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Figure 1. FruitNinja generates high-quality interior textures for 3DGS models, enabling real-time view rendering during arbitrary geometric
transformations. In contrast, direct 2D inpainting requires additional optimization steps (∼30s), often misaligns edited geometry, and yields
inconsistent results per edit.

Abstract

In the real world, objects reveal internal textures when
sliced or cut, yet this behavior is not well-studied in 3D
generation tasks today. For example, slicing a virtual 3D
watermelon should reveal flesh and seeds. Given that no
available dataset captures an object’s full internal structure
and collecting data from all slices is impractical, generative
methods become the obvious approach. However, current
3D generation and inpainting methods often focus on vis-
ible appearance and overlook internal textures. To bridge
this gap, we introduce FruitNinja, the first method to gen-
erate internal textures for 3D objects undergoing geomet-
ric and topological changes. Our approach produces ob-
jects via 3D Gaussian Splatting (3DGS) with both surface
and interior textures synthesized, enabling real-time slic-
ing and rendering without additional optimization. Fruit-
Ninja leverages a pre-trained diffusion model to progres-
sively inpaint cross-sectional views and applies voxel-grid-
based smoothing to achieve cohesive textures throughout
the object. Our OpaqueAtom GS strategy overcomes 3DGS
limitations by employing densely distributed opaque Gaus-
sians, avoiding biases toward larger particles that desta-
bilize training and sharp color transitions for fine-grained

textures. Experimental results show that FruitNinja sub-
stantially outperforms existing approaches, showcasing un-
matched visual quality in real-time rendered internal views
across arbitrary geometry manipulations.

1. Introduction

Generating high-quality interactive 3D objects has diverse
applications in fields such as augmented and virtual reality
(AR/VR), digital gaming, and advertising. Recent advance-
ments in 3D computer vision, particularly 3D Gaussian
Splatting (3DGS) [18], have introduced efficient techniques
for novel view synthesis. Leveraging its explicit point-
cloud-based representation and suitability for post-editing
tasks, researchers have further explored user-guided editing
of 3DGS, including stylization [8, 20, 43], deformation[3,
13, 17, 39] , object removal [8, 41], inpainting [8, 23]
and texture editing [25, 40]. In interactive 3D applica-
tions, it’s common for users to perform customized or large-
scale geometric modifications—such as cutting, tearing, or
removing parts of an object’s surface, which can reveal
internal textures. If the internal Gaussians are not ade-
quately trained, this may expose unrealistic internal struc-
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tures, thereby compromising overall visual quality. Unfor-
tunately, existing 3DGS editing frameworks primarily fo-
cus on manipulating an object’s external appearance, while
preserving the fidelity of object’s internal textures remains
under-explored.

Creating novel view synthesis of an object’s internal
structure, ensuring that the exposed internal texture appears
realistic when sliced from any arbitrary angle, is particu-
larly challenging due to scarcity of training data. Current
3D datasets predominantly emphasize the overall geome-
try and surface texture of objects [6, 9, 19, 36], often lack-
ing details about their interiors. Acquiring data on inter-
nal structures typically requires specialized techniques such
as X-ray scans, CT imaging, or compiling multiple cross-
sectional images. Furthermore, when images are collected
by disassembling objects (e.g., cutting objects in half), only
partial internal structures are exposed. Reversing these ma-
nipulations to access other parts is often impractical, mak-
ing it difficult to infer the complete internal structure.

Existing methods for texture generation in 3D objects
[5, 7, 30] focus on generating surface textures for mesh
UV maps, primarily addressing the object’s external shell
and therefore are not applicable for internal modeling in
3DGS. Some recent studies [13, 17] have employed ad-hoc
inpainting on newly exposed regions after each editing step
to mitigate visual artifacts. However, this per-edit approach
can introduce inconsistencies across a series of transforma-
tions, and is unsuitable for real-time rendering. PhysGaus-
sian introduced a mechanism designed to enhance the vi-
sual quality of 3D models under deformation by internally
filling Gaussian particles[39]. This method discretizes the
opacity field onto a 3D grid and uses ray casting to iden-
tify and fill void regions based on opacity thresholds, with
each filled particle inheriting color and opacity from nearby
surface Gaussian kernels. Nonetheless, this approach relies
on the unrealistic assumption that internal textures resemble
surface textures, while real-world objects often have differ-
ent internal characteristics, causing inherited properties to
fall short of capturing realistic details.

