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EXPLICIT CONSTRUCTION OF THE MAXIMAL SUBGROUPS OF THE MONSTER

HEIKO DIETRICH, MELISSA LEE, ANTHONY PISANI, AND TOMASZ POPIEL

Abstract. Seysen’s Python package mmgroup provides functionality for fast computations within the

sporadic simple group M, the Monster. The aim of this work is to present an mmgroup database of

maximal subgroups of M: for each conjugacy class C of maximal subgroups in M, we construct explicit

group elements in mmgroup and prove that these elements generate a group in C. Our generators and

the computations verifying correctness are available in accompanying code. Themaximal subgroups ofM

have been classified in a number of papers spanning several decades; our work constitutes an independent

verification of these constructions. We also correct the claim thatM has a maximal subgroup PSL2(59),
and hence identify a new maximal subgroup 59:29.

1. Introduction

The classification of the maximal subgroups of theMonster groupM, the largest sporadic simple group,
is a result of decades of effort led primarily by Holmes, Norton, and Wilson. In 2017, Wilson [29]
noted that over 15 papers had been dedicated to this classification, yet a few open cases cases seemed
largely resistant to theoretical arguments and posed significant computational difficulties. These cases
were recently settled by Dietrich, Lee, and Popiel [5] with the help of the newly available Python
software package mmgroup developed by Seysen [21–23]. For more background information and a
comprehensive discussion, we refer to [5] and the references therein.

While much of the early classification work was theoretical, extensive computations eventually
became necessary to construct or rule out the existence of various almost simple maximal subgroups.
Several constructions, in fact, rely on calculations using a non-standard computationalmodel developed
by Holmes and Wilson [9]. Although groundbreaking at the time, this model is not publicly available,
making it difficult to verify or reproduce the results. Seysen’s mmgroup package is a game changer in
this regard, providing, for the first time, a publicly available framework for fast computations inM. In
the course of completing the maximal subgroup classification, the work in [5] yielded explicit genera-
tors inM (in mmgroup format) for the maximal subgroups PGL2(13) and PSU3(4), along with several
auxiliary subgroups ofM. The aim of this paper is to consider the remaining maximal subgroups ofM,
as described in the existing literature, and to provide explicit generators for these groups in mmgroup

format with computationally reproducible proofs of correctness. Our generators (and computations
verifying their correctness) are available in accompanying Python code [18]. Our explicit calculations
in mmgroup confirm the maximal subgroup constructions available in the literature, with the exception
of the construction of PSL2(59) in [10]; this leads to our first result.

Theorem 1.1. The Monster has no subgroup PSL2(59), but a unique class of subgroups 59:29, which are
maximal subgroups.

Theorem 1.1 is in conflict with the main result of [10] which claims thatM has a maximal subgroup
PSL2(59). We prove Theorem1.1 in Section 5.6 and illustrate in detail how the final conclusion of [10] is
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2.B (D10 × HN) .2 (A5 ×A12) :2

21+24.Co1 51+6:2.J2:4 (A6 ×A6 ×A6) . (2× S4)

22.2E6(2):S3
(

52:4.22 ×U3(5)
)

:S3 (A5 ×U3(8):3) :2

22+11+22. (M24 × S3) 52+2+4: (S3 ×GL2(5)) (PSL3(2)× S4(4):2) .2

23+6+12+18. (PSL3(2)× 3.S6) 53+3. (2× PSL3(5)) (PSL2(11) ×M12) :2

25+10+20. (S3 × PSL5(2)) 54: (3× 2.PSL2(25)) :2
(

A7 × (A5 ×A5) :2
2
)

:2

210+16.O+
10(2) (7:3× He) :2 M11 ×A6

.22

3.Fi24 71+4: (3× 2.S7) (S5 × S5 × S5) :S3
31+12.2.Suz:2

(

72: (3× 2.A4)× PSL2(7)
)

:2 (PSL2(11) × PSL2(11)) :4

S3 × Th 72+1+2:GL2(7) U3(4):4
(

32:2×O+
8 (3)

) .S4 72:SL2(7) PSL2(71)

32+5+10: (M11 × 2.S4) 112: (5×2.A5) PSL2(59)

33+2+6+6: (PSL3(3) × SD16) (13:6× PSL3(3)) .2 PSL2(41)

38.O−
8 (3).2 131+2: (3× 4.S4) PGL2(29)

132:SL2(13):4 PGL2(19)

59:29 41:40 PGL2(13)

Table 1. The maximal subgroups of M. For each group, we provide generators in mmgroup
format; see Section 5.6 for comments on PGL2(59) and 59:29.

in contradiction with our calculations. Exhibiting elements inM generating 59:29 presents significant
computational challenges and is the subject of ongoing work, see Remark 5.7.

The main result of this paper can be summarised as follows.

Theorem 1.2. For each maximal subgroup N of the Monster M listed in Table 1, with the exception of

59:29, the accompanying code [18] provides explicit elements of M in mmgroup format that generate a

maximal subgroup ofM isomorphic to N .

With the exception of the groups PSL2(59) and 59:29, which will be discussed in Section 5.6, the
correctness of this table follows from [29] and [5], see in particular [5, Theorem 1.7]. Generators for the
maximal subgroups 2.B and 21+24.Co1 are already provided in [5] and in mmgroup. For each remaining
maximal subgroup N 6= 59:29, we prove that the associated elements provided in the accompanying
code [18] generate a maximal subgroup of M that is isomorphic to N . Specifically, p-local maximal
subgroups with p odd are discussed in Section 2. The 2-local maximal subgroups are discussed in
Section 3. Section 4 provides some necessary details on alternating subgroups A5 in M. Non-local
maximal subgroups are considered in Sections 5 and 6.

1.1. How to read this paper. This is a computational paper and the main result of our work is a
database of maximal subgroups ofM in mmgroup format, made available in a well-documented Jupyter
Notebook [18]. This paper is concerned with the proof that the database is correct. Our proof relies
on theoretical results from the classification of the maximal subgroups, and on explicit computations
in mmgroup. We also often refer to data concerning the maximal subgroups of various simple groups
listed in the Atlas [2, 3]. (For example, we establish that a group G is generated by given elements of
orders n and m because, according to the Atlas, there is no maximal subgroup of G that has elements
of these orders.) We recommend that our proofs are read alongside the information provided in the
Notebook, because the latter often contains the calculations proving the claims made in the text.

For each maximal subgroup N 6= 59:29 of M listed in Table 1, there is a corresponding subsection
in this paper and in the Jupyter Notebook. We define certain elements of M in mmgroup format and
prove that the group generated by these elements is maximal in M and isomorphic to N . Depending
on whether N is p-local or not, we employ different strategies that are outlined below.

Notation. Most of our notation is standard and typically aligns with the conventions established in
the Atlas [3]. One significant exception is that we use PSLd(q) in place of Ld(q), and apply similar
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conventions for other simple classical groups. Unless specified otherwise, we denote by 2A, 2B, 3A,
etc. the conjugacy classes of M, and for a conjugacy class pX we write pXk for an elementary abelian
group of size pk whose non-identity elements all belong to pX; such a group is called pX-pure. We denote
the dihedral group of order n by Dn, the alternating group of degree n byAn, and the symmetric group
of degree n by Sn. The symbol n is also used to denote a cyclic group of order n. An extension of a
group B by a group A is denoted by A.B (or occasionally AB), with A being the normal subgroup.
To emphasise that an extension is split, we may use the notation A:B, whereas A.B indicates a non-
split extension. We call this description of a group the shape of the group, and stress that the shape
does in general not define the group up to isomorphism. (For example, there are in general many non-
isomorphic groups that are extensions of B by A, that is, of shape A.B.) We follow the convention
thatA.B.C = (A.B).C . An elementary abelian group of order pk is denoted by pk , where p is a prime
number and k is a positive integer, while pk+ℓ denotes an extension pk.pℓ. We often use a subscript
to indicate the order of a group element; for instance, g5 may refer to an element of order 5. Finally,
we denote by G the centraliser CM(z) of a distinguished 2B involution z. Extended functionality and
faster computation are available in mmgroup for elements of G; see [22] for details.

2. The Odd-Local Maximal Subgroups of M

A subgroup U of M is p-local if U = NM(E) for some p-subgroup E; it is maximal p-local if U is
maximal among all p-local subgroups with respect to inclusion. We say that U is p-local maximal if
U is p-local and also a maximal subgroup of M. Incorporating earlier work of Norton, Wilson [27]
classified the maximal p-local subgroups ofM for odd p. However, questions about maximality of these
groups were only resolved in all cases 20 years later through computational constructions of containing
subgroups of the Monster, see for example [11]. The updated results from [27] pertaining to maximal
subgroups of M are summarised in Table 2 and Proposition 2.3.

2.1. Preliminary lemmas. We start with two preliminary results that are frequently used; the first is
an easy observation.

Lemma 2.1. Let G be a finite group withH ≤ G and g ∈ G. If g /∈ H , then |〈H, g〉| ≥ 2|H|. Moreover,

if the order of g is a prime power pn and g(p
n−1) /∈ H , then |〈H, g〉| ≥ pn|H|.

Proof. If g /∈ H , thenH and gH are distinct cosets in 〈g,H〉, so |〈g,H〉| > 2|H|. If g has prime-power

order pn, then 〈g〉 ∩H = 〈g(p
i)〉 for some i. By assumption, g(p

n−1) /∈ H , so 〈g〉 ∩H = 1. Thus, the
cosetsH, gH, g2H, . . . , gp

n−1H are all distinct in 〈g,H〉, and therefore |〈g,H〉| > pn|H|. �

The next technical lemma plays an important role in our proofs to justify that we have constructed
the full p-cores (i.e. maximal normal p-subgroups) Op(N) of the various p-local subgroups N ofM.

Lemma 2.2. Let G be a finite group, x ∈ G with prime order p, and N ✂ NG(〈x〉) with |N | = p2k+3

for some k > 0. Suppose x ∈ N and there exist y, ℓ, g1, . . . , gk, h1, . . . , hk ∈ N ∩ CG(x) of order p and

σ ∈ NG(〈x, y〉) such that y /∈ 〈x〉; all gi, hi commute with y, whereas ℓ does not; all gj commute modulo
〈x〉 with all gi, g

σ
i , hi; all gj commute with hσi modulo 〈x〉 when i < j, but not when i = j. Then the

following hold.

a) Every S ⊆ {x, y, g1, . . . , gk, h1, . . . , hk, g
σ
1 , . . . , g

σ
k} generates a p-group of order at least p|S|.

b) The group N is generated by {x, y, g1, . . . , gk, h1, . . . , hk, ℓ}.

c) The group 〈x, y, g1, . . . , gk, h1, . . . , hk, g
σ
1 , . . . g

σ
k , h

σ
1 , . . . , h

σ
k 〉 is a normal p-subgroup ofCG(〈x, y〉).

Proof. a) Let φ : CG(x) → CG(x)/〈x〉 be the natural homomorphism. We first show that S generates

a group (not necessarily a p-group) of order at least p|S|. Suppose, for a contradiction, that S is a

counterexample of minimal size, that is, |〈S \ {u}〉| > p|S|−1 for all u ∈ S; note that |S| > 1 since
|〈∅〉| = p0. Let u ∈ S be the element that occurs latest in the list x, y, gk, . . . , g1, h1, . . . , hk, h

σ
1 , . . . , h

σ
k ;

note the reversed labels for the gi. The following case distinction shows that u /∈ 〈S \ {u}〉.

• If u = x, then S \ {u} = ∅, and so x /∈ 〈S \ {u}〉.
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• If u = y, then S \ {u} ⊆ {x}, and y /∈ 〈x〉 by assumption.

• If u = gi for some 1 ≤ i ≤ k, then S \ {u} consists of at most x, y, and gj for various j > i. Note
that gσm, hσm lie in (CG(x)∩CG(y))

σ = CG(〈x, y〉
σ) = CG(〈x, y〉), as do gm, hm for all 1 ≤ m ≤ k.

Thus φ(hσi ) commuteswithφ(x), φ(y), and φ(gj) for j > i, so φ(〈S\{u}〉) centralisesφ(hσi ). Since
u = gi does not commute with hσi modulo 〈x〉 by assumption, we deduce u /∈ 〈S \ {u}〉.

