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Abstract

Nonassociative modifications of general relativity, GR, and quantum gravity, QG, models naturally arise
as star product and R-flux deformations considered in string/ M-theory. Such nonassociative and noncom-
mutative geometric and quantum information theories were formulated on phase spaces defined as cotangent
Lorentz bundles enabled with nonassociative symmetric and nonsymmetric metrics and nonlinear and linear
connection structures. We outline the analytic methods and proofs that corresponding geometric flow evo-
lution and dynamical field equations can be decoupled and integrated in certain general off-diagonal forms.
New classes of solutions describing nonassociative black holes, wormholes, and locally anisotropic cosmolog-
ical configurations are constructed using such methods. We develop the Batalin-Vilkovisky, BV, formalism
for quantizing modified gravity theories, MGTs, involving twisted star products and semi-classical models of
nonassociative gauge gravity with de Sitter/affine/ Poincaré double structure groups. Such theories can be
projected on Lorentz spacetime manifolds in certain forms equivalent to GR or MGTs with torsion general-
izations etc. We study the properties of the classical and quantum BV operators for nonassociative phase
spaces and nonassociative gauge gravity. Recent results and methods from algebraic QFT are generalized to
involve nonassociative star product deformations of the anomalous master Ward identity. Such constructions
are elaborated in a nonassociative BV perspective and for developing non-perturbative methods in QG.

Keywords: Nonassociative geometry and strings; quantum gauge gravity; nonassociative star products
and R-flux; Batalin-Vilkovisky formalism; algebraic quantum field theories.
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1 Introduction

Quantization of gravity is one of the big open problems in modern physics. In the most general and
rigorous mathematical form, and in the framework of a unification theory, the theory of quantum gravity, QG,
is approached in string/ M-theory [1, 2, 3]. Certain models of nonassociative and noncommutative modified
gravity theories, MGTs, are expected to arise in low-energy limits of string theories [4, 5, 6, 7]. For so-called
R-flux deformations, such MGTs are constructed using the concept of twisted star product, ⋆, [8, 9]. We follow
an approach when ⋆-products are defined on nonassociative phase spaces in certain forms extending Einstein’s
gravity, i.e. the general relativity, GR, theory [10, 11]. Nonassociative and noncommutative algebraic, geometric
and topological structures are studied in modern mathematics. Various applications are considered in quantum
field theories, QFTs, and used for elaborating new methods of quantization.

In a series of partner works [12, 13, 14, 15, 16], we proved that physically important nonassociative MGTs
formulated on phase spaces are described by systems of nonlinear partial differential equations, PDEs, which can
be decoupled and integrated in certain general off-diagonal forms. This is possible if the so-called anholonomic
frame and connection deformation method, AFCDM, is applied. We constructed and studied physical properties
of new classes of black holes, BHs; wormholes, WHs; and locally anisotropic cosmological solutions encoding
nonassociative data. Nonassociative phase space off-diagonal solutions and respective physical models typically
are not characterized by thermodynamic variables formulated in the framework of the Bekenstein-Hawking
BH paradigm [17, 18]. This is because, in general, such configurations do not involve certain conventional
horizons or holographic conditions. Nevertheless, we can formulate a new type of nonassociative geometric flow
thermodynamics [13, 14, 15, 16]. It generalizes G. Perelman’s constructions defining a new type the statistical
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and geometric thermodynamics for Ricci flows of Riemannian metrics [19]. Here, we note that in our works the
aim is not to formulate and proof any nonassociative variant of the Poincaré–Thurston conjecture. This is a very
difficult and ambiguous problem in modern mathematics because of existence of different types of nonassociative
and noncommutative calculi. In (pseudo) Riemannian geometric the differential and integral calculus is defined
in a unique way. We develop certain approaches when generalized G. Perelman thermodynamic variables are
defined in MGTs and used for characterizing off-diagonal solutions encoding, for instance, nonassociative data.
Such models can be quantized by elaborating new methods of quantization.

Considering nontrivial nonassociative and noncommutative algebraic and geometric structures on phase
spaces, we substantially modify not only the GR theory and the standard models in QFT. Such modifications
request the elaboration of a new mathematical formalism and application of nonholonomic geometric and
quantum information methods resulting in nonassociative and noncommutative models of QG. Here we note that
the theories with a general twisted star product are non-variational but can be formulated in abstract geometric
forms. For applications in modern cosmology and astrophysics, we can consider any convenient approach with
variational, abstract geometric and effective field theories. The corresponding fundamental equations can be
formulated in certain parametric forms (for instance, using linear decompositions on the Planck and string
constants) which allows us to encode nonassociative and noncommutative data.

In a partner work [16], a nonassociative gauge gravity model with double affine or de Sitter gauge structure
groups on cotangent Lorentz bundles were formulated. For projections on nonassociative phase space bases,
those constructions reproduce the results on nonassociative MGTs from [12, 13, 14, 15]. Here we note that
possible implications of nonassociative geometric and classical gravity theories distinguishing specific properties
of off-diagonal parametric and physically important solutions were not studied in modern literature on QFT
and QG. Our nonassociative and nonholonomic gauge gravity approach is motivated by the fact that using a
corresponding class of nonholonomic distributions, the nonassociative Yang-Mills, YM, equations can be decou-
pled and solved in very general forms and then quantized using standard methods for gauge field theories. The
modified YM equations can be formulated as some equivalents of nonassociative star product deformed Ein-
stein equations. The projections of nonassociative gravitational YM equations on Lorentz spacetime manifolds
transform into standard Einstein equations. Such equations which may encode, or not, certain nonasssociative
and noncommutative data defining certain effective sources. In a more general context, we can elaborate on
nonassociative gauge gravity models with nontrivial torsion and nonmetricity fields and try to quantize such
nonassociative MGTs using (non) perturbative methods formulated for quantizing gauge theories.

To quantize associative and commutative theories with local symmetries (including gauge theories and
various MGTs) is convenient to use the Bechi, Rouet, Stora and Tyutin, BRST, method [20, 21, 22], see
recent results and references in [23]. It is not clear how this method can be extended in general variational or
nonvariational forms for nonassociative and noncommutative gauge theories. Nevertheless, we can elaborate
on an abstract geometric formalism for nonassociative gauge and gravity fields and perform quantization of
physically important quasi-stationary or locally anisotropic cosmological configurations. Such configurations
are determined by off-diagonal solutions with corresponding types of nonlinear symmetries which are additional
to the corresponding types of gauge symmetries or diffeomorphisms. This also supposes adding effective and
auxiliary fields (ghosts, anti-ghosts, etc.) in nonassociative geometric form, and even an infinite number of
differential and integral nonassociative and noncommutative calculi (and various types of geometries) can be
elaborated. Using nonholonomic geometric methods, nonassociative geometric flow and gravitational and matter
field equations can be postulated following algebraic and geometric principles, when parametric decompositions
resulting in effective thermofield and quantum field and quantum evolution theories can be stated to possess
a well-defined variational calculus. This refers, in particular, to the models with nonassociative star product
R-flux if they are elaborated in parametric form as a nonassociative gauge gravity when the constructions are
similar to standard BRST ones but with corresponding double affine or de Sitter structure groups.

A generalization of the BRST is known as the Batalin and Vilkovisky, BV, formalism [24]. We do not
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provide a comprehensive list of references on further developments and applications of the BV formalism but
cite [25, 26]. Those articles and references therei contain recent reviews and rigorous mathematical approaches to
perturbative algebraic QFT (in brief, pAQFT). In this work, the focus is on conceptual problems for developing
the BV formalism and certain methods of pAQFT to quantizing nonassociative gauge gravity theories and
MGTs of type [16, 13, 15]. Our main goal is to show that the BV can be applied when the principles of locality,
deformation and homology (formulated in [25, 26] for Lorentz spacetimes) are extended on nonassociative phase
spaces modelled on cotangent Lorentz bundles. Here, we emphasize that the star products determined by R-flux
involve non-local constructions which became effectively local for certain parametric decompositions. In such
an approach, we naturally generalize the BV formalism in abstract nonassociative geometric form.

In this work, we develop a nonlinear functional approach to nonassociative gauge QFT and QG when explicit
classes of generic off-diagonal parametric solutions are used for extending the BV formalism in nonholonomic
form on nonassociative phase spaces. The constructions may encode certain prescribed classes of nonassociative
and noncommutative algebraic and nonlinear geometric symmetries, parametric decompositions, effective grav-
itational polarizations and deformation of horizons (if such ones are prescribed for some classes of solutions).
Such configurations define nontrivial gravitational vacuum structures when certain quasi-classical limits are
used for developing perturbative and non-perturbative schemes of quantization. This goes beyond traditional
schemes of quantization with certain completely determined by Lagrange or Hamilton, S-matrix methods etc.
Those approaches are not related directly to the properties of physically important systems of nonlinear PDEs
and the properties of off-diagonal solutions depending on various generating and integrating functions, physical
constants, generating sources and corresponding (non) linear symmetries. We argue that nonassociative gauge
gravity theories can be elaborated both in classical and quantum forms by reformulating the BV formalism and
the mentioned three principles (of locality, deformation and homology). This is possible for pAQFTs defined on
nonholonomic cotangent Lorentz bundles, i.e. on nonassociative phase spaces, endowed with parametric star
product structure.

The paper is structured as follows: In section 2, we provide an introduction to (classical) nonassociative gauge
gravity with star product and R-flux deformations and state the respective conditions for extracting associative
and commutative gauge and gravity theories on phase spaces. We consider a general ansatz for generating
quasi-stationary off-diagonal solutions in such theories and emphasize that corresponding configurations can
be dualized (on a time-like coordinate) for constructing locally anisotropic cosmological models. The goal of
section 3 is to study the nonassociative dynamics and nonlinear symmetries of the classical gauge de Sitter
gravity and the definition of nonassociative classical BV operator and the Møller maps. Section 4 is devoted
to the quantization of nonassociative gauge de Sitter gravity and related renormalization procedures using
the quantum BV operator. Perturbative and non-perturbative methods for nonassociative gauge gravity are
elaborated and an example of how to perform the BV quantization of nonassociative 8-d BH configurations is
analyzed. Conclusions and perspectives are considered in section 5. In the Appendix, we outline the necessary
formulas for generating off-diagonal quasi-stationary solutions on nonassociative phase spaces.

2 Nonassociative gauge gravity models with star product

In this section, we outline necessary results on nonassociative MGTs and gauge gravity with twisted star
products determined by R-flux deformations in string theory. Details in are provided in [12, 13, 15, 16] and
references therein.

2.1 Nonassociative phase spaces modelled on cotangent Lorentz bundles

We begin with the geometry of commutative phase spaces, which can be constructed on tangent Lorentz
bundlesM = TV, or cotangent Lorentz bundles pM = T ∗V, of a Lorentzian spacetime manifold V of signature
(+ + +−). In this work, we shall consider only geometric and physical models defined on pM. Respective
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spacetime and momentum coordinates are denoted as pu = (x, p) = { puα = (xi, pa)}, for indices i, j, k, ... =
1, 2, 3, 4; a, b, c, ... = 5, 6, 7, 8 and x4 = t, or y4 = t, is a time like coordinate as for a base Lorentz spacetime. A
N-connection structure is defined as a nonholonomic (equivalently, anholonomic, i.e. non-integrable) splitting,
pN : TT ∗V = hT ∗V ⊕ cT ∗V, where ⊕ denotes the Whitney direct sum.1 A metric structure pg = (hg, cg) =
{ pgαβ = (gij ,

pgab)} on pM is of local signature (+++−; +++−). Here, "h" states a corresponding horizontal
splitting and "c" is for a co-fiber, i.e. co-vertical splitting of the geometric objects and necessary indices on
a cotangent bundle. N-connections can be introduced on phase spaces and spacetimes in arbitrary geometric
form or for some additional assumptions that they are associated to certain nonlinear gauge fields; or related to
certain off-diagonal terms of metrics; or to some linear N-elongations of local partial derivatives/ differentials
and respective systems of reference.

If a phase space pM is enabled with a N-connection structure, we can introduce the concept of distinguished
connection, d-connection pD = (h pD, c pD). Such a d-connection is a linear connection which preserves a N-
connection structure (in our case, nonholonmic 4+4 splitting) under affine linear transports.2 To apply the
AFCDM for constructing exact and parametric solutions in MGTs is convenient to work with the so-called
canonical d-connection pD̂. It is completely determined by the coefficients of pg and pN to be metric compatible,
pD̂ pg = 0, but contains a nontrivial d-torsion structure induced as a nonholonomic effect, when the canonical
d-torsion tensor pT̂ = {hh pT̂ = 0; cc pT̂ = 0, when hc pT̂ 6= 0} 6= 0.3

To prove certain general decoupling and integration properties of modified Einstein equations and generating
generic off-diagonal solutions encoding nonassociative or locally anisotropic data we had to develop also a
nonholonomic dyadic, 2-d, shell by shell oriented decomposition formalism [12]. In such cases, we write p

sM
for a phase space pM enabled with a conventional (2+2)+(2+2) splitting with four oriented shells s = 1, 2, 3, 4.
For such s-decompositions, the N-connection is defined

p
sN : sTT

∗V = 1hT ∗V ⊕ 2vT ∗V ⊕ 3cT ∗V ⊕ 4cT ∗V, for s = 1, 2, 3, 4. (1)

In a local coordinate basis, the N-connection (1) is characterized by a corresponding set of coefficients p
sN =

{ pN isas(
pu)} and such coefficients allow us to introduce certain N-elongated bases (N-/ s-adapted bases as

linear N-operators):

peαs [
pN isas ] = ( peis =

∂

∂xis
− pN isas

∂

∂pas
, pebs =

∂

∂pbs
) on sTT

∗
p V;

peαs [ pN isas ] = ( peis = dxis , peas = d pas +
pN isasdx

is) on sT
∗T∗

p V. (2)

Having prescribed a nonholonomic s-structure, we can express any metric or d-metric as a s-metric

p
sg = { pgαsβs} = (h1

pg, v2
pg, c3

pg,c4
pg) ∈ TT∗V ⊗ TT∗V,

1We use the duality label " p" and "boldface" symbols to state the geometric constructions can be adapted to an N-connection
splitting. For such N-adapted models, tensors transform into d-tensors, vectors transform into d-vectors and connections transform
into d-connections, where "d" means distinguished by a N-connection h-c-splitting. Here we note that we developed in nonholonomic
form for nonassociative geometry and gravity [12] an abstract (index and coordinate-free) geometric formalism when any N-
connection can be defined equivalently as a nonholonomic, equivalently, anholonomic, or non-integrable distribution. Our approach
generalizes for spaces with nontrivial N-connection structure the abstract and index formalism for GR [27]. Such an N-connection
and adapted distortions of linear connections can be correspondingly introduced with the goal of decoupling certain systems of
nonlinear PDEs.

2We note that a Levi Civita connection p
∇ (in brief, LC-connection; by definition, it is metric compatible and torsionless) is not

a d-connection because it is not adapted to a N-connection structure. Nevertheless, an N-adapted distortion formula pD = p
∇+ pZ

can be defined; when pZ is the distortion d-tensor encoding contributions from respective torsion of pD, and non-metricity d-tensor,
pQ := Dg, for p

∇
pg = 0. The abstract and coefficient formulas of d-adapted geometric objects (in general nonassociative form)

can be found in [12, 13, 15].
3Such a d-torsion is different from that in the Einstein-Cartan theory or other torsions in string and gauge gravity. In our case,

the data ( pg, pN, pD̂) can be considered as certain nonholonomic geometric variables which allow us to solve physically important
systems of nonlinear PDEs. Using canonical distortion relations, all results can be re-defined equivalently for LC-configurations
( pg, p

∇) if it will be necessary.
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when pgαsβs(
p
su)

peαs ⊗s
peβs = { pgαsβs = ( pgi1j1 ,

pga2b2 ,
pga3b3 , pga4b4)}, for peαs (2) chosen in s-adapted

form. In this paper, we shall omit the bulk of shell index formulas and explicit geometric proofs of classical
formulas, equations and solutions, which can be found in our partner works [12, 13, 14, 15, 16].

A nonassociative (twisted) star product from [10, 11] can be defined in a form involving N-elongated differ-
ential operators peis (2) acting on some functions f(x, p) and q(x, p) defined on p

sM, see details in [12, 13].
Such a s-adapted star product ⋆s can be computed as

f ⋆s q := ·[F−1
s (f, q)] (3)

= ·[exp(−
1

2
i~( peis ⊗

peis − peis ⊗ peis) +
iℓ4s
12~

Risjsas(pas
peis ⊗

peja −
pejs ⊗ pas

peis))]f ⊗ q

= f · q −
i

2
~[( peisf)(

peisq)− ( peisf)( peisq)] +
iℓ4s
6~
Risjsaspas(

peisf)(
pejsq) + . . . ..

The antisymmetric coefficients Risjsas define the nonassociative part of the star product (in brief, we can write ⋆
or correspondingly ⋆N ). The string length constant ℓ characterizes the R-flux contributions from string theory.
In formulas (3), the tensor product ⊗ can be written also in an s-adapted form ⊗s. Explicit computations
for R-flux deformations of s-adapted geometric objects and (physical) equations, can be adapted and classified
with respect to decompositions on small parameters ~ (stating noncommutative properties) and κ = ℓ3s/6~.
For parametric decompositions, all tensor products turn into usual multiplications which is very important for
computing classical and quantum effects in theories encoding nonassociative data.

For any phase space p
sM, we can lift s-adapted geometric objects on the total space of a vector bundle

p
sE(

p
sM) and call p

sE a s-vector bundle, see details and references in [16]. A star product (3) deforms p
sE(

p
sM)

on p
sM into respective nonassociative ones labeled by a ⋆-symbol, p

sE
⋆ on p

sM
⋆. Such geometric constructions

were considered in noncommutative form in [28, 29] for the so-called N-adapted Seiberg-Witten star product ∗,
or ∗N . Nevertheless, to introduce nonassociative structures is not just a formal changing of, for instance, ∗N into
a ⋆s (3) without R-flux terms. For nonassociative models with R-flux ⋆-deformations, ⋆ : g→ g⋆ = (ğ⋆, ǧ⋆),
the ⋆-metrics contain nonassociative symmetric, ğ⋆, and nonassociative nonsymmetric, ǧ⋆, components; the
procedure of inverting metrics became nonlinear and sophisticated. In general, all components of geometric
s-objects depend both on spacetime and momentum-like variables. Typically, the non-symmetry of metrics is
not considered in noncommutative ∗-theories.

