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Abstract

This paper develops a comprehensive physics-based model (PBM) that spans a wide op-

erational range, including varying temperatures, charge/discharge conditions, and real-world

field data cycles. The PBM incorporates key factors such as hysteresis effects, concentration-

dependent diffusivity, and the Arrhenius law to provide a realistic depiction of battery be-

havior. Additionally, the paper presents an in-depth analysis comparing the PBM with an

equivalent-circuit model (ECM) for accurately capturing the dynamics of lithium-ion batter-

ies under diverse operating conditions. To ensure a fair comparison, both the PBM and ECM

are rigorously calibrated and validated through parameter identification and testing across

55 different operating conditions. To the best of the authors’ knowledge, this represents

the most comprehensive model calibration and validation effort for PBM and ECM in the

literature to date, encompassing large temperature variations (-20 to 40°C), various charg-

ing/discharging C-rates, and real-world driving cycles. Comparative analysis between the

PBM and ECM highlights key differences in accuracy, computational complexity, parameter-

ization requirements, and performance under varying temperature conditions. appropriate

models for battery management applications.
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1. Introduction

Lithium-ion batteries are the preferred technology for many applications such as consumer

electronics, electric vehicles, and energy storage systems, due to their high energy density,

decreasing cost, and long service life [1, 2].

Despite their widespread adoption, lithium-ion batteries face several challenges that hin-

der their broader application. An instance includes the influence of climatic variations on

battery performance and the related battery management strategies. For example, approx-

imately 38% of regions in China may experience winter temperatures plummeting as low

as -20°C, with certain areas witnessing substantial temperature differentials exceeding 40°C

throughout the year [3]. These fluctuations lead to substantial changes in battery performance

over a broad temperature range, presenting significant challenges in developing precise and

robust control strategies within the battery management system (BMS). These strategies

are essential for tasks such as state estimation, optimal charging, and fault diagnosis and

prognosis.

Given that there are two main model categories used in BMS — equivalent circuit models

(ECMs) [4, 5] and physics-based models (PBMs) [6, 7] — it raises an important question

about comparing their attributes: accuracy, robustness, adaptability, and computational

complexity. To determine the superior choice, a thorough evaluation is needed to assess

which model better meets the overall requirements.

PBMs are based on first principles such as thermodynamics, reaction kinetics, and mass

transport and can capture key battery behaviors with high fidelity and accuracy [6, 8]. Those

models preserve the physical meaning of the parameters and provides detailed information

about internal electrochemical processes within the cell. However, PBMs typically use par-

tial differential equations (PDEs) with many variables and parameters, which can lead to

significant computational requirements [9, 10].

On the contrary, ECMs are typically characterized by lumped-parameter ordinary dif-

ferential equation (ODE) systems, making them intuitive and simple to develop with low

computational effort. However, because ECM parameters lack physical meaning, extensive

testing and calibration are required to broaden their validity and maintain high accuracy

under typical operating conditions [11, 12].

In recent years, many model order reduction techniques have been developed to reduce the

computational complexity of PBMs, such as Padé approximation [13], Galerkin projection

[14], and polynomial approximation [15]. While these techniques have notably enhanced

computational efficiency, there has been no comprehensive study comparing the computation

times of reduced-order PBMs and ECMs. Are PBMs still significantly lagging behind ECMs
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in computational efficiency, or have they already become nearly comparable? This is one of

the key questions that this study aims to address.

Additionally, PBMs have a large number of model parameters, making precise parameter-

ization much more challenging than for ECMs. It is well-known that nonlinear optimizations

generally yield worse accuracy for problems with more parameters due to the increased like-

lihood of local minima in the cost function. To mitigate the risks of local minima and ensure

robust model parameterization, various techniques have been implemented. These include

the use of sensitivity analysis to reduce the number of parameters to be identified [16, 17],

the application of physical constraints on certain parameters (e.g., measurements of electrode

thickness and particle size [18]), careful selection of cost functions for optimization [19], and

the employment of Pareto multi-objective optimization approaches [19, 20]. Therefore, it

would also be interesting to examine the robustness of PBMs and ECMs under various op-

erating conditions.