• If u = hi for some 1 ≤ i ≤ k, then S \ {u} consists of at most x, y, the gm, and various hj
for j < i. Consider φ((S \ {u})σ). Each φ(gσm) and φ(hσj ) with i > j commutes with φ(gi) by

assumption, as do φ(xσ), φ(yσ) ∈ φ(〈x, y〉). It follows that φ(〈(S \{u})σ〉) centralises φ(gi). Since
φ(uσ) = φ(hσi ) does not commute with φ(gi) by assumption, we deduce u /∈ 〈S \ {u}〉.

• If u = hσi for some 1 ≤ i ≤ k, then S \ {u} consists of at most x, y, the gm, the hm, and hσj for

j < i. All of φ(x), φ(y), φ(gm), φ(hm), and φ(hσj ) commute with φ(gi) by assumption and, as

before, φ(〈S \ {u}〉) centralises φ(gi). As before, u = hσi is not contained in 〈S \ {u}〉.

Thus, u /∈ 〈S \ {u}〉, and Lemma 2.1 yields |〈S〉| ≥ p|〈S \ {u}〉| ≥ p1+|S|−1 = p|S|, which contradicts

that S is counterexample. Thus, |〈S〉| > p|S| for all S. It will follow from c) that 〈S〉 is a p-group.

b) The group A = 〈x, y, g1, . . . gk, h1, . . . hk〉 lies in N ∩ CG(y) and has size |A| > p2k+2 by a). The
element ℓ ∈ N \CG(y) has order p, so 〈N∩CG(y), ℓ〉 6 N has size at least p|N∩CG(y)| ≥ p1+2k+2 =
|N | by Lemma 2.1. This implies that A = N ∩ CG(y) has order p

2k+2 and N = 〈A, ℓ〉, as claimed.

c) We continue with the previous notation. All generators ofA = N∩CG(y) lie inCG(x), soA = N∩
CG(〈x, y〉). SinceN✂NG(〈x〉), we haveA✂CG(〈x, y〉). But thenA

σ✂CG(〈x, y〉)
σ = CG(〈x, y〉

σ) =
CG(〈x, y〉), which proves the first claim of c), that is,

〈x, y, g1, . . . , gk, h1, . . . , hk, g
σ
1 , . . . g

σ
k , h

σ
1 , . . . , h

σ
k 〉 = 〈A,Aσ〉✂ CG(〈x, y〉);

note that the generators xσ, yσ ∈ 〈x, y〉 are redundant. Moreover,A,Aσ✂〈A,Aσ〉, and so |〈A,Aσ〉| =
|AAσ| = |A||Aσ |/|A ∩Aσ| divides |A||Aσ | = |A|2 = p4k+4. Thus, 〈A,Aσ〉 is a p-group. �

2.2. The p-local subgroups. For completeness, we recall the classification of the odd-local maximal
subgroups of M, with the correction discussed in Section 5.6 (that is, with the addition of 59:29).

Proposition 2.3 ([27]; [29]; [11]; §5.6). The odd-local maximal subgroups ofM are, up to conjugacy, the

normalisers NM(E) listed in Table 2.

The following subsections consider each of the odd-local maximal subgroups separately and prove
that the generators in the accompanying code do indeed generate a maximal subgroup of the correct
shape. For a more efficient exposition, we first outline the common steps of these proofs.

Procedure 2.4. Let N = NM(E) be one of the p-local maximal subgroups in Table 2. The accompa-

nying code provides two lists, LE and LN , of elements in M in mmgroup format. Let Ẽ = 〈LE〉 and
Ñ = NM(Ẽ). We aim to prove that E ∼= Ẽ and N ∼= Ñ = 〈LN 〉. We usually proceed as follows, and
explain alternative approaches in the relevant proofs.

(1) We first confirm that Ẽ is an elementary abelian group of the correct type, see column “E” in

Table 2. For this we confirm computationally that Ẽ is elementary abelian of the correct size, and, if
required, that all its non-identity elements lie in the correct conjugacy class ofM. We note thatmmgroup
provides the functionality to compute the values of the unique irreducible 198663-dimensional complex

character χM ofM for elements that lie in the maximal subgroup G = NM(2B). Once the type of Ẽ is

established, the structure and maximality ofNM(Ẽ) ∼= N is usually determined by Proposition 2.3.

(2) A direct calculation in mmgroup shows thatLN normalises Ẽ, and the next step is to show that 〈LN 〉
containsCM(Ẽ). This centraliser is usually an extension of the formA.B, where the structures ofA and
B are known. We exhibit words in the elements of LN whose cosets with respect toA generate a group

isomorphic toCM(Ẽ)/A ∼= B; ifCM(Ẽ) = A:B is known to be a split extension, then we often exhibit
words in the elements of LN that generate B. The last step is to construct, as words in elements of
LN , generators ofA. Here it is useful that gcd(|A|, |B|) is usually small and thatA contains low-index

p-subgroups. In conclusion, at the end of this step we have shown thatCM(Ẽ) 6 〈Ln〉 6 Ñ = NM(Ẽ).
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NM(E) E Citations and Comments

3.Fi24 3A

see [27, Theorem 3]; for 3A2, see also the table

above [27, Proposition 2.2]

31+12.2.Suz:2 3B

S3 × Th 3C
(

32:2×O+
8 (3)

) .S4 3A2

32+5+10: (M11 × 2.S4) 3B2 see [27, Theorems 3, 6.5]; the structure of E is insufficient

for the maximality and structure of NM(E).33+2+6+6: (PSL3(3)× SD16) 3B3

38.O−
8 (3).2 38 see [27, Theorems 3, 7.1]; E extends 37 < 31+12 ≤ NM(3B)

(D10 × HN) .2 5A

see [27, Theorem 5]; for 5A2, 5B2 see also the first two

tables in [27, §9]

51+6:2.J2:4 5B
(

52:4.22 ×U3(5)
)

:S3 5A2

52+2+4: (S3 ×GL2(5)) 5B2

53+3. (2× PSL3(5)) 5B3

54: (3× 2.PSL2(25)) :2 5B4 see [27, Theorem 5]; E extends 52 < 51+6 ≤ NM(5B)

(7:3× He) :2 7A
see [27, Theorem 7]; for 7A2 see also the table at the start

of [27, §10]
71+4: (3× 2.S7) 7B
(

72: (3× 2.A4)× PSL2(7)
)

:2 7A2

72+1+2:GL2(7) 7B2 see [27, Theorem 7]; E < 71+4 ✁NM(7B)

72:SL2(7) 7B2 see [27, Theorem 7]; E 6< 71+4 ✁NM(7B)

112: (5×2.A5) 112

see [27, §11]; note thatM has unique conjugacy classes of
elements of orders 11, 41, and that the two classes of
elements of order 59 are inverses

(13:6× PSL3(3)) .2 13A

131+2: (3× 4.S4) 13B

132:SL2(13):4 13B2

41:40 41

59:29 59

Table 2. The odd-local maximal subgroups NM(E) of M.

(3) Finally, we consider the homomorphism φ : 〈LN 〉 → Aut(Ẽ) induced by conjugation. Step (2)

establishes that CM(Ẽ) = ker φ, so the image of φ is isomorphic to a subgroup of NM(Ẽ)/CM(Ẽ). A

direct calculation allows us to determine the size of the image of φ, and if this equals |NM(Ẽ)/CM(Ẽ)|,
then 〈LN 〉 = Ñ is established.

We use the notation and approach of Procedure 2.4 in each of the following proofs, sometimes
with minor modifications. We always denote by LE and LN the lists of elements provided in the
accompanying code, and always write

Ẽ = 〈LE〉 and Ñ = NM(Ẽ).

We then prove that Ñ = 〈LN 〉 is the required maximal subgroup. We usually do not comment on

obvious verifications, such as checking that the elements inLN normalise Ẽ, etc, but these verifications
are done in the corresponding section of the accompanying Jupyter Notebook.

2.3. The group 3.Fi24. The next theorem is adapted from the accompanying code of [5].

Theorem 2.5. The accompanying code defines LE = {x3} and LN = {g3, h3}. The group NM(〈LE〉)
is generated by LN and isomorphic to the maximal subgroup 3.Fi24 ofM.
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Proof. The element x3 ∈ G has order 3 and χM(x3) = 782, so x3 ∈ 3A. Therefore, NM(Ẽ) ∼= 3.Fi24
and CM(Ẽ) ∼= Ẽ. We confirm x3 = (g3h3g3h

3
3g3h

5
3)

28 ∈ 〈LN 〉. To ensure that all cosets ofNM(Ẽ)/Ẽ
have representatives in 〈LN 〉, we consider the elements a = g3h3 and b = (g3h3)

5h3 of order 29 and

70, respectively. It follows that also aCM(Ẽ) and bCM(Ẽ) have order 29 and 70, respectively, and they

are elements in Fi24 ∼= NM(Ẽ)/Ẽ. Atlas information shows that Fi24 has a unique class of maximal
subgroup whose order is divisible by 29 and 70, but this subgroup has no elements of order 70. We

deduce that aCM(Ẽ) and bCM(Ẽ) generate a group isomorphic to Fi24, and so NM(Ẽ) = 〈LN 〉. �

2.4. The group 31+12.2.Suz:2.

Theorem 2.6. The accompanying code defines LE = {x3b} and LN = {g3b, h3b}. The groupNM(〈LE〉)
is generated by LN and isomorphic to the maximal subgroup 31+12.2.Suz:2 ofM.

Proof. The element x3b ∈ G has order 3 and χM(x3b) = 53, so x3b ∈ 3B. Thus, Ẽ has the correct

type and NM(Ẽ) ∼= 31+12.2.Suz:2 is a maximal subgroup. The elements g3b and h3b normalise Ẽ and
have orders 56 and 66, respectively, and therefore some of their powers project to elements of orders
28 and 11 in the factor group Suz.2 under the natural projection map ϕ. Atlas information shows that
Suz.2 has a unique class of maximal subgroups of order divisible by both 28 and 11, namely Suz, but
this subgroup has no element of order 28. This implies that 〈LN 〉 contains a complete set of coset

representatives of U = kerϕ ∼= 31+12.2 in Ñ ∼= 31+12.2.Suz:2. It remains to show that U lies in
〈LN 〉. Since Suz.2 contains no elements of order 56 and gcd (56, 31+12 · 2) = 2, we have g283b ∈ U .

Since g283b has order 2, it lies in U \ 31+12. Thus, it remains to show that 〈LN 〉 contains V = 31+12.

The element r = g283b (g
28
3b )

h3b lies in V , and in the accompanying code we express x3b as a word in
conjugates of r. We also define elements y3b, ℓ, g1, . . . , g5, h1, . . . , h5, σ as words in elements of LN

and apply Lemma 2.2 to show that these generate V . This completes the proof. �

2.5. The group S3 × Th. The next theorem is proved in the with elements adapted from [5].

Theorem 2.7. The accompanying code defines LE = {x3c} and LN = {g3c, h3c}. The groupNM(〈LE〉)
is generated by LN and isomorphic to the maximal subgroup S3 × Th ofM.

Proof. We exhibit an element c ∈ M such that xc3c ∈ G has order 3 and χM(xc3c) = −1, proving

that Ẽ has the correct form and NM(Ẽ) ∼= S3 × Th. Let a = g33c and b = h43c. The elements ab and
abab2ab2abab2abababab2ab2abab have orders 19 and 31, respectively, and their cosets with respect
to S3 generate a subgroup of Th containing elements of these orders. Atlas information implies that

this subgroup is the whole group Th. It remains to show that 〈LN 〉 contains S3. Since Ẽ is normal in

NM(Ẽ), it must lie in S3. Now confirming that x3c = g43c and h
3
3c generate S3 completes the proof. �

2.6. The group
(

32:2×O+
8 (3)

) .S4.

Theorem 2.8. The accompanying code defines LE = {x3, y3} and LN = {g3a2, h3a2}. The group

NM(〈LE〉) is generated by LN and isomorphic to the maximal subgroup
(

32:2×O+
8 (3)

) .S4 ofM.

