent to 



±11 degrees), with a 30% chance of rotation per axis. 5-fold cross-validation within the training 
set was performed to enhance the robustness and generalizability of the findings. The output of 
the model is a number between 0 and 1 representing the likelihood that the scan is amyloid 
positive. Youden’s J index (30) was used to define the threshold value. The held-out test set was 
evaluated by each of these 5 trained model from each fold for the cross-validation.  
 
Additional analyses were conducted in the held-out internal test set, evaluated both in the entire 
group as well as in patients with different cognitive statuses, including cognitively normal (CN), 
mild cognitive impairment (MCI), and dementia, using each of pretrained 5 weights from each 
model. Note that in these cohorts, the dementia group may include both AD and dementia from 
other causes (i.e., not all of the dementia cases are amyloid positive).  
 
To further evaluate the generalizability of the models, we tested the trained weights on an external 
dataset from Stanford University, representing a completely separate imaging protocol and 
different study population from those used to train the network. Due to the small sample sizes in 
each cognitive subgroup within this external test set, we did not perform subgroup analyses based 
on cognitive status. 
 
To identify the key regions influencing classification, we visualized the regional effects of the input 
images for both the T1w-only and T1w+T2FLAIR models. A sliding 7×7×7 voxel kernel was 
applied to mask local regions of the input MRI images by setting their voxel values to zero. Each 
modified image was then processed by the pre-trained model to obtain a prediction score, which 
was assigned to the central voxel of the masked region, generating an activation map. In this 
activation map, each voxel's value reflects the model's prediction score when that region was 
masked, indicating its impact on the prediction. The activation map was normalized and adjusted 
to represent to absolute change, so that lower scores indicate that the masked region had a 
greater impact on the model’s prediction. 
 
Comparison with a Prior Model  
A previous study developed a deep learning model that predicts amyloid status using T1w images 
alone (9). This model had significantly fewer free parameters compared to the model in the current 
study, with only 5 convolutional layers, compared to 131 convolutional layers in the current model. 
For comparative analysis, we utilized their pretrained weights to test the model's performance on 
our held-out test set within the ADNI cohort, following their preprocessing steps, as their model 
was originally developed using ADNI data. Additionally, we re-trained their model using our own 
training and validation datasets, and then evaluated its performance on our held-out test set as 
well as the external test set. Given that this model was designed to work solely with T1w images, 
we could not develop a T1w+T2-FLAIR version based on their model. We assessed the model's 
performance by calculating AUC, accuracy, sensitivity, and specificity across the validation set, 
held-out test set, and external test set. 
 
Statistical evaluation and Performance Evaluation 
Study subjects’ demographics were stratified by amyloid-beta status into Aβ+ and Aβ- groups. 
Predictions from the five-fold cross-validation were aggregated for performance evaluation and 
statistical analysis. The demographic characteristics were compared using chi-squared tests and 
t-tests for categorical variables and quantitative variables, respectively. The primary performance 
metric was the area under the receiver operating characteristics curve (AUC). To compare the 
performance of T1w-only and T1w+T2-FLAIR models, DeLong’s test and McNemar’s test were 
used to compare the AUCs and accuracies, respectively. Binary predictions were assessed using 
accuracy, sensitivity, and specificity using Youden’s J index. 
 



Results  
 
Study Sample Characteristics 
Figure 1 presents flowcharts illustrating the selection process of study subjects, starting from the 
initial number of imaging participants, followed by the application of specific exclusion criteria, and 
resulting in the final cohort used for training or validation. For network development (Figure 1-(A)), 
this study included a total of 4,058 subjects with T1w and T2-FLAIR MRI scans from the public 
datasets, along with their amyloid PET-determined statuses, of which 55% were Aβ+. The 
characteristics of these subjects included are summarized in Table 1-(A). There were significant 
differences between the Aβ+ and Aβ- groups in terms of age, sex distribution, and cognitive status, 
with the amyloid positive subjects being more likely to be older, male, and to have MCI or 
dementia. A total of 149 subjects were included in the external test set (Figure 1-(B)), and their 
characteristics are summarized in Table 1-(B). In the external test set, 56% of the subjects were 
Aβ+, and the Aβ+ subjects were more likely to have MCI or dementia. Figure 3 presents the 
distributions of centiloid values for selected samples from public and Stanford datasets.  
 