There are a few existing comparative studies between ECMs and PBMs in the literature

[21–23]; however, almost all these studies only focus on a limited set of aspects, resulting in

partial and incomplete analyses. For example, they often compare model performance under

a narrow range of operating conditions. Additionally, a potential issue with these scenarios

is that the model parameters for the ECMs or PBMs may not be fully optimized using data

from such limited conditions. As a result, comparisons based on these models—if not fully

optimized or validated—are likely to be unfair.

To address this gap, we will use 55 different operating conditions in this comprehensive

comparative study of PBMs and ECMs. These conditions span a temperature range from -20

to 40◦C, include both charging and discharging at various C-rates, and incorporate real-world

driving cycles based on field data. In addition, given that LFP/graphite batteries are rapidly

gaining popularity in electric vehicles and stationary energy storage applications due to their

low cost and balanced performance, they have been selected for this study. Additionally,

other considerations include: 1) they exhibit a more pronounced hysteresis effect [24], and

2) they demonstrate significant performance variations across a wide temperature range,

particularly at low temperatures [25, 26]. Both of these factors present challenges that are

crucial for developing accurate models.

Based on the above discussion, this paper makes the following three key contributions:

1) A comprehensive PBM is developed to accurately capture battery dynamics across a

wide operational range, incorporating the hysteresis effect, concentration-dependent diffu-

sivity, adjustments to Butler-Volmer kinetics, and the Arrhenius law. 2) Model parameter

identification and subsequent validation are performed using 55 different operating condi-
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tions, covering both charging and discharging at various C-rates, and including real-world

driving cycles based on field data. To the best of the authors’ knowledge, this represents the

most extensive model calibration and validation effort for PBM and ECM in the literature to

date. 3) Based on the validated PBM and ECM, the models are compared across several key

aspects, including accuracy, computational complexity, the number of parameters to be cali-

brated or updated, and performance across different temperature ranges. These comparisons

are expected to offer insights into the strengths and limitations of each modeling approach,

helping to inform and guide future developments and applications in battery modeling.

The rest of the paper is structured as follows. The following section provides a brief intro-

duction of the experimental data used in this study. Then, Section 3 presents the development

of the PBM and ECM. Next, detailed results about the battery hysteresis characterization,

model parameter identification and validation, as well as the multidimensional comparison

of the PBM and ECM are presented in Section 4. Summary and conclusions of this work are

presented in the final section.

2. Experimental Setup

The prismatic battery used in this study has a capacity of 166 Ah, with a LFP cathode

and a graphite anode. Its operating voltage range is from 2.5V to 3.65V. The ambient

temperature was controlled by a RH-GDW-100L environmental chamber, and current profiles

at different charge/discharge conditions were applied with an Arbin LBT 5V-500A battery

tester, sampling at a frequency of 1 Hz.

Figure 1: Experimental data for model performance assessment.
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Figure 1 shows 55 experimental sets for characterizing and validating the PBM and ECM.

All experiments were conducted in an environmental chamber and repeated at different tem-

peratures (-20◦C, 0◦C, 10◦C, 25◦C, and 40◦C). At each temperature, the battery was charged

and discharged at different C-rates (e.g., 0.25C, 1C, 2C). Additionally, a multi-step charging

protocol was also used to investigate model performance in fast-charging scenarios. Dynamic

driving cycle tests such as UDDS, US06, and Tests 1 to 5 (extracted from field data) were also

considered to evaluate model performance in real-world applications. It is worth mention-

ing that to ensure each battery starts with the same capacity at different temperatures, all

batteries were first fully charged at 25°C using a constant current constant voltage (CCCV)

protocol, with the cutoff current set at 1/20C duirng the CV phase. They were then tested

at different temperatures once thermal equilibrium had been reached.

Among these tests at various operating conditions, some data were randomly selected for

model parameter identification, while the rest were used for subsequent model validation.

