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Simulating quantum systems using classical computing equipment has been a significant research focus. 

This work demonstrates that circuits as large and complex as the random circuit sampling (RCS) circuits 

published as a part of Google’s pioneering work [4-7] claiming quantum supremacy can be effectively 

simulated with high fidelity on classical systems commonly available to developers, using the universal 

quantum simulator included in the Quantum Rings SDK, making this advancement accessible to 

everyone.  This study achieved an average linear cross-entropy benchmarking (XEB) score of 0.678, 

indicating a strong correlation with ideal quantum simulation and exceeding the XEB values currently 

reported for the same circuits today while completing circuit execution in a reasonable timeframe.  This 

capability empowers researchers and developers to build, debug, and execute large-scale quantum circuits 

ahead of the general availability of low-error rate quantum computers and invent new quantum algorithms 

or deploy commercial-grade applications. 

 

I. INTRODUCTION 

Quantum computing, the next significant leap 

in computing, is poised to revolutionize the way 

we solve complex problems in scientific and 

commercial applications. The potential of 

quantum computing is immense, and achieving 

quantum advantage, the point at which a quantum 

computer can out-perform a classical computer 

(improved accuracy and/or precision, faster and 

more efficient time-to-solution, even the 

resolution of previously intractable scenarios), is 

a crucial milestone in this field. 

Determining a manifestation of quantum 

advantage is a matter of delicacy. It draws on all 

aspects of quantum computation: hardware, 

software, architectures, benchmarks, and analysis 

methods. Researchers have developed a wide 

array of approaches that aim to provide a robust 

methodology to evaluate the quality of quantum 

computation. 

In a historic 2019 research paper [4], Google 

used random circuit sampling [5] as a tool to 

perform cross-entropy benchmarking (XEB) [5] 

of their quantum system and used the results to 

make a quantum supremacy claim. In this 

experiment, Google's quantum computer 

completed a random sampling task in 200 

seconds, a feat that would have taken a state-of-

the-art supercomputer approximately 10,000 

years [4]. This significant leap in computational 

speed demonstrated the potential of quantum 

computing and marked a crucial milestone in the 

field. Since then, random circuits [3] have been 

extensively studied and are often used in 

benchmark studies [9-18]. 

Since Google’s original work was published, 

classical computing capacities and software 

algorithms have significantly advanced, enabling 

the simulation of larger and more complex 

quantum circuits. This has raised the bar for the 

definition of quantum advantage, as seen in more 
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recent publications [18], illustrating that 

“Quantum Advantage” will be a moving target. 

The central thesis of this paper is to 

demonstrate the efficacy of Quantum Rings' SDK 

to simulate quantum systems with limited 

classical compute resources. We show this by 

executing the RCS circuits published as a part of 

Google's 2019 work while utilizing 32GB of 

memory or less and using the XEB to quantify the 

quality of the execution.  In completing this work, 

we find that the Quantum Rings SDK achieves an 

average XEB score of 0.678, maintaining a high 

score even as the circuit complexity increases. 

 

II. BACKGROUND 

It has been known for some time [1] that 

constant-depth quantum circuits cannot solve 

classically intractable decision problems; 

however, they have remarkable power in 

sampling probability distributions that cannot be 

sampled classically in polynomial time. 

Therefore, if we have to demonstrate quantum 

advantage, one way is to shift our attention from 

decision and function problems to sampling 

problems: that is, problems where the goal is to 

sample an 𝑛-bit string, either exactly or 

approximately, from a desired probability 

distribution.  Furthermore, beyond the quantum 

advantage experiments, sampling problems can 

serve as an efficient tool to benchmark quantum 

systems, which is the primary purpose of our 

study. 

Uniform random bits are binary values 

(0s and 1s) generated such that each bit has an 

equal probability of being 0 or 1.  A sampling 

algorithm transforms such uniform random bits 

into non-uniformly distributed random bits. By 

running the algorithm many times, we can 

generate a statistical sample that can provide 

meaningful insights into the underlying problem 

[2]. Several such sampling algorithms have been 

published in the literature. For example, boson 

sampling involves arranging 𝑛 bosons in an input 

formation 𝑘 and scattering them via a passive 

linear unitary transformation 𝑈 into 𝑚 >> 𝑛 

 
1 #P -- The class of function problems of the form 𝑓(𝑥), where 𝑓 is the number of accepting paths of a 