Proof. We confirm that Ẽ is 3A-pure of size 32. There is a unique class of such subgroups, see [27, §2],

so Ñ ∼=
(

32:2×O+
8 (3)

) .S4. Using the auxiliary element g = h23a2(g3a2h3a2)
2g−1

3a2h
−1
3a2, we confirm

that x13 = (g23a2h3a2)
2g43a2h

−2
3a2, x2 = ((h3a2g3a2)

2h3a2g
−1
3a2)

15, and x14 = (gx2g
−1x2g)

3 have orders

13, 2, and 14, respectively, and centralise Ẽ. Thus, they lie in the factorO+
8 (3) ofCM(Ẽ) ∼= 32×O+

8 (3).
By [3, p. 140], the only maximal subgroup ofO+

8 (3) with order divisible by both 13 and 14 isO7(3), in
which the centraliser of an element of order 7 has order 14. Confirming that x214 (of order 7) commutes

with x2(6= x714) as well as with x14, we conclude that O
+
8 (3) is contained in Ẽ. We then confirm that

x3 = (h3a2g
3
3a2(h3a2g3a2)

2)8 and y3 = (h3a2g3a2h3a2g
3
3a2h3a2g3a2)

8, and since O+
8 (3) has a trivial

centre, Ẽ 6 〈LN 〉, and so CM(Ẽ) 6 〈LN 〉. Lastly, we obtain 48 = |2.S4| distinct automorphisms

induced by the conjugation action of 〈LN 〉 on Ẽ, which proves that Ñ = 〈LN 〉. �
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2.7. The group 32+5+10: (M11 × 2.S4).

Theorem 2.9. The accompanying code defines LE = {x3b, y3b} and LN = {g3b2, h3b2}. The group

NM(〈LE〉) is generated by LN and isomorphic to the maximal subgroup 32+5+10: (M11 × 2.S4) ofM.

Proof. We check that Ẽ ∼= 32 and 〈LN 〉 6 Ñ . By [27, Theorem 5.2], the normaliser Ñ is contained in
a maximal subgroup with structure 3.Fi24, 3

1+12.2.Suz:2,
(

32:2×O+
8 (3)

) .S4, 3
2+5+10: (M11 × 2.S4),

or 38.O−
8 (3).2; since only the fourth of these groups contains an element of order |g3b2| = 88, we

must have Ñ 6 32+5+10: (M11 × 2.S4). (We note that [27, Theorem 5.2] refers to maximal 3-local
subgroups, but by Proposition 2.3, all such subgroups of M are maximal.) It remains to prove that

|Ñ | > |32+5+10: (M11 × 2.S4) | = 317|M11| · 48. We first confirm that 〈h63b2, (g
8
3b2h

3
3b2g

32
3b2)

2〉 ∼= M11

by verifying a presentation for M11. We then establish elements in 〈LN 〉 that satisfy the assumptions
of Lemma 2.2 (with x = x3b and y = y3b) and so generate a 3-group of size at least 317 that is normal

in CM(Ẽ). Together with the simple group M11 ≤ CM(Ẽ) exhibited above, we have generated a

subgroup of CM(Ẽ) ∩ 〈LN 〉 of order at least 317|M11|. We conclude the proof by enumerating the 48

distinct automorphisms of Ẽ induced by conjugation by 〈LN 〉. �

2.8. The group 33+2+6+6: (PSL3(3)× SD16).

Theorem 2.10. The accompanying code defines LE = {x3b, y3b, z3b} and LN = {g3b3, h3b3}. The group
NM(〈LE〉) is generated by LN and isomorphic to the maximal subgroup 33+2+6+6: (PSL3(3)× SD16).

Proof. Theorem 2.9 shows that 〈x3b, y3b〉 ∼= 32 < 31+12 ✂ NM(〈x3b〉) ∼= 31+12.2.Suz:2. Setting c =
g3b3h

3
3b3g3b3h3b3g3b3, we verify that c ∈ CM(x3b), that z3b = yc3b and z3b commutes with x3b and y3b, so

Ẽ ∼= 33 is a subgroup of 31+12 containing the centre. Now [27, Theorem 6.5] implies that Ñ belongs to a
maximal subgroup ofM of type 31+12.2.Suz:2, 32+5+10: (M11 × 2.S4), or 3

3+2+6+6: (PSL3(3)× SD16).

We confirm g3b3, h3b3 ∈ Ñ and |h3b3| = 104, which forces Ñ 6 33+2+6+6: (PSL3(3)× SD16). The
elements a = h63b2 and b = (g83b2h

3
3b2g

32
3b2)

2 from the proof of Theorem 2.9 generate a subgroup

isomorphic to M11, which is contained in NM(〈x3b, y3b〉) = 32+5+10: (M11 × 2.S4). We check that

u = (aba(b2a)2)2 and v = ((ba)3(b2a)2ba)2 generate a group of size 9 that centralises Ẽ. In the
accompanying code, we establish 15 elements (as words in elements of LN ) that commute with all
elements of LE and lie in the subgroup 32+5+10 6 NM(〈x3b, y3b〉). An application of Lemma 2.2

proves that these elements generate a 3-subgroup U of CM(Ẽ) of order at least 315. By construction,

|M11 ∩ U | = 1, so U and {u, v} together generate a 3-subgroup of CM(Ẽ) of size at least 317. We

verify that g393b3 and h263b3 centralise Ẽ, and that the 〈g393b3, h
26
3b3〉-class of a particular element h1 ∈ U

of order 3 has size 72. By the Orbit–Stabiliser Theorem, the size of 〈g393b3, h
26
3b3〉 is divisible by 72,

which implies that Ñ contains a subgroup of CM(Ẽ) with order divisible by 8. This centraliser is
therefore at least 8 times as large as the 3-subgroup of order 317 found above. Accounting for the

11232 automorphisms of Ẽ that we enumerate by considering the conjugation action of Ñ , we have

|Ñ | ≥ 317 · 8 · 11232 = |33+2+6+6: (PSL3(3)× SD16) |, which completes the proof. �

2.9. The group 38.O−
8 (3).2.

Theorem 2.11. LetLE = {x3b, y3b, g1, . . . , g4, h4, h
σ
4} andLN = {g38 , h38} be as in the accompanying

code. The group NM(〈LE〉) is generated by LN and isomorphic to the maximal subgroup 38.O−
8 (3).2.

Proof. Lemma 2.2 implies that Ẽ has size 38; we verify that the generators have order 3 and commute,

hence Ẽ ∼= 38. To prove that the elements in LN normalise Ẽ is tedious, hence the accompanying code
provides explicit words in elements of LE that illustrate how the elements in LN act via conjugation.

This proves that Ñ 6 NM(Ẽ) and also yields an explicit matrix representation of the conjugation

action of 〈LN 〉 on Ẽ. A computation in the computer algebra system GAP [6] proves that 〈LN 〉 acts
on Ẽ as the subgroup O−

8 (3).2 6 GL8(3). The only maximal 3-local subgroup in Table 2 whose order

is divisible by |g38 | = 41 is 38.O−
8 (3).2, which tells us that Ñ 6 38.O−

8 (3).2. As for demonstrating

that LN generates Ñ , it remains to prove that LE 6 〈LN 〉, which we establish by representing the
elements in LE as words in elements of LN . �
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2.10. The group (D10 ×HN) .2.

Theorem 2.12. Let LE = {x5} and LN = {g5, h5} be as in the accompanying code. The group

NM(〈LE〉) is generated by LN and isomorphic to the maximal subgroup (D10 × HN) .2.

Proof. The element x5 ∈ G has order 5 and χM(x5) = 133, so x5 ∈ 5A and NM(Ẽ) ∼= (D10 × HN) .2.

We confirm that LN 6 NM(Ẽ) and h195 = x5. The elements g45 and h55 centralise x5 and have orders

11 and 19, respectively, and it follows from the Atlas that they generate the subgroup HN 6 NM(Ẽ).

Lastly, xg55 = x25, so g5 induces an automorphism of order 4 on 〈x5〉. Thus, NM(Ẽ) = 〈LN 〉. �

2.11. The group 51+6:2.J2:4. The next theorem is adapted from [5].

Theorem 2.13. Let LE = {x5b} and LN = {g5b, h5b} be as in the accompanying code. The group

NM(〈LE〉) is generated by LN and isomorphic to the maximal subgroup 51+6:2.J2:4.

Proof. We find c ∈ M such that xc5b ∈ G and confirm χM(x5b) = 8, so x5b ∈ 5B and NM(Ẽ) is

isomorphic to 51+6:2.J2:4. We also confirm LN 6 NM(Ẽ). The elements a = h45b and g5b centralise
x5b, so a, g5b ∈ CM(x5b). They have orders 70 and 3, and a product ag5b of order 5. It follows that a
and g5b project to elements of orders 7 and 3 in J2. The different orders ensure they are not inverses;
in particular, their product of order dividing |g5ba| = 5 must project to an element of order 5 exactly.
Atlas information now implies that 〈g5b, h5b〉 contains a representative for each coset of 51+6:2 in
CM(〈x5〉) ∼= 51+6:2.J2. It follows from the above that g75b is an element of order 10 in the normal

subgroup 51+6:2 ofNM(〈x5b〉), so it and its conjugates lie in in (51+6:2)\51+6. It remains to show that
51+6 is contained in 〈LN 〉. In the accompanying code, we define ℓ = g75b(g

7
5b)

h5b ∈ 51+6 and write x5b
as a word in conjugates of ℓ. We also define elements y5b, and g1, g2 and h1, h2 that satisfy the criteria
of Lemma 2.2, which allows us to conclude 51+6 6 〈LN 〉. Since h5b induces an automorphism of order
4 on 〈x5b〉, it follows that 〈LN 〉 ∼= 51+6:2.J2:4. �

2.12. The group
(

52:4.22 ×U3(5)
)

:S3.

Theorem 2.14. Let LE = {x5, y5} and LN = {g5a2, h5a2} be as in the accompanying code. The group

NM(〈LE〉) is generated by LN and isomorphic to the maximal subgroup
(

52:4.22 ×U3(5)
)

:S3.

Proof. We verify LN 6 NM(Ẽ) and show that Ẽ = 5A2 by checking that x5, y5 commute and that
x5 ∈ 5A is conjugate to y5 /∈ 〈x5〉 and to y

i
5x5 for 1 ≤ i ≤ 4 by h5a2, g

4
5a2, h5a2g

2
5a2h

2
5a2, g

2
5a2h5a2g5a2,

and h5a2g5a2h
2
5a2, respectively. Thus, LN ⊂ NM(Ẽ) ∼=

(

52:4.22 ×U3(5)
)

:S3. Next, we show that

((g5a2h5a2)
2g5a2h

−1
5a2g

−2
5a2h

−1
5a2)

5 and (h25a2g5a2h5a2g5a2h
−2
5a2g

−1
5a2h

−1
5a2g

−1
5a2)

5 lie inCM(〈x5, y5〉)which is
isomorphic to 52×U3(5). These elements have orders 7 and 8, and Atlas information implies that they

generate the factorU3(5). The factor 5
2 is generated by y5 = ((g5a2h

2
5a2)

2g5a2)
18 andx5 = h5a2y5h

−1
5a2;

note that U3(5) has trivial centre. Finally, we verify that the conjugation action of 〈g5a2, h5a2〉 on
〈x5, y5〉 produces |4.2

2||S3| = 16 · 6 = 96 automorphisms of 〈x5, y5〉. Thus, NM(Ẽ) = 〈LN 〉. �

2.13. The group 52+2+4: (S3 ×GL2(5)).

Theorem 2.15. Let LE = {x5b, y5b} and LN = {g5b2, h5b2} be as in the accompanying code. The group

NM(〈LE〉) is generated by LN and isomorphic to the maximal subgroup 52+2+4: (S3 ×GL2(5)).

Proof. We have shown in the proof of Theorem 2.13 that x5b and y5b /∈ 〈x5b〉 are commuting ele-
ments of order 5 in 51+6 ✂ NM(〈x5b〉) ∼= 51+6:2.J2:4. They generate a group 52 < 51+6 containing
the centre 〈x5b〉. By [27, §9], there are only two conjugacy classes of such subgroups in 51+6:2.J2:4.
One of these, whose centralisers have structure (5 × 51+4):52:S3, have as normalisers the subgroups
52+2+4: (S3 ×GL2(5)) sought; the other, the centralisers of which have structure 5× 51+4:21+4:5, do
not. In the accompanying code we exhibit t ∈ CM(〈x5b, y5b〉) of order 3, which proves that 〈x5b, y5b〉
is of the former kind. We have confirmed LN 6 NM(Ẽ) ∼= 52+2+4: (S3 ×GL2(5)). Hence we deduce
CM(〈x5b, y5b〉) = (5×51+4):52:S3. All elements of order 2 or 3 therein project to elements of the same
order in the factor S3, and therefore generate it. We exhibit two such elements in the accompanying
code. The 5-subgroup is constructed using Lemma 2.2 by exhibiting suitable elements ℓ, g1, g2, h1, h2, σ.
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These elements are expressed as words in elements ofLN , which proves that 〈x5b, y5b〉∩CM(〈x5b, y5b〉)
contains a 5-group of order at least 52+2+2+2 = 58; this can only be the normal 5-group in the cen-

traliser. Finally, the conjugation action of 〈g5b2, h5b2〉 on Ẽ induces 480 = |GL2(5)| automorphisms,

which completes the proof of NM(Ẽ) = 〈LN 〉. �

2.14. The group 53+3. (2× PSL3(5)).

Theorem 2.16. Let LE = {x5b, y5b, g2} and LN = {g5b3, h5b3} be as in the accompanying code. The

group NM(〈LE〉) is generated by LN and isomorphic to the maximal subgroup 53+3. (2× PSL3(5)).