At low temperatures such as -20◦C and 0◦C, the maximum C-rates in dynamic profiles

were reduced according to battery specifications to avoid potential lithium plating with high

currents. Similarly, the overall number of tests was also reduced accordingly.

3. Model development

(1) The reduced-order PBM. The reduced-order PBM developed in this study starts

from an extended single particle model, which is based on the porous electrode theory. This

model integrates electrochemical kinetics to describe the internal electrochemical behavior of

a lithium battery along the thickness of the electrode and separator, as well as the radius of

the electrode particles. It has been widely demonstrated to achieve a good balance between

maintaining accuracy and managing computational complexity [14, 27, 28].

In our previous work [19], we have developed a reduced-order physics-based battery model

for NMC/graphite batteries for a wide temperature range, by considering 1) concentration-

dependent diffusion, 2) adjustment of Butler-Volmer (B-V) equation, accounting for the

excess driving force of Li+ (de)intercalation in the charge transfer reaction in the presence

of large concentration gradients [29, 30], and 3) segmented Arrhenius equation. Please refer

to [19] for more details. In this work, in addition to these modifications, to address the

strong hysteresis effect for LFP/graphite batteries, the Plett hysteresis model [31, 32] was

incorporated into the physics-based battery model.

In the Plett model, the hysteresis voltage consists of an instantaneous hysteresis voltage

5



Figure 2: The PBM and ECM used in this study. (a) Modified PBM developed for wide

temperature range and various operating conditions. (b) Second-order ECM

and a dynamic SOC-varying hysteresis, and can be expressed as:

Vh = M0s[k] +Mh[k] (1)

The instantaneous hysteresis voltage M0s[k] varies when the sign of the current changes:

s[k] =


−sgn(i[k]), |i[k]| > 0

s[k − 1], i[k] = 0

(2)

The dynamic hysteresis voltageMh[k] changes as the SOC changes, whereM is a function

that gives the maximum polarization due to hysteresis as a function of SOC and the rate of

change of SOC, and the hysteresis state h is given by:

h[k + 1] = exp

(
−
∣∣∣∣η[k]i[k]γδtQ

∣∣∣∣)h[k]−
(
1− exp

(
−
∣∣∣∣η[k]i[k]γδtQ

∣∣∣∣)) sgn(i[k]) (3)
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Figure 2(a) illustrates the schematic of the modified physics-based battery model, which

has been specially adapted for a wide temperature range and various conditions. The gov-

erning equations of the PBM used in this work are listed in Table 1. Details about the model

order reduction to the PDEs are skipped here and can be found in [14].

Table 1: Governing equations of the PBM used in this work.

Governing equations

Solid phase diffusion PDE
∂cs,k

∂t
=

Ds,k

r2
∂

∂r

(
r2

∂cs,k

∂r

)
, (k = p, n) (4)

Boundary conditions
∂cs,k

∂r

∣∣∣∣
r=0

= 0

Ds,k
∂cs,k

∂r

∣∣∣∣
r=Rk

= −
Jk (t)

F
, where Ds,k = Ds,k,ref exp(µkabs(∆csurfbulk)) [19]

(5)

Liquid phase diffusion PDE εe,k
∂ce

∂t
=

∂

∂x

(
De

∂ce

∂x

)
+ ak

1− t+0
F

Jk, where (k = p, s, n) (6)

Boundary conditions
∂ce

∂x

∣∣∣∣
x=0

= 0,
∂ce

∂x

∣∣∣∣
x=L

= 0

ce|x=L−
p

= ce|x=L+
p

, ce|x=Lp+L−
s

= ce|x=Lp+L+
s

−De,p
∂ce

∂x

∣∣∣∣
x=L−

p

= −De,s
∂ce

∂x

∣∣∣∣
x=L+

p

, −De,s
∂ce

∂x

∣∣∣∣
x=Lp+L−

s

= −De,n
∂ce

∂x

∣∣∣∣
x=Lp+L+

s

(7)

Intercalation current density Jk =


I

akALk
, k = p

0 , k = s

−
I

akALk
, k = n

(8)