Fortunately, many common objects possess symmetri-
cal features, allowing their cross-sectional views at consis-
tent angles to appear similar. For instance, slicing a wa-
termelon horizontally at different levels consistently reveals
similar patterns of skin, flesh, and seeds. Building on this
observation, we propose FruitNinja, an effective method
for generating 3D internal textures by using only a few
cross-sectional views as references. Our method synthe-
sizes the entire interior texture of an object without requir-
ing additional optimization after geometry edits or topology
changes. FruitNinja leverages a pre-trained diffusion model
to guide the synthesis of cross-sectional views using Score
Distillation Sampling (SDS)[27], thereby jointly training
cross-section and surface views. To address inconsistent ar-

tifacts from varying generated cross-sectional views, Fruit-
Ninja progressively optimizes reference views and applies
voxel-grid-based smoothing to seamlessly blend the overall
texture. As real-world objects are composed of millions of
atoms and molecules, we adopt the OpaqueAtom GS set-
tings inspired by AtomGS [22]. This overcomes two key
limitations of the original 3DGS algorithm: (1) the ten-
dency to optimize larger Gaussians, which limits the den-
sity of small Gaussian particles needed for stable training
and introduces artifacts during editing; and (2) limitations
in the GS ray-marching method, where blending front and
back Gaussians compromises modeling abrupt color transi-
tions (e.g., white flesh adjacent to green skin or red flesh in
watermelon slices).

Our contributions are summarized as follows:
• We introduce the first method for generating textures

for object interiors by progressively inpainting cross-
sectional views and applying voxel smoothing, enabling
real-time rendering of internal views.

• We propose an OpaqueAtom GS strategy for modeling
3D objects with realistic interior textures, allowing arbi-
trary slicing to reveal fine-grained details while overcom-
ing limitations of 3DGS, including instability from large
Gaussians and difficulty with sharp color transitions.

• We demonstrate that the proposed method effectively syn-
thesizes internal textures across common objects, achiev-
ing superior view quality during various geometric trans-
formations compared to existing methods, both qualita-
tively and quantitatively.

2. Related Work
2.1. 3D Representations

Various 3D representations—such as point clouds [33],
meshes [4], 3D voxel grids [24], and signed distance func-
tions (SDFs) [26]—each offers unique advantages for 3D
tasks. Recently, Neural Radiance Fields (NeRF) introduced
a breakthrough by implicitly encoding 3D scenes through
deep networks and volumetric rendering, achieving high-
quality reconstructions. Building on this innovation, some
research has focused on enabling customized geometry de-
formations based on NeRF. Methods such as NeRF-Editing
[42], Neural Impostor[21], and NeuPhysics[28] integrate
explicit mesh structures with implicit neural representa-
tions to facilitate intuitive and physically accurate manip-
ulations of 3D models. Alternatively, 3D Gaussian Splat-
ting [18] employs an explicit, point-cloud-based approach
using Gaussian kernels, offering faster and more easily ed-
itable representations. Techniques like GaussianEditor[8],
GSDeformer[14], and Mani-GS[10] enable user-guided
texture and geometry transformations by leveraging Gaus-
sian semantic tracing, cage-based deformation, and mesh
adaptation. Additionally, PhysGaussians[39] and VR-
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Figure 2. Method Overview. The input 3DGS is first transformed using opaque atomic Gaussians, and void regions within the object are
filled with raw particles. For each user-defined cut angle, a reference cross-sectional view is generated via SDS. Subsequently, exterior
Gaussians are iteratively masked out to render cross-sectional views, which are jointly trained with randomly selected external views. Each
reference cross-sectional view is continuously refined by applying SDS to the existing rendering, while voxel smoothing is applied every
N iterations to improve overall consistency.

GS[17] have introduced physics-based deformation meth-
ods based on 3DGS. AtomGS [22] enhances 3DGS by in-
troducing Atomized Proliferation to densify small, uniform
Gaussians in areas of fine detail, and Geometry-Guided
Optimization to align Gaussians with scene geometry, re-
ducing noise and sharpening edges. This approach en-
ables high-fidelity rendering and precise geometry recon-
struction, making it ideal for applications that require de-
tailed textures. Inspired by these capabilities, we adopt an
OpaqueAtom GS strategy to achieve high fidelity in fine-
grained interior textures of 3D models.