Abstract geometric and tedious index/coordinate computations of the fundamental geometric and physical
objects on p

sM
⋆ allow us to express all-important formulas for the "star" d-metrics, d-connections, d-torsions,

d-curvatures, etc., into certain ~ and κ-parametric forms which are provided in [12, 13]. Such computations
can be considered for defining ⋆-versions of LC-connections, ∇ → ∇⋆; or star product deformations of arbi-
trary d-connections, pD → pD⋆, or canonical s-connections, p

sD̂ → p
sD̂

⋆, etc. Correspondingly, we can
compute the parametric and s-adapted forms for a star product deformation of the Ricci tensor, or canonical
s-tensor, Ric⋆[g⋆,∇⋆] or R̂ic⋆[g⋆, D̂⋆] etc. The ~- and κ-parametric terms determined by ⋆ deformations of
pseudo-Riemannian metrics can be re-defined equivalently as certain effective sources encoding nonassociative/
noncommutative data from string theory.

2.2 Associative and commutative gauge gravity on phase spaces

We outline necessary results on a model of gauge gravity theory on pM when the gauge structure group
is Gr = (SO(4, 1), SO(4, 1)). In this theory, the de Sitter group SO(4, 1) may encode consequent nonlinear
extensions of the affine structure group Af(4, 1) and the Poincaré group ISO(3, 1), see details and physical
motivation in [28, 29], for commutative gauge gravity and supergravity, and a recent paper [16], for nonas-
sociative generalizations. The commutative geometric parts of such phase space models involve commutative
nonholonomic (co) vector bundle spaces

pE( pM) :=
(

pE = h pE ⊕ c pE , pGr = SO(4, 1) ⊕ pSO(4, 1), pπ = (hπ, cπ), pM
)
, (4)
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which can be associated to respective tangent bundles T ( pM) and co-tangent bundles T ∗( pM). Such d- and
s-vector bundles are enabled with N-adapted projections π and pπ, when brief notations like pE or E = E(M)
are used. In the above formula, the group pSO(4, 1) is isomorphic to SO(4, 1) but may have different parame-
terizations corresponding to different types of spacetime coordinates and co-fiber momentum-like variables.

A canonical de Sitter gauge gravitational connection on pE is introduced as a 1-form

pÂ =

[
pÂαβ l−1

0
pχα

l−1
0

pχβ 0

]
, (5)

where l0 is a dimensional constant which is used because of different physical dimensions of pÂ- and pχ-fields. In
the nonholonomic gauge gravitational potential (5), pχα = pχ

α
α

peα are for 8× 8 matrices pχ
α
α( pu) subjected

to the condition that pgαβ = pχ
α
α

pχ
β

β
pηαβ, where the 8-d dubbing of Minkovski metric can be written

pηαβ = diag(1, 1, 1,−1, 1, 1, 1,−1) in any point pu ∈ pM. For pÂαβ = pÂαβγ
peγ = pÂαβγs

peγs , with s-adapted
peγs (2), the coefficients transform as pÂ

α
βγ = pχ

α
α

pχ β
β

pΓ̂αβγ +
pχ
α
α

peγ(
pχ β
β ). Such formulas determined

by the N-, or s-adapted coefficients of a canonical d-/s-connection p
sD̂ = { pΓ̂αs

βsγs
}. Similar constructions can

be done for an arbitrary linear connection pΓαβγ , as in the metric-affine geometry or a LC-connection p∇ for

pseudo-Riemannian models. Using the "hat-connection" p
sD̂, we can prove general decoupling and integration

properties of various modified Einstein equations in MGTs.

A d- / s-adapted metric structure pgαβ ≈
pgαsβs allows to define respective Hodge d- /s-operators > ≈

>N ≈ >s (we shall omit N- or s-labels for simplicity) and the absolute differential operator pd ≈ p
sd and skew

product ∧ on p
sM. Defining in s-adapted geometric form the curvature of (5), p

sF̂ = p
sd

p
sÂ + p

sÂ ∧
p
sÂ, and

using >s, we derive in abstract geometrical form the commutative gauge gravitational equations on p
sE ,

p
sd(>s

p
sF̂) +

p
sÂ ∧ (>s

p
sF̂)− (>s

p
sF̂) ∧

p
sÂ = −λ p

sĴ . (6)

The source in (6) is also parameterized in s-adapted form,

p
sĴ =

[
p
sĴ

α
β −l0

p
st
α

−l0
p
stβ 0

]
, where p

sĴ
α
β = pĴ

α
βγs

peγs (7)

is identified to zero for the model with LC-connection. It is induced nonholonomically for the canonical d-
connection but considered as a spin density if elaborated on phase spaces which are similar to the Riemann-
Cartan theory. The 1-form p

st
α = pt

α
αs

peαs is a phase space analogue of the energy-momentum tensor for the
matter. In above formulas, the constant λ can be related to the gravitational constant l2 in 8-d extending by
analogy the 4-d formulas in GR. Other constants on the phase space (from string gravity etc.) are introduced
as in 4-d theories, for instance, we consider l2 = 2l20λ, λ1 = −3/l0. Of course, we can re-define equivalently (6)
in various other forms but the hat variables have the priority to allow a general decoupling and integration of
physically important systems of nonlinear PDEs.

Using (5) in s-adapted form, we can define a canonical gauge s-operator pD̂αs := pD̂αs +
pÂαs and write

the nonassociative Yang-Mills equations (6) in the form

pD̂αs

pF̂αsβs = pD̂αs

pF̂αsβs + [ pÂαs ,
pF̂αsβs ] = −λ pĴ βs . (8)

In these formulas, [A,B] = AB − BA is the commutator on the Lie algebra of the chosen gauge group pGr.
The gauge gravitation fields on phase space satisfy also the Bianchi identity (which is equivalent to the Jacobi
identity):

[ pD̂µs , [
pD̂νs ,

pD̂αs ]] + [ pD̂αs , [
pD̂µs ,

pD̂νs ]] + [ pD̂νs , [
pD̂αs ,

pD̂µs ]] = 0, (9)

7



considered for matrix operators with values in Lie algebra.
We emphasize that the YM-like gravitational equations (6) can be postulated or derived in abstract geo-

metric form as in [27] but using the canonical de Sitter gauge gravitational connection (5) instead of similar
constructions involving the LC-connection and standard YM connections with the de Sitter structure group.
Such abstract geometric formulations can be used for the non-variational models when the structure group is
chosen to be of affine or Poincaré type. In the last cases, the Killing metric form is degenerated and the total
bundle gauge theory is not variational. Nevertheless, we can elaborate a variational model by introducing an
effective constant a instead of the term l−1

0
pχβ in (5). In such cases, an effective Lagrangian can be defined as in

the YM theory which allows a variational proof of field equations of type (8). Projecting such equations for the
LC-connection, or the canonical d-connection, on a base spacetime Lorentz manifold, the constant a disappears
and the (affine) YM gauge equations transform into standard Einstein equations. Such a proof is provided for
noncommutative generalizations in [28] (see in that paper the references on previous works with more details on
N-adapted variational proofs etc.). For this work (involving nonholonomic generalizations of the BV method),
it is enough to use the abstract geometric definition of YM-like equations. In the next subsection, we show that
this approach can be extended for nonassociative gauge gravity theories by using distortions of connections and
star product deformations.

2.3 Nonassociative star product deformation of de Sitter gauge gravity

It is a tedious technical task to compute in explicit frame index or coordinate forms of star product de-
formations of geometric and physical objects on phase spaces [11, 12]. Non-trivial N-connection structures
make the formalism more sophisticated. The Convention 2 from [12] was formulated with the aim to compute
such ⋆s-deformations in s-adapted form or using abstract geometric methods. Applying on (co) vector/tangent
bundles on corresponding phase spaces and gauge geometric s-objects the twisted star product operator ⋆s (3),
we can define corresponding nonassociative s-objects in gauge gravity theory. For instance, in a phase space,

⋆s : gs→ g⋆s = (ğ⋆s , ǧ
⋆
s);

p
sD̂ = p

s∇+ p
sẐ→

p
sD̂

⋆ = p
s∇

⋆ + p
sẐ

⋆;>→ >̆, (10)

when the Hodge operator >̆ on p
sM

⋆
and the parametric deformations can be defined using the symmetric

part ğ⋆s of the star product deformed s-metric.

The (co) vector bundles on p
sM, and respective geometric s-objects subjected to ⋆s-deformations define

certain nonassociative bundle spaces, p
sE(

p
sM) → p

sE
⋆( p

sM
⋆) = ( p

sE
⋆, pGr, pπ, p

sM
⋆), for double structure

group pGr preserved as in (4). Here we note that we can elaborate on more general classes of nonassociative gauge
models when, for instance, pGr transforms into some quantum groups (with group deforms which are additional
to ⋆s-deformations). Such quantum group theories involve various assumptions on algebraic structure and
request new physical motivations compared to the "nonassociative string theory R-flux deformation philosophy".
The procedure of general decoupling and integration for such quantum gauge gravitational models is more
sophisticated. In this work, we extend the research program outlined in [12, 13, 15, 16] for nonassociative
gravitational and matter field theories with gauge groups when the structure of such groups and corresponding
algebras are not subjected to quantum deformations. For such theories, we can apply in direct form the AFCDM
and generate exact and parametric solutions of physically important systems of nonlinear PDEs.

In abstract and nonholonomic s-adapted geometric forms, we define and compute nonassociative deforma-
tions of type: ⋆s : pÂ → p

sÂ
⋆, with pgαβ identified to ğ⋆s if we consider zero powers of parameters ~ and κ from

(3). We can prescribe also the nonholonomic structure for the same pχα and peγs from (5), with s-adapted
deformations ⋆s : pÂαβγs →

pÂ⋆αβγs . This allows us to compute nonassociative star product deformations:

⋆s :
p
sF̂ = p

sd
p
sÂ+ p

sÂ
s ∧⋆ p

sÂ →
p
sF̂

⋆ = p
sd

p
sÂ

⋆ + p
sÂ

⋆ s ∧⋆ p
sÂ

⋆, (11)

with respective deformation of s-adapted anti-symmetric operator ∧ → s∧⋆; [A,B]→ [A⋆, B⋆]⋆. For generalized
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sources of the YM equations, ⋆s : pĴ βs → pĴ ⋆βs ; and

p
sD̂ = p

sD̂+ p
sÂ →

p
sD̂

⋆ = p
sD̂

⋆

+ p
sÂ

⋆

, p
sĴ →

p
sĴ

⋆.

This allows us to ⋆s-deform the YM type equations for the de Sitter phase space gravity (6) and formulate their
nonassociative versions,

pd(>̆ pF̂
⋆

) + pÂ
⋆

∧ (> pF̂
⋆

)− (> pF̂
⋆

) ∧ pÂ
⋆

= −λ pĴ
⋆

.

This equation can be written also in nonholonomic s-adapted coefficient form as a ⋆s-deformation of (8),

pD̂
⋆

αs

pF̂
⋆αsβs = pD̂

⋆

αs

pF̂
⋆αsβs + [ pÂ

⋆

αs
, pF̂

⋆αsβs ]⋆ = −λ pĴ
⋆βs . (12)

The above nonassociative YM equations (12) are subjected additionally to the conditions of ⋆s-deformed Bianchi
identities (9) involving a nonzero "Jacobiator", which is typical for nonassociative theories. Such values can be
computed as induced (effective) ones by choosing respective s-adapted ~ and κ parametric decompositions. They
reflect both the nonassociative and nonholonomic structure of such phase space theories. We can consider certain
analogies with nonholonomic mechanics when the dynamical equations and conservation laws are supplemented
by additional non-integrable constraints, Lagrange multiples, modified conservation laws etc.

We emphasize that the nonassociative and noncommutative theories determined by a general twisted product
[8, 10, 11] are generic non-variational. So, the nonassociative gauge gravitational equations (12) are, in general,
non-variational and nonlocal. Such issues related to nonassociative R-flux gravitational models are discussed in
our partner works [13, 14, 15, 16, 48]. Here we note these important three points: 1) Effective variational theories
encoding nonassociative data can be formulated after considering ~ and κ parametric decompositions of the
geometric and physical s-objects in (12). 2) Such physically important equations can be derived in low-energy
limits of string theory (with corresponding nonholonomic re-parameterizations of terms with R-fluxes); or as star
product deformations of any variational or non-variational associative and commutative YM-like equations (6)
or (8). 3) To postulate or derive in abstract geometric form nonassociative gauge gravitational field equations
using the nonassociative gauge gravitational potential p

sÂ
⋆ (11) is also possible. This approach is preferred for

generic non-variational nonassociative theories. It allows an abstract nonassociative geometric generalization of
the mathematical methods and results on BV and AQFT theory from [25, 26, 32, 37, 38, 40, 41, 42, 43, 45, 46].
Such methods are very powerful and important in elaborating new models of QG including nonassociative non-
variational and nonlocal contributions from string and M-theory. In this work, we study such possibilities for
certain general and physically important classes of off-diagonal solutions of nonassociative gauge gravitational
equations (8). This first step is important for elaborating physical applications of the BV formalism to generic
nonlinear theories like GR and various modifications. Such results are important for elaborating QG models in
the conditions a general nonlinear functional analysis theory does not exist and can’t be formulated in a unique
way for generic nonassociative non-variational theories.

Finally, we note that an effective or matter field source pĴ
⋆βs (7) can be correspondingly parameterized and

physically motivated [16] in some forms that the nonassociative YM equations (12) present certain alternatives
or gauge like generalizations of the nonassociative star product deformed Einstein equations. In nonassociative
vacuum form, such models were considered in [10, 11] and, in s-adapted form, with extensions to certain classes
of nontrivial sources and off-diagonal solutions, in [12, 13, 15].

2.4 Quasi-stationary off-diagonal solutions in nonassociative gauge gravity

To study the physical implications of nonassociativity in the framework of gauge gravity theory it is im-
portant to derive certain physically important solutions of the gravitational field equations (12). This is a very
difficult technical problem because the nonassociative YM equations consist of a strongly coupled system of
nonlinear PDEs. Surprisingly, the AFCDM allows to construction of such solutions (see the first examples for

9



cosmological solitonic hierarchies in [16]). This is possible if we parameterize and project the nonassociative
YM equations on the base phase space in a form which is equivalent to nonassociative modified Einstein equa-
tions studied in our partner works. In this subsection, we have shown how such nonholonomic projections can
be defined in certain forms the general decoupling and integration properties of (nonassociative) gravitational
equations which was proved in [12]. This can be used for constructing physically important solutions.

2.4.1 Projections on phase spaces and effective parametric MGTs

We can formulate a nonassociative gauge gravity model when the nonassociative YM equations (12) are
equivalent to certain nonassociative star product modifications of the Einstein equations on the phase spaces.
This is possible if we consider instead of the de Sitter structure group SO(4, 1), the affine structure group
Af(4, 1). Then we construct a gauge potential which is similar to (5). We consider some constants χα0 instead
of p

sχ
α in the last line of the matrix p

sÂ
⋆, which takes values into the double Poincaré-Lie algebra,

p
sÂ

⋆ → p
sÂ

⋆
[P ] =

[
p
sÂ

⋆α
β l−1

0
p
sχ

α

χ
α
0 0

]
. (13)

The constants χα0 from (13) can be fixed to be zero at the end of computations. Then, we can introduce such
constants in the source (7) when further ⋆s−transforms result into

p
sĴ

⋆ =

[
p
sĴ

⋆α
β = 0 −l0

p
st
⋆α

χ
α
0 0

]
, with p

st
⋆α = χαβs pJ ⋆αsβs

peαs . (14)

In these formulas, pJ ⋆αsβs
is the star product deformation of the effective energy-momentum tensor extended on

phase space and written in s-adapted form pJαsβs on p
sM

⋆. Such nonholonomic nonassociative or commutative
sources are considered in nonassociative gravity and nonassociative geometric flow theories, see details and
references in [12, 13, 15].

For nonassociative gauge potentials and sources, respectively, of type (13) and (14), the projections on p
sM

⋆

of nonassociative YM equations (12) transform into nonassociative s-adapted canonical gravitational equations
considered in our partner works,

pR̂ic⋆αsβs =
pJ ⋆αsβs . (15)

In the vacuum case with pJ ⋆αsβs
= 0 and p

sD̂
⋆ → p

s∇
⋆, the system of nonlinear PDEs (15) are just the vacuum

gravitational equations for nonassociative and noncommutative gravity studied in [10, 11]. More than that, both
equations (12) and (15) transform into standard Einstein equations in GR if we construct the affine potential
(13) for the standard LC-connection ∇ on a pseudo-Riemannian spacetime base. The above equations can be
proven in s-adapted forms using a tedious calculus considered in [28, 29, 16] for nonholonomic commutative
phase spaces and in noncommutative gauge gravity with Seiberg-Witten product.

2.4.2 Off-diagonal parametric quasi-stationary solutions

The system of nonlinear PDEs (15) can be decoupled and integrated in certain very general forms when
the coefficients off-diagonal metrics and star-modified connections depend on all spacetime and momentum-like
coordinates [12]. Such solutions can be generated in a more simple form for quasi-stationary configurations with
a Killing symmetry (this is enough for the purposes of this work). For instance, we can use a time-like vector
e4 = ∂4 = ∂t (with x4 = y4 = t) and introduce such nonholonomic parameterizations of (effective) sources (14):

pJ ⋆αs

βs
( pu) = diag[ p

1J
⋆(xk1)δj1i1 ,

p

2J
⋆(xk1 , x3)δa2b2 ,

p

3J
⋆(xk2 , p5)δ

b3
a3 ,

p

4J
⋆(xk3 , p7)δ

b4
a4 ]. (16)

In this formula, k1 = 1, 2; k2 = 1, 2, 3, 4; k3 = 1, 2, ...6; we can consider variants when x3 → x4 (for locally
anisotropic cosmological configurations) or when p5 → p6, or when p7 → p8, for generating other classes of
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off-diagonal solutions. In a more general case, we can generate solutions for arbitrary shell parametrization
p
sJ

⋆(xks−1 , pas), for s = 3, 4. Any class of locally anisotropic cosmological solutions, with Killing symmetry
e3 = ∂3, of nonassociative modified Einstein equations (15) can be lifted on respective co-vector bundles for
generating solutions of nonassociative YM equations (12), see details in [16]. The goal of this section is to
show how the AFCDM can be used for generating quasi-stationary solutions of the systems of nonlinear PDEs
(15) and (12). Here, we also note that the ⋆-labels of the shell components in (16) state that such effective
sources encode in parametric form4 nonassociative data for R-flux and matter field deformations as explained
in details in [12, 13, 15]. In this work, we shall consider that p

sJ
⋆ are certain generating sources which can be

prescribed following physical arguments, for instance, to model nonassociative BH, or WH, or locally anisotropic
cosmological configurations.