Exchange current density i0,k = Fk0,k

√
csurfs,k (cs,max,k − csurfs,k )ce

(9)

Normalized Li+ concentration θk =
csurfs,k

cs,max,k
(10)

Overpotential ηk = ηct,k + ηin,k [29]

ηct,k =
R̄T

αF
sinh−1

(
Jk

2i0,k

)
, ηin,k =


ρ
cs,max,k

csurfs,k

Jk , 0 < θ < θc

ρ
cs,max,k

cs,max,k − cs,k
Jk , θc < θ < 1

(11)

Electrolyte potential
∂ϕe

∂x
= −

ie

κeff
+

κeff
D

κeff

∂ln ce

∂x
, where κeff

D =
2R̄Tκeff(1− t+0 )

F
(1 + β) (12)

Cell voltage with hysteresis V (t) = ϕs(0, t)− ϕs(L, t)− IRc + Vh [31]

=
(
Up(θp(t))− Un(θn(t))

)
−

(
R̄T

αF
sinh−1

(
I (t)

2apALpi0,p(t)

)
−

R̄T

αF
sinh−1

(
−I (t)

2anALni0,n(t)

))

−
I(t)

2A

(
Lp

κeff
+

2Ls

κeff
+

Ln

κeff

)
+

κeff
D

κeff
[ln ce(0, t)− ln ce(L, t)]− IRc +M0s[k] +Mh[k]

(13)

Subscriptions: p = positive electrode, s = separator, n = negative electrode.
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(2) The second-order ECM with hysteresis. In this study, the second-order ECM

in this work comprises a typical equivalent circuit network with two RC pairs. Additionally,

the ECM model also integrates the previously introduced Plett model (Eq. 1) to consider the

hysteresis effect of LFP/graphite batteries, as shown in Fig. 2(b).

The voltages of the RC pairs, SOC and the terminal voltage V are given as:

V1[k + 1] = V1[k] exp

(
− ∆t

R1C1

)
+ I[k]R1

(
1− exp

(
− ∆t

R1C1

))
V2[k + 1] = V2[k] exp

(
− ∆t

R2C2

)
+ I[k]R2

(
1− exp

(
− ∆t

R2C2

))
SOC[k + 1] = SOC[k] +

−η[k]∆t

Q · 3600
· I[k]

V [k] = VOCV(SOC[k])− I[k]R0 − V1[k]− V2[k] + Vh[k]

(14)

where the parameters R0, R1, R2, C1 and C2 are functions of both SOC and temperature,

and need to be identified.

4. Results and Discussion

4.1. Hysteresis characterization

Although the hysteresis is not thoroughly understood in literature yet, it is widely recog-

nized that it is influenced by SOC, temperature and even the direction of current. Thus, to

accurately capture the battery hysteresis voltage, a comprehensive hysteresis characterization

test was conducted at each temperature. The test procedure is outlined in Fig. 3(a).

The test profile is designed to explore the parameter space (e.g., SOC and current di-

rection) and to induce cell hysteresis effects under these conditions. At each temperature,

the process begins with the cell being fully charged to 100% SOC. It is then discharged to

the first target SOC using a 0.5 C current, followed by a 2.5-hour rest period. A series of

constant current pulses of 0.5 C and 1 C is then applied. Each charge pulse is applied after a

corresponding discharge pulse to maintain a neutral SOC. The duration of each pulse is set

to induce a 10% change in SOC starting from the target SOC. Next, an additional set of 1

C current pulses is applied, with the charge pulse preceding the discharge pulse, to account

for hysteresis with respect to current direction. After each pulse set, there is a 2.5-hour rest

period to record the hysteresis voltage. The cell is then either discharged to the next SOC

level using a 0.5 C current.