Proof. We verify that 〈x5b, y5b, g2〉 is an elementary abelian 5-group. By [27, Theorem 5], its nor-
maliser lies inside a maximal subgroup 51+6:2.J2:4, 5

2+2+4: (S3 ×GL2(5)), 5
3+3. (2× PSL3(5)), or

54: (3× 2.PSL2(25)) :2. Only the third of these has order divisible by 31 = |h25b3|, so 〈LN 〉 6 NM(Ẽ) 6
53+3. (2× PSL3(5)). We construct elements g1, g2, h1, h

σ
1 and confirm that together with x5b and

y5b they generate a 5-subgroup of 〈LN 〉 of order at least 56. These elements commute with g2, so

this 5-subgroup lies in CM(Ẽ). The element (h5b3g
2
5b3)

15 is an involution that centralises x5b, y5b,
and g2, so it increases the size of the group generated by a factor of at least 2. Lastly, we enumerate

372000 = |PSL3(5)| automorphisms induced by the conjugation of 〈g5b3, h5b3〉 on Ẽ. This completes

the proof that 〈LN 〉 = NM(Ẽ) ∼= 53+3. (2× PSL3(5)). �

2.15. The group 54: (3× 2.PSL2(25)) :2.

Theorem 2.17. Let LE = {x5b4, y5b4, a, b} and LN = {g5b4, h5b4} be as in the accompanying code. The

group NM(〈LE〉) is generated by LN and isomorphic to the maximal subgroup 54: (3× 2.PSL2(25)) :2.

Proof. We confirm that Ẽ is an abelian 5-group of order 54, so by [27, Theorem 5] its normaliser is con-
tained in amaximal subgroup of shape either 51+6:2.J2:4, 5

2+2+4: (S3 ×GL2(5)), 5
3+3. (2× PSL3(5)),

or 54: (3× 2.PSL2(25)) :2. Exhibiting an element [g5b4, h5b4]
6 of order 13 in NM(〈LE〉) rules out

all but the last possibility, so we have confirmed that LN 6 NM(Ẽ) 6 54: (3× 2.PSL2(25)) :2.
A calculation confirms that x5b = [h−2

5b4, g
4
5b4]

3, y5b = x5bg5b4[g
4
5b4, h

−2
5b4]g

−1
5b4, a = [h−1

5b4, g
4
5b4], and

b = g5b4h5b4g
4
5b4h

−1
5b4g

3
5b4, so Ẽ 6 〈LN 〉. The conjugation action of 〈LN 〉 on Ẽ induces 93600 =

|3× 2 · PSL2(25)| automorphisms, and it follows that 〈LN 〉 ∼= 54: (3× 2.PSL2(25)) :2. �

2.16. The group (7:3×He) :2.

Theorem 2.18. Let LE = {x7} and LN = {g7, h7} be as in the accompanying code. The group

NM(〈LE〉) is generated by LN and isomorphic to the maximal subgroup (7:3× He) :2.

Proof. The argument is almost identical to that for Theorem 2.12, using the facts that x7 ∈ G has order
7; moreover χM(x7) = 50,so x7 ∈ 7A and elements g67 , h

7
7 ∈ CM(x7) ∼= 7 × He have orders 7 and

17, while g67 /∈ 〈x7〉, h
85
7 = x7. Lastly, we note that the conjugation action of g7 on Ẽ induces an

automorphism of order 7, in particular xg77 = x37. �

2.17. The group 71+4: (3× 2.S7). The next theorem is adapted from [5].

Theorem 2.19. Let LE = {x7b} and LN = {g7b, h7b} be as in the accompanying code. The group

NM(〈LE〉) is generated by LN and isomorphic to the maximal subgroup 71+4: (3× 2.S7).

Proof. We confirm that x7b ∈ G has order 7, χM(x7b) = 1, so x7b ∈ 7B and LN ⊂ NM(Ẽ). It

follows that NM(Ẽ) ∼= 71+4: (3× 2.S7). We first demonstrate that 〈LN 〉 contains a representative

of each coset of 71+4. For this define a0 = g67b, a1 = ah7b

0 , a3 = a30a
−2
1 (ah7b

1 a
h2

7b

1 )−1, y6 = a−1
3 g7b,

and t = (y6h7b)
14. We verify that t has order 3 and centralises 〈y6, h7b〉. Considering conjugates in

G, we verify that |〈y6, h7b〉| = 10080 and that t /∈ 〈y6, h7b〉, so 〈t, y6, h7b〉 ≤ 〈LN 〉 has 3 · 10080 =
|3 × 2.S7| elements, which is precisely the number of cosets of 71+4 in 71+4: (3× 2.S7). We show
that each coset has a representative. Suppose, for a contradiction, that this is not true. In this case
the intersection of 〈t, y6, h7b〉 with 71+4 is a non-trivial 7-group. The image of 〈t, y6, h7b〉 under the
canonical homomorphism φ : 71+4: (3× 2.S7) → [71+4: (3× 2.S7)]/7

1+4 then has order dividing 3 ·
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10080/7 = 3 · 1440, so that the element r7 = (y6h7b)
6 of order 7 must be mapped to the identity. On

the other hand, the fact that r7h
−1
7b and h7b have orders 20 and 6 implies their images under φ are of

those orders too; but this a contradiction to |φ(r7h
−1
7b )| = |φ(h−1

7b )| = |φ(h7b)| = 6. Thus, it remains

to prove that 71+4 ✁ 71+4: (3× 2.S7) is a subgroup of 〈LN 〉. Note firstly that g67b lies in this normal
subgroup, for the only alternative is that g7b (of order 42) belongs to a coset of order 42 in the quotient
group [71+4: (3× 2.S7)]/7

1+4 ∼= 3× 2.S7. The absence of elements with this order in 2.S7 means the
14th power of such a coset would lie in the factor 3, for which {e, t, t2} are coset representatives by
the previous paragraph. But the orders 42, 21, and 21 of g7b, g7bt

−1 and g7bt
−2 do not divide |71+4|.

We therefore find that the elements a0, a1, a3 defined above — which are products of conjugates of

g67b in 〈LN 〉 — belong to 71+4, as does a2 = a1a
h7b

1 . Noting that x7b = a−1
0 a−1

1 a0a1 and a3 satisfy
the hypotheses of Lemma 2.2 with ℓ = a0, suitable g1, h1 ∈ 〈a0, . . . , a3〉 and σ ∈ NM(〈x7b, a3〉), we
deduce that they generate a subgroup of size 75. It follows that 〈LN 〉 = NM(Ẽ). �

2.18. The group
(

72: (3× 2.A4)× PSL2(7)
)

:2.

Theorem 2.20. Let LE = {x7, y7} and LN = {g7a2, h7a2} be as in the accompanying code. The group

NM(〈LE〉) is generated by LN and isomorphic to the maximal subgroup
(

72: (3× 2.A4)× PSL2(7)
)

:2.

Proof. The proof is similar to that of Theorem 2.12. The element x7 ∈ 7A commutes with y7 /∈ 〈x7〉 and
is conjugate to y7 and x7y

i
7 for 1 ≤ i ≤ 6. Thus Ẽ ∼= 72 is 7A-pure and we confirm LN ⊆ NM(Ẽ) ∼=

(

72: (3× 2.A4)× PSL2(7)
)

:2. The factor 72 of CM(〈x7, y7〉) ∼= 72 × PSL2(7) can be handled in the

same way as the 52 in Theorem 2.14 since y7 = (g37a2h
4
7a2g7a2)

18 and x7 ∈ y
〈g7a2,h7a2〉
7 . We check that

s = (h47a2g
4
7a2)

7 and t = (g37a2h7a2g7a2h
3
7a2g7a2h7a2)

14 have orders 3 and 2, so they lie in the factor
PSL2(7). Moreover, they generate this group since st and t satisfy Sunday’s [25] presentation for
PSL2(7). The remaining factor of |3× 2.A4||2| = 144 in the order of the normaliser is then accounted

for by enumerating the automorphisms induced by the conjugation action of 〈LN 〉 on Ẽ. �

2.19. The group 72+1+2:GL2(7).

Theorem 2.21. Let LE = {x7b, a3} and LN = {g7b2, h7b2} be as in the accompanying code. The group

NM(〈LE〉) is generated by LN and isomorphic to the maximal subgroup 72+1+2:GL2(7).

Proof. We have seen in the proof of Theorem 2.19 that x7b and a3 /∈ 〈x7b〉 are commuting elements
of order 7 such that a3 ∈ 71+4 ✂ NM(〈x7b〉) ∼= 71+4: (3× 2.S7). It follows that 〈x7b, a3〉 ∼= 72 is a
subgroup of 71+4 containing the centre x7b ∈ 7B, so [27, §10] shows that NM(〈LE〉) lies in a maxi-
mal subgroup 71+4: (3× 2.S7) or 7

2+1+2:GL2(7). We show that |g7b2h
2
7b2| = 48, which implies that

〈NN 〉 6 72+1+2:GL2(7). We exhibit elementsx7b, a3, g1, h1, h
σ
1 such that Lemma 2.2 implies that these

elements generate a 7-group of order at least 75, centralising Ẽ. We demonstrate the presence of such
a 7-group in 〈LN 〉 by expressing each of these five elements as words in elements of LN . Noting that

(h7b2g
3
7b2h7b2g

−1
7b2h

−3
7b2g

−1
7b2)

7 is an element of order 3 centralising the same 72, Lemma 2.1 shows that

the 7-group extends to a subgroup of 〈LN 〉∩CM(Ẽ)with order at least 75 ·3. Finally, enumerating the
conjugation action, we obtain

|〈LN 〉| ≥ 672|〈LN 〉 ∩ CM(Ẽ)| ≥ 672 · 75 · 3 = |72+1+2:GL2(7)|.

Since 〈LN 〉 ≤ NM(〈LE〉) ≤ 72+1+2:GL2(7), equality follows. �

2.20. The group 72:SL2(7). The next theorem is adapted from [19].

Theorem 2.22. Let LE = {x7b, y7b} and LN = {x7b, y7b, x4, x14} be as in the accompanying code. The
group NM(〈LE〉) is generated by LN and isomorphic to the maximal subgroup 72:SL2(7).

Proof. Arguing as in the proof of Theorem 2.20 establishes that Ẽ ∼= 72 is 7B-pure; conjugating elements

are provided in the code. This allows us to confirm that LN 6 NM(Ẽ) 6 72:SL2(7). We verify that x4
and x14 satisfy a presentation for the group SL2(7), which implies the claim. �
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2.21. The group 112: (5×2.A5). The next theorem is adapted from [19].

Theorem 2.23. Let LE = {x11, y11} and LN = {x11, y11, x3, x4, x5} be as in the accompanying code.

The group NM(〈LE〉) is generated by LN and isomorphic to the maximal subgroup 112: (5×2.A5).

Proof. We confirm that Ẽ ∼= 112 and LN ⊂ NM(Ẽ) ∼= 112: (5×2.A5), see Proposition 2.3; note
that all elements of order 11 in M are conjugate. We now check that x3, x4 and x5 have the orders
indicated by their subscripts, and that x5 commutes with x3, x4. Furthermore, the cosets of x4 and x3
modulo 〈x24〉 satisfy the presentation 〈a, b | a

2, b3, (ab)5〉 for the simple groupA5, which by Von Dyck’s
Theorem [12, Theorem 2.53] ensures 〈x3, x4〉/〈x

2
4〉

∼= A5. Observing that x24 commutes with x3 and

(of course) x4, it must be that 〈x3, x4, x5〉 ∼= 5× 2.A5, so 〈LN 〉 = NM(Ẽ). �

2.22. The group (13:6× PSL3(3)) .2. The next theorem is adapted from [5].

Theorem 2.24. Let LE = {g13} and LN = {g13, y12, c, d} be as in the accompanying code. The group

NM(〈LE〉) is generated by LN and isomorphic to the maximal subgroup (13:6× PSL3(3)) .2.