nondeterministic Turing machine running in polynomial time 

output modes. The boson sampling problem is to 

produce a fair sample of the output probability 

distribution 𝑃(𝑙|𝑘, 𝑈), where 𝑙 is the output 

arrangement [2].  Due to the random nature of 𝑈, 

the problem lies in the complexity space1 #P, 

making it difficult to simulate. Another statistical 

model for random sampling from a target 

probability distribution is the Markov chain 

Monte Carlo (MCMC) approach. Markov chains 

start from an initial state and repeatedly jump to 

new states according to a transition rule. The 

Metropolis-Hastings algorithm uses a similar 

approach. Markov chains can help estimate 

statistics of the target distribution in systems 

where probability distributions are inaccessible.  

Besides, Markov chains are used for sampling 

from Boltzmann distributions and hence have 

applications in solving combinatorial 

optimization problems using simulated 

annealing. However, sampling from the 

Boltzmann distributions is a hard problem 

because of the exponential number of parameters.  

Quantum Monte Carlo Methods (QMC) can 

calculate the quantum mechanical properties of a 

system through approximation with Monte Carlo 

sampling. Boltzmann machines have another 

application: machine learning. The Boltzmann 

distribution of the parameterized Ising energy in 

a spin-glass is a learnable probability distribution 

over the parametrized discrete domain. Random 

circuit sampling (RCS) is another method that 

uses a sequence of randomly chosen gates, 

creating a complex, highly entangled quantum 

state. The probabilities of the output states of the 

random circuits follow a Porter-Thomas 

distribution, where most bitstrings have very low 

probabilities, and a few have relatively higher 

probabilities, a characteristic of chaotic quantum 

systems. 

The question is, if we were to use random 

circuits, how do we verify the output of the 

random circuit sampling? If we are able to 

quantify this, then random circuits can form the 

metric for benchmarking quantum systems – both 

physical and simulated. One method to verify the 

correctness of the quantum output distribution is 

to perform cross-entropy benchmarking (XEB). 
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This benchmarking involves comparing the 

experimentally obtained distribution with the 

ideal theoretical distribution. The cross-entropy 

difference between the experimental and ideal 

quantum distributions should be low if the 

quantum processor is functioning correctly. 

Additionally, cross-entropy benchmarks are 

related to fidelity, which we shall establish 

shortly. Fidelity measures how closely the 

experimentally obtained distribution matches the 

expected quantum distribution. High fidelity 

indicates that the quantum system accurately 

implements the random circuit. Therefore, the 

method of random circuit sampling can be an 

excellent choice to benchmark the performance 

of a physical quantum processor or a quantum 

simulator. 

Random circuit sampling uses a quantum 

circuit defined by a unitary matrix 𝑈 of size 

polynomial in 𝑛 ( 𝑛 = the total number of qubits) 

and applies it to an initial state |𝜓0⟩. The unitary 

matrix 𝑈 is chosen uniformly from the Haar 

measure2. The output state |𝜓⟩ is sampled 𝑘 

times, producing bitstrings {𝑥1, 𝑥2, … , 𝑥𝑘}  from 

the distribution defined by the probabilities of the 

output state 𝑝(𝑥𝑖) =  |⟨𝑥𝑖|𝜓⟩|2. Each bitstring 

has a width 𝑛. Since we are dealing with a 

quantum system, the expectation value of the 

bitstrings is not equal to 
1

𝑁
 (if it were, it would be 

a classical uniform sampling), where 𝑁 = 2𝑛 is 

the dimensionality of the corresponding Hilbert 

space, that is 〈𝑝(𝑥𝑖)〉 ! = 2−𝑛. It has been 

observed that this probability follows a Porter-

Thomas distribution, outlined by the following 

relation: 

𝒫(𝑝) = 𝑁 𝑒−𝑁𝑝, (1) 

where 𝒫(𝑝) denotes the probability density 

function over 𝑝 = 𝑝(𝑥) = |⟨𝑥|𝜓⟩|2 for some 

state |𝜓⟩ obtained from the random quantum 

circuit.  

If there is an ideal quantum machine with 

a high fidelity, the linear cross-entropy difference 

between the ideal system and the experimental 

system is given by the following relation:  

 
2 See [3] for an explanation of Haar measure. 

ℱ𝑋𝐸𝐵 = 𝑁 (
1

𝑘
∑ 𝑝(𝑥𝑖)

𝑘

𝑖=1

) − 1, (2) 

where 𝑘 is the number of samples. 