It is noted from Fig. 3(b) and (c) that at the end of the rest periods, the voltages at

some SOC points do not reach a full equilibrium state and continue to evolve slowly after 2.5

hours. To obtain accurate hysteresis voltages, we employed a two-step approach: 1) fitting

the 2.5-hour voltage data using a simple exponential function with respect to time, k1t
k2+k3,
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Figure 3: Characterization of battery hysteresis effect. (a) Hysteresis characterization test

procedure. (b) Prediction of OCV after discharge and hours of relaxation. (c) Prediction

of OCV after charge and hours of relaxation. (d) Hysteresis map as a function of SOC and

temperature. (d) Validation of the Plett hysteresis model.

where k1, k2, and k3 are the fitting coefficients, and 2) predicting the equilibrium voltage

or OCV after 8 hours of relaxation. This method proved to be effective at all SOC points

during the rest periods following the discharge/charge pulses, as indicated by the red dashed

lines in Fig. 3(b) and (c). The same test repeats at several times at -20, 0, 10, 25 and 45◦C,
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and the full hysteresis voltage map is then obtained as a function of SOC and temperature,

as shown in Fig. 3(d).

Figure 3(e) shows an example of the voltage profile of the characterization test at 25◦C.

To obtain the parameters in the Plett hysteresis model, M0, M and γ, the particle swarm

optimization (PSO) algorithm [33] was employed to minimize the differences between the

model prediction values and experimental data. As shown in comparison results, the Plett

model with identified parameter agrees very well with experimental data across the whole

SOC range. The root mean square error in voltage is only 6.7mV. The results demonstrate

that the Plett model with identified parameters accurately captures the battery’s hysteresis

behavior across various SOC levels.

4.2. Model parameter identification and validation

The rest of model parameters in the PBM and ECM were then obtained using the ex-

perimental data that introduced in Section 2 and the PSO algorithm. A summary of the

comparison setup is outlined in Table 2.

Table 2: Comparison setup for the PBM and ECM.

Model solution methods: The solid-phase PDEs in the PBM were approximated and

solved using the Padé approximation, while the liquid-phase PDEs were addressed with

polynomial approximation. Those model order reduction (MOR) techniques have been proven

to significantly reduce the computational complexity of the PDEs in the PBMs with merely

marginal loss of accuracy [13, 14, 34]. On the other hand, the second-order ECM was solved

analytically in a state-space representation by capturing the dynamics of the RC pairs [31].

10



Experimental data assignment: Experimental data were divided into two groups for

parameter identification (or model calibration) and validation. For parameter identification,

39 datasets were selected, covering various charging/discharging conditions across a wide

temperature range of -20 to 40◦C. The remaining 16 datasets were used to validate the

model performance with the identified parameter values. To ensure a fair comparison, the

datasets in each group for the PBM and ECM were the same.

Number of parameters for identification: In the PBM, there are 12 temperature-

independent parameters, such as the electrode surface area and the thickness of the electrodes

and separator. Temperature-dependent parameters include diffusion coefficients, kinetics rate

constants, and ionic conductivity. It has been demonstrated that a single set of parameters

(e.g., the activation energies) for the Arrhenius equation may not perform well across a wide

temperature range [23, 35]. For example, the negative solid-phase diffusion coefficient signif-

icantly decreases at temperatures below zero, and its variation across the entire temperature

range does not follow an exact exponential function. To address this, a segmented Arrhe-

nius modeling approach [19] is used in this work to capture the drastic property changes of

these parameters over the wide temperature range. The temperature range of -20 to 40◦C is

divided into several segments at -17, -5, 10, 30 and 38◦C. Within each segment, parameter

variation follows the Arrhenius equation. This segmented approach results in 60 additional

parameters (reference values and associated activation energies at 5 segmented temperature

points), with a total of 72 parameters to be identified in the entire PBM.

As for the second-order ECM, two-dimensional parameter look-up tables are typically

established for R0, R1, R2, C1 and C2, as functions of SOC and temperature [36, 37]. Overall,

there are 330 parameters (0% to 100% in 10% increments in SOC and -20 to 55◦C in 15◦C

increments in temperature) in the ECM. Note that the higher temperature limit of 55◦C is

used because cell temperatures can exceed the ambient temperature of 40◦C during charging

and discharging.