Proof. Weverify thatLN ⊂ NM(Ẽ). Enumerating a conjugate of 〈c, d〉 inG proves that |〈c, d〉| = 5616,
so g13 cannot be a 13B element: the size of the normaliser of the latter is not divisible by 5616. Thus, g13
is a 13A element, hence NM(Ẽ) ∼= (13:6× PSL3(3)) .2. We confirm that CM(g13) ∼= 13× PSL3(3) is
contained in 〈g13, y12, c, d〉 by verifying that c, d centralise the non-commuting elements g13 and y12.
Thus, g13 is an element of order 13 not belonging to 〈c, d〉 < CM(y12), and Lemma 2.1 implies that
|〈g13, c, d〉| ≥ 13|〈c, d〉| = 13 · 5616 = |13 × PSL3(3)|. The observation that |〈g13, c, d〉| 6 CM(g13)

yields the desired result. The conjugation action of 〈y12〉 on Ẽ gives rise to 12 automorphisms; now

〈LN 〉 = NM(Ẽ) follows. �

2.23. The group 131+2: (3× 4.S4).

Theorem 2.25. Let LE = {c} and LN = {g13, c, c2, x1, x2} be as in the accompanying code. The group

NM(〈LE〉) is generated by LN and isomorphic to the maximal subgroup 131+2: (3× 4.S4).

Proof. The element c has order 13 and a conjugate inG. The Atlas implies thatG has no 13A elements,

so c lies in class 13B and we confirmed that LN ⊂ NM(Ẽ) ∼= 131+2: (3× 4.S4). Enumerating a
conjugate of 〈x1, x2〉 inG shows that |〈x1, x2〉| = 288 = |3 × 4.A4|, so this group must be 3× 4.A4.
The elements g13, c, c2 in turn have orders coprime to 288 and thus lie in the 13-group 131+2. An
enumeration proves that g13, c, c2 generate 13

1+2. �

2.24. The group 132:SL2(13):4.

Theorem 2.26. Let LE = {c, c2} and LN = {c, c2, x1, x2, x4} be as in the accompanying code. The

group NM(〈LE〉) is generated by LN and isomorphic to the maximal subgroup 132:SL2(13):4.

Proof. The proof of Theorem 2.25 shows that 〈c, c2〉 ∼= 132; moreover, as c ∈ 13B is conjugate to c2 and

cci2 for 1 ≤ i ≤ 13 with conjugating elements x32 and x
3
2x

12i+13
1 x32, respectively, this group is 13B-pure.

We confirm that LN ⊂ NM(Ẽ) ∼= 132:SL2(13):4. We verify that the conjugation action of 〈x1, x2, x4〉
on Ẽ induces 4|SL2(13)| = 8736 automorphisms; this implies that 〈LN 〉 = NM(Ẽ). �

2.25. The group 41:40.

Theorem 2.27. Let LE = {g41} and LN = {g41, h41} be as in the accompanying code. The group

NM(〈LE〉) is generated by LN and isomorphic to the maximal subgroup 41:40.

Proof. We show that g41 has order 41 and g
h41

41 = g2241 and 22 is a primitive root modulo 41. �
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3. The Maximal 2-Local Subgroups of M

The maximal 2-local subgroups of M, all known to be maximal before the publication of the Atlas [3],
were first classified by Meierfrankenfeld and Shpectorov, see [14, 24]. We introduce the necessary
terminology before re-stating their results, which we need to do in order to justify our constructions.
Recall that z denotes the central 2B involution inG = CM(z), and thatG ∼= Q.Co1 whereQ = 21+24.
If g2 ∈ M is a 2B involution and u, v ∈ M satisfy gu2 = z = gv2 , then v−1u ∈ CM(z) and therefore

Qv−1u = Q. Thus, the group Qv−1

= Qu−1

is independent of the choice of u or v, and we can define

Qg2 asQ
u−1

More generally, for a subgroup U 6 M we write

QU =
⋂

x∈U∩2B

Qx.

A 2B involution g2 is perpendicular to g1 if g1 ∈ Qg2 . A singular subgroup ofM is an elementary abelian
2-group in which all involutions are of class 2B and pairwise perpendicular. There are two conjugacy
classes of singular subgroups of order 25 inM, denoted as “type 1” and “type 2” in accordance with [24],
see also Section 3.1.1. An ark A is a group generated by a type-1 2B5 singular subgroup U and all the
type-2 2B5 subgroups that intersect U in an index 2 subgroup; it turns out that the size of an ark is
always |A| = 210. With these definitions, Meierfrankenfeld and Shpectorov prove the following result.

Proposition 3.1 ([24, Theorem 1] and [14, Theorem A]). The Monster contains exactly 7 conjugacy

classes of maximal 2-local subgroups. They are:

(1) the normalisers of subgroups of types 2A and 2A2, with structures 2.B (where B is the Baby Monster)

and 22.2E6(2):S3 respectively;

(2) the normalisers of singular subgroups of types 2B, 2B2, 2B3, and 2B5 type-2, which have structures

21+24.Co1, 2
2+11+22. (M24 × S3), 2

3+6+12+18. (PSL3(2)× 3.S6), and 25+10+20. (S3 × PSL5(2))
respectively; and

(3) the normalisers of arks, with structure 210+16.O+
10(2).

Remark 3.2. Generators for the centralisers of 2A and 2B involutions described in Proposition 3.1
already appear with proof in [5, §4] and [5, §2.5] respectively. For completeness, these generators are
included in the accompanying code [18] along with the relevant arguments, but we do not reproduce
them here.

3.1. Preliminary results.

3.1.1. Checking singularity of 2B-pure subgroups. The construction of several subgroups in Propo-
sition 3.1 demands somemeans of identifying singular subgroups and classifying them up to conjugacy;
otherwise, we have no means of ascertaining that what we produce are in fact maximal subgroups. For-
tunately, Meierfrankenfeld and Shpectorov provide some simple tests for this.

Proposition 3.3. The following hold.

a) There are exactly 6 conjugacy classes of non-trivial singular subgroups inM; the corresponding orders

are 2, 22, 23, 24, 25, and 25.

b) The perpendicularity relation is symmetric.

c) A subgroup U is singular if and only if it is generated by a set U of pairwise perpendicular 2B involu-

tions. Furthermore, the group QU =
⋂

x∈U∩2BQx coincides with
⋂

x∈U Qx.

Proof. Part a) is [24, Proposition 4.15], part b) is [24, Lemma 4.1], and part c) is [24, Lemma 4.3]. �

Part a) of Proposition 3.3 shows that, apart from the 25 case (see §3.1.2), the conjugacy class of a sin-
gular subgroup is determined by the group size. Singularity can be tested by straightforward enumer-
ation of the group elements and ascertaining the non-identity elements are commuting perpendicular
2B involutions; this is a feasible task since mmgroup provides functionality to conjugate a 2B involution
to z ∈ G and to test whether an element lies in Q. Part c) provides some simplifications for this test.
This approach suffices for the construction of the maximal 2A2, 2B2, and 2B3 normalisers.
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3.1.2. The 2B5 and Ark Normalisers. To construct the 2B5 and ark normalisers, the question of
distinguishing the two conjugacy classes of singular subgroup with structure 25 must be addressed.
The following result forms the basis of the method that we employ.

Proposition 3.4 ([24, Lemma 4.14]). The following hold.

a) If U 6 M is singular 25 type-1, then QU/U is of order 2. Furthermore, all involutions in QU \ U are

in class 2A.

b) If U 6 M is singular 25 type-2, then QU = U .

The task of determining QU can be simplified by the observation that, if U is generated by a sub-
group V < U and an involution t perpendicular to the generators of V , then Proposition 3.3 may be
applied to yieldQU = QV ∩Qt.

3.2. The group 22.2E6(2):S3.

Theorem 3.5. Let LE = {y, yg2} and LN = {g2, h2} be as in the accompanying code. The group

NM(〈LE〉) is generated by LN and isomorphic to the maximal subgroup 22.2E6(2):S3.

Proof. We confirm that Ẽ is 2A-pure of size 22, and so Ñ ∼= 22.2E6(2):S3. Moreover, we confirm that

LN 6 Ñ = NM(〈LE〉). Define a = h22g
9
2 and b = h22g

12
2 . We compute that 〈a, b〉 ≤ CM(Ẽ) ∼=

22.2E6(2). Taking the image under the quotient by Ẽ, we have 〈Ẽa, Ẽb〉 ≤ 2E6(2). Now a2, b2 /∈ Ẽ

satisfy (a2)13 = 1 and (b2)19 = 1, so that Ẽa2 and Ẽb2 must have orders 13 and 19, respectively. Since
the sole maximal subgroup of 2E6(2) with order divisible by 19 has the form U3(8) : 3 (see [28]), and

the order of this group is not divisible by 13, the elements Ẽa, Ẽbmust in fact generateCM(Ẽ)/Ẽ. Now

Ẽ 6 〈LN 〉 since yg2 = (h2g2)
14, and hence CM(Ẽ) 6 〈LN 〉. Finally, we note that the conjugation

action of 〈LN 〉 induces 6 = |S3| distinct automorphisms of Ẽ, implying that NM(Ẽ) = 〈LN 〉. �

3.3. The group 22+11+22. (M24 × S3).

Theorem 3.6. Let LE = {z, z1} and LN = {g2b, h2b} be as in the accompanying code. The group

NM(〈LE〉) is generated by LN and isomorphic to 22+11+22. (M24 × S3), a maximal subgroup ofM.

Proof. We verify that Ẽ is 2B-pure of size 22, and so Ñ ∼= 22+11+22. (M24 × S3). Moreover, Ẽ 6

Q 6 G and LN 6 Ñ = NM(〈LE〉). We now deviate from Procedure 2.4. To show that 〈g2b, h2b〉
is the complete normaliser of Ẽ, it suffices to prove that |〈g2b, h2b〉| ≥ |NM(Ẽ)|. Define four subsets
F1 = LN ,F2,F3,F4 of 〈LN 〉, and let Ki = 〈Fi, . . . ,F4〉 for i ∈ {1, . . . , 4}. We will describe homo-
morphisms ϕ1, ϕ2, ϕ3 such that Ki+1 ≤ kerϕi and kerϕ3 < kerϕ2 < kerϕ1 for i = 1, 2, 3. We can
then find a lower bound for |〈g2b, h2b〉| using a repeated application of the Isomorphism Theorem.

First, let ϕ1 : K1 → Aut(Ẽ) be the homomorphism induced by conjugation. By checking the gen-

erators of each Ki, we verify that |ϕ1(K1)| = 6 = |S3|, while K2 6 CM(Ẽ) 6 G = CM(z); this also
shows thatK2 6 kerϕ1.

Now consider the action ofK2 onQẼ/Ẽ, as defined in Lemma 3.3. By [24, Lemma 4.5], the image of

this action is isomorphic to some subgroup of M24. Let ϕ2 : K2 → Aut(QẼ/Ẽ) be the corresponding
action homomorphism. In order to compute this homomorphism, we give (and verify) generators for
QẼ in the accompanying code. It is then easily shown that K3 ≤ kerϕ2. Moreover, we claim that
ϕ2(K2) ∼= M24. We construct elements in ϕ2(K2) with orders 5, 23, and 21. No proper subgroup of
M24 has elements of all three of these orders, so the claim holds.

Now observe that F3,F4 ⊆ G ∼= Q.Co1 and consider ϕ3 : K3 → Co1, the restricted canonical
homomorphism from G into Co1. We find that |ϕ3(〈F3〉)| = 211 whileK4 ≤ kerϕ3. Finally, with the

observation that F4 ⊆ Q, a direct calculation shows that |K4| = 224. Lastly, 〈LN 〉 = |NM(Ẽ)| follows
from a repeated application of the Isomorphism Theorem, which reveals that

〈LN 〉 > |K4|
∏3

i=1
| Imϕi| > 224.6.|M24|.2

11 = |22+11+22. (M24 × S3) | = |NM(Ẽ)|. �
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3.4. The group 23+6+12+18. (PSL3(2) × 3.S6).

Theorem 3.7. Let LE = {z, z1, w} and LN = {g3, h3} be as in the accompanying code. The group

NM(〈LE〉) is generated by LN and isomorphic to the maximal subgroup 23+6+12+18. (PSL3(2)× 3.S6).