2.2. 3D Inpainting

3D inpainting addresses the challenge of filling missing
or masked regions in 3D spaces by generating plausible
geometry and textures. Early inpainting works predom-
inantly focus on either geometry completion or texture
synthesis, often treating these aspects separately. For in-
stance, methods like [38, 44] concentrate on reconstruct-
ing the underlying geometric structures, while others meth-
ods like [5, 7, 16, 30, 34] target the generation of realistic
textures for the completed regions. Recent advancements
have enabled the simultaneous inpainting of both seman-
tic content and geometric structures, effectively address-
ing the interplay between these two components. NeRF-
based approaches have leveraged features from models like
CLIP[29] to learn and incorporate 3D semantics into the
inpainting process, enhancing the contextual relevance and
realism of the completed regions[37]. Additionally, sev-

eral methods have explored inpainting techniques within
the framework of 3DGS, benefiting from GS’s render-
ing efficiency and high-quality reconstruction capabilities
[8, 13, 23]. However, previous inpainting methods are
mainly designed for static scenes, which limits their effec-
tiveness in dynamic settings where untrained interior areas
may be exposed. In this paper, we propose a method fo-
cused on inpainting internal textures to overcome these lim-
itations.

3. Method

In this section, we outline our approach for generating in-
ternal textures for 3DGS objects to ensure visual coherence
under arbitrary geometric modifications. Our method in-
volves three steps: first, we populate the interior of the 3D
object with raw Gaussian particles (Section 3.1.2). Next, we
apply SDS optimization to the input cross-sectional views
to produce an initial set of cross-sectional reference views
(Section 3.2). Then, we use these reference views, along
with surface views, to jointly train the 3DGS model with
OpaqueAtom GS settings (Section 3.4), iteratively refining
the reference views set and applying voxel-based smoothing
to enhance texture consistency (Section 3.3).

3.1. Preliminary

3.1.1 3D Gaussian Splatting

3D Gaussian splatting represents a 3D scene as a set of
N Gaussians G = {g1, g2, . . . , gN}. Each Gaussian gi is
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characterized by its position xi ∈ R3, a covariance matrix
Σi ∈ R3×3 that describes its shape and orientation, color
coefficients ci ∈ Rk, and an opacity value αi ∈ R. To ren-
der the scene from a new viewpoint, each Gaussian is pro-
jected onto the camera plane by applying a viewing trans-
formation, which includes adjusting its covariance matrix
Σi to account for perspective. For each pixel, the contri-
butions from overlapping Gaussians are blended. The in-
fluence σi of Gaussian gi on a pixel is computed based on
its opacity αi and the Gaussian function evaluated at that
pixel. The final pixel color C is obtained by front-to-back
compositing of each Gaussian’s contribution:

C =

N∑
i=1

ci σi

i−1∏
j=1

(
1− σj

)
. (1)

3.1.2 Internal Gaussians Initialization

Following the internal filling mechanism from PhysGaus-
sian, we fill the 3D object’s internal regions with Gaussian
primitives. To identify empty internal regions, we first con-
struct a continuous 3D opacity field d(x) by summing the
contributions of all Gaussians:

d(x) =
∑
p

σp exp

(
−1

2

(
x− xp

)⊤
Σ−1

p

(
x− xp

))
. (2)

This field is discretized onto a 3D grid, and candidate voxels
for internal filling are identified where the opacity is below
a predefined threshold σth. For each voxel, we cast rays
along the six principal axes to detect transitions from low-
to high-opacity regions, marking these voxels for internal
filling. Each identified voxel is then initialized with a pre-
defined number of Gaussian primitives with uniform color
and opacity. We set each new Gaussian’s covariance matrix
to be spherical with a randomly assigned scale capped by a
maximum value (e.g., 10−3 times the object’s overall size).

3.2. Conditioned Cross-section Inpainting

As discussed in Section 1, obtaining comprehensive cross-
sectional data across arbitrary cutting angles is challenging.
Fortunately, cross-sectional images of objects from canon-
ical cut angles is easier to acquire. For example, people
commonly slice an orange horizontally or vertically, mak-
ing these views more accessible. Our approach leverages
these canonical cross-sectional views to generate the com-
plete internal texture efficiently. Specifically, our method
relies on a set of user-specified cutting angles, defined by a
cutting plane

ax+ by + cz + d = 0 (3)

where x, y, z are 3D coordinates, and a, b, c, d define the
plane’s orientation and position. These user-defined cross-
sections are categorized based on the intrinsic characteris-
tics of the 3D object as illustrated in the Figure 3, which

allows us to apply different text conditions for the diffu-
sion prior. We denote the set of user-defined cross-sectional
views as {V1, V2, . . . , Vk}, where each Vi corresponds to a
specific cutting plane.