Let us consider a prime p
s̊g(

pu) on p
sM. Geometrically, it can be an arbitrary s-metric, or taken as an

important solution of some (modified) Einstein equations which allows applications in modern physics and
information theory. Our goal is to construct a family of target p

sg(x
k3 , p7) defining a solution of (12),

p
s̊g(

pu) = [ pg̊αs(
pu), pN̊as

is−1
( pu)]→ (17)

p
sg
⋆(xk3 , p7) = [ pg⋆αs

(xks−1 , pas) =
pηαs(

pu) pg̊αs(
pu), pNas

is−1
(xks−1 , pas) =

pηasis−1
( pu) pN̊as

is−1
( pu)].

In (17), the η-polarization functions (i.e. phase space gravitational polarization functions, which can be also
considered as generating functions) define star product deformations. To elaborate on quantum models, we
can consider quantum perturbative or non-perturbative deformations, for instance, of some solutions in GR
or a MGTs extended on phase spaces. Here we emphasize that parameterizations (16) and (17) used for (2)
and (3) allows to transform (15) into a system of nonlinear PDEs with general decoupling and integration
properties [12]. After a class of solutions is defined in a certain general form by respective generating functions
and generating sources and integration functions, we can impose certain boundary or Cauchy conditions. This
allows us to elaborate on physical models with polarization of physical constants or vacuum gravitational and
phase space configurations, deformation of horizons (for certain conditions) etc.

The ansatz for generating quasi-stationary solutions of nonassociative gravitational YM equations (12) with
η-polarization functions and fixed energy parameter p8 = E0 can be parameterized (see details in [12, 13, 15])
using such quadratic line elements on phase space:

dŝ2 = gαs(~, κ, x
i3 , p7)(e

as)2 = gi1(~, κ, x
k1)(dxi1)2 + ga2(~, κ, x

i1 , y3)[ea2(~, κ, xi1 , y3)]2 + (18)
pga3(~, κ, xi2 , p6)[

pea3(~, κ, x
i2 , p6)]

2 + pga4(~, κ, pxi3 , p7)[
pea4(~, κ,

pxi3 , p7)]
2

= ηi1(
pu)̊gi1(

pu)(dxi1)2 + ηa2(
pu)̊ga2(

pu)(ea2)2 + pηa3( pu) pg̊a3( pu)( pea3)
2 + pηa4( pu) pg̊a4( pu)( pea4)

2,

where

ea2 = dya2 +Na2
k1
(~, κ, xi1 , y3)dxk1 = dya2 + ηa2k1 (

pu)N̊a2
k1
( pu)dxk1 ,

pea3 = dpa3 +
pNa3k2(~, κ, , x

i2 , p5)dx
k2 = dpa3 +

pηa3k2(
pu) pN̊a3k2(

pu)dxk2 ,
pea4 = dpa4 +

pNa4k3(~, κ,
pxi3 , p7)d

pxk3 = dpa4 +
pηa4k3(

pu) pN̊a4k3(
pu)dxk3 .

In Appendix, we provide explicit formulas for off-diagonal solutions with s-coefficients depending on generating
and integration functions and on generating sources p

sJ
⋆(16). Such values can be chosen in different forms

allowing to construct physically important exact or parametric solutions.

Any quasi-stationary solution (18) can be written in some off-diagonal functional forms with labels stating
certain basic properties defined by corresponding classes of generation functions and (effective) sources and

4We consider the small parameters ~ and κ; we can use also other type physical constants like the gravitational one G, with
extensions to higher dimensions, a BH mass, M , a cosmological constant, Λ, an electric charge, e, etc.; for simplicity, we shall write
only p

ℑ
⋆αs

βs

(~, κ, pu) or p

sg
⋆ (~, κ, pu) assuming that (if necessary) we can introduce and emphasize another types of physically

important constants; this allows us to define explicit classes of effective sources and s–metrics encoding various types of parametrical
dependencies; using polarization functions, we can write pηαs

(~, κ, pu) and pηas

i
s−1

(~, κ, pu)
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integration functions/ constants,

pg⋆[Cqs] = p
sg
⋆[solit , horiz , polarizc, sg , regular , geomflow , therm , kinetic, ramif ,filament , anhol , ...]

= pg⋆αβ(~, κ;x
i, x3pa; ∂4, ∂8;

p
sJ

⋆, p
sΛ;

pg̊αβ ,
p
sη ∼

pζαs(1 + κ pχαs), ..)d
puα ⊗ d puβ, or

pg⋆[Clacs] = pg⋆αβ(~, κ;x
i, t, pa; ∂3, ∂8;

p
sJ

⋆, p
sΛ;

pg̊αβ ,
p
sη ∼

pζαs(1 + κ pχαs), ...)d
puα ⊗ d puβ (19)

In (19), we consider such abstract labels for quasi-stationary configurations in pg⋆[Cqs] : vacuum polarizations,
for instance, as solitonic hierarchies, solit ; deformations of horizons (creation and disappearance), horiz ; polar-
ization of constants, polarizc ; singularities, sg ; and regularizations, regular ; geometric flows evolution, geomflow ,
thermodynamic properties, therm ; kinetic properties, kinetic; ramification, ramif ; filaments, filament ; non-
holonomic constraints anhol ; and other possible variants which are determined by generating and integration
functions and generating sources. Corresponding nonlinear symmetries relating effective generating sources to
shell effective cosmological constants; and when Horava-Lifshitz and Finsler-Lagrange-Hamilton structures [33]
can be modelled on (nonassociative) phase spaces, in GR, or other type MGTs.

In explicit form, nonassociative off-diagonal solutions pg⋆[Cqs] can be generated by prescribing a corre-
sponding class of integration functions (A.5) for s-metrics (A.1). We also need additional assumptions on the
type polarization functions and nonlinear symmetries (A.3). For more special conditions on parametric decom-
positions, we can generate regular BH configurations on phase space as in (A.11). Here we note that physical
properties of nonassociative phase space WH and black ellipsoid, BE, and BH solutions with singularities were
studied in [12, 13, 14, 15]. The (nonassociative) vacuum structure in gauge gravity and projections on phase
spaces may encode solitonic hierarchies branching of solutions and filament structures as we explained in [16] for
locally anisotropic cosmological solutions of type pg⋆[Clacs] (19). To generate such nonassociative accelerating
cosmological models we can use the time-like duality symmetries as we explain in (A.7).

We conclude this sections with such remarks:

1. The modified YM equations for nonassociative gauge gravity (12) and, for phase space projections, (15)
are characterized by generic nonlinear solutions pg⋆[Cqs] or pg⋆[Clacs] as in (19) defining a very rich
geometric structure. Any solution is characterized by a nonassociative geometric flow thermodynamics,
and respective nonlinear symmetries. Such nonassociative theories with general twisted star products are
not variational, see details in [13, 14, 15]. To elaborate on new methods of quantization and constructing
respective QG gravity models and formulating a generalized nonassociative BV formalism, we have to
apply advanced geometric methods of the nonassociative geometric flow theory in certain forms correlated
to the AFCDM.

2. For parametric decompositions, the corresponding gauge gravity and phase gravity equations and their
generic off-diagonal solutions pg⋆[Cqs] or pg⋆[Clacs] can be formulated in the framework of some effective
variational theories on phase spaces with respective effective Lagrange or Hamilton densities. In this
work, such densities encode nonassociative data. This approach allows us to develop in nonholonomic
form (for nonassociative gauge gravity theories) the BV formalism using rigorous mathematical results
from pAQFT [24, 25, 26].

3 The BV formalism for the nonassociative classical gauge gravity theory

In this section, we consider phase spaces modelled by quasi-stationary off-diagonal solutions pg⋆[Cqs] (19)
of the YM equations (12) for a classical nonassociative gauge gravity theory with star product. The main
goals are to generalize for such configurations the principles of locality and homology [25, 26] to construct
nonassociative gauge models, which will then be used to quantize using nonassociative and nonholonomic
deformation principles.
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3.1 Geometric preliminaries and kinematic structure

We choose a region pU ⊂ p
sM which is time-oriented and globally hyperbolic both for projections on the

Lorentz spacetime manifold and for typical cofibers. This means that both h- and c-components are Cauchy
surfaces. In brief, we write pU⋆Cqs if such a phase space region is defined by a pg⋆[Cqs] with corresponding
parametric dependencies. Respectively, we write pE⋆Cqs =

p
sE

⋆( pU⋆Cqs) (4) and omit star-labels for configurations
with [00] = [~0, κ0], when pUCqs and pECqs are determined by a pg[Cqs] which, for instance, contains dependen-
cies on parameters depending BHs, WHs or other types physically important solutions in an associative and
commutative gravity theory. By choosing an explicit quasi-stationary solution (A.1) or (A.11), we decide what
kind of s-objects define our (nonassociative) model, for instance, using certain classes of s-tensors, s-connections,
scalar fields etc.5

For scalar fields, the configuration space is just pECqs = C
∞( pUCqs,R). Considering YM fields with pGr =

SO(4, 1)⊕ pSO(4, 1) we can define off-shell configuration space as pE := Ω1( pUCqs,
pGr), see details and references

in [25]. If structure groups are not semi-simple and compact, for instance, pGr = Af(4, 1) ⊕ pAf(4, 1), we
can introduce some auxiliary constants which transform to zero after projections on the base spacetime but
allow to define nondegenerate total metric structures, and take come compact regions. In this work, we shall
consider nontrivial bundles which is enough for the perturbative treatment of (nonassociative) gauge models.
Our nonholonomic approach also includes a non-perturbative treatment because we use geometric s-objects
on pUCqs. Classical observables are functionals on pE⋆Cqs. Such a set can be equipped with the natural Frechét
topology if the space of smooth functionals C∞( pECqs,R) is considered. This means that an observable assigns
to a given field configuration a number (which is the value of a measurement at a given point in a spacetme).
Smoothness is used to introduce well-defined algebraic structures.

Next, we extend to nonassociative phase spaces the important notion of spacetime support of a functional
(which typically encodes localization properties of observables and additivity). For the goals of this work
(working with quasi-stationary phase space configurations subjected to star product deformations, for simplicity,
in linear parametric form up to [~1, κ1]), we define the phase space support of a functional as

sup p pF ⋆Cqs = { pu ∈ pUCqs | ∀ neighborhoods of pu∃ pϕ⋆1,
pϕ⋆2 ∈

pECqs, sup p
pϕ⋆2 ⊂

pUCqs

such that pF ⋆Cqs(
pϕ⋆1 +

pϕ⋆2) 6=
pF ⋆Cqs(

pϕ⋆1)}.

A functional pF ⋆Cqs is additive on phase space configuration Cqs if

pF ⋆Cqs(
pϕ⋆1 +

pϕ⋆2 +
pϕ⋆3) = pF ⋆Cqs(

pϕ⋆1 +
pϕ⋆2)−

pF ⋆Cqs(
pϕ⋆3) +

pF ⋆Cqs(
pϕ⋆2 +

pϕ⋆3),

for pϕ⋆1 +
pϕ⋆2 +

pϕ⋆3 ∈ pECqs and sup p pϕ⋆1 ∩ sup p pϕ⋆3 = ∅.

Then, a functional pF ⋆Cqs is local if it can be written in the form

pF ⋆Cqs(
pϕ⋆) =

∫

pUCqs

pω⋆(jku(
pϕ⋆)) pδ pµCqs(

pu), (20)

where pω⋆ is a function on the jet bundle over pUCqs, subjected to star product deformations up to [~1, κ1],
and jku(

pϕ⋆) = ( pu, pϕ⋆( pu), p∂ pϕ⋆( pu), ...), with derivatives up to order k, is the k-jet of pϕ⋆at the point pu,

5We shall use also such conventions: p
E
C
Cqs denote the space of smooth compactly supported sections of p

ECqs; for complexifications
of topological duals of p

ECqs and p
E
C
Cqs, which are equipped with the strong topology, we write respectively p

E
′
Cqs and p

E
′C
Cqs; we

denote by sec( p
E
⋆
Cqs)

∗ the space of smooth section of the dual bundle ( p
E
⋆
Cqs)

∗; then, ( p
E
⋆
Cqs)

! denotes the complexification of the
space of sections of ( p

E
⋆
Cqs)

∗ tensored with the bundle of densities over p
U

⋆
Cqs; and we write ( p

E
⋆
Cqs(

p
U

⋆
Cqs)

n)! for the complexified
space of sections of the n-fold exterior tensor product of a star product deformed bundle, seen as a s-vector bundle over ( p

U
⋆
Cqs)

n.

We have to introduce an "abuse of notations" comparing to [27, 25, 12, 16] because the procedure of quantization of nonlinear
systems encoding nonassociative data depends in an explicit form on the type of quasi-stationary configurations Cqs. To make the
notation system more simple we shall denote (if not ambiguous), for instance, the elements of p

E
⋆
Cqs by pϕ⋆ even such elements

carry s-indices (which can be invoked when it becomes necessary).
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up to [~1, κ1]. Here we note that our approach involves quasi-stationary off-diagonal configurations defined as
parametric solutions for Cqs.

We denote by p

locF
⋆
Cqs the spaces of compactly supported smooth local functions on pE⋆Cqs. Respectively,

the commutative algebra pFCqs of multilocal functionals is defined as the completion of p

locFCqs with respect
ot the point wise product pFCqs ·

pGCqs(
pϕ) = pFCqs(

pϕ) pGCqs(
pϕ). Star product deformations result in a

nonassociative p

locF
⋆
Cqs. We can introduce also regular functionals p

regFCqs and say that pFCqs ∈
p
regFCqs if all

the derivatives pF
(n)
Cqs (

pϕ) are smooth, when for all pϕ ⊂ pECqs, n ∈ N we have pF
(n)
Cqs (

pϕ) ∈ ( pECqs(
pUCqs)

n)! .

Similarly, star product deformations define p
regF

⋆
Cqs.

3.2 Nonassociative dynamics and nonlinear and linear symmetries

For a general nonassociative star product (3), we are not able to formulate a unique variational derivation of
physically important systems of PDEs in nonassociative geometric flow and gravitational theories, see details in
[13, 14, 15]. Such equations can be postulated in abstract geometric form and then we can consider nonholonomic
parametric deformations for a class of solutions and construct some nonholonomic Lagrangians or Hamiltonians
[32]. In Cqs, various types of non-trivial compact solutions can be found. To get around such obstructions with
can consider an effective Lagrangian density for a pUCqs with a cutoff function pf ∈ pǓCqs := C

∞( pUCqs,R). This
way, we can define all relevant s-objects and, for instance, nonassociative deformations of the Euler-Lagrange
derivative in a way which is independent of pf.

3.2.1 Effective ⋆-deformed Lagrangians and Euler-Lagrange s-operators

A nonassociative star product (3) deformation of a generalized Lagrangian pL on a fixed configuration
pUCqs ⊂

p
sM, i.e. ⋆ : pL→ pL⋆, for a map pL : pUCqs →

p

locFCqs defined by three properties:

1. additivity, when pL⋆( pϕ⋆1+
pϕ⋆2+

pϕ⋆3) =
pL⋆( pϕ⋆1+

pϕ⋆2)−
pL⋆( pϕ⋆2)+

pL⋆( pϕ⋆2+
pϕ⋆3) for pϕ⋆1,

pϕ⋆2,
pϕ⋆3 ∈

pǓ⋆Cqs,

for pǓCqs →
pǓ⋆Cqs, with sup p pϕ⋆1 ∩ sup p pϕ⋆3 = ∅;

2. support, when sup p( pL⋆( pϕ⋆)) ⊆ sup p( pϕ⋆) is defined by star product deformation of sup p( pL( pϕ)) ⊆
sup p( pϕ);

3. covariance, when for a local Minkowski spacetime and then for a cofiber, we consider an isometry
group pP = (P ↑

+,
pP ↑

+), where P ↑
+ is the proper orthocronous Poincaré group, we require the property

pL⋆( pf)(ρ∗ pϕ⋆) = pL⋆(ρ∗
pf)( pϕ⋆), for every ρ ∈ pP.

The abstract geometric formalism [27, 12] can be extended to the spaces of all generalized Lagrangians
pL = { pL}, when we assume that the Lagrangians satisfy the condition pL∗ = pL, where ∗ is an involution
which is different from the star product. Such an involution is not just the complex conjugation, but for
graded geometries, it also swaps the order of factors. Then all geometric s-objects are subjected to star product
deformations, ⋆ : pL → pL⋆, which allow to work with nonassociative generalized Lagrangians pL⋆.

Even in nonassociative geometry with general twist products, we are not able to formulate a general and
uniquely defined variational calculus, the abstract geometric formalism allows us to perform BV classical and
quantum constructions for any class of quasi-stationary configurations Cqs. The equivalence classes of pf on
the space of generating and integration functions (A.5) are related via nonlinear symmetries (A.3). In certain
effective parametric forms, we can always define corresponding actions pS⋆( pL⋆) considering equivalence classes
of Lagrangians pL⋆1 and pL⋆2, which are equivalent, pL⋆1 ∼

pL⋆2, if sup p(
pL1−

pL2)(
pf) ⊂ sup p(d pf),∀ pf ∈ pǓCqs.

In brief, we shall write pS⋆ instead of pS⋆Cqs, or pS⋆( pL⋆Cqs), if such simplifications do not result in ambiguities.
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Using canonical nonholonomic geometric variables (10) and (11), two important examples of nonassociative
generalized Lagrangians are written in the form:

p
ϕL

⋆( pf)[ pϕ⋆] =
1

2

∫

pUCqs

(
pD̂

⋆

αs

pϕ⋆ pD̂
⋆αs pϕ⋆ −m2( pϕ⋆)2

)
pf δ8µ, free scalar field ;

p
grL

⋆( pf)[ p
sÂ

⋆] = −
1

2

∫

pUCqs

pf tr( pF̂
⋆

∧ (> pF̂
⋆

)), nonassociative gauge gravitational field , (21)

where trace, tr, is in the Killing metric over the Lie algebra of the gauge group; the effective mass m includes
distortions of connections; and the measure δ8µ is defined by a chosen Cqs.