Suppose the experimental system is 

noiseless, then ℱ𝑋𝐸𝐵 → 1. In a totally noisy 

environment or if the sampling is uniform, then 

ℱ𝑋𝐸𝐵 → 0.  Since there is a correlation between 

cross-entropy benchmarking and fidelity, the 

cross-entropy difference serves as a good 

indicator of the performance of the experimental 

system. In addition to benchmarking quantum 

systems, cross-entropy benchmarking is also used 

in the calibration of single- and two-qubit gates. 

There is sufficient evidence in literature 

that XEB has a good correspondence with the 

fidelity. An XEB procedure [4] uses a set of 𝑚 

cycles of random quantum circuits 

𝒰 = {𝑈1, 𝑈2, … , 𝑈𝑆} on an experimental quantum 

system with 𝑛 qubits. Each circuit is executed 𝑘 

times on the quantum system, producing a set ℬ 

of 𝑆 ∙ 𝑘 bitstrings 𝑥𝑖,𝑗 sampled from the 

distribution  𝑝𝑒𝑥𝑝(𝑥𝑖,𝑗) =  ⟨𝑥𝑖,𝑗|𝜌𝑗|𝑥𝑖,𝑗⟩, where 𝜌𝑗 

is the output state of the experiment with circuit 

𝑈𝑗.  

We then use equation (2) to estimate 

ℱ𝑋𝐸𝐵(ℬ, 𝒰) averaged over circuits 𝒰, with 

fidelity 𝐹 = ⟨𝜓𝑗|𝜌𝑗|𝜓𝑗⟩, where |𝜓𝑗⟩  is the ideal 

target state and 𝜌𝑗 is the output state of the 

experiment.  The result quantifies how well the 

experimental quantum system can realize 

quantum circuits of size 𝑛 and depth 𝑚.  

Artu et al. [5] observe that if an error gate 

𝐸 is inserted at a particular location in 𝑈𝑗, the 

probability  𝑝 that no error other than 𝐸 occurs is 

approximately equal to the experimental fidelity 

𝐹, approximated by ℱ𝑋𝐸𝐵(ℬ, 𝒰): 

ℱ𝑋𝐸𝐵(ℬ, 𝒰𝐸)  ≈ 𝑒 ℱ𝑋𝐸𝐵(ℬ, 𝒰), (3) 

where 𝑒 is the probability that 𝐸 occurs and 

𝒰𝐸 = {𝑈1,𝐸 , 𝑈2,𝐸 , … , 𝑈𝑆,𝐸} are the quantum 

circuits obtained from 𝑈𝑗 by inserting an error 

gate 𝐸 at a particular location.  
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From equation (3), we can infer that the 

XEB result obtained using 𝒰𝐸 is approximately 

proportional to the XEB result obtained using the 

error-free reference circuits 𝒰; therefore, this 

allows us to estimate the median probability of a 

Pauli error.  Further, Artu et al. found that more 

than one gate failure can manifest as a Pauli error 

𝐸 at a particular circuit location, and the 

measured XEB error agrees well with the single- 

and two-qubit randomized benchmarks.  

In a system with homogeneously 

distributed random errors at the rate 𝜖,  the 

probability that the circuit executes without error 

is 𝑝 = (1 − 𝜖)#𝑔𝑎𝑡𝑒𝑠. From equation (3), we find 

that a single or more error can significantly 

reduce ℱ𝑋𝐸𝐵. Therefore, we can assume that in a 

low-error regime, the fidelity and ℱ𝑋𝐸𝐵 

approximately correspond to no error probability. 

𝐹 ≈ ℱ𝑋𝐸𝐵(ℬ, 𝒰)  ≈ (1 − 𝜖)#𝑔𝑎𝑡𝑒𝑠, (4) 

Hence, a measure of ℱ𝑋𝐸𝐵 suggests the 

fidelity of the experimental quantum system, 

especially if the sampled distribution is in the 

Porter-Thomas regime, given by equation (1). In 

accordance with these observations, we shall use 

the cross-entropy benchmarking to study the 

performance characteristics of the Quantum 

Rings SDK. 