Figure 3. Example of user-defined cross-sections: Left: Vertical
cross-sections through the watermelon center, spaced by a spec-
ified rotational angle. Right: Horizontal cross-sections, evenly
spaced, slicing the watermelon at incremental depths. Note that
these input cutting angles are required only during training; once
trained, the 3DGS model can be sliced and rendered at arbitrary
angles without additional optimization.

For each cut angle Vi defined by Equation 3, we cre-
ate a corresponding 3D mask to retain only the Gaussian
primitives close to the cutting plane. During rendering, we
mask out the exterior and reveal the slice plane. To ac-
count for the varying geometry of rendered cross-sections,
we first render RGB images and generate estimated depth
maps using a pre-trained depth estimator[1]. These depth
maps serve as additional conditioning input to a Stable Dif-
fusion model. We observe that directly optimizing 3DGS
parameters for rendered Vi using SDS loss is inefficient in
the beginning. During early iterations, many internal Gaus-
sians are untrained, resulting in rendered views that lack
distinctive features and hinder SDS convergence. To ad-
dress this issue, we adopt a two-stage optimization pro-
cess. In the first stage, we independently perform mul-
tiple SDS optimizations on each rendered cross-sectional
views V = {Vi | i = 1, . . . , k}. For each Vi, we employ
the depth-conditioned Stable Diffusion model guided by
cut-angle specific text prompts (e.g., ”the horizontal cross-
sectional view of a watermelon”). This tailored prompt-
ing guides the diffusion model to generate images Iplabel that
align more closely with the orientation and characteristics
of each cross-section. The SDS loss can be formulated as:

LSDS = Et,ϵ

[
w(t) ∥ϵ− ϵθ (I

p
label + σtϵ, t, e, d)∥

2
]
, (4)

where Iplabel is the current reference image at viewpoint p,
ϵ ∼ N (0, I) is Gaussian noise added at timestep t, σt is
the noise level corresponding to timestep t, ϵθ is the noise
predicted by the diffusion model parameterized by θ, e is
the text embedding of the cut-angle specific prompt, d is the
depth map corresponding to the cross-sectional view, and
w(t) is a weighting function that balances the contributions
from different timesteps.
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In the second stage, we use these optimized cross-
sectional reference images to update the 3DGS parameters
by minimizing the reconstruction loss:

Lrecon = αLMSE + (1− α)LSSIM, (5)

where α is a weighting factor, LMSE is the Mean Squared
Error between the rendered images IpRGB and the reference
images IpREF and LSSIM is the Structural Similarity loss [15]
computed between the same images. This combined loss
leverages both pixel-wise differences and perceptual simi-
larities. To preserve the object’s external appearance during
optimization on cross-sectional views, we also randomly se-
lect 10–20 surface views rendered from initial input 3DGS
and jointly train them with V .

Figure 4. Images generated by stable-diffusion-2-depth[31]

Fine-tuning with DreamBooth We noticed that Stable
Diffusion models often fail to generate high-quality cross-
sectional images as shown in Figure 4, likely due to the
scarcity of such images in the training data. Therefore,
we optionally fine-tune the diffusion model using a small
set (1–6) of cross-sectional images and the DreamBooth
method [32]. Each image is paired with an angle-specific
text prompt (e.g., ”A vertical cross-section of an object”)
to guide generation. As in DreamBooth, we apply a class-
specific prior preservation loss to encourage diverse gener-
ation within each category.

3.3. Progressive Texture Refinement

Training 3DGS with reference cross-sectional views (see
Section 3.2) may introduce spatial inconsistencies. For ex-
ample, as shown in Figure 5, a vertical slice of a water-
melon model might display a black seed at a specific lo-
cation, while a horizontal slice through the same region
shows only red flesh. To mitigate this, we employ an it-
erative refinement process that jointly optimizes rendering
and generation, similar to the fine-tuning stage in Dream-
Gaussians [35]. After each iteration, we render the current
cross-sectional views V = {Vi | i = 1, . . . , k} from the
trained 3DGS model, then we apply a few additional opti-
mization steps for each reference cross-sectional view using
SDS (Equation 4). We repeat this process until the recon-
struction losses for all slices converge to below a predefined
threshold ϵ. This iterative refinement ensures spatial con-
sistency across the object’s cross-sections by harmonizing

Figure 5. Within the intersected 3D region, the vertical cross-
section (top) highlights a seed, while the horizontal cross-section
(bottom) depicts the surrounding flesh, which introduces conflict-
ing training signals.

textures from the trained 3DGS with features from the diffu-
sion model. The algorithm converges when all slices are in
agreement, effectively resolving inconsistencies introduced
by independently optimized 2D references.