Prediction Performance in the Validation and Internal Test Sets 
In both the validation and held-out internal test sets, models incorporating T2-FLAIR in addition 
to T1w images provided superior performance metrics (Table 2-(A)). Specifically, in the held-out 
internal test set, the prediction of amyloid positivity was as follows: AUCs were 0.62 (95% CI: 0.60 
and 0.64) and 0.67 (95% CI: 0.64 and 0.70), accuracies were 61% (95% CI: 60% and 0.63%) and 
64% (95% CI: 62% and 66%), sensitivities were 0.88 (95% CI: 0.87 and 0.89) and 0.71 (95% CI: 
0.70 and 0.73), and specificities were 0.23 (95% CI: 0.22 and 0.24) and 0.53 (95% CI: 0.52 and 
0.55) for the T1w-only and T1w+T2-FLAIR models, respectively. These differences were 
statistically significant, as indicated by DeLong’s test (p=0.006) and McNemar’s test (p=0.008). 
The receiver operating characteristic (ROC) curves from the validation and held-out test sets are 
shown in Figure 4. Youden’s J index values were found to be 0.11 and 0.25 from the validation 
data for T1w-only model and the T1w+T2-FLAIR model, respectively.  
 
Prediction by Different Cognitive Status 
In the analysis across different cognitive statuses, the T1w-only model provided moderate AUC 
values in the CN and MCI groups, which were 0.61 (95% CI: 0.58 to 0.64) and 0.68 (95% CI: 0.62 
to 0.73), respectively. However, the dementia group showed an AUC of 0.47 (95% CI: 0.33 to 
0.62). The addition of T2-FLAIR images resulted in higher AUC and accuracy across all cognitive 
groups, as shown in Table 3. Notably, the highest AUC value was observed in the MCI group for 
the T1w+T2-FLAIR model, with an AUC of 0.71 (95% CI: 0.64 to 0.79). 
 
Prediction on An External Test Set 
Evaluation of the trained weights on the external test set demonstrated prediction performance 
comparable to that of the held-out test set used in this study, as shown in Table 2. Consistent with 
our findings in the internal held-out test set, the T1w+T2-FLAIR model outperformed the T1w-only 
model in the external test set, showing superior performance in terms of AUC, accuracy, 
sensitivity, and specificity (Table 2-(B) and Figure 4-(C)). Moreover, the differences in AUC and 
accuracy were statistically significant, as confirmed by DeLong’s test (p = 0.014) and McNemar’s 
test (p = 0.004) (Table 2-(B)). These results suggest that our models, trained on publicly available 
datasets, can be effectively applied to data from a different center and population. 
 
Visualization of Regional Effect  
Figure 5 illustrates activation maps showing the regional effects of the input images for randomly 
selected Aβ+ and Aβ- subjects. Both T1w-only and T1w+T2FLAIR models exhibited different 
activation patterns in the gray and white matter for Aβ+ and Aβ- cases. Notably, in the 



T1w+T2FLAIR model, regions surrounding the brain's ventricles displayed stronger activations 
compared to the T1w-only model. This observation aligns with the fact that periventricular WMH 
are commonly detected in these regions. Additionally, Figure 6 presents the T1w, T2-FLAIR, and 
amyloid PET images corresponding to the maximum and minimum predicted scores of the 
T1w+T2FLAIR model from the held-out test set. The case with the maximum predicted score 
showed posterior cortical atrophy and severe white matter hyperintensities, in contrast to the case 
with the minimum predicted score. 
 
Comparison with A Prior Model 
The pretrained weights from the previous study (9) were not able to successfully predict the 
amyloid status of our ADNI dataset, demonstrating an AUC of 0.57, accuracy of 48%, sensitivity 
of 0.95, and specificity of 0.07. Therefore, their model was re-trained using our own training and 
validation datasets. The prediction results for the retrained model for our validation, internal held-
out test set, and external test set are presented in Table 4 with Youden’s J index value of 0.5. 
The model provided similar prediction performance of our T1w-only model in AUC and accuracy. 
However, the prior model was not able to predict the external test set. Additionally, Figure 7 shows 
the histograms of the predicted scores of our models and the prior model in the held-out test set. 
While the current model demonstrated predictions across the entire likelihood range (0-1), the 
prior model provided a score near 0.5 for most cases (Figure 7-(B)). 
 
Discussion 
 
Amyloid PET is currently considered one of the gold standards for in vivo imaging to detect 
amyloid protein in the brain. Despite its precision, the technique has drawbacks such as limited 
accessibility, high costs, and the need for invasive procedures. In our study, we sought to estimate 
amyloid status, as determined by PET, using readily accessible MRI images alone, without 
requiring hand-crafted features such as cortical segmentations. We specifically utilized a deep 
learning model that incorporated T1w and T2-FLAIR images. This model achieved an AUC of 
0.67, accuracy of 64%, sensitivity of 0.71, and specificity of 0.53. We observed notable 
performance improvement with the addition of T2-FLAIR volumes in the validation, held-out 
internal test, and external test sets. These findings suggest that adding multi-modal MR 
information in the form of T2-FLAIR images significantly enhances the ability of the model to 
distinguish amyloid status.  
 