Optimization algorithm: The PSO algorithm is applied in this study due to its easy

implementation, fast convergence, and strong ability to reduce risks of local minima. For

both the PBM and ECM parameter identification tasks, 500 particles were selected. The

cost function for parameter identification is defined as:

minimize
Θ̂

M∑
i=1

√√√√√√
tf∑
t=1

(
Vi(t)− V̂i(t, Θ̂)

)2

Ni
(15)

where M is the number of input test datasets, tf is the end of time for each test, V and
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V̂ are the measured and predicted voltages, Ni is the number of data points, and Θ̂ is the

parameter set to be identified. The PSO algorithm computations are executed in Matlab

using parallel computing on a cluster equipped with dual Intel Xeon ICX Platinum 8358

CPUs (64 cores) and 512 GB of RAM.

4.3. Multidimensional comparison of the PBM and ECM

Figure 4: Model parameter identification results for the PBM.

Figures 4 and 5 present the model parameter identification results for the PBM and ECM

under 39 operating conditions. Each subplot also includes the RMSE between the model
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predictions and experimental data. Generally, both the PBM and ECM with optimized

parameters show better agreement with experimental data at higher temperatures, likely

due to reduced kinetic and concentration overpotentials from higher ionic conductivity and

diffusivity. The optimized models accurately capture battery behaviors during constant rate

charging, discharging, multi-step charging, and various dynamic driving cycles.

Figure 5: Model parameter identification results for the ECM.

However, when temperatures drop below 0◦C, the nonlinear dynamics of the batteries

increase significantly, leading to larger nonlinear overpotentials. For instance, the discharge

voltage curves at 0.25C and 0.5C at -20◦C exhibit ”arch” shapes, distinctly different from
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those at higher temperatures. This might be due to a slight increase in internal battery tem-

perature during operation, reducing overall overpotentials slightly. Yet, given the relatively

low C-rate (e.g., 0.25C) and limited temperature rise (less than 5◦C increase during the test),

the ”arch” shape of the voltage response is likely due to significant kinetic overpotential at

high SOC. Despite optimized model parameters, it remains challenging for the models to

maintain the same level of accuracy as at higher temperatures, resulting in a considerable

increase in prediction errors.

It is important to note that while the ECM performs well overall across these 39 conditions,

it exhibits increasing local prediction errors in certain SOC regions under specific conditions.

For instance, unexpected errors are observed at low SOC locally during multi-step charging at

40◦C and at high SOC during 1C discharging at 0◦C and 0.5C discharging at -20◦C, as shown

in Fig. 5. Since the SOC- and temperature-dependent parameters of the ECM are empirically

fitted without inherent physical meanings, they are primarily aimed at minimizing overall

errors across all conditions. However, this approach can result in good performance for some

SOCs or temperatures, while failing for others. This is a major limitation of ECMs: their

effectiveness is relatively limited across a broad range of operating conditions. In contrast, as

demonstrated in Fig. 4, the high-fidelity PBM shows consistent performance across various

temperatures and SOCs, accurately capturing the physical variations of internal battery

states across different input profiles.

Figure 6: Model validation results for the PBM.

With model parameters optimized using 39 datasets across various operating conditions

and temperatures, the PBM and ECM were further validated against data from 16 additional

operating conditions. As shown in Figs. 6 and 7, both models perform better at higher tem-

peratures compared to lower temperatures. However, a careful comparison of the individual
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Figure 7: Model validation results for the ECM.

RMSEs reveals that the PBM consistently provides more accurate predictions than the ECM.

It is also worth mentioning that all RMSEs in the above figures were all calculated over

the entire SOC range, from 2.5V to 3.6V. Accurately capturing voltage responses at low

SOC ranges below 20% is particularly challenging due to large variations in the open-circuit

potentials at the electrodes and various sources of overpotentials. Nonetheless, the PBM still

aligns very well within these SOC ranges across different operating conditions. A detailed

summary of the comparison between the PBM and ECM is also provided in Table 3, high-

lighting the accuracy of both models across all temperatures and operating conditions during

the parameter identification and validation phases.