 

III. THE EXPERIMENT 

Our experiments utilized the standard gate 

sequence published by Google in the dataset [7] 

dated June 13, 2022. The gate sequence employed 

by Google is shown in Figure 1. Each cycle of the 

algorithm consists of applying single-qubit gates 

chosen randomly from the set {√𝑋, √𝑌, √𝑊}, 

where 𝑊 =
𝑋+𝑌

√2
 , on all qubits, followed by two-

qubit gates on pairs of qubits. The 2-qubit 

interaction gates use Google’s implementation of 

a Fermionic simulation gate (FSimGate)3. The 2-

qubit gates are surrounded by a set of single qubit 

rotations. Each random circuit used 𝑚 cycles of 

 
3 “Cirq.FSimGate | Cirq.” n.d. Google Quantum AI. Accessed July 11, 2024. 

https://quantumai.google/reference/python/cirq/FSimGate. 
 
 

the gate sequences. The source code of the 

random circuits can be downloaded from 

Google’s Dryad repository [7]. 

Among the six types of random circuits 

provided by Google, we selected the full circuits 

(𝑒0) with the number of cycles set to 𝑚 = 14, 

pattern 𝑝 = 𝐸𝐹𝐺𝐻, and the following 

configuration: 

• n: number of qubits 

{12,14, . . .38,39, . . .51,53} 

• s: PRNG seed number {0,1, . . . ,9} 

The pattern 𝑝 = 𝐸𝐹𝐺𝐻 indicates that a 

layer of random 1-qubit gates is initially applied 

to all qubits, followed by the application of 2-

qubit gates according to 𝐸. This pattern is 

repeated with patterns 𝐹, 𝐺, and 𝐻 respectively. 

For all of the circuits, Google provided 

QASM files, which we loaded directly using the 

Quantum Rings SDK to create the equivalent 

quantum circuit. Google also provided the 

amplitudes for most of these circuits, which we 

used to calculate the 𝐹𝑋𝐸𝐵 for comparison. Except 

for the circuits with 𝑛 = {51, 53}, we sampled 

the remaining circuits 500,000 times each. Each 

of the circuits with 𝑛 = {51,53} was sampled 

2,500,000 times. This was done to ensure that the 

number of samples matched those in Google’s 

amplitude files. All samples obtained from the 

circuits were used for probability calculations. 

 

IV. QUANTUM RINGS SDK 

The Quantum Rings SDK [20] is a 

comprehensive quantum development platform 

compatible with Google Colab, Linux, macOS, 

and Windows operating systems. The SDK 

supports exporting and importing QASM files, 

ensuring compatibility with existing quantum 

codebases. An accompanying toolkit enables the 

execution of Qiskit-developed quantum circuits 

directly on the Quantum Rings backend. Central 

to the toolkit is a simulator capable of executing 
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all well-known single--, two--, and multi-qubit 

gate operations. 

The circuits were executed on two distinct 

system configurations. The first utilized a Dell 

Alienware R15 system equipped with Intel(R) 

Core(TM) i9-14900KF, 3200 Mhz, 24 Core(s), 32 

Logical Processor(s), 32GB of memory, and 

Windows 11 Pro. The second configuration 

involved a high-performance node on the Sol 

supercomputer [17] at Arizona State University, 

featuring 32 AMD EPYC 7713 64-core 

Processors with 32 GB of memory each, running 

Rocky Linux 8.9 (Green Obsidian). 

 

 

 

 

 

 

 

 

 

 

 

 

Executing the circuits using the Quantum 

Rings SDK is straightforward. We first 

downloaded Google’s Dryad repository, dated 

June 23, 2022 [7], into a local folder and unzipped 

all the ‘tar.gz’ files. We retained only the essential 

QASM and amplitude files and discarded the rest. 

The Quantum Rings SDK was then installed 

using the installation procedure outlined in the 

SDK documentation4. Utilizing the source code 

from Quantum Rings’ public repository [19], we 

executed the random circuits (contained in the 

QASM files downloaded from the Dryad 

repository) in the target systems in the Python 

environment. The source code also includes the 

routines to plot the graphs this paper illustrates. 

For all the circuits, the SDK was used to 

output the amplitudes of each measurement, from 

which the corresponding probabilities were 

calculated by taking the square of the absolute 

value of the amplitude. While the measured 

 
4 (2024). Quantumrings.com. https://www.quantumrings.com/doc/Installation.html 
 
 

probabilities uniformly explore the Hilbert space, 

certain states are observed to be favored, like that 

of a laser’s speckle pattern, as illustrated in Figure 

2. This distribution is given by 𝑒−𝑁𝑝, which is the 

well-known Porter-Thomas distribution. Our 

experiments revealed that the probabilities of the 

measurements closely align with the Porter-

Thomas distribution, consistent with the literature 

[8], thereby illustrating the underlying quantum 

dynamics. 