Overall, we observed prediction at better than chance levels, but still with AUC’s in the 0.6-0.7 
range, which reflects only moderate performance. There are several probable reasons for this, 
the most important of which is that amyloid changes are known to precede major structural 
changes in the brain by decades (31). The ability to predict at better than chance across the 
different cognitive status classes suggests that there are informative features. However, very early 
cases of amyloid positivity may not show sufficient MRI changes for prediction, for example. 
Another possibility is that the size of the dataset used, though quite large by neuroimaging study 
standards, is still too small to extract the full information from the scans. Nevertheless, given the 
non-invasiveness and availability of MRI, such performance could be useful for clinical trial 
screening or to identify potential at-risk individuals using a high specificity threshold using 
opportunistic screening.  

T2-FLAIR images are obtained in imaging protocols for most diseases, including studies acquired 
for memory concerns. Unlike T1w images, they highlight regions of abnormality with positive 
contrast, making them sensitive to detect subtle pathology, including WMH that are thought to 
represent small vessel ischemic disease in elderly subjects. The prediction results across different 
cognitive statuses demonstrated a clear advantage when T2-FLAIR images were added to T1w 



images, regardless of cognitive status. The reason for the improvement could relate to the better 
delineation of WMH, as a previous study showed regional associations between WMH and Aβ 
accumulation (19). However, simply having additional imaging data, resulting in better 
visualization of brain structure regardless of the different contrast, could also be a reason for the 
generally improved performance. Additionally, the activation maps revealed that the 
T1w+T2FLAIR model exhibited stronger activations in regions surrounding the brain’s ventricles, 
areas particularly vulnerable to periventricular WMH (Figure 5).  

Previous studies have demonstrated the potential of using MRI data to predict amyloid status as 
determined by amyloid PET scans through machine learning methods (9–16). The majority of 
these studies primarily utilized T1w images. Most of the previous works used hand-crafted 
features such as segmented cortical volumes as inputs to the machine learning model, a step that 
can be prone to error and require manual correction. Additionally, many of these previous studies 
also used demographic, genetic, and clinical information, which is not always available, and which 
may be subjective, such as distinguishing between MCI and dementia.  
 
In our study, we excluded any demographic, genetic, or clinical information, so as to focus only 
on the information in the image and the impact of using multiple contrasts. Our model using only 
T1w images yielded results comparable to those in a previous whole-image deep learning study 
(9). Interestingly, in this previous work, the performance in the validation set (AUC of 0.63) was 
significantly lower than in the test set (AUC of 0.73), raising questions about the composition of 
the test set given that it is unusual for performance in the test set to exceed that in the validation 
set for deep learning studies. Furthermore, we could not reproduce similar results using their 
pretrained weights, despite the fact that our held-out internal test set may have included 
examinations from their training set (which should have inflated performance). Additionally, when 
we re-trained the previous model on our training dataset, the newly trained weights were not able 
to predict our external test set effectively, achieving an AUC of only 0.45 (Table 4). Other previous 
studies that utilized MRI volumes reported an AUC of 0.74 (15) and balanced accuracy of 0.76 
(16), with limited details provided. However, all of these previous studies (9,15,16) used only T1w 
images from the ADNI cohort. Therefore, the use of T2-FLAIR images remains relatively 
unexplored. Although some studies have incorporated hand-crafted imaging features derived 
from T2-FLAIR (10,32), such as the volume of white matter hyperintensities, none have directly 
employed T2-FLAIR volumes themselves. Also, this study is the first to report performance in an 
external test set, highlighting the model’s robustness and generalizability across different 
populations and imaging protocols. Moreover, our study showed that adding T2-FLAIR images 
improved performance in both the internal and external test sets. 
 