Proof. We verify that Ẽ is 2B-pure of size 23, and so NM(〈LE〉) is of the required form. Moreover,
LN 6 NM(〈LE〉). We proceed as in Theorem 3.6 to show 〈LN 〉 = NM(〈LE〉). Consider four subsets
F1 = {g3, h3}, F2, F3, and F4 of 〈g3, h3〉, and, for each 1 6 i 6 4, let Ki = 〈Fi, . . . ,F4〉. Let

ϕ1 : K1 → Aut(Ẽ) be induced by conjugation; we compute that |ϕ1(〈F1〉)| = 168whileK2 ≤ kerϕ1.

In particular,K2 ≤ CM(Ẽ). Now consider the action ofK2 onQẼ/Ẽ. SinceK2 centralises Ẽ, it follows

from [24, Lemma 4.8] that elements ofK2 permuteQẼ/Ẽ by conjugation, inducing a group isomorphic

to some subgroup of 3.S6. Letϕ2 : K2 → Aut(QẼ/Ẽ) be the corresponding action homomorphism. To
compute images under this homomorphism, verified generators forQẼ are given in the accompanying
code. We find that |ϕ2(〈F2〉)| = 2160 = |3.S6| whileK3 ≤ kerϕ2. Noting that F3,F4 ⊆ G ∼= Q.Co1,
define ϕ3 : K3 → Co1 to be the restricted canonical homomorphism from G into Co1. We find that
K4 ≤ kerϕ3 and |ϕ3(〈F3〉)| ≥ 216. Moreover by a direct calculation, |〈F4〉| = 223. The claim now
follows from a repeated application of the Isomorphism Theorem, which shows that

〈LN 〉 > |K4|
∏3

i=1
| Imϕi| > 223.168.|3.S6|.2

16 = |23+6+12+18. (PSL3(2)× 3.S6) | = |NM(Ẽ)|. �

3.5. The group 25+10+20. (S3 × PSL5(2)).

Theorem 3.8. Let LE = {z, z1, w, k4, k5} and LN = {g5, h5} be as in the accompanying code. The

groupNM(〈LE〉) is generated byLN and isomorphic to themaximal subgroup 25+10+20. (S3 × PSL5(2)).

Proof. We confirm that Ẽ is 2B-pure of size 25, and that |QẼ | = |Ẽ| = 25. Hence, Ẽ is a singular 2B5

subgroup of type 2 by Proposition 3.4, soNM(〈LE〉) is maximal of the required shape by Proposition 3.1.

We also find that LN 6 NM(〈LE〉). To prove that 〈LN 〉 6 NM(Ẽ), we proceed as in Theorem 3.6.
Define subsets F1 = {g5, h5}, F2, F3, and F4 of 〈LN 〉, and, for 1 6 i 6 4, write Ki = 〈Fi, . . . ,F4〉.
Let ϕ1 : K1 → Aut(Ẽ) be the action homomorphism for K1 acting by conjugation on Ẽ. We verify

thatK2 ≤ kerϕ1, so K2 ≤ CM(Ẽ). We further claim that ϕ1(〈F1〉) ∼= GL5(2) = PSL5(2). We find a
pair of elements with images under ϕ1 of orders 15 and 31 respectively. Since PSL5(2) has no proper
subgroup divisible by both of these orders, the claim follows. To introduce the next homomorphism

ϕ2, it is necessary to define the subgroup V = 〈z, z1, w, k4〉 < Ẽ of order 24. We verify that V is

singular, and that |QV | = 27. Now K2 6 CM(Ẽ) 6 CM(V ), and so [24, Lemma 4.10] implies thatK2

permutes QV /V , inducing a group isomorphic to some subgroup of S3. Let ϕ2 : K2 → Aut(QV /V )
be the corresponding action homomorphism. We compute that |ϕ2(〈F2〉)| = 6 whileK3 ≤ kerϕ2.

Now F3,F4 ⊆ G ∼= Q.Co1, so consider the restriction ϕ3 : K3 → Co1 of the canonical homo-
morphism from G into Co1. We calculate that K4 ≤ kerϕ3 and that |ϕ3(〈F3〉)| ≥ 214. Moreover, a
direct calculation shows that |〈F4〉| = 221. Applying the Isomorphism Theorem, we deduce that the
following, which proves the claim.

〈LN 〉 > |K4|
∏3

i=1
| Imϕi| > 221.|PSL5(2)|.6.2

14 = |25+10+20. (S3 × PSL5(2)) | = |NM(Ẽ)|. �

3.6. The group 210+16.O+
10(2).

Theorem 3.9. Let LE = {z, z1, w, k4, k5, k
ρ16

4 , kρ5 , k
ρ15

5 , kρ
16

5 , kρ
30

5 } and LN = {g10, h10} be as in the

accompanying code. The group NM(〈LE〉) is generated by LN and isomorphic to the maximal subgroup

210+16.O+
10(2).

Proof. We first verify that Ẽ = 〈LE〉 is an ark, as in the definition preceding Proposition 3.1. We first

verify that T1 = 〈z, zτ , w, k4, k
ρ16

4 〉 is a singular subgroup of order 25 and moreover that |QT1
| = 64 =

2 · 25. It follows from Proposition 3.4 that T1 is a singular 2
5 subgroup of type 1.

To extend this to Ẽ = 〈LE〉, recall from the proof of Theorem 3.8 that 〈z, zτ , w, k4, k5〉 < Ẽ is a

singular 2B5 of type 2. It contains the index 2 subgroupV = 〈z, z1, w, k4〉 of Ẽ. Now [24, Corollary 4.12]
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Type Class Fusions Centraliser Normaliser

AAA 2A, 3A, 5A A12 (A5 ×A12) :2

BAA 2B, 3A, 5A 2.M22.2

BBA 2B, 3B, 5A M11 M11 × S5
ACA 2A, 3C, 5A U3(8):3 (A5 ×U3(8):3) :2

BCA 2B, 3C, 5A 21+4(A4 ×A5)

BCB 2B, 3C, 5B D10

B 2B, 3B, 5B S3 A5:4

T 2B, 3B, 5B 2 S5 × S3

Table 3. The conjugacy classes of A5 in M, the M-classes to which their unique conjugacy
classes of elements of orders 2, 3, and 5 fuse, their centralisers, and (where stated) their nor-
malisers; this table is adapted from Norton [15], as well as [3, p. 234].

asserts that each singular 2B4 belongs to a unique 2B5 of type 2 (and two of type 1). On the other hand,

there exists an element ρ of order 31 (defined in the accompanying code ) which normalises both Ẽ and
T1, but not V < T1. We compute that ρ acts transitively on singular 2B5s of type 2 that meet T1 in a

singular 2B4. Hence Ẽ is an ark, so NM(Ẽ) is maximal by Proposition 3.1.

We next confirm that g10, h10 ∈ NM(Ẽ). To show that 〈LN 〉 = NM(Ẽ), we proceed in a similar
way to Theorem 3.6. Consider three subsets F1 = {g10, h10}, F2, and F3 of 〈g10, h10〉, and for 1 6

i 6 3 define Ki = 〈Fi, . . . ,F3〉. Let ϕ1 : K1 → Aut(Ẽ) be induced by conjugation; we find that

K2 ≤ kerϕ1. Moreover, we claim that ϕ1(K1) ∼= O+
10(2). It follows from the structure of NM(Ẽ)

(cf. [24, Lemma 5.18]) that ϕ1(K1) ≤ O+
10(2). We find permutations in ϕ1(K1) of orders 17 and 31.

Since O+
10(2) has no maximal subgroups with order divisible by both 17 and 31, the claim follows.

At this point, we note that the elements x60, r and s defined in the accompanying code belong to

NM(Ẽ) and satisfy g10 = (x3060)
r and h10 = (x360)

s. Applying ϕ1 reveals that x60 and g10h10 project to
elements of order 60 and 21, respectively, in O+

10(2). Since the GAP Character Table Library [2] shows
that all elements of order 60 in this group power up to conjugacy classes 2A and 20A thereof, g10 and
h10 are standard generators in the sense of [26].

Note that F2,F3 ⊆ G ∼= Q.Co1, and consider ϕ2 : K2 → Co1 defined as the restriction of the
canonical homomorphism from G into Co1. It is easily verified that |ϕ2(〈F2〉)| = 29 while K3 ≤
kerϕ2. Finally, a direct calculation shows that |〈F3〉| = 217. Applying the Isomorphism Theorem, we
deduce the following, which completes the proof.

〈LN 〉 > |K3|
∏2

i=1
| Imϕi| > 217.|O+

10(2)|.2
9 = |210+16.O+

10(2)| = |NM(Ẽ)|. �

4. A5 in the Monster

The construction of the non-local subgroups of M requires some preliminary results on subgroups of
M isomorphic to A5. With the exception of PGL2(13), all non-local maximal subgroups contain a
subgroup of this shape, and considering how each A5 can be extended to larger subgroups of M has
conversely played a significant role in the existing classifications of some of the maximal subgroups.

The conjugacy classes of subgroups isomorphic to A5 in M were classified by Norton [15]. There
are eight conjugacy classes, as listed in Table 4. Six classes are uniquely identified by the (unique)
M-classes to which their elements of orders 2, 3, and 5 belong, while the two containing 2B, 3B, and
5B elements may be distinguished using their normalisers. We follow Norton in labelling the former
sextet by their class fusions and the latter pair, which respectively occur as subgroups of the double
cover of the Baby Monster and Thompson group, “B” and “T”. Instances of several of these types of A5

are constructed in [5]. The following lemma reproduces these results, with the addition of a subgroup
A5 of type ACA and a simplification due to [19] in the proof for the type B case.
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Lemma 4.1. For each type UVW ∈ {AAA, BAA, BBA, ACA, BCA, BCB, B, T}, the elements g2UV W

and g3UVW as given in the accompanying code generate a subgroup A5 ofM of type UVW.

Proof. In each case, we verify that the given generators satisfy a presentation for A5. The generators
are non-trivial, so by Von Dyck’s Theorem and the simplicity ofA5, they generate a subgroupA5. Since
the conjugacy classes in M of elements of orders 2, 3, and 5 are distinguished by their values under
χM, we can confirm the type of the A5, with the exception of types B and T. To complete the proof, it
must be shown that 〈g2B , g3B〉 is not of type T and 〈g2T , g3T 〉 not of type B. The latter case is easier: in
the code we exhibit an element y3 that has order 3 and centralises 〈g2T , g3T 〉, whereas all elements of
order 3 in the normaliserA5:4 of anA5 of type B lie in theA5 and therefore do not centralise it. As for
〈g2B , g3B〉, the normaliser of an A5 of type T has structure S5 × S3 and cannot contain an element of
order 4whose square lies outside theA5. In the codewe exhibit an element y4 with these properties: we
verify that it has order 4, commutes with g2B , and satisfies g

y4
3B = g2Bg

2
3Bg2Bg3Bg2Bg

2
3B ; in particular,

y4 belongs to the normaliser of A5. On the other hand, y24 centralises 〈g2B , g3B〉 ∼= A5; since A5 has a
trivial centre, y24 /∈ 〈g2B , g3B〉, as required. �

Remark 4.2. Our subgroup of type T in Lemma 4.1 is different to that given in [5]; ours is chosen to
intersect a conjugate of ourA5 of type B in a subgroup D10, as this simplifies the proof of Theorem 5.6.

5. The Projective Linear Maximal Subgroups of the Monster

We discuss projective linear groups separately because confirmation of their construction is much eas-
ier than in most other cases due to the availability of presentations. Specifically, in the code we use
Sunday’s presentation [25] for SL2(q) where q an odd prime power, and Robertson and Williams’ pre-
sentation [20, Theorem 4] for PGL2(p) with p a prime, with the correction of Hert [7, Theorem 3]
who pointed out that the presentation for PGL2(p) in [20, Theorem A] is in fact a presentation for
2 × PSL2(p) whenever 2 is a quadratic residue modulo p. A common step in each of the following
proofs is to verify a presentation; to keep the exposition short, we do not reiterate this every time, and
only provide additional information on maximality if necessary.

5.1. The group PSL2(71).

Theorem 5.1. The elements g71, h71 in the accompanying code generate a maximal subgroup PSL2(71).

Proof. It follows from [11, Theorem 1, §5.4] that all PSL2(71) < M are conjugate and maximal. �

5.2. The group PSL2(41).

Theorem 5.2. The elements g41, h41 in the accompanying code generate a maximal subgroup PSL2(41).

Proof. It follows from [17, Theorem 1] that all PSL2(41) < M are conjugate and maximal. �

5.3. The group PGL2(29).

Theorem 5.3. The elements g29, h29 in the accompanying code generate a maximal subgroup PGL2(29).