The Shannon entropy of a set of 

probabilities is logarithmic, and it is given by 

𝐻(𝑃) =  − ∑ 𝑝𝑖 log(𝑝𝑖)𝑖 . The cross-entropy 

between two sets of probabilities is then 

𝐻(𝑃, 𝑄) =  − ∑ 𝑝𝑖 log(𝑞𝑖)𝑖 . The authors of 

Google's main paper [4] used linear terms instead 

of the logarithmic form, a choice that is gaining 

traction due to its computational efficiency. This 

approach is now becoming the standard in 

academia and industry. We performed linear XEB 

Figure 1. An example of the random circuit instance used by Google. 
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calculations for all the circuits using equation (2), 

adhering to this prevailing norm. As outlined in 

literature, noiseless simulation results in 

ℱ𝑋𝐸𝐵 = 1, and uniform samples results in 

ℱ𝑋𝐸𝐵 = 0.  A non-vanishing value of ℱ𝑋𝐸𝐵 means 

that the sampled distribution correlates with the 

ideal one.  The experimental results showed a 

strong correlation with ideal simulation. Figure 4 

illustrates the linear XEB we obtained from the 

Quantum Rings SDK, and the values calculated 

from Google’s amplitude files for side-by-side 

comparison. 

We then measured the actual time 

required to obtain the first sample of the largest 

full circuits (𝑒0) with 𝑛 = 53, 

𝑚 = {12,14,16,18,20}, 𝑝 = ”𝐴𝐵𝐶𝐷𝐶𝐷𝐴𝐵”. Our 

observations indicated that the largest circuits 

were executed within a reasonable amount of 

timeframe. Figure 5 illustrates our execution time 

measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 2. Measurement probabilities. This graph gives significant insights into the fact that some 

states are favored and follow a distribution. Only the top 10 states are shown. 

Figure 3. Plots illustrating the Porter-Thomas distribution of the samples. The blue line shows the 

uniform distribution. The black line shows the theoretical Porter-Thomas distribution. The red dots are 

the samples from the Quantum Rings SDK. The Quantum Rings distribution converges with the 

theoretical Porter-Thomas distribution within an excellent error margin, showing the underlying quantum 

dynamics. 
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Figure 5. Circuit time analysis. This graph shows the time taken to obtain the first sample of full 

circuits with 𝑛 = 53 𝑚 = 12,14,16,18,20, 𝑒0, and 𝑝 = ”𝐴𝐵𝐶𝐷𝐶𝐷𝐴𝐵”. 

Figure 4. Graph illustrating the 𝓕𝑿𝑬𝑩  for circuits with 𝒎 = 𝟏𝟒, 𝒆𝟎, 𝒑 = ’𝑬𝑭𝑮𝑯’. The blue 

line shows the values we calculated from the corresponding Google amplitude files. The 

dashed segment is the qubits range for which Google’s amplitudes are unavailable. The red 

colored line shows the values calculated using the Quantum Rings SDK.  The average ℱ𝑋𝐸𝐵 

obtained was 0.678. We obtained ℱ𝑋𝐸𝐵 = 0.622  at 2.5 million samples for the largest circuit 

with 𝑛 = 53. The error bars correspond to the standard deviation of the samples. 
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V. CONCLUSION 

Our experiments demonstrate that the 

Quantum Rings SDK is capable of effectively 

simulating Google’s Sycamore circuits, 

producing random circuit samples whose 

probabilities are consistent with the Porter-

Thomas distribution, thereby illustrating 

quantum dynamics.  

The average linear cross-entropy 

benchmarking (XEB) score of 0.678 indicates a 

strong correlation with ideal quantum simulation 

and represents the highest fidelity observed to 

date [4-7,9,10,12,15]. Execution times validate 

that such simulations can be run efficiently on 

standard developer hardware.  

This capability enables researchers and 

developers to build, debug, and execute large-

scale quantum algorithms and applications, 

providing a critical developer capability in 

anticipation of future advancements in physical 

quantum computing. Nevertheless, this 

advancement does not diminish the need for 

continued development of physical quantum 

computers. The advancements achieved 

underscore the importance of relentless efforts in 

both simulation and hardware development to 

realize practical quantum computing solutions. 
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