For any pL⋆ ∈ pL⋆, pϕ⋆ ∈ pE⋆Cqs, we define a functional

pδ pL⋆( pϕ⋆1)[
pϕ⋆] := pL⋆( pf)[ pϕ⋆ + pϕ⋆1]−

pL⋆( pf)[ pϕ⋆],

when pδ pL⋆ acts on pUCqs ×
pE⋆Cqs and pf ≡ 1 on sup p pϕ⋆1 and such a map does not depend on choice of pf.

This functional allows to introduce in effective form the Euler-Lagrange derivative of pS⋆,

pd pS⋆ : pE⋆Cqs →
pE

′C
Cqs defined by (22)

< pd pS⋆( pϕ⋆), pϕ⋆1 >:= lim
ς→0

1

ς
pδ pL⋆(ς pϕ⋆1)[

pϕ⋆] =

∫
pδ pL⋆( pf)

pδ pϕ⋆
pϕ⋆1(

pu), for

pϕ⋆1 ∈
pECCqs,

pδ pL⋆( pf)
pδ pϕ⋆

∈ ( pE⋆Cqs) ⊂
pE

′C
Cqs;

pd pS⋆( pϕ⋆) ≡ 0 defines the effective field equations ;
p

SolE
⋆
Cqs denotes the spaces of solutions defined as the zero locus of the 1-form d pS⋆, p

SolE
⋆
Cqs ⊂

pE⋆Cqs;
p

SolFCqs denotes the space of off-shell functionals in the space of functionals on p

SolE
⋆
Cqs.

In above formulas, we can identify the space of solutions of pS⋆( pϕ⋆) ≡ 0 to be equivalent with the class of
parametric solutions for pE⋆Cqs =

p
sE
⋆( pU⋆Cqs) (4). Here we also note that in all formulas involving pϕ⋆ or pϕ,

we can introduce abstract indices α̌, with inverse hat, for (nonassociative) fields labeling degree of freedom of
corresponding scalar fields, any type of (gravitational) gauge fields etc. So, we can write pϕ⋆ = { pϕ⋆α̌} and use

notations like
pδS⋆

pδ pϕ⋆
α̌(

pu) for
pδL⋆( pf)

pδ pϕ⋆
α̌(

pu) evaluated at pf ≡ 1.

3.2.2 Nonassociative configuration phase spaces’ symmetries and Noether theorem

A specific type of nonassociative nonlinear symmetries (A.3) characterize the quasi-stationary off-diagonal
solutions pg⋆[Cqs] (A.1). Introducing effective Lagrangians and actions as in (22), we impose other types
of symmetries for nonassociative parametric gravitational and matter field interactions. Let us analyse how
additional symmetries characterize respective effective systems.

Geometrically, we study additional symmetries defined as a vector field pX ⋆( pu) on pE⋆Cqs such that

p∂⋆pX
pS⋆ ≡ 0, where p∂⋆pX

pS⋆ :=

∫
pδL⋆( pf)
pδ pϕ⋆

pX ⋆, pf ≡ 1 on sup p pX ⋆.

In abstract geometric form,
pX ⋆ =

∫
pX ⋆( pu)

pδ
pδ pϕ⋆

∈ Γ(T pE⋆Cqs) (23)

is identified with a map from pE⋆Cqs to pE⋆Cqs
pE⋆CC

Cqs for sections Γ, where C is used for complexification. We can

introduce the anti-fields
pδ

pδ pϕ⋆ ≡
p

‡ϕ
⋆ identified as a basis on the fiber Tϕ pE⋆Cqs and consider pX ⋆ and p

‡ϕ
⋆ as
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s-vectors for configurations pg⋆[Cqs] involving s-adapted frames. The value p∂⋆pX
pS⋆ is just the insertion of

1-form pd pS⋆ into a vector field pX ⋆.
For our research, we can focus on local symmetries of a nonassociative system which can be expressed as

pX ⋆ = I + pω⋆ pρ⋆( pξ), where I is a symmetry that vanishes identically on p

SolE
⋆
Cqs (22), pω⋆ is a local function

defied as a map pE⋆Cqs →
pUCqs and pρ⋆ determine infinitesimal symmetries, when pξ ∈ pgc. Applying such

formulas, the multiplication with an element of Γ(T pE⋆Cqs), and pρ⋆ : pgc → Γ(T pE⋆Cqs) is a double Lie-algebra
morphism defined by a given local action pσ⋆ of Lie d-algebra pgc on p

SolE
⋆
Cqs when

pρ⋆( pξ) pFCqs[
pϕ⋆] :=< pF

(1)
Cqs(

pϕ⋆), pσ⋆( pξ) pϕ⋆ >≡

∫

pUCqs

pδF ⋆( pf)
pδ pϕ⋆( pu)

pσ⋆( pξ) pϕ⋆( pu). (24)

In these formulas, we use pgc with a subscript "c" stating that the maps are on corresponding spaces of smooth
compactly supported sections over nonassociative deformed vector bundles over pUCqs and when the action pσ⋆

on p

SolE
⋆
Cqs is defined to be local. For linear parametric deformations, we can consider nonassociative gauge

gravity models with pρ⋆ ≃ ρ⋆ when nonassociativity is encoded into functionals like F ⋆, or pϕ⋆ and pσ⋆.

For any nonassociative gauge model defined by a quasi-stationary solution of (12), the presence of local
symmetries implies that the effective equations of motion p

SolE
⋆
Cqs (22) have orbits of the action pσ⋆ (i.e. have

redundancies). This is formulated mathematically as the second Noether theorem:

∫
pδpS⋆

pδ pϕ⋆α̌

pX ⋆α̌(
pu) pδ8 pµ( pu) =

∫
pϕ⋆
β̌
(Qβ̌α̌)

∗
pδpS⋆

pδ pϕ⋆α̌

pδ8 pµ = 0, (25)

for ∗ denoting the formal adjoint of a differential operator obtained using integration by parts. Formulas (25)
state the condition to be a symmetry for any local and compactly supported s-vector can be expressed as a
differential s-operator

pX ⋆α̌(
pu)[ pϕ⋆] = Qβ̌α̌(

pϕ⋆) pϕ⋆
β̌
( pu) = a( pu)[ pϕ⋆] + bα( pu)[ pϕ⋆] pD̂⋆

α
pϕ⋆( pu) + ...

The effective equations of motion with
pδpS⋆

pδ pϕ⋆
α̌

and encoding nonassociative data are not all independent and

related both to linear and nonlinear symmetries (A.3) stated for quasi-stationary solutions pg⋆[Cqs]. For a
general nonassociative gauge gravity theory with twisted star product, it is not possible to define a unique
variational calculus and prove a general form of second Noether theorem (25) as in [36]. Such nonholonomic
constructions can be performed in abstract geometric form with further parametric decompositions. This allows
to define the space p

invF
⋆
Cqs of functionals on the solution space p

SolE
⋆
Cqs (22) that are invariant on the actions

of symmetries pρ⋆ encoding in parametric form off-diagonal solutions of gauge gravitational equations with
nonassociative data.

3.3 Ghosts and the BV complex of nonassociative quasi-stationary solutions

Any class of quasi-stationary or locally anisotropic solutions pg⋆[Clacs] or pg⋆[Cqs] (19) may involve sin-
gularities, nonassociative data, gravitational polarizations, solitonic hierarchies etc. In the presence of local
symmetries, the equations of motion (22) have redundancies when the Cauchy problem is not well posed. In
certain cases, a redundancy can be removed by taking the quotient by the action of infinitesimal symmetries
(25), which does not solve the issues related to the existence of nonlinear symmetries (A.3) and the non-
variational properties of general twisted star products. We can approach such problems following the guiding
idea of homology when (instead of taking quotients) we go to a large class of nonholonomic geometries with
distortion of connections. For certain classes of nonassociative physically important systems of PDEs, we can
prove general decoupling and integration properties and select equivalent classes of solutions with physically
important properties, which are better behaved and can be used as a first step towards quantization. The goal
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of this subsection is to characterize the space p

invF
⋆
Cqs of functionals on p

SolE
⋆
Cqs in a way that will facilitate

quantization. Here we note that nonholonomic methods for deformation quantization of GR and Finsler-like
MGT on phase spaces was elaborated in [34, 35]. In this work, those nonholonomic geometric constructions are
extended for nonassociative theories with twisted star product.

3.3.1 Nonassociative local symmetries and ghosts

The homological interpretation of the associative and commutative parts of the space pF⋆Cqs (of functionals
on the solution space p

SolE
⋆
Cqs (22)) denoted respectively pFCqs and pECqs, is similar to that reviewed in section

2.3 of [25] and formulated in rigorous mathematical form in [37]. Those proofs can not be extended for general
twist products when a unique variational formulation of physical models is not possible. Nevertheless, we can
study possible physical implications of nonlinear and linear symmetries of respective classes of solutions that
can be modified for parametric deformations on phase spaces to encode nonassociative geometric data using a
respective abstract and nonholonomic geometric formalism and R-flux deformations.

We consider the Lie d-algebra pgc on p

SolE
⋆
Cqs characterizing the infinitesimal local symmetries as we explained

in (24). Considering such symmetries as s-adapted derivations on functionals that are themselves compactly
supported and considered for respective classes of solutions, we can work directly with pg (dropping the condition
of compact support for symmetries on phase space and further deformations). For our purposes, we shall work
with the space of symmetry-invariant variables defined by certain functionals pB⋆ such that p∂ pρ⋆( pξ)

pB⋆ =
0; ∀ pξ ∈ pg. For physical applications, such conditions can be satisfied in linear parametric form. Here we note
that the spaces of invariants under the action of a Lie algebra as in the above formula and respective homological
algebra and homology groups constructions can be characterized using the Chevalley-Eilenberg complex. We
cite [37, 25] for precise definitions and emphasize that in this paper we work on phase spaces with d-algebras,
i.e. couples of algebras corresponding to h- and c-spaces, which are star-product deformed in parametric form.
Advanced topological homologic methods which are very sophisticate for researchers in theoretical physics are
not considered in this work.

For further geometric constructions, we use a s-vector co-bundle p
sE(

p
sM) on respective phase space p

sM,
when a star product (3) deforms such spaces into respective nonassociative ones labelled by a ⋆-symbol, p

sE
⋆ on

p
sM

⋆, see details in [16]. A graded s-adapted phase s-vector co-bundle is by definition p
sE := p

sE ⊕
pg[1], and, in

⋆-deformed form, p
sE

⋆
:= p

sE
⋆ ⊕ pg[1], when the functionals on pg[1] are identified with the exterior d-algebra

over the duals pg′, i.e. ∧ pg′, for pg = (h pg, c pg). The ghost phase space fields are introduced as evaluation
functionals

pξI( pu) = pcI( pu)[ pξ], (26)

where an abstract index I is used. Such ghosts are related to the graded d-algebra of the Chevalley-Eilenberg
complex

C p
sE := C∞[ml](

p
sE ,C) = (∧ pg′⊗̂ pFCqs,

p
ceγ); and, for star product deformations, (27)

C p
sE

⋆ := C∞[ml](
p
sE

⋆
,C) = (∧ pg′⊗̂ pF⋆Cqs,

p
ceγ),

where [ml] refers to the space of multilocal functionals on p
sE . In (27), ⊗̂ is the appropriately completed tensor

product and the grading of C p
sE is called the pure ghost number #pg = (#h +#c)pg, defined as a sum of h-

and c-ghosts.

Using the complex (27), we introduce the nonassociative Chevalley-Eilenberg differential p
ceγ, defined by

( p
ceγ

pB⋆)( pϕ⋆, pξ) := ∂ pρ( pξ)
pB⋆( pϕ⋆), for pξ ∈ pg′, or

p
ceγ

pB⋆ = ∂ pρ( pc)
pB⋆, in terms of evaluation funtionals, i.e. ghosts.
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In these formulas, pB⋆ ∈ pF⋆Cqs and p
ceγ

pB⋆ ∈ C∞[ml](
p
sE

⋆, pg); and p
ceγ encodes the action pρ of the gauges

d-algebra pg on pF⋆Cqs. We express for the ghosts field (26)

p
ceγ

pc = −
1

2
[ pc, pc] and p

ceγ
pω⋆( pξ1,

pξ2) =
pω⋆([ pξ1,

pξ2]) ∈ ∧
2 pg′

for any form pω⋆ ∈ pg′. Because p
ceγ

pB⋆ ≡ 0 if pB⋆ ∈ p

invF
⋆
Cqs, we can consider that the zero holonomy

group H0(C p
sE

⋆) characterizes the nonassociative gauge invariant functionals. Such formulas generalize on
(nonassociative) phase space the constructions from section 2.3.2 in [25].

3.3.2 Nonassociative classical BV complex

Let us characterize the nonassociative geometric properties of the space p

invF
⋆
Cqs. We consider s-vector fields

on p
sE

⋆
:= p

sE
⋆ ⊕ pg[1] instead of s-vector fields on p

sE
⋆. We call p

sE
⋆

an extended configuration phase space
(equivalently, graded phase space) involving a nonholonomic splitting (with corresponding nonholonomic h-
and c-splitting). For quasi-stationary configurations, we take p

sE
⋆ as p

SolE
⋆
Cqs and write p

SolE
⋆
. Now, we are

able to construct respective nonholonomic s-adapted, pBV, and nonassociative, pBV⋆, BV complexes when
⋆ : pBV → pBV⋆. We may distinguish such complexes by respective labels like p

SolBV
⋆ or pBV⋆Cqs. In abstract

geometric form, a nonassociative BV complex is defined by an underlying d-algebra of multilocal polyvector
fields (which can be s-adapted) on p

sE
⋆
. This space is modelled as the space of multilocal compactly supported

functional on the graded nonholonomic s-adapted manifold (generalized cotangent s-vector bundle)

T ∗[−1] p
sE

⋆
≡ p

sE
⋆[0] ⊕ pg[1]⊕ ( p

sE
⋆)

!
[−1]⊕ pg

!
[−2], (28)

where labels (with ! and possible additionally ones with Sol, or Cqs) are explained in footnote 5. In explicit
form, the elements of pBV⋆ are multilocal functionals of the nonassociative field multiplets pϕ⋆ = { pϕ⋆α̌} and of
corresponding antifields p

‡ϕ
⋆ = { p

‡ϕ
⋆
α̌} as defined for formulas (23). In a more general context, an index α̌ runs

through all the physical and ghost indices on nonassociative phase spaces, with possible nonholonomic dyadic
or h- and c-splitting of phase space. We use the convention that the phase anti-field are right derivatives

p
rδ

δ pϕα̌
,

with for graded manifolds are different from the left derivatives
p

l
δ

δ pϕα̌
. For phase and spacetime indices, such

derivatives can be defined in N-adapted or s-adapted forms and then subjected to star product deformations.6

The complex pBV⋆ can be considered as the space of graded multivector fields quipped with a generalized
Schouten bracket (which is an antibracket),

⋆ : { pX , pY} → { pX ⋆, pY⋆} :=
∑

α̌

(
〈
p
rδ

pX ⋆

δ pϕα̌
,
p

lδ
pY⋆

δ p

‡ϕ
⋆
α̌

〉+ 〈
p
rδ

pX ⋆

δ p

‡ϕ
⋆
α̌

,
p

lδ
pY⋆

δ pϕα̌
〉

)
.

To define variational configurations, we use linear parametric deformations. Using such an antibracket, we can
introduce locally a right derivation pδS →

pδ⋆S , when

pδ⋆S
pX ⋆ = {pX ⋆, pL⋆( pf)}, pf ≡ 1 on sup p pX , pX ∈ pV

⋆
;

= {pX ⋆, pS⋆( pf)}.

6Both in h- and c-forms, the d-algebra has two gradings: the ghost numbers #gh = (#h + #c)gh, for the main phase space
gradings, and the antifield numbers #af = (#h + #c)af. In this work, we consider a gauge gravity theory on phase space with
a structure d-group pg when the R-flux deformations result in effective variational model with distorted connections and sources
but preserving the ghost and antighost number and pg. For such conditions, the functionals of physical fields on (nonassociative)
phase spaces have both numbers equal to 0; and, for functionals of ghosts, #af = 0 and #gh = #pg, when, for the "pure" ghost
grading, a phase ghost pc has #pg = 1. All s-vector fields have a non-zero antifield number computed #af( p

‡ϕ
⋆
α̌) = 1+ #pg( pϕ⋆

α̌),
and #gh = −#af.
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Because we work with linear parametric decompositions, for any pγ pX ⋆, we can find an effective action
pΘ⋆ that pγ pX ⋆ = { pX ⋆, pΘ⋆}. Using such effective decompositions, we define the nonassociative classical BV

differential as
pℵ⋆ = {•, pS⋆ + pΘ⋆} := {•, pS⋆ext}, with extended action pS⋆ext. (29)

The nilpotent property, ( pℵ⋆)2 = 0, results in the nonassociative classical master equation (nCME), which
modulo terms vanishing in the limit of a constant pf is written in the form

{ pL⋆ext(
pf), pL⋆ext(

pf)} = 0, (30)

for an effective pL⋆ext used for constructing pS⋆ext.
7 Here we note that the operator pℵ⋆ increases the ghost

number by one (it is of order 1 in #gh) and can be expressed as pℵ⋆ = pδ⋆+ pγ⋆, where the extension of pδ⋆S is
denoted pδ⋆ (an operator of order -1 in #af) and the extension of p

ceγ is denoted pγ⋆ (an operator of order 0).

Above formulas (29) and (30) define a nonassociative variant of the Koszul-Tate complex ( pBV⋆Cqs,
pδ⋆)

which is a resolution for nonlinear and linear symmetries considered in our nonassociative gauge gravity theory.
It would be noted a resolution if the (non) linear symmetries were not independent. pBV⋆Cqs has a simpler
algebraic structure when the quotients/ spaces of orbits and nonlinear symmetries are resolved than in the case
of p

invF
⋆
Cqs.