Voxel Smoothing Due to the discrete nature of input
cross-sectional slices V , some Gaussian primitives are not
covered by the generated masks in Section 3.2, leaving them
untrained and potentially reducing visual fidelity when they
are exposed. To avoid further optimization during ren-
dering, we construct voxel grid over 3DGS and perform
smoothing operation for each voxel cell during a predefined
interval (e.g., 30–40 iterations). Specifically, untrained
Gaussians are assigned colors using a distance-weighted av-
erage of nearby trained Gaussians:

C =

∑
i wi · Ci∑

i wi
(6)

Here, Ci represents the color of each nearby trained Gaus-
sian, and wi is the inverse distance weight based on the
Euclidean distance di between the untrained Gaussian and
each trained Gaussian within the same voxel. The grid res-
olution is chosen empirically to maintain visual quality, en-
suring that each voxel contains fewer than 1% of the total
particles. This approach preserves fine texture details while
promoting color consistency throughout the model.

3.4. Opaque Atomic Gaussian Particles

To ensure stable training and detailed texture representa-
tions, we employ the OpaqueAtom configuration, which in-
corporates two critical constraints: atomic clipping of Gaus-
sian sizes and uniform high opacity across all Gaussians.

Atomic Clipping 3DGS often optimizes for larger Gaus-
sian primitives during training. However, when these Gaus-
sian particles grow excessively large, they may overlap
multiple cross-sectional regions of the 3D object. Since
cross-sectional views typically capture fine details in the
object’s texture, this overlap forces 3DGS to reconcile con-
flicting representations from various perspectives. Conse-
quently, the training process becomes inefficient and may
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Figure 6. Qualitative comparison with PhysGaussian and 2D inpainting using stable-diffusion-2-depth[31] (which requires ∼30s for 70
DDIM sampling steps per view). 3DGS from FruitNinja shows better texture consistency and visual quality without any optimization.

fail to converge. Besides, large Gaussians lack the spatial
resolution needed to represent fine-grained textures accu-
rately and limit precise geometry edits (e.g., slicing a single
large Gaussian is not feasible). To counter these, we con-
strain Gaussian sizes following the approach inspired by
AtomGS [22] during training. Specifically, we cap each
Gaussian’s scale at a minimal fraction (e.g., 1/3,000) of
the object’s dimensions. This fine-grained control preserves
texture details for stable training and allows more precise
geometric edits.

Uniform Opacification 3DGS renders images by blend-
ing contributions from all Gaussians along each ray, includ-
ing those behind the surface (see Section 3.1.1). While this
approach efficiently models static 3D objects, it is not re-
liable in interactive scenarios where geometric changes or
user edits alter the ordering and visibility of Gaussian par-
ticles dynamically. Particles in the back can unintentionally

influence the foreground, leading to unrealistic color distri-
butions. Thus, we assign full opacity to all Gaussian parti-
cles to maximize the contribution of front-most Gaussians
to the rendered image. This adjustment accurately models
opaque materials and ensures that each Gaussian particle
faithfully reflects the real-world appearance of the material
it represents during geometric deformation.

4. Experiment

4.1. Implementation Details

We build upon the original 3DGS implementation. For
each object, we define one or two types of cross-sections
(primarily horizontal and vertical) as shown in Figure 3.
Horizontal slices are evenly spaced vertically, and verti-
cal slices are arranged radially around the central axis at
equal angular intervals. Each training iteration randomly
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selects 20 surface appearance views rendered from the orig-
inal 3DGS reconstruction. We use a 512 × 512 × 512 3D
grid for voxel smoothing. For each reference view, we ini-
tially apply 20 SDS optimization steps for generation, fol-
lowed by 3–4 refinement steps per iteration, as detailed in
Section 3.3. Training typically required between 120 and
200 iterations. Optionally, we fine-tuned the stable diffu-
sion model [31] using 1 to 4 collected cross-sectional views
with DreamBooth[32], as specified in Section 3.2.