There are several limitations to this study. First, we defined amyloid positivity using tracer-specific 
centiloid threshold values. The centiloid is a standardized scale designed to measure amyloid 
deposition across various tracers from amyloid PET images. For clinical trials purposes, often the 
amyloid status is determined human visual reads. Second, this study does not specifically 
evaluate how T2-FLAIR images improve the MRI-based prediction of PET-determined amyloid 
status. Although it is hypothesized that information about white matter abnormalities from T2-
FLAIR contributes to more accurate amyloid status estimations, the precise mechanisms are not 
fully explained. Based on the comparison between the maximum and minimum predicted score 
cases (Figure 6), the network seems capable of capturing brain structural abnormalities. We have 
not employed saliency maps, as used in prior works (9), given the growing understanding of their 
limitations with respect to variability and explainability (33,34). However, we provided activation 
maps that illustrate the regions of interest that most significantly contribute to the model's 
decision-making process. These maps were generated by masking local regions of the input 
images and analyzing the changes in the model's output, allowing for a more intuitive 



understanding of which areas in the brain images are considered important for classification. Also, 
we have not added demographic and clinical variables into the model, suggesting that the 
performance presented represents a lower bound. Multiple prior studies have shown that adding 
this information can improve predictions (9–12,14,15). However, we chose to examine the 
relatively simpler question of whether the addition of another imaging sequence with different 
contrast improved performance; there are many methods to incorporate clinical with imaging data, 
and it is possible that the addition of optimally chosen and integrated clinical and demographic 
data might reduce the relative value of the additional T2-FLAIR images.  
 
In conclusion, we found that deep learning models with volumetric imaging data only as inputs 
can be used to predict amyloid status with about 60-70% accuracy. Incorporating T2-FLAIR 
images with T1w significantly improved the prediction of PET-determined amyloid status, and this 
generalized to an external data set. Future work will explore whether additional MRI sequences 
may further enhance prediction by providing additional information relevant to amyloid deposition 
as well as whether this additional imaging continues to provide benefit when clinical and 
demographic features are added to the model.  
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Tables 
  (A) 

 Public Amyloid Positive 
(n = 2227) 

Amyloid Negative 
(n = 1831) 

P-value 

Age (years) 72.6 ± 5.9 70.3 ±	6.6 <0.001 
Sex 

  
0.025 

    Male 1045 794 
 

    Female 1182 1037 
 

Cognitive Status 
  

<0.001 
    Normal 1533 1276 

 

    MCI 430 383 
 

    Dementia 153 12 
 

 
 (B) 

 External Amyloid Positive 
(n = 83) 

Amyloid Negative 
(n = 66) 

P-value 

Age (years) 73.1 ± 9.3 70.8 ±	9.9 0.153 
Sex 

  
0.343 

    Male 39 25  
    Female 44 41 

 

Cognitive Status 
  

<0.001 
    Normal 40 55 

 

    MCI   18 9 
 

    Dementia 25 2 
 

 
Table 1. Subjects’ characteristics at time of amyloid PET imaging: (A) Included cohorts from ADNI, 
OASIS3, and A4 study; (B) External test set (Stanford data). Values are presented as mean ± 
s.d. or as the numbers of subjects. 



(A) 
 Validation Set Internal Test Set 

 T1w only T1w & 
T2FLAIR T1w only T1w & 

T2FLAIR 
All     
   AUC 0.63 

(0.60, 0.65) 
0.70  

(0.67, 0.73) 
0.62 

(0.60, 0.64) 
0.67 

(0.64, 0.70) 
   DeLong’s test P<0.001 P=0.006 

   Accuracy 0.62 
(0.60, 0.63) 

0.66 
(0.64, 0.68) 

0.61 
(0.60, 0.63) 

0.64 
(0.62, 0.66) 

   McNemar’s test P<0.001 P=0.008 

   Sensitivity 0.89 
(0.87, 0.90) 

0.73 
(0.72, 0.75) 

0.88 
(0.87, 0.89) 

0.71 
(0.70, 0.73) 

   Specificity 0.23 
(0.22, 0.25) 

0.56 
(0.54, 0.58) 

0.23 
(0.22, 0.24) 

0.53 
(0.52, 0.55) 

 
(B) 

 External Test Set 

 T1w only T1w & 
T2FLAIR 

All   
   AUC 0.55 

(0.50, 0.60) 
0.65  

(0.59, 0.70) 
   DeLong’s test P=0.014 
   Accuracy 0.54 

(0.50, 0.57) 
0.60 

(0.57, 0.64) 
   McNemar’s test P=0.004 

   Sensitivity 0.74 
(0.71, 0.77) 

0.78 
(0.75, 0.81) 

   Specificity 0.31 
(0.27, 0.34) 

0.39 
(0.36, 0.43) 

 
Table 2. Performance metrics for amyloid positivity prediction from (A) internal validation and 
held-out test set, and (B) the external test set. Values in parentheses represent 95% confidence 
intervals.  Accuracy, sensitivity, and specificity metrics are presented for a threshold representing 
the Youden’s J index operating points. 