To introduce the gravitational gauge fixing we use a star product automorphism acting on s-adapted gener-
ators in the form

pα⋆ψ(
p

‡φ
⋆
α̌(

pu)) :=
pδ⋆ pψ⋆( pf)
pδ pϕα̌( pu)

and pα⋆ψ(
pφI( pu)) = pφI( pu),

where pf( pu) = 1, see formulas (26), and a gauge fixing phase space fermion pψ⋆M ( pf) is stated as a fixed
generalized Lagrangian of ghost number -1. Similarly to [38, 25], we can choose pα⋆ψ such that #af = 0, and
in a form that pα⋆ψ lives the star product antibracket invariant when the R-flux deformed action results into
hyperbolic equations. Here we note that a Lorenz-like gauge for nonassociative gauge gravity theory (12) we

need to extend the BV complex with antighosts pC⋆ = { pC
I
⋆}, of degree -1, and so-called Nakanishi-Lautrup

field pB⋆ = {
pBI
⋆}, degree 0, which form a trivial pair when pℵ⋆ pC

I
⋆ = i pBI

⋆ and pℵ⋆ pBI
⋆ = 0. Such operators

act on an extended nonassociative configuration space p
sE
⋆
≡ p

sE
⋆[0] ⊕ pg[1]⊕ pg[0]⊕ pg[−1], when the gauge

fixing fermion defined and computed

pψ⋆( pf) = i

∫

M

(α
2
κ( pC⋆,

pB⋆)+ < pC⋆, >̆
pd(>̆ pÂ

⋆

) > pδ pµCqs(
pu),

)

with a measure as in (20) and pÂ
⋆

(13), see details in section 2.3 of [25].

We conclude that for gauge-fixed theories, gradings are convenient to be redefined considering that #ta is the
total antifield number (1 for the antifield generators and 0 for fields). Using the decomposition pℵ⋆ = pδ⋆+ pγ⋆

and for a total action pS⋆ext, where pS⋆ denotes the #ta = 0 term, and when pΘ⋆ := pS⋆ext−
pS⋆ as in formulas

(29). Expressing
pδ⋆ = {·, pS⋆} and pγ⋆ = {·, pΘ⋆},

where the differential pδ⋆ acts trivially both on fields and antifields (giving pδ⋆ p

‡ϕ
⋆
α̌ =

pδ pS⋆

δ p

‡
ϕ⋆
α̌

), we derive

nonassociative gauge-fixed euqations of motion which are hyperbolic equations of motion of pS⋆. This is true
for any solution of type p

SolE
⋆
Cqs and respective nonlinear symmetries.

7For associative and commutative configurations on a Lorentz manifold, the formula (30) transforms into the CME (11) in [25],
where another system of notations is used. In this work, we have to consider a star product deformed classical BV differential (29)
with an "abuse" of notations, like p

ℵ
⋆ and pΘ⋆, because we elaborate our theory on nonassociative phase spaces which requires

more sophisticated geometric and index-type notations.
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3.4 Linearization and nonassociative classical BV operator and the Møller maps

On nonassociative phase spaces with parametric decompositions, we can split and linearize respectively the
extended action pS⋆ext in a form that

pS⋆0 = pS⋆00 +
pΘ⋆

0, the quadratic term in (anti) fields,#ta( pS⋆00) = 0,#ta( pΘ⋆
0) = 1;

pV ⋆ = pV ⋆
0 + pΘ⋆, the interacton term ; (31)

pS⋆ = pS⋆00 +
pV ⋆

0 , the total antifield independent part of the action.

Using above formulas we can defined the linearized nonassociative differentials (respective BRST and BV type):

pγ⋆ pF := { pF , pΘ⋆
0} and pℵ⋆0 =

pδ⋆0 +
pγ⋆0 , (32)

where pδ⋆0(
p

‡ϕ
α̌
⋆ ) = −

pδ pS⋆
00

δ pϕ⋆
α̌
. Such operators allow us to introduce two important nonassociative differential

operators, pP α̌β̆⋆ ( pu) and pK α̌
⋆β̆
, when

p

lδ
pS⋆00

δ pϕ⋆α̌
( pϕ⋆α̌) :=

pP α̌β̆⋆ ( pu)( pϕ⋆
β̆
), in brief ,= pP⋆

pϕ⋆; and
p
rδ

p

lδ
pΘ⋆

0

δ pϕ⋆α̌(
pu1)δ

p

‡ϕ
β̆
⋆ ( pu1)

( pϕ⋆α̌) :=
pK α̌

⋆β̆
( pu)( pϕ⋆

β̆
).

On nonassociative phase space, we can assume a gauge fixing in such a way that pP⋆ is Green hyperbolic
for any h- and c-component as for (associative and commutative) gauge and gravity theories was shown in
[38]. We introduce a double Green function of motion operator pP⋆ in canonical form (with hat d-operators)

by pg⋆[Clacs], when p△̂
A/R
⋆ = (h△

A/R
⋆ , c△

A/R
⋆ ), where A and B mean respectively "advanced" and "retarded".

This allows to define a nonassociative Pauli-Jordan function

p△̂⋆ =
p△̂R

⋆ −
p△̂A

⋆ (33)

and prove in abstract geometric form such properties (nonassociative generalizations of [38, 39, 40]): For any
p△̂⋆ being a retarded, advanced or causal propagator corresponding to pP⋆

pϕ⋆ = 0, there are satisfied the
consistency conditions

∑

β̆

[
(−1)pα̌p pK α̌

⋆β̆
( pu′) p△̂∗β̆γ̆

⋆ ( pu′, pu) + pK γ̆

⋆β̆
( pu) p△̂∗α̌β̆

⋆ ( pu′, pu)
]
= 0, (34)

which are determined for a pS⋆00 being invariant under pγ⋆0 , and when the nCME (30) are satisfied.

For associative and commutative configurations, we can define an interacting quantum BV operator [41] by
taking a free one and twisting it with quantum Møller map [42, 43]. Then, it is possible to prove that the resulting
method is local. Nonassociative theories with twister star product (3) introduce a generic nonlocal structure
both for classical and quantum models. The advantage of the cited mathematical formulas is that it works
for nonlocal operators on phase spaces. In this subsection, we consider such constructions for nonassociative
classical gauge gravity models which in parametric form can be defined by an effective action pS⋆ = pS⋆0 +

pV ⋆,.
Here, the interaction term pV ⋆ is a star product deformation of local compactly supported functions.

We assume that pS⋆ and necessary functionals pF⋆Cqs are determined on the solution space p

SolE
⋆
Cqs (22)),

with respective non-trivial (non) linear symmetries. We define a nonassociative generalization of the maps from
[42, 43] in the form:

pr⋆−1
λV ( pF⋆Cqs)(

pϕ⋆) := pF⋆Cqs(
pr⋆−1
λV ( pϕ⋆)), where (35)

pr⋆−1
λV ( pϕ⋆) = pϕ⋆ + pλ p△̂R

⋆
pV ⋆

(1)(
pϕ⋆) is the inverse nonassociative Møller map;

pr⋆λV (
pϕ⋆) = pϕ⋆ − pλ p△̂R

⋆ pS⋆
0

pV ⋆
(1)(

pr⋆λV (
pϕ⋆)) is the classical nonassociative Møller map.
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In above formulas, the maps are inverted as formal power series on small pλ when pr⋆λV goes from certain
nonassociative interactions to a fee theory. One holds the so-called intertwining relation:

[ pr⋆λV (
pF⋆Cqs),

pr⋆λV (
pG⋆Cqs)] =

pr⋆λV [
pF⋆Cqs,

pG⋆Cqs] pr⋆
λV
,

where, respectively, [., .] and [., .]V are the free and the interacting Poisson brackets (as for the Pielers bracket).
For instance, we have

[ pF⋆, pG⋆] =
∑

α̌,β̆

〈
p
rδ

pF⋆

δ pϕ⋆α̌
, p△̂⋆α̌β̆

p

lδ
pG⋆

δ pϕ⋆
β̆

〉, (36)

for pF⋆, pG⋆ ∈ pBV⋆Cqs. To close pBV⋆Cqs under such brackets we have to extend the constructions to a large space,

for instance, considering microcausal functions on T ∗[−1] psE
⋆

(28). This allows us to work with functionals that
are smooth and compactly supported satisfying conditions similar to (14) - (16) in [25]. The effective potential
pV ⋆

(1)(
pϕ⋆) in (35) is defined in a form that pr⋆−1

λV maps the solutions encoded into free equations of motion into
the solutions generated by the interacting equations of motion, i.e.:

pr⋆−1
λV

pδ pS⋆0
δ pϕ⋆

= pr⋆−1
λV ( pP⋆

pϕ⋆) = pP⋆
pϕ⋆ + pλ pP⋆ ◦

p△̂R
⋆

pV ⋆
(1)(

pϕ⋆) = pP⋆
pϕ⋆ + pλ pV ⋆

(1)(
pϕ⋆).

The formulas (35) can be generalized to the case when nonassociative gauge symmetries are present. In
such cases, pS⋆0 has two terms then the first one ( pS⋆00, it does not depend on antifields) defines pP⋆ and p△̂R

⋆ .
We can consider

pr⋆−1
λV ( pϕ⋆α̌) =

pϕ⋆α̌ + p△̂⋆α̌β̆

p

lδ
pV ⋆

δ pϕ⋆
β̆

( pϕ⋆) and pr⋆λV (
pϕ⋆α̌) =

pϕ⋆α̌ −
p△̂⋆α̌β̆

p

lδ
pV ⋆

δ pϕ⋆
β̆

( pr⋆λV (
pϕ⋆)).

Using such operators, we can formulate and prove such results for nCME( pS⋆), i.e. the classical master
equations for the nonassociative gauge gravity with star product deformation (3):

pr⋆−1
λV ({ pX ⋆, pS⋆0}) = { pr⋆−1

λV ( pX ⋆), pS⋆0 +
pV ⋆} − (37)

∫
p
rδ

pX ⋆

δ pϕ⋆α̌(
pu′)

( pr⋆−1
λV ( pϕ⋆)) p△̂⋆α̌β̆(

pu′, pu)
p

lδ(nCME( pS⋆))

δ pϕ⋆
β̆
( pu)

,

which allows to write the classical BV operator (29) of the nonassociative gauge gravity theory as

pℵ⋆ = pr⋆−1
λV ◦

pℵ⋆0 ◦
pr⋆λV . (38)

Details on proofs of formulas (37) and (38) in associative and commutative forms are provided in [25] (for the
Theorem 2.15 and Corollary 2.16 and appendix of that work) and [41]. Nonassociative generalizations can be
obtained using the abstract geometric formalism for nonholonomic parametric deformations on phase spaces.

4 BV-scheme and quantization of nonassociative gauge de Sitter gravity

The goal of this section is to show how the BV formalism [20, 21, 23, 24] can be applied for quantizing quasi-
parametric off-diagonal solutions. We cite also recent mathematical developments [25, 37, 40, 26, 39, 41, 42, 43]
using certain methods for quantizing the classical nonassociative gauge gravity theories from the previous two
sections. The twisted star product (3) can be written in the form ⋆ = ⋆~ + ⋆κ, where ⋆~ includes terms with ~0

and ~1 and ⋆κ encodes terms with are proportional to κ with possible mutiplications on terms which are also
~0- and ~1-parametric. The quantization scheme is elaborated using the Planck constant ~ and when the string
parameter κ defines nonassociative R-flux deformations. For simplicity, we consider only the κ-linear terms
when the higher order contributions can be computed recurrently.
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4.1 Free nonassociative gauge gravitational fields

We can construct a quantized algebra of free nonassociative filed using deformation quantization, DQ,
encoding also κ-parametric R-flux deformation of the classical s-algebras ( p

µcBV
⋆
Cqs, ⌊·, ·⌋). Such noncommutative

gauge gravity theories were elaborated in [28, 29] when the DQ formalism for GR and MGTs was studied in
N-adapted form in [34, 35]. In our approach, we equip the nonassociative phase space of formal power series
p
µcBV

⋆
Cqs[[~, κ]] with a nonassociative star product ⋆ = ⋆~ + ⋆κ (3), when the noncommutative component ⋆~ is

used for defining the quantum s-operator product of quantum observables as in [43, 25, 42, 41]. Here we note
that the meaning of the string constant κ differs from that of ~ used for quantization.

For any s-operators pF⋆ and pG⋆, we can consider such a deformation of the point wise product,

pF⋆ ⋆s
pG⋆ := pm ◦ exp(i~ pD⋆

W )( pF⋆ ⊗s
pG⋆),

where the multiplication s-operator is considered on associative and commutative phase space as

pm( pF⋆ ⊗s
pG⋆)( pϕ⋆) = pF⋆( pϕ⋆) ·s

pG⋆( pϕ⋆),

and a functional differential s-operator is defined pD⋆
W := 1

2

∑
α̌,β̆〈

pW ⋆
α̌β̆
,

p

l
δ

δ pϕ⋆
α̌
⊗s

p
rδ

δ pϕ⋆

β̆

〉. In this formula, we

use pW ⋆
α̌β̆

as the phase space R-flux deformation of so called 2-point function of a Hardmard state. In [44, 39],

similar details are provided on how to chose such an W -operator to be positive definite, satisfy the appropriate
wave conditions and when

pW ⋆
α̌β̆

=
i

2
p△̂⋆α̌β̆ +

pH⋆
α̌β̆
.

In this formula, pH⋆
α̌β̆

is a symmetric bi-solution for pP⋆. The nonholonomic s-adapted structure can be prescribed

in such a form that additionally to the standard properties there satisfied also the consistency condition (see
(34)) for the symmetric part:

∑

β̆

[
(−1)p

pϕ⋆
α̌p pK α̌

⋆β̆
( pu′) pH∗β̆γ̆

⋆ ( pu′, pu) + pK γ̆

⋆β̆
( pu) pH∗α̌β̆

⋆ ( pu′, pu)
]
= 0. (39)

So, pγ⋆0 is a right derivation with respect to the star product if the conditions (39) are satisfied. Here we note
that pδ⋆0 is also a right derivation with respect to ⋆ since pW ⋆

α̌β̆
is a solution for the linearized parametric

nonassociative phase space equations of motion s-operator pP⋆.

4.2 Interacting nonassociative gauge gravitational fields

In this subsection, we consider the space p
regBV

⋆
Cqs of regular functional for which the derivatives at every

point are smooth compactly supported functions on T ∗[−1] p
sE

⋆
(28).

4.2.1 Time-ordered products and Peierls bracket

For any pF⋆, the time-ordering operator, pT ⋆, is defined using the formula for an internal kernel, pK⋆
α̌β̆
,

pT ⋆ pF⋆( pϕ⋆) := e
~

2
pD⋆κ

p△̂F
⋆ , for pD⋆κK :=

∑

α̌,β̆

〈 pK⋆
α̌β̆
,

p

lδ

δ pϕ⋆α̌
⊗s

p
rδ

δ pϕ⋆
β̆

〉, (40)

is defined to include parametric κ-terms from ⋆κ and p△̂F
⋆ = i

2

(
p△̂R

⋆ + p△̂A
⋆

)
+ pH⋆. We state that formally

pT ⋆ is a s-operator of convolution corresponding to oscillating Gaussian measure with covariance i~ p△̂F
⋆ when,

pT ⋆ pF⋆( pϕ⋆) =

∫
pF⋆( pϕ⋆ − pϕ⋆1)

pδ pµ
i~ p△̂F

⋆
( pϕ⋆1).
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In such a formula, pδ pµ
i~ p△̂F

⋆
( pϕ⋆1) is chosen to correspond to some pδ pµCqs(

pu). Using such formulas, we define

the time-ordered product ·T ⋆ on p
regBV

⋆
Cqs[[~, κ]] as

pF⋆1 ·T ⋆
pF⋆2 := pT ⋆( pT ⋆−1 pF⋆1 ·

pT ⋆−1 pF⋆2 ).

We note that ·T ⋆ consists a time-ordered version of ⋆ = ⋆~ + ⋆κ (3) when

pF⋆1 ·T ⋆
pF⋆2 = pF⋆1 ⋆

pF⋆2 if the support of pF⋆1 is later than the support of pF⋆2 ; (41)
pF⋆1 ·T ⋆

pF⋆2 = pF⋆2 ⋆
pF⋆1 if the support of pF⋆2 is later than the support of pF⋆1 .

Let us consider as in AQFT a QFT model of assigning s-algebras of observables

pU⋆( pO⋆) = ( p
µcBV

⋆
Cqs[[~, κ]], ⋆~ + ⋆κ) ⊂

p
sM

⋆

on a given nonassociative phase space. In parametric form, we approximate pU⋆( pO⋆) ≈ pU⋆Cqs(
pO⋆) for a

compact phase space region pO⋆ = p
sO

⋆ = (h pO⋆, c pO⋆) defined by a pg⋆[Cqs] (19), when a phase space
differential pd⋆ and star product ⋆ are assigned of such chain of complexes in s-algebras of regions. Here we
note that the decoupling properties of nonassociative gauge gravity equations does not depend on the existence,
or not, of certain Cauchy hypersurfaces in p

sM
⋆. We can consider such a hypersurfrace in the form that every

in-extendible causal curve intersects it exactly once (with a conventional splitting on h- and v-parts) in any
neighborhood p

sN
⋆ ⊂ p

sM
⋆. Above stated conditions allow us to extend on nonassociative phase spaces two

important axioms considered of associative and commutative spacetimes in section 3.2.2 of [25]:

• Axiom 1 on weak causality on nonassociative phase space p
sM

⋆ : For any h- and c-components
which are of spacelike signature, the commutator [ pU⋆( pO⋆1),

pU⋆( pO⋆1)] =
pd⋆ pX ⋆ for some pX ⋆ ∈

pU⋆( pO⋆) when pO⋆ contains both pO⋆1 and pO⋆2.

• Axiom 2 on time-slicing of nonassociative phase space p
sM

⋆: For any p
sN

⋆ of a Cauchy hy-
persurface in the region pO⋆ ⊂ p

sM
⋆, the map pU⋆( pN ⋆) and pU⋆( pO⋆) are quasi-isomorphic (i.e. are

isomorphic on the level of cohomology groups of corresponding h- and c-components).