Dataset To evaluate our method, we collected a dataset
comprising six common objects with internal textures dis-
tinct from their surface appearances. The dataset includes a
watermelon, apple, orange, red velvet cake, loaf bread, and
pomegranate. For each object, we captured 160–200 sur-
face images from various angles for initial 3D reconstruc-
tion via 3DGS and 1-–4 cross-sectional images (horizontal
and/or vertical) online which can be used for fine-tuning (as
described in Section 3.2). We plan to release all datasets
and code upon publication.

Figure 7. Extensive results. Each item is cut into multiple pieces
arbitrarily, showcasing how the cross-sectional textures align con-
sistently across slices.

4.2. Qualitative Comparisons

To the best of our knowledge, no prior work has specifi-
cally addressed the inpainting of an object’s internal texture
for interactive 3D editing use cases. Therefore, we compare
our method to two baselines: (1) the internal filling logic
from PhysGaussian and (2) a 2D inpainting approach using
a depth-conditioned Stable Diffusion model [31], akin to the
ad-hoc inpainting methods employed in VR-GS [17] and
Infusion [23]. Specifically, we apply identical customized
cuts to objects trained using both our method and the orig-
inal PhysGaussian internal filling logic, then evaluate the
exposed internal textures from two distinct camera angles.
For the 2D inpainting baseline, we render views from these
same camera angles without internal filling and inpaint the
textures directly using the Stable Diffusion model with rel-
evant text prompts, such as ’orange, partially cut showing
internal structure and flesh’.

As illustrated in Figure 1, the first column presents

the input 3DGS, while the second column highlights the
cut-off sections of each object. The results indicate that
PhysGaussian’s generated textures lack realism, appearing
overly blurred and unnatural. Directly applying inpainting
also struggles to produce faithful views for edited geom-
etry structures, as aligning textures accurately with com-
plex, user-edited shapes is challenging. For example, in the
case of the apple, capturing the intricate details of the core,
seeds, and uneven inner surface is difficult, especially with
cuts made at arbitrary angles or depths. 2D inpainting can
also lead to visual inconsistency, as seen with objects like a
red velvet cake, where different angles reveal varying tex-
tures when inpainted. By comparison, our method gener-
ates textures that are highly aligned with the customized cut
angles and preserve high visual fidelity. Additionally, 3D
models generated by FruitNinja can be rendered in real-time
while the ad-hoc inpainting method requires 70 diffusion
sampling steps (∼30s), which limits their use in interactive
applications.

Figure 7 presents extensive results across additional cus-
tomized geometry modifications, showing that our gener-
ated textures consistently maintain high visual fidelity un-
der various cut angles.

4.3. Quantitative Evaluation

Table 1. Higher CLIP scores indicate better semantic alignment,
while lower KID and FID scores signify superior texture fidelity.

Method CLIP Score ↑FID ↓KID ↓ x10−3

PhysGaussian 24.6 520.1 816.4
2D Inpainting (Fine-tuned) 32.3 176.2 224.5
2D Inpainting 25.1 314.2 536.3
Ours 33.1 209.2 323.7

Table 1 presents a quantitative comparison of our pro-
posed method against PhysGaussian and a 2D ad-hoc
inpainting approach, evaluated on only canonical cross-
sections of 3D objects (e.g., horizontal and vertical slices
for watermelon). For horizontal cross-sections, we apply
random cuts aligned with the chosen orientation to extract
the corresponding views. Vertical slices are arranged radi-
ally around the central axis at random angles (similar as Fig-
ure 3). We report the CLIP score[11] as evaluation metrics,
which measures the compatibility between image-caption
pairs using category-specific prompts, such as ’the vertical
cross-section of a watermelon’. Additionally, we use the
collected real-world canonical cross-sections images men-
tioned in 4.1 to compute the average KID[2] and FID[12]
scores for each rendered view per object. Our method
achieves the highest CLIP scores, demonstrating supe-
rior semantic alignment with the intended cross-sectional
prompts and more accurate texture generation. Moreover,
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the KID and FID scores of our approach are approximately
60% better than those of PhysGaussian and are comparable
to the 2D inpainting method (with fine-tuning).