Table 3: Summary of the comparison of the PBM and ECM at the parameter identification

and validation phases.
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Figure 8 presents a comprehensive comparison between the PBM and ECM, focusing

on the overall average RMSE, accuracy at low SOC (below 20%) and low temperatures

(0 and -20◦C), computational time per sampling step, and the total number of tunable

parameters. The results demonstrate that the PBM outperforms the ECM, particularly with

significantly smaller errors at low SOC and temperature ranges, leading to better overall

accuracy across all operating conditions. Although the computational time for the PBM is

slightly higher than that of the ECM, they are nearly comparable, at 0.045ms and 0.034ms,

respectively. Furthermore, the PBM requires only 72 tunable parameters for wide operating

applications, in contrast to the 330 parameters needed by the ECM. This reduction in the

number of parameters, combined with higher accuracy, is achieved by precisely incorporating

first-principle processes within the batteries.

Figure 8: Model validation results for the ECM.

Based on the above discussion, it is evident that developing an accurate PBM necessi-

tates extensive expertise in both the characterization of the physical and chemical properties

of battery components and the mathematical modeling of the internal physical and electro-

chemical processes occurring within the battery. A deep understanding of these complex

interactions is essential to create a model that accurately reflects the real-world behavior of

the battery. Furthermore, to extend the applicability of PBMs to broader contexts, such as

online monitoring and control scenarios, it is crucial to implement efficient model order re-

duction techniques. These techniques are necessary to significantly lower the computational

cost associated with PBMs, without compromising the model’s accuracy. In addition, the
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process of model parameterization must be meticulously executed to ensure that the PBM

remains accurate and robust across a wide range of operating conditions. Proper parameter-

ization is key to maintaining the model’s reliability, especially when dealing with the variable

and often harsh conditions encountered in practical applications. Once these challenges are

effectively addressed, PBMs have the potential to outperform other modeling approaches in

terms of accuracy, robustness, and computational efficiency, making them highly valuable for

advanced BMS.

On the other hand, the ECM offers simplicity in development and implementation due

to its straightforward model structure. However, this simplicity comes with trade-offs. The

accuracy and robustness of ECMs can deteriorate significantly under challenging conditions,

such as low SOC and extreme temperatures, where the battery’s nonlinear behaviors become

more pronounced. In these scenarios, the limitations of the ECM can lead to noticeable

errors. Therefore, special attention must be given when employing ECMs in these conditions

to avoid compromising the reliability of the model.

5. Conclusions

In this study, we developed a comprehensive PBM that accurately captures the complex

dynamics of battery behavior across a wide operational range. This model incorporates crit-

ical factors such as the hysteresis effect, concentration-dependent diffusivity, adjustments to

Butler-Volmer kinetics, and the Arrhenius law, ensuring a detailed and realistic representa-

tion of battery performance. To validate the model, we conducted an extensive parameter

identification process and subsequent validation using data from 55 different operating con-

ditions. These conditions span both charging and discharging processes at various C-rates

and include real-world driving cycles based on field data. This effort represents, to the best

of our knowledge, the most comprehensive model calibration and validation for PBM and

ECM presented in the literature to date. We then compared the validated PBM and ECM

across several critical dimensions, including accuracy, computational complexity, the number

of parameters requiring calibration or updating, and performance across different tempera-

ture ranges. These comparisons provide valuable insights into the strengths and limitations

of each modeling approach, guiding future applications and development in battery modeling.

Developing an accurate PBM requires deep expertise in characterizing battery components

and modeling internal physical and electrochemical processes. In addition, efficient model

order reduction and rigorous parameterization procedures are essential to extend PBM ap-

plications while maintaining accuracy and robustness. When these challenges are addressed,

PBMs can excel in accuracy, robustness, and computational efficiency, making them ideal for

17



advanced BMS. In contrast, the ECM is simpler to develop and implement but may suffer

from reduced accuracy and robustness under challenging conditions, such as low SOC and

extreme temperatures. Caution is needed when using ECMs in these scenarios to ensure

reliable performance.
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