Let us take pF⋆1 ,
pF⋆2 ∈

pU⋆( pO⋆) and denote p
sN

⋆
+ and p

sN
⋆
− the respective Cauchy surfaces to the future

and past of h- and c-components of pO⋆. The Axiom 2 implies that there are localization maps pβ⋆±(
pF⋆1 ) and

a pF⋆3 that pβ⋆−(
pF⋆1 ) −

pβ⋆+(
pF⋆1 ) =

pℵ⋆0
pF⋆3 , see formulas (38). Here we note that on base spacetime with

fixed (co) fiber coordinates pℵ⋆0 transforms into BV-operator s0 from [41, 25]. Using Axiom 1 and the properties
(41), we can define and compute the nonassociative ⋆-star commutator pF⋆1 and pF⋆2 in the form

i~[ pF⋆2 ,
pF⋆1 ]⋆ = pF⋆2 ⋆

pF⋆1 −
pF⋆1 ⋆

pF⋆2 = pF⋆2 ⋆
pβ⋆+(

pF⋆1 )−
pβ⋆−(

pF⋆1 ) ⋆
pF⋆2

= pF⋆2 ·T ⋆
pβ⋆+(

pF⋆1 )−
pβ⋆−(

pF⋆1 ) ·T ⋆
pF⋆2 mod Im pd⋆,

considering modulo the image od of pd⋆. This allows us to express a quantum nonassociative version of the
Peierls bracket (36), when

i~[ pF⋆2 ,
pF⋆1 ]⋆ =

pF⋆2 ·T ⋆
pℵ⋆0

pF⋆3 mod ~
2, Im pd⋆.

For pd⋆ pF⋆2 = 0, we can introduce an antibracket in the right side,

i~[ pF⋆2 ,
pF⋆1 ] =

pℵ⋆0(
pF⋆2 ·T ⋆

pF⋆3 ) + i~{ pF⋆2 ,
pF⋆3 } mod ~

2, Im pd⋆.

So, we can consider
[ pF⋆2 ,

pF⋆1 ] = {
pF⋆2 ,

pF⋆3 } mod ~, Im pd⋆

as the intrinsic definition of the Peierls bracket for a given antibracket and the time-ordered product in a
nonassociative phase space theory satisfying the Axiom 2.
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4.2.2 Interactions and the renormalization problem

We model nonassociative phase space interactions (31) as in the classical master equations (37) assuming
that pV ⋆ ∈ p

regBV
⋆
Cqs. The quantum observable of the free theory associated with this nonassociative phase

space potential as pT ⋆ pV ⋆. This is a quantization map (in our approach, it is nonholonomic s-adapted and
determined by a configuration Cqs and respective parametric deformations) which involves also a normal ordering
pT ⋆ pV ⋆ ≡: pV ⋆ : .

Considering formal power series on a small pλ as in (35), we define the formal S-matrix

pS⋆( pλ pV ⋆) := ei
pλ: pV ⋆:/ ~ = pT ⋆(ei

pλ pV ⋆/ ~),

where pS⋆( pλ : pV ⋆ :) ∈ p
regBV

⋆
Cqs((~))[[

pλ, κ]], explicit computations involve κ-linear terms. The formulas
can be recurrently extended as power series on κ if we consider such string R-flux deformations. Interacting
nonholonomic s-fields are considered as elements of p

regBV
⋆
Cqs[[~,

pλ, κ]] given and computed as

pr⋆λV (
pF⋆) := [(ei

pλ: pV ⋆:/ ~)⋆]−1 ⋆ (e
i pλ: pV ⋆:/ ~

pT ·T ⋆ : pF⋆ :) (42)

= −i~
d

d pµ
pS⋆( pλ pV ⋆)−1 pS⋆( pλ pV ⋆ + pµ pF⋆)|pµ=0,

when pr⋆0(
pF⋆) =: pF⋆ :, for pλ = 0. Using the s-operator (42), we can define the interacting nonassociative

star product
pF⋆1 ⋆

int
s

pF⋆2 := pr⋆−1
V ( pr⋆V (

pF⋆1 ) ⋆s
pr⋆V (

pF⋆2 )),

which encode in parametric form nonassociative quantum regularizations of the constants in (3).

On nonassociative phase spaces, we face the same problem of quantization as on typical Lorentz manifolds
when quantum interactions and observables are local but not regular. For details on the corresponding renor-
malization problem, we cite [25], section 3.2.4. Here we also note that our goal is to elaborate on models of
physical interactions which are usually local and encoding in effective parametric forms certain nonassociative
data. Both on base spacetime Lorentz manifold and for co-fiber constructions the time-order product ·T ⋆ is not
well defined on local and nonlinear functionals because of singularities of p△̂F

⋆ . So, the renormalization problem
of nonassociative gauge gravitational fields (in our gauge models) is then to extend the effective parametric
functional pS⋆ to local arguments by using time-ordering products on nonassociative phase spaces,

pS⋆ =
∑∞

n=0

1

n!
pF⋆n(

pV ⋆, ..., pV ⋆), for

pF⋆n(
pF ⋆1 , ...,

pF ⋆n) :=
pF ⋆1 ·T ⋆ ... ·T ⋆

pF ⋆n .

In these formulas, the s-adapted time-ordered product of n local functionals is well defined by choosing pairwise
disjointed supports respectively defined on base and typical fibers. To construct a causal perturbation theory
on phase space we can extend pF⋆n to arbitrary local functional following the Epstein and Glaser process. In
this case, the causal factorization property is stated as

pF⋆n(
pF ⋆1 ⊗ ...⊗

pF ⋆n) =
pF⋆n(

pF ⋆1 ⊗ ...⊗
pF ⋆k ) ⋆s

pF⋆n−j(
pF ⋆k+1 ⊗ ...⊗

pF ⋆n)

if the supports of pF ⋆1 , ...,
pF ⋆k are later than the supports of pF ⋆k+1, ...,

pF ⋆n .

4.2.3 Renormalized nonassociative QME and quantum BV operator

We can apply the BV-formalism elaborated for the pAQFT [41, 25] by extending on nonassociative phase
spaces the conditions that the free classical nonassociative BV s-operator pℵ⋆0 from (see formulas (29) and (38))
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is defined

pℵ⋆0(e
i : pV ⋆:/ ~

pT ) = pT ⋆(ei
pV ⋆/ ~ − i~ p△̂⋆e

i pV ⋆/ ~) (43)

= pT ⋆(ei
pV ⋆/ ~(

i

~
{ pV ⋆, pS⋆0}+

i

2~
{ pV ⋆, pV ⋆}+ p△̂⋆(

pV ⋆))) = 0.

Such computation is performed using the identity satisfied by pT ⋆ (40), pδ⋆0(
pT ⋆ pF ⋆) = pT ⋆( pδ⋆0

pF ⋆−i~ p△̂⋆
pF ⋆).

This follows from the consistency conditions (39) which for the decomposition pℵ⋆0 = pδ⋆0 +
pγ⋆0 (32), result in

pT ⋆ ◦ pγ⋆0 = pγ⋆0 ◦
pT ⋆. In above formulas, the nonassociative BV Laplacian is defined and computed as

p△̂⋆
pX ⋆ = (−1)(1+#gh( pX ⋆))

∑

α̌

∫
p
rδ

2 pX ⋆

δ pϕ⋆α̌δ
p

‡ϕ
⋆
α̌

pδ8 pµ.

Using the classical master equations nCME (30) and, for symmetry reasons, setting p△̂⋆
pS⋆0 = 0, when

pℵ⋆0(e
i p: pV ⋆:/ ~

pT ) =
i

~
e
i p: pV ⋆:/ ~

pT ·T ⋆
pT ⋆

(
1

2
{ pS⋆0 +

pV ⋆, pS⋆0 +
pV ⋆} − i~ p△̂⋆(

pS⋆0 +
pV ⋆)

)
,

we write (43) as nonassociative quantum master equation, nQME:

1

2
{ pS⋆0 +

pV ⋆, pS⋆0 +
pV ⋆} = i~ p△̂⋆(

pS⋆0 +
pV ⋆). (44)

This equation can be considered as a condition on pV ⋆ stating the locality of the nonassociative quantum BV

s-operator pℵ̂⋆0 (in general, a nonassociative star product defines a nonlocal structure but it can distinguished
in parametric form as local ones on base and co-fiber spaces). In the free theories, we define and compute
parametrically

pℵ̂⋆0 := ( pT ⋆)−1 ◦ pℵ⋆0 ◦
pT ⋆ = pℵ⋆0 − i~

p△̂⋆ (45)

which follows from (43) and (44). We omit here the s-labels for the geometric s-objects which have to be
introduced on a nonholonomic phase space determined by s-adapted off-diagonal solutions in nonassociative
gauge gravity.

The nonassociative quantum BV s-operator (45) can be generalized on regular functionals for the interacting
nonassociative gauge fields (see formulas (42) and (38))

pℵ̂⋆ = pr⋆−1
λV ◦

pℵ̂⋆0 ◦
pr⋆λV .

This is a nonassociative quantum twist of the free classical BV s-operator by a non-local map involving both
the free and the quantum interacting theories. In the classical limit, we obtain the formulas (37). Nevertheless,
the operator pℵ̂⋆ is local and characterizes nonassociative quantum gauge invariant observables. This follows
form the property that assuming nQME, we can compute

pℵ̂⋆ pF ⋆ = e
i : pV ⋆:/ ~

pT ·T ⋆
pℵ⋆0(e

i : pV ⋆:/ ~

pT ·T ⋆ : pF ⋆ :) (46)

= { pF ⋆, pS⋆0 +
pV ⋆} − i~ p△̂⋆(

pF ⋆) = pℵ⋆0 − i~
p△̂⋆(

pF ⋆).

This operator is also nilpotent by definition.

We can extend the nQME and pℵ̂⋆ to local s-observables by replacing ·T ⋆ with the renormalized time-
ordered product on nonasociative phase spaces by generalizing in abstract nonholonomic geometric form the
results stated by Theorem 3.4 in [41]. In parametric effective form, the associative product ·ron pTr(

pF⋆) is
given by

pF⋆1 ·T ⋆
r

pF⋆2 := pTr(
pT −1
r

pF⋆1 ·
pT 1
r

pF⋆2 ), for (47)
pTr :

pF⋆[[~ ]]→ pTr(
pF⋆)[[~ , κ]]
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defined as pTr = (⊕n
pT nr )◦ pβ⋆, where pβ⋆ is the inversion of multiplication for pTr| pF⋆

loc
= id, so : pV ⋆ := pV ⋆.

The ·T ⋆
r
defined by (47) is an associative and commutative product and we can use it in place of ·T ⋆ and

define the renormalized parametric nQME and the quantum nonassiative BV s-operators using formulas (43)
and (45). For applications, we can consider the terms proportional to κ0 and κ1 (the linear ones on κ encoding
nonassociative data in effective quantum form). We can simplify such formulas considering a nonassociative

phase space generalization of the anomalous Master Ward Identity

pℵ⋆0(e
i : pV ⋆:/ ~

pTr
) ≡ {e

i : pV ⋆:/ ~

pTr
, pS⋆0} =

i

~
e
i : pV ⋆:/ ~

pTr
·T ⋆

r

(
1

2
{ pS⋆0 +

pV ⋆, pS⋆0 +
pV ⋆} pTr − i~

p△̂V
⋆

)
, (48)

where p△̂V
⋆ is identified with the anomaly term. For spacetime bases, similar details are provided in [39, 45]),

when the necessary formulas and proofs can be extended in parametric and abstract nonassociative geometric
forms. Therefore, the renormalized quantum nonassociative master equation corresponding to (48) are

1

2
{ pS⋆0 +

pV ⋆, pS⋆0 +
pV ⋆} pTr − i~

p△̂V
⋆ = 0. (49)

Replacing in this formula p△̂V
⋆ (

pF ⋆) := d
dλ

p
△̂V+λ pF ⋆

⋆ |λ=0 and considering that the renormalized nQME hold, we
can write such a master equation using the renormalized nonassociative BV s-operator from (46),

pℵ̂⋆ pF ⋆ = { pF ⋆, pS⋆0 +
pV ⋆} − i~ p△̂V

⋆ (
pF ⋆).

So, using the renormalized time ordered product ·T ⋆
r
, we obtained an anomaly (which is local on respective h-

and c-components and of order O(~ , κ)) via p△̂V
⋆ (

pF ⋆) instead of p△̂⋆(
pF ⋆). In the renormalized nonassociative

gauge gravity theory, p△̂V
⋆ can be well-defined on local s-vector fields, in contrast to p△̂⋆.

In section 4 of [25] and in [46] (in the variant with local S-matrices and generating C∗-algebra) possible
approaches towards a non-perturbative formulation of the BV-formalism elaborated for the pAQFT are analyzed.
In a general formalism with nonassociative twisted star products, the formulation of a general variational
formalism is impossible (except effective models with parametric decompositions). This may consist a program
of research and a series of future works on nonassociative pAQFT using effective S-matrices and nonassociative
Schwinger-Dyson equations. Here we note that using off-diagonal parametric solutions in nonassociative gauge
gravity, with nonlinear symmetries (A.2) and gravitational polarizations p

sη
pg̊αs ∼

pζαs(1 + κ pχαs)
pg̊αs , we

can define and compute p△̂V
⋆ as a respective distortion of p△̂⋆, for functionals pV ⋆[ p

sη] ∼
pV ⋆[ p

sχ]. Such
anomaly terms and their distortions can be computed using nonlinear symmetries (A.3). So, our approach with
nonholonomic deformations and generating classical and off-diagonal solutions is generic non-perturbative and
allow to select well-defined, for instance, quasi-stationary nonassociative configurations resulting in renormalized
nonassociative BV s-operators. In this work, we do not consider nonassociative and noncommutative extensions
of non-perturbative quantum methods with local S-matrices and generating C∗-algebras [25, 46] because it is not
clear how such a formalism can be elaborated in a general form for nonlocal and non-variational theories encoding
nonassociativity. For explicit classes of physically important solutions with parametric R-flux nonassociativity
existing in the low energy limit of string/ M-theory, an effective variational formulation of corresponding models
is possible. This motivates the goals of this work to elaborate on a geometric and quantum BV formalism for
some general classes of off-diagonal solutions with parametric nonassociative data.

4.3 BV quantization of nonassociative 8-d modified BH configurations

In this subsection, we consider an example of how the classical and quantum BV schemes from sections
3 and 4 can be applied for quantizing nonassociative BH solutions. The BV formalism is used in explicit
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form for quantizing the quasi-stationary off-diagonal R-flux deformations of regular phase spaces with Dym-
nikova backgrounds resulting in 8-d s-metrics of type (A.11).8 All formulas are provided in abstract geometric
form which allows an "economic" geometric formulation and straightforward application of the BV method for
nonassociative gauge gravity theories.

4.3.1 Generating data for nonassociative star product deformed of Dymnikova BHs

We parameterize the quasi-stationary solutions for off-diagonal deformations of primary metrics (A.8) to
the target ones (A.11) in the form

p
sğ = [ pğαs ,

pN̆as
is−1

]→ p
ηğ = p

sη[r̆0, r̆g,
p
sΛ]

pğαs [r̆0, r̆g] ∼
pζαs [r̆0, r̆g,

p
sΛ](1+κ pχαs [r̆0, r̆g,

p
sΛ])

pğαs [r̆0, r̆g]. (50)

In these formulas, r̆0 and r̆g are physical constants for the prime metric’s phase space defined by the generalized
Dymnikova BH solution, see (A.9) and (A.10). The quasi-stationary target metrics p

η ğ = {pη ğαs} (A.11) are of
type (17) involving generating functions (A.2) parameterized in the form:

ψ ≃ ψ(~, κ, r̆0, r̆g,
p

1Λ, x
k1), η4 ≃ η4(~, κ, r̆0, r̆g,

p

2Λ, x
k1 , y3), (51)

pη6 ≃ pη6(~, κ, r̆0, r̆g,
p

3Λ, x
i2 , p5),

pη8 ≃ pη8(~, κ, r̆0, r̆g,
p

4Λ, x
i2 , p5, p7).

The effective shell cosmological constants, p
sΛ, from (51) are related to effective matter sources encoding

nonassociative data, p
sJ

⋆, via nonlinear symmetries of type (A.3). For such formulas, the generating functions,
generating source and effective cosmological constants transform respectively as

[η4,
pη6, pη8, p

sJ
⋆]←→ [ sΨ,

p
sJ

⋆]←→ [ sΦ
⋆, p

sΛ], (52)

with dependencies on respective sets of physical constants [~, κ, r̆0, r̆g, p
sΛ].We can introduce also other constants

and integration functions stating, for instance, certain ellipsoidal symmetries with an eccentricity ǫ, or certain
constants defining toroid/ cylindric off-diagonal deformation etc. We emphasize that the nonlinear symmetries
(A.3) and (52) are not gauge-like symmetries considered for gravitational gauge theories. They reflect (nonas-
sociative) parametric properties of certain classes of quasi-stationary solutions of modified Einstein equations
and their lifts or equivalents in total spaces written as YM equations.

4.3.2 The BV formalism for nonassociative BH solutions

Let us explain the main steps for performing BV quantization of p
ηğ (A.11) determined by (nonassociative)

data (51) and (52). The geometric quantization can be formulated in a non-perturbative parametric form us-
ing gravitational η-polarizations and nonlinear symmetries transforming generating sources sJ

⋆ into effective
cosmological constants p

sΛ. For certain classes of well-defined (as effective relativistic theories) off-diagonal con-
figurations with asymptotic quasi-classical limits (selected by respective data [~, κ, r̆0, r̆g,

p
sΛ]), we can elaborate

on perturbative schemes on ~ and linearized on κ and possible recurrent higher order terms. We omit in this
section cumbersome perturbative formulas involving k-linear decompositions of type (51).