Table 2. Higher cosine similarity indicates better consistency

Method CLIP Score ↑Cosine Similarity ↑
PhysGaussian 23.9 0.89
2D Inpainting 27.8 0.87
Ours 29.1 0.96

To evaluate the texture consistency, we conduct exper-
iments by slicing 3D objects at 120 arbitrary, random an-
gles. Then we compute the average pairwise cosine similar-
ity of CLIP-encoded image features in Tab 2. Using object-
specific prompts, such as ‘the cross-section of a ⟨ object ⟩‘,
we also report the average CLIP score. Results indicate that
textures generated by FruitNinja achieve the highest CLIP
scores and cosine similarity, demonstrating superior consis-
tency while maintaining fidelity.

5. Ablation

Figure 8. Without continuous texture refinement, reference cross-
sectional views often exhibit spatial conflicts as described in Fig-
ure 5, leading to noisy and unrealistic textures in the trained 3DGS
models as highlighted in the left column.

Progressive Texture Refinement To assess the neces-
sity of progressive texture refinement (as described in Sec-
tion 3.3), we performed an ablation study. Initially, the 3D
model was trained using reference 2D views from prede-
fined cross-sectional angles. Texture refinement was then
applied 60 iterations on the two selected objects (a water-
melon and an apple). Figure 8 illustrates horizontal cross-
sectional views of both objects with (right) and without tex-
ture refinement (left). Without refinement, the rendered
views exhibit unrealistic textures, characterized by noisy
pixels and blurred edges around the seeds, which obscures
their shapes and introduces artifacts. These imperfections
degrade the visual fidelity of the seeds, making them appear
indistinct and unnatural. In contrast, rendered views after

refinement show improved visual realism, reduced noise,
and enhanced multi-view consistency across cross-sectional
perspectives.

Figure 9. OpaqueAtomGS (right-most) achieves more stable con-
vergence and sharper texture transitions.

Opaque-Atomic Gaussians To validate the effective-
ness of the OpaqueAtomGS strategy in Section 3.4, we con-
ducted ablation studies under three configurations: (1) with-
out atomic clipping, (2) without uniform and high opacity,
and (3) with full OpaqueAtomGS setting. Each configura-
tion’s 3D model was trained for the same number of itera-
tions. As illustrated in Figure 9, without atomic clipping,
the 3D model struggled to converge and failed to gener-
ate realistic textures that align with the references. Without
high opacity, the model could not accurately represent the
abrupt color transitions at the interface between the white
flesh and green surface in the sliced watermelon.

Figure 10. Without voxel smoothing (left), Gaussians that are not
exposed at the forefront of the cross-sectional plane exhibit ran-
dom and noisy colors, which reduces overall visual fidelity.

Voxel Smoothing Figure 10 shows that voxel smooth-
ing significantly reduces color distortion in untrained Gaus-
sians, enhancing fidelity for internal textures in cross-
sectional views outside the training set.

6. Conclusion
We present FruitNinja, a novel method for generating real-
istic internal textures for 3DGS objects, enabling real-time
rendering of interior views during unconstrained geomet-
ric and topological changes. Experimental results show that
FruitNinja significantly improves texture realism and coher-
ence, establishing its effectiveness for immersive 3D appli-
cations.
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Appendix
A. Input Cross-Section Specifications
In Section 3.2, we introduced the use of user-defined cross-
sections for generating internal textures in Figure 3. Here,
we present the detailed cross-sectional angles used for train-
ing the six objects in our experiments. We used two cross-
section types for objects in Fig. 11 due to their more com-
plex internal structures, whereas the objects in Fig. 12 used
only a single type. Additional visual results for objects af-
ter arbitrary geometric transformations demonstrate texture
coherence, even when cuts are misaligned with the trained
angles.
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Figure 11. For the four objects shown above (watermelon, apple, orange, and pomegranate), we use two types of input cross-sections: (1)
Vertical Cross-sections: 30 slices evenly spaced in angle, spanning a full rotation around the central axis of the object (as illustrated on
the second column). (2) Horizontal Cross-sections: We use 40 horizontal slices (as shown in the third column), evenly spaced along the
vertical axis to cover the entire object.

Figure 12. For bread and red velvet cake, we use only vertical cross-sections: (1) Bread: 60 evenly spaced vertical cross-sections (second
column) covering the object. (2) Red Velvet Cake: 30 vertical cross-sections, evenly distributed and radially arranged around the central
axis, spanning a full rotation of the object.
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