 Internal Test Set 

 T1w only T1w & 
T2FLAIR 

CN 
(n=502, 59% A𝛽+)   

   AUC 0.61 
(0.58, 0.64) 

0.66 
(0.63, 0.70) 

   DeLong’s test P=0.018 

   Accuracy 0.61 
(0.59, 0.63) 

0.64 
(0.62, 0.65) 

   McNemar’s test P=0.025 

   Sensitivity 0.88 
(0.86, 0.89) 

0.72 
(0.70, 0.74) 

   Specificity 0.23 
(0.22, 0.25) 

0.52 
(0.50, 0.53) 

MCI  
(n=97, 55% A𝛽+)   

   AUC 0.68 
(0.62. 0.73) 

0.71 
(0.64. 0.79) 

   DeLong’s test P=0.435 

   Accuracy 0.60 
(0.55, 0.64) 

0.64 
(0.60, 0.69) 

   McNemar’s test P=0.092 

   Sensitivity 0.91 
(0.88, 0.93) 

0.73 
(0.69, 0.77) 

   Specificity 0.22 
(0.19, 0.26) 

0.54 
(0.49, 0.58) 

Dementia  
(n=31, 94% A𝛽+)   

   AUC 0.47 
(0.33, 0.62) 

0.61 
(0.35, 0.88) 

   DeLong’s test P=0.366 
   Accuracy 0.86 

(0.81, 0.92) 
0.69 

(0.62, 0.76) 
   McNemar’s test P<0.001 

   Sensitivity 0.92 
(0.88, 0.97) 

0.72 
(0.65, 0.79) 

   Specificity 0 
(0, 0) 

0.30 
(0.23, 0.37) 

 
Table 3. Performance metrics for amyloid positivity prediction by cognitive status in the internal 
held-out test sets. Values in parentheses represent 95% confidence intervals. Accuracy, 
sensitivity, and specificity metrics are presented for a threshold representing the Youden’s J index 
operating points. 
  



 

 Validation Set 
(n = 649) 

Internal Test Set 
(n = 811) 

External Test Set 
(n = 149) 

   AUC 0.61 
(0.61, 0.62) 

0.61 
(0.61, 0.62) 

0.45 
(0.44, 0.46) 

   Accuracy 0.57 
(0.55, 0.59) 

0.60 
(0.58, 0.62) 

0.46 
(0.42, 0.49) 

   Sensitivity 0.52 
(0.50, 0.54) 

0.67 
(0.65, 0.68) 

0.41 
(0.37, 0.44) 

   Specificity 0.65 
(0.63, 0.66) 

0.50 
(0.49, 0.52) 

0.52 
(0.49, 0.56) 

 
Table 4. Performance metrics for amyloid positivity prediction using the prior model on the internal 
validation, internal held-out test, and external test sets are provided. The results are shown for 
the T1w-only model, as the prior model can only use T1w images as input. 
 
 
  



Figures 
 
(A) 

 
 
(B) 

 
Figure 1. Flow diagrams show inclusion of study participants: (A) the public datasets and (B) 
Stanford dataset. 
 



 
Figure 2. Schematic showing the two separate models that were trained for binary amyloid 
positivity prediction: (A) one with only T1w images, and (B) one with both T1w and T2-FLAIR 
images as inputs. 
  



(A) 

 
(B) 

 
Figure 3. Centiloid distribution of the included study cohort: (A) the public datasets and (B) the 
Stanford dataset. 
 
 
 

 
Figure 4. ROC curves of the T1w-only and T1w+T2-FLAIR models in the (A) validation set, (B) 
internal held-out test set, and (C) external test set. In all settings, adding T2-FLAIR imaging 
improves performance. The blue and yellow scatter points represent the optimal cut-off points for 
the T1w+T2-FLAIR and T1w-only models, respectively. 
 



 
Figure 5. Activation maps showing the regional effects of the input images for randomly selected 
(A) Aβ+ and (B) Aβ- subjects. The upper and lower images show the maps from T1w-only and 
T1w+T2FLAIR models, respectively. 
 

 
Figure 6. The T1w, T2-FLAIR, and amyloid PET images of (A) the maximum and (B) the minimum 
predicted scores from T1w+T2-FLAIR model.  



 1 
Figure 7. Histograms of the predicted scores from the current model and a previously published 2 
model (9). For the current model: (A) the T1w-only model (left) and the T1w+T2FLAIR model 3 
(right). (B) The previous model. Red and blue bars represent the ground truth statuses (GT: 4 
Negative and GT: Positive, respectively). Each pair of adjacent red and blue bars corresponds to 5 
the same bin on the x-axis. 6 
 7 
 8 