For a p
ηğ (A.11) we can construct a parametric nonassociative gravitational gauge potential p

sÂ
⋆
[P ] →

p
ηÂ

⋆
[P ]

(13) as a R-flux deformation of (5). Such an effective gauge potential contains all data on quasi-stationary
deformations (via η-polarizations) and allows to define an effective gauge gravitational action (21) when

p
ηL

⋆ = p
grL

⋆( pf)[ p
ηÂ

⋆] = −
1

2

∫

p
ηUCqs

pf tr( p
ηF̂

⋆

∧ (> p
ηF̂

⋆

)),

8Similar nonassociative BV constructions can be performed for any nonassociative BH and WH solutions which may include, or
not, singularities, off-diagonal deformations etc. Such solutions were constructed and studied in classical form [12, 13, 14, 15, 16].
It is not possible to elaborate on their BV quantization (on hundred of pages) in this work.
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for p
ηF̂

⋆
computed as the nonassociative strength defined by p

ηÂ
⋆, and when the measure δ8µ is defined by

a chosen p
ηğ ∈Cqs for a η-deformed region p

ηUCqs. Necessary formulas from subsection 3.2.1 can be applied in

abstract nonassociative form for geometric objects with η-labels when p
ηL

⋆ ∈ pL⋆ and pϕ⋆ = p
ηÂ

⋆ ∈ pE⋆Cqs. For
such quasi-stationary configurations, an effective variational calculus can be defined in parametric form even
though a unique nonassociative differential and integral calculus can’t be defined for a general twist product.
Then, we can introduce in functional effective form the Euler-Lagrange derivative of a corresponding effective
action p

ηS
⋆, see (22) with pE⋆η ⊂

pE⋆Cqs, when

pd p
ηS

⋆ : pE⋆η →
pE

′C
η defined by (53)

< pd p
ηS

⋆( p
ηÂ

⋆), p
ηÂ

⋆
1 >:= lim

ς→0

1

ς
pδ p

ηL
⋆(ς p

ηÂ
⋆
1)[

p
ηÂ

⋆] =

∫ pδ p
ηL

⋆( pf)

pδ p
ηÂ

⋆

p
ηÂ

⋆
1(

pu), for

p
ηÂ

⋆
1 ∈

pECη ,
pδ p

ηL
⋆( pf)

pδ pϕ⋆
∈ ( pE⋆η ) ⊂

pE
′C
η ;when pd p

ηS
⋆( p

ηÂ) ≡ 0 defines the effective field equations ;

p

SolE
⋆
η denotes the spaces of solutions defined as the zero locus of the 1-form d p

ηS
⋆, p

SolE
⋆
η ⊂

pE⋆η ;
p

SolFη denotes the space of off-shell functionals in the space of functionals on p

SolE
⋆
η .

So, for a more special case of parametric quasi-stationary configurations (53) with corresponding effective
Lagrangians and actions, the nonassociative classical BV differential for off-diagonal phase space Dymnikova

BHs is computed as

p
ηℵ

⋆ = {•, p
ηS

⋆ + p
ηΘ

⋆} := {•, p
ηS

⋆
ext}, with extended action p

ηS
⋆
ext. (54)

These functional equations depend on certain subclasses of generating and integration data (A.5) and (A.6)
defining nonassociative off-diagonal BH solutions. The nilpotent property, ( p

ηℵ
⋆)2 = 0, allows to define the

nonassociative classical master equation (nCME) for such BHs, which modulo terms vanishing in the limit of a
constant pf is written in the form { p

ηL
⋆
ext(

pf), p
ηL

⋆
ext(

pf)} = 0. For such nCME, it is used an effective p
ηL

⋆
ext

is used for defining a respective p
ηS

⋆
ext.

The operator p
ηℵ

⋆ from (54) also increases the ghost number by one and can be expressed as a sum,
p
ηℵ

⋆ = p
ηδ
⋆ + p

ηγ
⋆, for an extension of p

ηδ
⋆
S denoted p

ηδ
⋆. Defining p

ηΘ
⋆ := p

ηS
⋆
ext −

p
ηS

⋆ as in formulas (29), we
can express

p
ηδ
⋆ = {·, p

ηS
⋆} and p

ηγ
⋆ = {·, p

ηΘ
⋆}.

In above formulas, the differential p
ηδ
⋆ acts trivially both on fields and antifields. Using p

ηδ
⋆ p

‡ηÂ
⋆ =

pδ p
ηS

⋆

δ p

‡η
Â⋆

, we

derive nonassociative gauge-fixed equations of motion which are hyperbolic equations of motion of p
ηS

⋆.

On nonassociative phase space Dymnikova background (A.8) and for further parametric decompositions to
an off-diagonal solution p

ηğ (A.11), and respective _ηpÂ⋆[P ] (13), we can split and linearize respectively the

extended action p
ηS

⋆
ext in a form similar to (31),

p
ηS

⋆
0 = p

ηS̆
⋆
00 +

p
ηΘ

⋆
0, the quadratic term in (anti) fields,#ta( p

ηS
⋆
00) = 0,#ta( p

ηΘ
⋆
0) = 1;

p
ηV

⋆ = pV̆ ⋆
0 + p

ηΘ
⋆, the interacton term ;

pS⋆ = p
ηS̆

⋆
00 +

pV̆ ⋆
0 , the total antifield independent part of the action.

We can chose such nonholonomic s-adapted distributions, when p
ηS̆

⋆
00 = p

ηS̆00 and pV̆ ⋆
0 = pV̆0 are defined

by s-adapted classical decompositions of the primary s-metric (A.8) and its associative quantum deformations;
and when the p

ηΘ
⋆
0 and p

ηΘ
⋆ are for quantum nonassociative deformations. For the target nonassociative BH

solutions, the formulas (32) transform into parametric linearized s-operators of BRST and BV type,

p
ηγ

⋆ pF := { pF , p
ηΘ

⋆
0} and p

ηℵ
⋆
0 =

p
ηδ
⋆
0 +

p
ηγ

⋆
0 ,
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where p
ηδ
⋆
0(

p

‡ηÂ
⋆α̌
[P ]) = −

p
ηδ

p
ηS

⋆
00

δ p
ηÂ⋆

α̌[P ]

and respective nonassociative differential operators, p
ηP

α̌β̆
⋆ ( pu) and p

ηK
α̌
⋆β̆

are

defined from

p

lδ
pS⋆00

δ p
ηÂ

⋆
α̌[P ]

( p
ηÂ

⋆
α̌[P ]) := p

ηP
α̌β̆
⋆ ( pu)( p

ηÂ
⋆
β̆[P ]

), in brief ,= p
ηP⋆

p
ηÂ

⋆
β̆[P ]

; and

p
rδ

p

lδ
p
ηΘ

⋆
0

δ p
ηÂ

⋆
α̌[P ](

pu1)δ
p

‡ηÂ
⋆β̆
[P ](

pu1)
( p
ηÂ

⋆
α̌[P ]) := p

ηK
α̌
⋆β̆
( pu)( p

ηÂ
⋆
β̆[P ]

).

These functional equations depend on respective classes of generating data (A.5) and (A.6).

We chose nonholonomic configurations on nonassociative phase space and assume a gauge fixing in the total
nonassociative vector bundle in such a way that p

ηP⋆ is Green hyperbolic for any h- and c-component as for
(associative and commutative) gauge and gravity theories. The corresponding double Green function is defined
by the motion operator p

ηP⋆ determined in canonical form (with hat d-operators) by p
ηğ as a particular case of

(33). This allows us to define the respective nonassociative Pauli-Jordan functionals

p
η△̂⋆ =

p
η△̂

R
⋆ −

p
η△̂

A
⋆ . (55)

We need additional assumptions to prescribe respective generating data for the nonassociative BHs to transform
such functionals into certain Pauli-Jordan functions.

Using the function (55), we can express in terms of η-polarization functions the formulas (37) and (38),
for nonassociative off-diagonal BH deformations. Then, we define and compute the corresponding classical BV
operator (29),

p
ηℵ

⋆ = p
ηr
⋆−1
λV ◦

p
ηℵ

⋆
0 ◦

p
ηr
⋆
λV , where (56)

p
ηr
⋆−1
λV ( p

ηÂ
⋆
α̌[P ]) =

p
ηÂ

⋆
α̌[P ] +

p
η△̂⋆α̌β̆

p

lδ
p
ηV

⋆

δ p
ηÂ

⋆
β̆[P ]

( p
ηÂ

⋆
[P ]) and

p
ηr
⋆
λV (

p
ηÂ

⋆
α̌[P ]) =

p
ηÂ

⋆
α̌[P ] −

p
η△̂⋆α̌β̆

p

lδ
p
ηV

⋆

δ p
ηÂ

⋆
β̆[P ]

( p
ηr
⋆
λV (

p
ηÂ

⋆
[P ])).

Above s-operators allow us to formulate the nCME( p
ηS

⋆) (i.e. the classical master equations for nonassociative
star product deformation (3) of generalized Dymnikova BHS in gauge gravity):

p
ηr
⋆−1
λV ({ pX ⋆, p

ηS
⋆
0}) = { p

ηr
⋆−1
λV ( pX ⋆), p

ηS
⋆
0 +

p
ηV

⋆} − (57)
∫

p
rδ

pX ⋆

δ p
ηÂ

⋆
α̌[P ](

pu′)
( p

ηr
⋆−1
λV ( p

ηÂ
⋆
[P ]))

p
η△̂⋆α̌β̆(

pu′, pu)
p

lδ(nCME( p
ηS

⋆))

δ p
ηÂ

⋆
β̆[P ]

( pu)
.

Here we emphasize that such functional equations depend on respective classes of generating data (A.5) and
(A.6). This can be chosen in certain forms allowing to construct well-defined physical solutions of (57) involving
respective s-operators (55) and (56).

4.3.3 Nonholonomic BV scheme and quantization of nonassociative BH solutions

The nonassociative BV s-operator for phase space BH R-flux deformations (56) can be extended in quantum
normalized form using the formula (43),

p
ηℵ

⋆
0(e

i p: p
ηV

⋆:/ ~

pT ) =
i

~
e
i p: p

ηV
⋆:/ ~

pT ·T ⋆
pT ⋆

(
1

2
{ p

ηS
⋆
0 +

p
ηV

⋆, p
ηS

⋆
0 +

p
ηV

⋆} − i~ p
η△̂⋆(

p
ηS

⋆
0 +

p
ηV

⋆)

)
,
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when p
η△⋆

p
ηS

⋆
0 = 0. Using the classical master equations nCME (30), we obtain for phase space R-flux deformed

BHs the nonassociative quantum master equation, nQME:

1

2
{ p

ηS
⋆
0 +

p
ηV

⋆, p
ηS

⋆
0 +

p
ηV

⋆} = i~ p
η△̂⋆(

p
ηS

⋆
0 +

p
ηV

⋆).

This equation can be considered as a condition on the R-flux deformed effective potential p
ηV

⋆ stating the
parametric locality of the corresponding nonassociative quantum BV s-operator,

p
ηℵ̂

⋆
0 := ( pT ⋆)−1 ◦ p

ηℵ
⋆
0 ◦

pT ⋆ = p
ηℵ

⋆
0 − i~

p
η△̂⋆.

Such a s-operator can be generalized on regular functionals using formulas (57), p
ηℵ̂

⋆ = p
ηr
⋆−1
λV ◦

p
ηℵ̂

⋆
0 ◦

p
ηr
⋆
λV .

This allows to compute in parametric local form (assuming nQME):

p
ηℵ̂

⋆ pF ⋆ = e
i : p

ηV
⋆:/ ~

pT ·T ⋆
p
ηℵ

⋆
0(e

i : p
ηV

⋆:/ ~

pT ·T ⋆ : pF ⋆ :)

= { pF ⋆, p
ηS

⋆
0 +

p
ηV

⋆} − i~ p
η△̂⋆(

pF ⋆) = p
ηℵ

⋆
0 − i~

p
η△̂⋆(

pF ⋆).

The functional character of such nonassociative quantum BV s-operators and and nQME allows us to define
various types of non-perturbative classical and quantum deformations determined by respective generating data
encoding nonassociative R-flux deformations.

In above quantum formulas, we can chose nonholonomic s-adapted distributions to separate the terms
proportional to κ0 and κ1, when the κ−linear ones encode nonassociative data in effective quantum form.
So, for phase space R-flux deformed Dymnikova BHs, one holds such a nonassociative generalization of the

anomalous Master Ward Identity:

p
ηℵ

⋆
0(e

i : p
ηV

⋆:/ ~

pTr
) ≡ {e

i : p
ηV

⋆:/ ~

pTr
, p

ηS
⋆
0} =

i

~
e
i : p

ηV
⋆:/ ~

pTr
·T ⋆

r

(
1

2
{ p

ηS
⋆
0 +

p
ηV

⋆, p
ηS

⋆
0 +

p
ηV

⋆} pTr − i~
p
η△̂

V
⋆

)
.

(58)
The s-operator p

η△̂
V
⋆ is identified with the anomaly term.

Then, the renormalized quantum nonassociative master equation corresponding to (48), (49) and (58) are

1

2
{ p

ηS
⋆
0 +

p
ηV

⋆, p
ηS

⋆
0 +

p
ηV

⋆} pTr − i~
p
η△̂

V
⋆ = 0.

Assuming the renormalized nQME hold, we can write such a master equation using the renormalized nonasso-
ciative BV s-operator from (46),

p
ηℵ̂

⋆ pF ⋆ = { pF ⋆, p
ηS

⋆
0 +

p
ηV

⋆} − i~ p
η△̂

V
⋆ (

pF ⋆).

In this subsection, we use the same renormalized time ordered product ·T ⋆
r

as we computed the anomaly in

subsection 4.2.3 but considering p
η△̂

V
⋆ (

pF ⋆) instead of p
η△̂⋆(

pF ⋆).
The above formulas allow us to construct quantum versions of nonassociative BHs and analyze possible

implications both in perturbative and non-perturbative forms. For instance, we conclude that nonassociative
R-flux contributions transform certain classical 4-d BH configurations (for instance, the Dymnikova nonsingular
metric) into 8-d phase space quasi-stationary configurations. For small parametric deformations, such extra-
dimension quantum BH solutions describe new QG phenomena defined by the renormalized nonassociative
BV s-operator. Such effects may exist also in associative and commutative forms for ellipsoidal phase space
configurations but described in a different form by nonholonomic BV operators. So, nonassociativity "enrich"
the landscape of QG and various nonassociative and locally anisotropic effects with quantum and quantum
gravitational polarizations can be computed as additional off-diagonal deformations of BH metrics.

30



5 Conclusions and perspectives

In this paper, we have focused on conceptual problems and elaborating new geometric methods using the
Batalin-Vilkovisky, BV, formalism [20, 21, 22, 23, 24] for quantizing nonassociative and noncommutative gauge
gravity theories [16, 28, 29]. Such theories are defined by twisted star products [8, 9] and R-flux parametric
deformations considered in string and nonassociative gravity [10, 11]. Corresponding quantum gravity, QG,
models encode nonassociative and noncommutative data for generic off-diagonal solutions of modified gravita-
tional Yang-Mills, YM, or nonassociative Einstein-Dirac-Maxwell, EDM, equations [12, 13, 14, 15, 16, 47]. For
projections on phase spaces (modelled as cotangent Lorentz bundles), such solutions describe nonassociative
classical EDM and YM quasi-stationary systems, or locally anisotropic cosmological models. The main goal of
this work is to elaborate on quantum models of nonassociative geometric flows, gravity and matter field theories.
Quantization of such models is performed using generalized BV schemes and advanced mathematic methods
from the algebraic quantum field theory, AQFT, [25, 37, 40, 26, 32, 38, 41, 42, 43, 46]. This paper is the first one
in the literature which connects general classes of parametric off-diagonal solutions to QG and BV quantization
of nonassociative MGTs. It is a natural development of a recent author’s work [48] on nonassociative QG with
Gorrof-Sagnotti terms. In that paper, rigorous mathematical methods of nonassociative BV quantization have
not been considered.

Nonassociative star products and R-flux deformations substantially modify the classical general relativity,
GR, and modified gravity theories, MGTs, by introducing nonlocal configurations on nonassociative phase
spaces. New types of star-deformed geometric objects such as symmetric and nonsymmetric metrics, nonlinear
and linear connections, defining various types of differential and integral calculi and non-unique variational
procedures are also defined. Such geometric constructions become effective local for parametric decompositions
on the Planck and string constants which allows us to extend the principles of locality, deformation and homology
on nonassociative phase spaces from [25, 26]. The first important result of our work consisted in a natural
generalization of the classical BV formalism in the abstract geometric form [27, 12, 16] as an effective gauge
gravity theory on phase spaces. For such models, a double de Sitter structure group is used in a form encoding
consequent nonlinear extensions of the (double) affine structure group and the Poincaré group. The first
structure group is for the base spacetime Lorentz manifold and the second one is for a typical fiber.

The second main result of this paper consisted in elaborating on nonholonomic frame geometric methods for
quantizing physically important nonlinear systems of partial differential equations, PDEs, in GR and MGTs.
The constructions are related via corresponding classes of generic off-diagonal solutions to perturbative and non-
perturbative BV schemes with effective actions and Lagrangians encoding nonassociative data from string theory.
Such nonassociative nonlinear systems of PDEs are characterized by certain types of nonlinear symmetries
which are different from the prescribed gauge type symmetries. The nonlinear symmetries allow us to introduce
effective cosmological constants and state certain well-defined physical conditions for applying the BV-scheme,
with possible linearizations and definition of nonassociative classical BV operators and related master equations
etc.

The third main result of this article was in relating the BV-scheme to the quantization of nonassociative
gauge de Sitter gravity and analyzing the corresponding renormalization problems. That allowed to derive
nonassociative versions of quantum BV operators and quantum master equations. As an example, we have
shown how our generalization of the methods of BV quantization can be applied for quantizing in a non-
perturbative way nonassociative 8-d modified BH solutions on phase spaces. That can be also considered
as the fourth important result. We note that in our approach "non-perturbative" means that the scheme of
quantization works for any type of prime or target (off-diagonal) metrics. It can be further performed in a
perturbative way for respective parametric decompositions on physically important parameters by choosing
respective classes of generating functions and generating data, and prescribed effective cosmological constants
which result in effective asymptotic renormalizable theories.
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Finally, we outline four perspectives (P1-P4) for developing the results of the work:

• P1: To elaborate on perturbation algebraic QFT, pAQFT, methods on phase spaces which will result
in asymptotic safe (nonassociative) QG models with star R-flux products, Goroff-Sagnotti counter-terms
[48], and renormalization flows.

• P2: To extend the BV quantization and pAQFT methods for quantizing nonassociative Einstein-Dirac-
YM-Higgs systems studied in [47, 16].

• P3: To generalize and apply the BV and pAQFT methods for quantizing locally anisotropic (nonassocia-
tive) cosmological models with nonholonomic variables (A.7) and study quantum effects of off-diagonal
solutions in MGTs with nonassociative, nonmetric, generalized Finsler-Lagrange-Hamilton configurations
[33, 34, 35] modelled on phase spaces (i.e. on (co) tangent Lorentz bundles and their various possible star
product deformations and respective models of deformation quantization).