Proof. It follows from [8, Theorem 1] that all PGL2(29) < M are conjugate and maximal. �

5.4. The group PGL2(19). This theorem is adapted from [19, §6].

Theorem 5.4. The elements x2, x19 in the accompanying code generate a maximal subgroup PGL2(19).

Proof. It follows from [11, Theorem 1] that 〈x2, x19〉 ∼= PSL2(19) is maximal in M if and only if it
contains an A5 of type B; the claim follows since (x219x2)

2 and x2x
2
19x2x19 are the generators g2B and

g3B of the A5 of type B in Lemma 4.1. �
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5.5. The group PGL2(13). This theorem is adapted from [5, §3].

Theorem 5.5. The elements u, g13 in the accompanying code generate a maximal subgroup PGL2(13).

Proof. To show that this subgroup is maximal, we first note that there are known to be exactly three
conjugacy classes of PSL2(13) in M. Two of these, identified by Norton [15, §5], have centralisers of
shapes 31+2.22 and 3; the third, found by Dietrich et al. [5], has trivial centraliser and extends to a
maximal subgroup PGL2(13). It thus suffices to exhibit PSL2(13) < 〈u, g13〉 which is not centralised
by an element of order 3. As such, let x2 = (ug213)

2 ∈ 〈u, g13〉; we verify 〈x2, g13〉 ∼= PSL2(13).
It is also clear that CM(〈x2, g13〉) ≤ CM(g13), One may recall from the proof of Theorem 2.24 that
the latter is embedded in the direct product 13:6 × PSL2(13) of 〈g13, y

2
12〉

∼= 13:6 and its centraliser.

Writing g6 = g−1
13 x2g

7
13x2g

2
13x2 ∈ 〈x2, g13〉, the fact that x6 = y−2

12 g6 commutes with both g13 and
y212 then reveals that g6 is the product of y212 ∈ 13 : 6 and x6 ∈ PSL2(13). It follows that any
element of 13:6 × PSL2(13) which commutes with g6 must also centralise both y212 and x6. Hence
CM(〈g13, x2〉) ≤ CM(〈g13, g6〉) ≤ CM(〈g13, y

2
12, x6〉) = CPSL2(13)(x6), with x6 an element of order 6

in CM(〈g13, y
2
12〉)

∼= PSL2(13). The Atlas implies that this centraliser is 〈x6〉, and we show that x26 (of
order 3) does not commute with x2. Thus, no element of order 3 centralises 〈x2, g13〉. �

5.6. A correction for PSL2(59). Attempting to reproduce the methodology of Holmes and Wilson’s
[10] construction of a maximalPSL2(59), we come to the conclusion that no such subgroup exists. Our
argument is spelled out in the following proof; it reveals that there is instead a new maximal subgroup
ofM, which is isomorphic to 59:29.

Theorem 5.6. There is no subgroup PSL2(59) ofM. Consequently, the normalisers 59:29 of elements of

order 59 form a class of maximal subgroups ofM.

Proof. The group PSL2(59) has maximal subgroup A5 and every element of order 5 has a normaliser
D60

∼= 2 × D30. Norton and Wilson [16] have shown that elements of order 2, 3, or 5 in a maximal
G = PSL2(59) inMmust lie inM-classes 2B, 3B, or 5B, respectively. It follows from Table 4 that every
subgroup A5 of G is of type B or T. Let g2B , g3B , g2T , and g3T be as in Lemma 4.1, so that 〈g2B , g3B〉
and 〈g2T , g3T 〉 are subgroups isomorphic to A5s of the required types. In the code we fix an element c
such that the putative G contains at least one of 〈g2B , g3B〉

c and 〈g2T , g3T 〉, see also Remark 4.2. Let

b5 = g2T g3T ; a computation reveals that g2T g3T = b5 = gc2Bg
c
3B and g

g3T g2T g2
3T

2T = (g
g3Bg2Bg2

3B

2B )c = z,
where z is the central involution in G. Our assumed G ∼= PSL2(59) therefore contains 〈b5, z〉, which
we confirm to be D10. On the other hand, D10 is a group with trivial centre, normalising elements of
order 5 inG; since such elements have normalisers 2×D30 inG, the group 〈b5, z〉must be centralised by
an involution x ∈ G; in particular, we must have x ∈ 2B as shown above. We check that no suitable x
exists, and for this it suffices to consider all 2B involutions in the centraliser of the D10 we found above.
For these subgroups D10 inA5 of type B or T, Norton [15, Table 4] proves that the relevant centralisers
have shape 53.(4×A5); thus, any list of |5

3.(4×A5)| = 30000 distinct elements commutingwith b5 and
z generate the whole centraliser. In the code, we generate such a list from products of 6 pre-computed
generators. Testing orders and χM values yields that exactly 500 involutions of type 2B remain. This
coincides with the computations reported by Holmes and Wilson [10, p. 13], and gives confidence that
our construction so far is in line with the one in [10]. In [10] it is claimed that among these 500
involutions, some elements x extend A5 to a subgroup PSL2(59). However, we cannot confirm this:
note that elements in PSL2(59) have orders in O = {1, 2, 3, 5, 6, 10, 15, 29, 30, 59}. In particular, if
G contains a subgroup A5 of type B, then all of x(gg3Bg2B

2B )c, xgc3B , and gc2Bxg
c
3B have orders in O for

some involution x found above. Similarly, if G contains a subgroup A5 of type T, then the orders of
xgg3T g2T

2T and g2Txg3T must belong toO for some such x. We run over all 500 involutions and conclude
that none of them satisfies these conditions. This contradiction allows us to conclude that M has no
subgroup G = PSL2(59).

The existence of a subgroup H = 59:29 of M follows from [27]. It remains to prove maximality.
If H is not maximal, then H < M for some maximal M < M. Note that M = NM(T ) where
T = Sm is a direct product of isomorphic simple groups T . If 59 divides |T |, then m = 1 and so
M = NM(59) = 59:29 by [27], contradicting our assumption that H is not maximal. If 59 does not
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divide |T |, then the normal 59 < H normalises T = Sm. Since no prime power p59 divides |M|, we
deduce that m < 59 and therefore 59 < H does not permute the m factors of T . Thus this 59 must
normalise each S, so induces an element of order 59 in Aut(S)/S. Running over all simple subgroups
S that could be involved inM, we determine that 59 never divides |Aut(S)/S|. Thus, this case is also
not possible. Hence, H is maximal, as claimed. �

Remark 5.7. Establishing elements in mmgroup that generate a subgroup 59:29 constitutes ongoing
work. While elements of orders 59 and 29 may be easily found by random search, constructing the
normaliser of a given element of order 59 is very difficult – a naïve approach yields an approximately
1 in 1048 chance of success. An adaptation of a method developed by Bray et al. [1] for an analogous
problem for the Baby Monster increases the probability of success to around 1 in 108.

6. Non-Local Maximal Subgroups of the Monster

We now consider the non-local maximal subgroups of M.

Procedure 6.1. For many non-local subgroups of M, it is convenient to use a modification of Proce-
dure 2.4 when performing verifications; we usually proceed as follows.

(1) We exhibit generators LE for a subgroup E such that NM(E) is a maximal subgroup of M of
the claimed structure; the results of Section 4, [3, p. 234] and [15, §4, §5] often provide the
necessary data.

(2) We propose generators LN for NM(E) and first ascertain that LN normalises E. Some gener-
ators in LN can be written as a product gh where g ∈ CM(E) and h ∈ E; for others, it may be
directly verified that they map LE to elements of E under conjugation.

(3) The remaining steps are then to confirm that LN generates NM(E). We usually begin by ex-
hibiting words for the generators of E in elements of LN , so E 6 〈LN 〉, and then show that
CM(E) 6 〈LN 〉. The elements of CM(E) used to write products in Step (2) belong to 〈LN 〉
since those of E do, so that it frequently suffices to show these elements generate CM(E).

(4) Finally, we demonstrate that LN extends ECM(E) to NM(E), usually by exhibiting elements
which induce suitable outer automorphisms of E.

Throughout the following, we refer to the elements listed in Lemma 4.1.

6.1. The group (A5 ×A12) :2.

Theorem 6.2. Let LE = {g2AAA, g3AAA} and LN = {gAAA, hAAA, n} be as in the accompanying code.

Then LN generates the maximal subgroup NM(E) ∼= (A5 ×A12) :2.

Proof. According to the Atlas,NM(LE) ∼= (A5 ×A12) :2, and it remains to prove that 〈LN 〉 = NM(E),
see also Lemma 4.1. We verify that x3 = gAAAg2AAA and x10 = hAAAg

−1
3AAA centraliseE, and confirm

that n centralises g2AAA and that gn3AAA ∈ E. The latter is checked via an enumeration of E, which

also confirms that conjugation by n induces an outer automorphism of A5. We verify g2AAA = g3AAA

and g3AAA = h10AAA, so E and x3, x10 lie in 〈LN 〉. We show that 〈x3, x10〉 is the full centraliser A12 of
E by verifying that the generators x3, x10 satisfy the group presentation of A12 obtained by Coxeter
and Moser [4, §6.4]. Since n induces an outer automorphism, 〈LN 〉 ∼= (A5 ×A12) :2. �

A subgroup A5 × A12 has already been constructed in [5]; in our code we provide a conjugating
element that maps A5 intoG.

6.2. The group (A6 ×A6 ×A6) . (2× S4).

Theorem 6.3. Let LU = {xA6, yA6}, t, and LN = {gA6, hA6} as in in accompanying code. Then LN

generates the maximal subgroup NM(〈E〉) ∼= (A6 ×A6 ×A6) . (2× S4) where E = 〈U,U t, U t2〉 with
U = 〈LU 〉 ∼= A6.

Proof. The Atlas shows that the maximal subgroups (A6 ×A6 ×A6) . (2× S4) are precisely the nor-
malisers of A6 × A6 × A6, where each A6 contains 2A, 3A, 4B, and 5A elements. We verify that this
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holds for the subgroup U = 〈xA6, yA6〉 ∼= A6 using the presentation given in [4, §6.4]. Moreover, U
contains elements of a subgroup A5 of type AAA since it contains g2AAA = xA6yA6xA6y

2
A6x

2
A6 and

g3AAA = xA6y
2
A6x

2
A6yA6xA6 as in Lemma 4.1. It follows from [15, Table 5] that there is a unique conju-

gacy class of groups A6 < M containing such elements. This shows that U,U t, U t2 are of the required
type; we verify that they commute and that t has order 3. An explicit calculation shows that gA6 and

hA6 permute the groups U , U t, U t2 cyclically, and we verify E 6 〈Ln〉 6 NM(E) by writing the
generators LU as words in elements of LN , and confirming that g4A6 ∈ 〈LN 〉. It remains to show that

〈LN 〉 contains the factor 2×S4. The element c0 = (g3A6h
2
A6gA6h

3
A6)

6 centralises xA6, x
t
A6 and y

t
A6, but

yc0A6 /∈ y
〈xA6〉
A6 . Any element of E which centralises xA6 is the product of an element centralising U and

an element of CU (xA6) = 〈xA6〉, so we deduce that c0 /∈ E, so 〈E, c0〉 is at least twice as large asE by
Lemma 2.1. The element c1 = (h2A6g

3
A6h

3
A6)

6 centralises U and induces an outer automorphism of U t

which adjoining c0 ∈ CM(U t) cannot produce; thus, 〈E, c0, c1〉 is at least 2
2 = 4 times as large as E.

We next check that U t, U t2 , and c1 centralise U ; on the other hand, since c0 /∈ U is an involution nor-
malisingU , the IsomorphismTheorem shows 〈xA6, yA6, c0〉/U ∼= 〈c0, U〉/U ∼= 〈c0〉/(〈c0〉∩U) = 〈c0〉,
so that all automorphisms of U induced by the group generated so far arise from the product of an ele-
ment ofU and 〈c0〉. Of these, 4·2 = 8 elements centralisexA6. Establishing that the conjugate of yA6 by

c2 = g3A6y
−1
A6 ∈ 〈gA6, hA6〉 is not among the 8 elements in the 〈xA6, c0〉-class of yA6 therefore suffices

to show that 〈E, c0, c1, c2〉 is at least 2
3 = 8 times as large as E. Moreover, recalling that conjugation

by elements of 〈gA6, hA6〉 permutes the factors ofE, checking that U tc2 commutes with U t2 ∼= A6 and
normalises U shows that U tc2 = U t and hence that c2, like all other generators of the extended group

just exhibited, normalises U,U t and U t2 . Adjoining an element c3 = ht
−1

A6 which interchanges U and

U t thus produces a group at least 2 · 23 = 16 times the size of E. Finally, since t does not normalise

U t2 , the automorphism of U induced by t is still unaccounted for after the introduction of c3. Thus,

〈E, c0, c1, c2, h
t−1

A6 , t〉 ≤ 〈gA6, hA6〉

has order at least 3 · 24|A6|
3 = | (A6 ×A6 ×A6) . (2× S4) |, and the claim follows. �

6.3. The group (A5 ×U3(8):3) :2.

Theorem 6.4. LetLN = {g3ACA, gACA, hACA} andLE = {g2ACA, g3ACA} be as in the accompanying

code. Then 〈LE〉 ∼= A5 and LN generates the maximal subgroup NM(E) ∼= (A5 ×U3(8):3) :2.