• P4: To elaborate on nonassociative geometric and quantum information flow theories and BV quantization
of generalized G. Perelman thermodynamic models (extending the results from [19, 13, 14, 15, 16, 47, 48]
for AQFT and MGTs).

The author plans to report on progress P1-P4 in his (and co-authors’) future works.
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A Off-diagonal quasi-stationary solutions on nonassociative phase spaces

In [12, 13, 15], the anholonomic frame and connection deformation method, AFCDM, was developed for de-
coupling and integration in general off-diagonal form various physically important systems of nonlinear systems
of PDE in (nonassociative) geometric flow and MGTs. There were provided various examples and applications
involving nonassociative black holes, BH, wormholes, WH, and locally anisotropic solitonic cosmological so-
lutions were considered in [16]. Here, we show how applying the AFCDM we can generate quasi-stationary
solutions for nonassociative YM equations (12). An example of regular phase space BH off-diagonal solutions
is also provided.

A.1 Gravitational polarizations and nonlinear symmetries

The techniques of constructing quasi-stationary solutions for nonassociative modified Einstein equations (15)
is outlined in Appendix B2, with constructions related to formula (B2), to [12]. Here we provide the formulas
for a class of solution defined by nonlinear quadratic element in terms of η-polarization functions used in (18):

d pŝ2(τ) = pgαsβs(~, κ, τ, x
k, y3, pa3 , pa4 ;

pg̊αs ; η4,
pη6, pη8; p

sJ
⋆)d puαsd puβs (A.1)

= eψ)[(dx1)2 + (dx2)2]−
[∂3(η4g̊4)]

2

|
∫
dy3 2J ⋆∂3(η4g̊4)| (η4g̊4)

{dy3 +
∂i1 [
∫
dy3 2J

⋆∂3(η4g̊4)]

2J ⋆(τ)∂3(η4)̊g4
dxi1}2

+η4g̊4){dt+ [ 1nk1 + 2nk1

∫
dy3

[∂3(η4g̊4)]
2

|
∫
dy3 2J ⋆∂3(η4g̊4)| (η4g̊4)5/2

]dxk1}
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−
[ p∂5( pη6 pg̊6)]2

|
∫
dp5

p

3J
⋆ p∂5( pη6 pg̊6) | ( pη6 pg̊6)

{dp5 +
p∂i2 [

∫
dp5

p

3J
⋆ p∂5( pη6 pg̊6)]

p

3J
⋆ p∂5( pη6 pg̊6)

dxi2}2

+( pη6 pg̊6){dp6 + [ p

1nk2 +
p

2nk2

∫
dp5

[ p∂5( pη6 pg̊6)]2

|
∫
dp5

p

3J
⋆ ∂5( pη6 pg̊6)| ( pη6 pg̊6)5/2

]dxk2}

−
[ p∂7( pη8 pg̊8)]2

|
∫
dp7

p

4J
⋆ p∂8( pη7 pg̊7) | ( pη7 pg̊7)

{dp7 +
p∂i3 [

∫
dp7

p

4J
⋆ p∂7( pη8 pg̊8)]

p

4J
⋆ p∂7( pη8 pg̊8)

d pxi3}2

+( pη8 pg̊8){dE + [ 1nk3 + 2nk3

∫
dp7

[ p∂7( pη8 pg̊8)]2

|
∫
dp7

p

4J
⋆[ p∂7( pη8 pg̊8)]| [( pη8 pg̊8)]5/2

]d pxk3}.

The formulas (A.1) describe nonholonomic off-diagonal deformations of a prescribed prime metric into other
families of target ones, p

s̊g = [ pg̊αs ,
pN̊as
is−1

]→ p
sg (17). Certain η-polarizations (involving a ψ as a solution of

the Poisson equations, see bellow formula (A.6)), can be used as generating functions

ψ ≃ ψ(~, κ, xk1), η4 ≃ η4(~, κ, x
k1 , y3), pη6 ≃ pη6(~, κ, xi2 , p5),

pη8 ≃ pη8(~, κ, xi2 , p5, p7). (A.2)

Here we note that the generating functions can be prescribed in certain forms which allow to generate "small"
(for instance, on parameter κ) off-diagonal deformations of some prime s-metrics into target ones. For such
configurations, we have to choose (A.2) in such forms when p

sη
pg̊αs ∼

pζαs(1+κ
pχαs)

pg̊αs . Such solutions were
studied in [12, 13, 15], for instance, with the aim to construct deformations of BH solutions into nonassociative
black ellipsoid, BE, ones etc.

Off-diagonal solutions of type (A.1) posses important nonlinear symmetries which allow to change the
generating functions and generating sources into another types of generating functions and effective cosmological
constants on each shell, p

sΛ, [η4,
pη6, pη8, p

sJ
⋆] ←→ [ sΨ,

p
sJ

⋆] ←→ [ sΦ
⋆, p

sΛ]. We put a star label on Φ to
emphasize that such generating functions "absorb" nonlinearly the nonassociative data encoded in parametric
forms in p

sJ
⋆. By straightforward computations, we can check that such nonlinear transforms keep invariant the

quasi-stationary configurations if different types of generating data are related by such differential, or integral,
formulas:

∂3[( 2Ψ)2] = −

∫
dy3( p

2J
⋆)∂3g4 ≃ −

∫
dy3( p

2J
⋆)∂3(

pη4 g̊4) (A.3)

≃ −

∫
dy3( p

2J
⋆)∂3[

pζ4(1 + κ pχ4) g̊4],

( 2Φ
⋆)2 = −4 2Λg4 ≃ −4 2Λ

pη4 g̊4 ≃ −4 2Λ
pζ4(1 + κ pχ4) g̊4;

p∂5[( p

3Ψ)2] = −

∫
dp5(

p

3J
⋆) p∂5 pg6 ≃ −

∫
dp5(

p

3J
⋆) p∂5( pη6 pg̊6)

≃ −

∫
dp5(

p

3J
⋆) p∂5[ pζ6(1 + κ pχ6) g̊6],

( p

3Φ
⋆)2 = −4 p

3Λ
pg6 ≃ −4 p

3Λ
pη6(τ) pg̊6 ≃ −4 p

3Λ
pζ6(1 + κ pχ6) pg̊6;

p∂7[( p

4Ψ)2] = −

∫
dp7(

p

4J
⋆) p∂7 pg8 ≃ −

∫
dp7(

p

4J
⋆) p∂7( pη8 pg̊8)

≃ −

∫
dp7(

p

4J
⋆(τ)) p∂7[ pζ8(1 + κ pχ8) g̊8],

( p

4Φ
⋆)2 = −4 p

4Λ
pg8 ≃ −4 p

4Λ
pη8 pg̊8 ≃ −4 p

4Λ
pζ8(1 + κ pχ8) pg̊8.

33



The nonlinear symmetries (A.3) allows us to re-write the nonassociative equations pR̂
⋆βs
γs( sΨ) = δβsγs

p
sJ

⋆

(15) into a system of nonlinear functional parametric equations with effective cosmological constants:

pR̂βs
γs( sΦ,

p
sJ

⋆) = δβsγs
p
sΛ. (A.4)

For (A.4), the solution involve effective cosmological constants p
sΛ which are important for computing G.

Perelman variables and elaborating (nonassociative) quantum geometric and information flow theories [13, 15].
Here we note that it is not possible completely to transform p

sJ
⋆ → p

sΛ because p
sJ

⋆ is always present in
certain coefficients of the s-metric and N-connection, but in parametric form it is possible explicitly to find
solutions for models with effective cosmological constants.

Quasi-stationary solutions (A.1) are characterized by such classes generating and integration functions re-
lated via nonlinear symmetries to generating sources and effective cosmological constants:

generating functions: ψ ≃ ψ(~, κ, xk1); 2Ψ ≃ 2Ψ(~, κ, xk1 , y3); (A.5)
p

3Ψ ≃
p

3Ψ(~, κ, xk2 , p5);
p

4Ψ ≃
p

4Ψ(~, κ, pxk3 , p7);

generating sources: p

1J
⋆ ≃ p

1J
⋆(~, κ, xk1); p

2J
⋆ ≃ p

2J
⋆(~, κ, xk1 , y3);

p

3J
⋆ ≃ p

3J
⋆(~, κ, xk2 , p5);

p

4J
⋆ ≃ p

4J
⋆(~, κ, pxk3 , p7);

integrating functions: g
[0]
4 ≃ g

[0]
4 (~, κ, xk1), 1nk1 ≃ 1nk1(~, κ, x

j1), 2nk1 ≃ 2nk1(~, κ, x
j1);

pg6[0] ≃
pg6[0](~, κ, x

k2), 1nk2 ≃ 1nk2(~, κ, x
j2), 2nk2 ≃ 2nk2(~, κ, x

j2);

pg8[0] ≃
pg8[0](~, κ,

pxj3), 1nk3 ≃
p

1nk3(~, κ,
pxj3), 2nk3 ≃

p

2nk3(~, κ,
pxj3).

The generating functions ψ(~, κ, xk1) are solutions of the 2-d Poisson equations,

∂211ψ + ∂222ψ = 2 1J
⋆(~, κ, xk1). (A.6)

For certain subclasses of generating and integration data (A.5) and (A.6), we can generate BH or WH solutions
with polarization of physical constants, deformation of horizons (if they exist) and embedding in nonassociative
gravitational vacuum, or subjected to nonassociative off-diagonal interactions with effective matter fields.

The quasi-stationary solutions (A.1) can be transformed into locally anisotropic cosmological solutions en-
coding in off-diagonal form nonassociative data. This is possible if we perform corresponding re-definitions of
nonholonomic variables (and respective coordinate dependencies) on shells s = 1 and 2:

∂4 = ∂t → ∂3 = ∂/∂y3, Killing symmetry ;x3 = y3 → x4 = y4 = t, space into time coordinates;

g3(x
i, y3) → g

4
(xi, t) and g4(x

i, y3)→ g
3
(xi, y); (A.7)

N3
k (x

i, y3) = wk(x
i, y3)→ N4

k(x
i, t) = nk(x

i, t) and N4
k (x

i, y3) = nk(x
i, y3)→ N3

k(x
i, t) = wk(x

i, t).

In above formulas, we underlined the symbols with explicit dependence on t-coordinate. Such re-definitions of
nonholonomic variables introduce time like dependencies into above formulas (A.2) - (A.5). Such nonholonomic
parameterizations in nonassociative gauge gravity were used for deriving parametric solutions with cosmological
solitonic hierarchies [16]. We can consider co-fiber redefinition of nonholonomic variables like (A.7), to trans-
forms off-diagonal solutions with p8 = E0 into "rainbow" s-metrics with variable E, but, for instance, p7 = const.
In [12, 13, 15], there are studied examples of phase space parametric solutions encoding nonassociative data.

In this work, we restrict our approach only for quasi-stationary parametric configurations (A.1). Such results
can be re-defined geometrically in certain dual forms (on time and energy type coordinates) which positively
result in another type of locally anisotropic cosmological and nonassociative gravitationals models.
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A.2 Nonassociative star product deformations of regular Dymnikova black holes

In GR, a very interesting BH regular solution was constructed by I. Dymnikova [30]. For recent higher di-
mension constructions, we cite [31] and references therein. In abstract geometric form, those constructions can
be redefined in (nonassociative) nonholonomic forms on 8-d phase spaces sM. Similar details on applications of
the AFCDM we provided in [14] for quasi-stationary solutions describing nonassociative star product deforma-
tions of a a d = 5 dimensional analog of the Reisner-Nordström AdS, RN. In this section, we consider a different
type of primary metric using phase space coordinates on a 7-d phase space with signature (+ + + − + + +)
trivially extended to a 8-d one with a diagonal quadratic element of the prime metric, we considered

d s̆2[7+1] =
pğαs(

puγs)(ĕαs)2 =
dr̆2

f̆(r̆)
− f̆(r̆)dt2 + r̆2[(d2x̂2)2 + (dx̂3)2 + (dp5)

5 + (dp6)
2 + (dp7)

2]− dE2. (A.8)

In this formula, the spherical coordinates are for x̂1 = r̆ =
√

(x1)2 + (x2)2 + (x3)2 + (p5)2 + (p6)2 + (p7)2, when
x̂2 = x̂2(x2, x3, p5, p6, p7), x̂

3 = x̂3(x2, x3, p5, p6, p7), ... x̂
7 = x̂7(x2, x3, p5, p6, p7) are chosen as coordinates for

a diagonal metric on an effective 7-d Einstein phase space V[7]. For details and physical motivations, we cite
section II of [31] (with that difference that we work with higher dimension coordinates considered as momentum
ones; when the dimension D = 6, i.e. d = 6 following our conventions). The 7-d phase space generalization of
the Dymnikova BH is given by

f̆(r̆) = 1− (
r̆g
r̆
)4{1− exp[(

r̆

r̆∗
)6]}, for constants r̆6∗ = r̆20 r̆

4
g , where r̆20 =

15

ρ20
; (A.9)

and when the nontrivial components of the energy-momentum tensors are

T 1
1 = T 4

4 = −ρ0 exp[−(r̆/r̆∗)
6] and T 2

2 = T 3
3 = T 5

5 = T 6
6 = T 7

7 = [
6

5
(
r̆

r̆∗
)6 − 1] exp[−(r̆/r̆∗)

6]; (A.10)

being used spherical coordinates of unit 5-d sphere, with constant energy density ρ0 defining the vacuum energy
of a phase space.

The diagonal prime metric (A.8) define a solution of the Einstein equations (15) on a commutative and
associative 7-d phase space which yields a de Sitter solution for r̆ ≪ r̆∗ and a higher dimension Schwarzschild
solution for r̆ ≫ r̆∗. Such regular BH solutions can be considered also for the gauge gravity equations (6) if the
energy-momentum tensor (A.10) is used for defining the source (7).

The apply the AFCDM and construct nonassociative solutions we consider certain ( s-adapted coordinate
transforms puγs = puγs( pûγs) of (A.8) into certain data p

sğ = {pğαs} = p
s̊g = [ pg̊αs ,

pN̊as
is−1

] as in (A.1),

when nontrivial values pg̊αs and pN̊as
is−1

allow to generate nonsingular off-diagonal solutions. For general star
product deformations, it is not clear what physical interpretation could be provided for such nonassociative
modifications of Dymnikova phase space BH solutions of (12) and (15). In principle, we can assume that certain
stability can be achieved by corresponding nonholonomic constraints on η-polarizations as we considered in
section 5.3 of [14]. Then, considering small parametric distortions of type p

sη
pg̊αs ∼

pζαs(1 + κ pχαs)
pg̊αs ,

we can model additional locally anisotropic polarization of the vacuum energy ρ0 and respective horizons; and
various effective source parameters encoding nonassociative data. For some nonholonomic configurations, we
can model, for instance, ellipsoidal-type deformations of horizons and keep a standard interpretation of phase
space systems defined on a regular phase space Dymnikova background, which are κ-deformed.

d χ
p s

2
[7⊂8d] = eψ0(1 + κ ψ pχ)[ ğ1(r̆)dr̆

2 + ğ2(r̆)(dx̂
2)]− {

4[∂̂3(|ζ4ğ4(r̆)|
1/2)]2

ğ4(r̆)|
∫
dx̂3{ 2J ⋆∂̂3(ζ4 ğ4(r̆))}|

(A.11)

−κ[
∂̂3(χ4|ζ4 ğ4(r̆)|

1/2)

4∂̂3(|ζ4 ğ4(r̆)|1/2)
−

∫
dx̂3{ 2J

⋆∂̂3[(ζ4 ğ4(r̆))χ4]}∫
dx̂3{ 2J ⋆∂̂3(ζ4) ğ4(r̆))}

]} ğ3(e
3)2 + ζ4(1 + κ χ4)ğ4(r̆)dt

2
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−{
4[∂̂5(|

pζ6 ğ6|1/2)]2

ğ5(r̆)|
∫
dx̂5{ p

3J
⋆ p∂7( pζ6(τ) ğ6)}|

− κ[
∂̂5(

pχ6| pζ6 ğ6|1/2)

4∂̂5(| pζ6 ğ6|1/2)
−

∫
dx̂5{ p

3J
⋆ ∂̂5[(

pζ6ğ6) pχ8]}∫
dx̂5{ p

3J
⋆ ∂̂5[( pζ6ğ6)]}

]} ğ5(r̆)(e
5)2

+ pζ6 (1 + κ pχ6)(dp6)
2 + (dp7)

2 − dE2,

where

e3 = dx̂3 + [
∂̂i1
∫
dx̂3 2J

⋆ ∂̂3ζ4

N̆3
i1 2J ⋆∂̂3ζ4

+ κ(
∂̂i1 [
∫
dx̂3 2J

⋆∂̂3(ζ4χ4)]

∂̂i1 [
∫
dx̂3 2J ⋆∂̂3ζ4]

−
∂̂3(ζ4χ4)

∂̂3ζ4
)] N̆3

i1dx
i1 ,

pe5 = dx̂5 + [
∂̂i2

∫
dx̂5 p

3J
⋆ ∂̂5(

pζ6)

pN̆5
i2

p

3J
⋆ ∂̂5( pζ6)

+ κ(
∂̂i2 [
∫
dx̂5 p

3J
⋆ ∂̂5(

pζ6 ğ6)]

∂̂i2 [
∫
dx̂5 p

3J
⋆ ∂̂5( pζ6)]

−
∂̂5(

pζ6 ğ6)

∂̂5( pζ6)
)] pN̆5

i2d
pxi2 .

pe7 = dx̂7 + [
∂̂i3

∫
dx̂7 p

4J
⋆ ∂̂7(

pζ8)

pN̆5
i3

p

4J
⋆ ∂̂7( pζ8)

+ κ(
∂̂i3 [
∫
dx̂7 p

4J
⋆ ∂̂7(

pζ8 ğ8)]

∂̂i3 [
∫
dx̂7 p

4J
⋆ ∂̂7( pζ8)]

−
∂̂7(

pζ8 ğ8)

∂̂7( pζ8)
)] pN̆7

i3d
pxi3 .

Such solutions are similar to those defined by formulas (95) in [14]. Nevertheless, in this case they may not
involve BH or black ellipsoid singularities (because in (A.11) we use regular Dymnikova type configurations).
The nonassociative generating sources p

sJ
⋆ are different in such cases being defined by star product deformations

of certain primary energy-momentum components (A.10).
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