Proof. The group E is a subgroup A5 of type ACA, and it follows from [3, p. 234] that NM(E) ∼=
(A5 ×U3(8):3) :2 is maximal in M. We verify that LE ⊆ 〈LN 〉 and that v = gACAg2ACA centralises
E. We have g2ACA = g3ACA, so v ∈ 〈LN 〉. We claim that the centraliserU3(8):3 ofE lies in 〈LN 〉 and is
generated by hACAvhACAv

2, (hACAv)
3(hACAv

2)3, and (hACAv)
3hACAv

2. These elements commute
with LE and have orders 19, 7, and 12, respectively. The former two must lie in U3(8) < U3(8):3.
It follows from the Atlas that U3(8) has no maximal subgroups of order divisible by 7 and 19, which
combinedwith the fact thatU3(8):3/U3(8) ∼= 3 is cyclic of prime order andU3(8) contains no elements
of order 12 establishes that the three elements indeed generate the whole ofCM(E). Finally, we confirm
(analogously to the proof of Theorem 6.2) that conjugation by hACA induces an outer automorphism
of A5; thus, 〈LN 〉 ∼= (A5 ×U3(8):3) :2. �

6.4. The group (PSL3(2)× S4(4):2) .2.

Theorem 6.5. Let LE = {xL2(7), yL2(7)} and LE = {gL2(7), hL2(7), n} be as in the accompanying code.

Then E ∼= PSL2(7) and LN generates the maximal subgroup NM(E) ∼= (PSL3(2)× S4(4):2) .2.

Proof. By [15, §5, Case 1], the maximal subgroup we aim to construct is a normaliser of a subgroup
PSL3(2) with elements in M-classes 2A, 3A, and 7A. We first check a presentation and verify that
E ∼= PSL2(7); note that the latter is also isomorphic to PSL3(2) by [13, Prop. 2.9.1, (xi)]. Our
generators in LE lie in G and we verify that xL2(7), yL2(7), xL2(7)yL2(7) ∈ G lie in classes 7A, 2A,

and 3A, respectively. We establish gL2(7), hL2(7), n ∈ NM(E) by determining that u = gL2(7)x
−1
L2(7)

and v = hL2(7)yL2(7) centralise LE , while n inverts xL2(7) and commutes with yL2(7). We have
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xL2(7) = g8
L2(7) and yL2(7) = h17

L2(7), so E 6 〈LN 〉. We know that u and v lie in CM(E) ∼= S4(4):2,

and show that they actually generate the centraliser. Since squares of all elements in S4(4):2 lie in the
normal subgroup S4(4), we conclude that the latter’s intersection with 〈u, v〉 contains the element v2

of order 17. Atlas information implies that the only maximal subgroup of S4(4) containing such an
element is PSL2(16).2. On the other hand, the orders of involution centralisers in PSL2(16).2 are not
divisible by any power of 2 greater than 16; it will thus follow that 〈u, v〉 contains S4(4) if it can be
shown that it contains an involution centraliser of order a multiple of 32. To this end, we construct
five elements as word in u, v that commute with the involution (vuv)2, and generate a group of or-
der 64 as sought. To complete the proof, we must verify that 〈u, v〉 properly contains S4(4), so that
〈u, v〉 = CM(E), and that n extendsPSL3(2)×S4(4):2 to the full normaliser ofE. The first assertion is
demonstrated by an adaptation of above argument: the largest 2-power that divides the order of an invo-
lution centraliser in S4(4) is 256, whereas the elements above together with with (wvwu)2w, (v2w)2v
generate a group of order 512 centralising (vuv)2. For the second result, an additional factor of 2 given
by an outer automorphism of E is required. Since elements of order 7 in PSL3(2) have normalisers
7:3, if follows that n (which inverts xL2(7)) induces the required extension. �

6.5. The group (PSL2(11) ×M12) :2.

Theorem 6.6. Let LE = {g2AAA, x11} and LN = {g11, h11, n} as in the accompanying code. Then

E ∼= PSL2(11) and LN generates the maximal subgroup NM(E) ∼= (PSL2(11) ×M12) :2.

Proof. By the Atlas, maximal subgroups (PSL2(11) ×M12) :2 are the normalisers of subgroups isomor-
phic to PSL2(11) containing elements of theM-classes 2A, 3A, and 5A. We confirm a presentation and
conjugacy class fusion forE, soNM(E) ∼= (PSL2(11)×M12) :2; specifically, we show thatE contains
a subgroup A5 of type AAA generated by g2AAA and g3AAA = g2AAAx11g2AAAx

3
11. We also confirm

that u = g11g2AAA and v = h11x
−1
11 both centralise g2AAA and x11 (note that g2AAA and x11 clearly

both belong to the normaliser) while n commutes with the former and inverts the latter. We compute
that g2AAA = g311 and x11 = h211, so E 6 〈LN 〉. Next, we use Atlas information to deduce that u and
v generate the subgroup CM(〈g2AAA, x11〉) ∼= M12: the latter has three maximal subgroups of order
divisible by 11, but none of these has elements of order 10, whereas vu and (vu)4uvu2 have orders 11
and 10, respectively. Thus, E × CM(E) 6 〈LN 〉. Elements of order 11 in PSL2(11) have normalisers
11:5, whereas n inverts x11. This proves that 〈LN 〉 ∼= (PSL2(11) ×M12) :2. �

6.6. The group
(

A7 × (A5 ×A5) :2
2
)

:2.

Theorem 6.7. Let LU = {g2AAA, g3AAA}, σ, and LN = {gA7, hA7} as in in accompanying code.

Then LN generates the maximal subgroup NM(E) ∼=
(

A7 × (A5 ×A5) :2
2
)

:2 where E = 〈U,Uσ〉 with
U = 〈LU 〉 ∼= A5.

Proof. By the Atlas, normalisers of the direct product of two A5s of type AAA are exactly the maximal
subgroups

(

A7 × (A5 ×A5) :2
2
)

:2. We verify thatE ∼= A5×A5 has the required type and that LN ⊂

NM(E) ∼=
(

A7 × (A5 ×A5) :2
2
)

:2. We confirm that E 6 〈LN 〉 by showing that σ and the elements

of LU can be written as words in the elements of LN . Moreover, we verify that x = (hA7gA7hA7g
2
A7)

6

and y = (gA7h
3
A7)

4 commute with the generators of E and satisfy the presentation for A7 given

in [4, §6.4]; thus, 〈LN 〉 contains P ∼= A7 × A5 × A5. We now show that a = (hA7g
6
A7)

15 commutes
with g2AAA, g

σ
2AAA and gσ3AAA, while g

a
3AAA ∈ U . On the other hand, a cannot belong to P : since all

elements thereof which centralise g2AAA are the product of an element of CU (g2AAA) and an element
centralising U , it would otherwise hold that ga3AAA lies in the CU (g2AAA)-class of g3AAA, which we
disprove by an enumeration. Thus, P has index at least 2 in 〈P, a〉 6 〈LN 〉. The analogous argument
with aσ yields a subgroup of 〈LN 〉 in which P has index at least 4. All generators so far normalise U
and Uσ , so noting that σ swaps these factors produces a subgroup of 〈LN 〉 in which P has index at
least 8. This proves that 〈LN 〉 = NM(E). �
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6.7. The group M11 ×A6
.22.

Theorem 6.8. Let LE = {g2AAA, y4} and LN = {gM11, hM11} be as in the accompanying code. Then

LN generates the maximal subgroup NM(E) ∼= M11 ×A6
.22 ofM.

Proof. By the Atlas, the maximal subgroup M11 × A6
.22 is the normaliser of a subgroup M11 con-

taining 2A, 3A, and 5A elements. We check a presentation to prove E ∼= M11. The group E con-
tains a subgroup A5 of type AAA meeting the correct conjugacy classes since the relevant generators

defined in Lemma 4.1 can be written as words in elements of LE . Since u = gM11y
−1
4 g2AAA and

v = hM11y
−1
4 (g2AAAy4)

−3 centralise E, it follows that LN 6 NM(E), and y4 = g30M11h
−10
M11 and

g2AAA = g−10
M11y

−1
4 confirms that E 6 〈LN 〉. Lastly, we confirm that 〈v, u〉 has size |A5

.22|, and
therefore 〈LN 〉 = NM(E). �

6.8. The group (S5 × S5 × S5) :S3.

Theorem 6.9. Let LU = {xS5, yS5}, t, and LN = {gS5, hS5} as in in accompanying code. Then LN

generates the maximal subgroup NM(E) ∼= (S5 × S5 × S5) :S3 where E = 〈U,U t, U t2〉 with U =
〈LU 〉 ∼= S5.

Proof. By the Atlas, maximal subgroups (S5 × S5 × S5) :S3 ofM are the normalisers of direct products
of three subgroups S5 containing 2A, 3A, and 5A elements. We test that U has order 120 and that LE

satisfies a presentation for S5, so U ∼= S5. The fact that g2AAA = (xS5y
2
S5)

2xS5yS5xS5 and g3AAA =

xS5yS5xS5y
3
S5 guarantees that U meets the correct conjugacy classes. We verify that U , U t, and U t2

commute and intersect trivially (since the factors have trivial centre), soE ∼= S5×S5×S5, as required. A
direct computation also shows that LN 6 NM(E), and we verify E 6 〈LN 〉 by writing the generators
in words of elements of LN . An explicit computation also shows that hS5 centralises U = 〈xS5, yS5〉

and interchanges U t, U t2 via conjugation, while conjugation by t permutes {U,U t, U t2} cyclically.
This allows us to deduce that 〈LN 〉 ∼= (S5 × S5 × S5) :S3. �

6.9. The group (PSL2(11) × PSL2(11)) :4. This is adapted from [19, §3].

Theorem 6.10. Let LU = {g2AAA, x11} and LN = {g2AAA, x11, x4} be as in the accompanying code.

Then LN generates a maximal subgroup NM(E) = (PSL2(11) × PSL2(11)) :4 where E = 〈U,Ux4〉
with U = 〈LU 〉 ∼= PSL2(11).

Proof. According to the Atlas, the maximal subgroups (PSL2(11)× PSL2(11)) :4 of M are the nor-
malisers of direct products PSL2(11) × PSL2(11) in which the elements of order 2, 3, and 5 in each
factor belong to classes 2A, 3A, and 5A. It was shown in the proof of Theorem 6.6 that U ∼= PSL2(11)
meets the correct conjugacy classes. We verify thatU andUx4 commute, soE = PSL2(11)×PSL2(11)
andNM(E) ∼= (PSL2(11) × PSL2(11)) :4. Since x

2
4 centralises g2AAA and inverts x11, we deduce that

LN ⊂ NM(E). As noted in the proof of Theorem 6.6, every automorphism of U that inverts x11 is an
outer automorphism. Therefore x24 /∈ E, and the claim follows. �

6.10. The group U3(4):4. This is adapted from [5, §6].

Theorem 6.11. Let LN = {j2, a12, g3BCB} be as in the accompanying code. Then LN generates a

maximal subgroup U3(4):4.

Proof. Per [5, §6], the maximal subgroups ofMwith the desired shape are the normalisers of subgroups
U3(4) containing A5s of type BCB (as opposed to a second class, identified by Norton [15, Table 5],
that contain subgroups A5 of type BCA). We verify that E = 〈j2, g3BCB〉 ∼= U3(4) by verifying
a presentation. The presence of a subgroup 〈g2BCB , g3BCB〉 ∼= A5 of type BCB is established by
verifying that we can write the relevant generators in Lemma 4.1 as words in elements of LN . An
explicit calculation in the accompanying code confirm that LN 6 NM(E). Now the claim follows
since a12 has order 12 but U3(4) has no elements of order 12 or 6. �
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